
HAL Id: hal-00869748
https://hal.science/hal-00869748

Submitted on 4 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of Multiple Constraints in ACG
Jiří Maršík, Maxime Amblard

To cite this version:
Jiří Maršík, Maxime Amblard. Integration of Multiple Constraints in ACG. Logic and Engineering of
Natural Language Semantics 10, Oct 2013, Kanagawa, Japan. pp.1-14. �hal-00869748�

https://hal.science/hal-00869748
https://hal.archives-ouvertes.fr


Integration of Multiple Constraints in ACG

Jǐŕı Marš́ık1,2,3 and Maxime Amblard1,2,3

1 Université de Lorraine, Laboratoire lorrain de recherche en informatique et ses
applications, UMR 7503, Vandoeuvre-lès-Nancy, 54500, France

2 INRIA, Villers-lès-Nancy, 54600, France
3 CNRS, Loria, Vandoeuvre-lès-Nancy, UMR 7503, 54500, France

{jiri.marsik, maxime.amblard}@loria.fr

Abstract. This proposal is a first step towards a wide-coverage Abstract
Categorial Grammar (ACG) that could be used to automatically build
discourse-level representations. We focus on the challenge of integrating
the treatment of disparate linguistic constraints in a single ACG and
propose a generalization of the formalism: Graphical Abstract Categorial
Grammars.

Keywords: abstract categorial grammars, grammar engineering, gram-
matical formalisms, formal grammars, computational linguistics

Abstract Categorial Grammars (ACGs) [1] have shown to be a viable formal-
ism for elegantly encoding the dynamic nature of discourse. Proposals based on
continuation semantics [2] have tackled topics such as event anaphora [3], SDRT
discourse structure [4] and modal accessibility constraints [5]. However, all of
these treatments only consider tiny fragments of languages. We are interested in
building a wide-coverage grammar which integrates and reconciles the existing
formal treatments of discourse and allows us to study their interactions and to
build discourse representations automatically.

A presupposed condition to actually using an ACG to describe discourse in
a large scope is to have a large scale ACG grammar in the first place. The work
presented here was motivated by this quest for a wide-coverage ACG grammar,
as seen from a point of view of language as a system of largely orthogonal
constraints. Encoding ancillary constraints in a type system can make the system
hard to read and understand. If multiple constraints written in the style of [6] are
to be enforced in the same grammar, we advocate for extending the formalism
to prevent the incidental complexity that would otherwise emerge.

We begin with a short review of Abstract Categorial Grammars where we
highlight the ways in which Abstract Categorial Grammars facilitate decompo-
sition of linguistic description. We follow that by a closer look at an example
of a linguistic constraint. This discussion motivates our proposed extension. We
then present the Graphical Abstract Categorial Grammars and consider some of
its formal properties. We then finish with an illustration of our approach which
incorporates linguistic contributions from multiple sources into a single coherent
and simple grammar and examine the limitations and challenges of adopting this
approach.



2

1 Abstract Categorial Grammars

We first review the grammatical framework in which we conduct our work.
Abstract Categorial Grammars are built upon two mathematical structures:
(higher-order) signatures and lexicons.

1.1 Higher-Order Signatures

A higher-order signature is a set of elements that we call constants, each of
which is associated with a type. Formally, it is defined as a triple Σ = <A,C, τ>,
where:

– C is the (finite) set of constants
– A is a (finite) set of atomic types
– τ is the type-associating mapping from C to T (A), the set of types built

over A

In our case, T (A) is the implicative fragment of linear and intuitionistic logic
with A being the atomic propositions. This means that T (A) contains all the
a 2 A and all the α−◦ β and α ! β for α, β 2 T (A).

A signature Σ = <A,C, τ>, by itself, already lets us define an interesting set
of structures, that is the set Λ(Σ) of well-typed lambda terms built upon the sig-
nature Σ. To make this structure even more useful, we often focus ourselves only
on terms that have a specific distinguished type. Using this notion of a signature
of typed constants and some distinguished type, we can describe languages of,
e.g. tree-like (and by extension string-like), lambda terms.

1.2 Lexicons

The idea of a signature is coupled with the one of lexicon, which is a map-
ping between two different signatures (mapping the constants of one into well-
typed terms of the other). Formally speaking, a lexicon L from a signature
Σ1 = <A1, C1, τ1> (which we call the abstract signature) to a signature Σ2 =
<A2, C2, τ2> (which we call the object signature) is a pair <F,G> such that:

– G is a mapping from C1 to Λ(Σ2) assigning to every constant of the abstract
signature a term in the object signature, which can be understood as its
interpretation/implementation/realization.

– F is a mapping from A1 to T (A2) which links the abstract-level types with
the object-level types that they are realized as.

– F and G are compatible, meaning that for any c 2 C1, we have `Σ2
G(c) :

F̂ (τ1(c)) (we will be using F̂ and Ĝ to refer to the homomorphic extensions
of F and G to T (A1) and Λ(Σ1) respectively).

Now we have enough machinery in hand to describe how ACGs define lan-
guages. Given some signature and a distinguished type, we can talk of the ab-
stract language, which is the set of well-typed terms built on the signature and



3

LsemLsyntax

ΣSynt

ΣSemΣString

(a) Connecting form
with meaning.

Lsyntax

Lconstr

Lsem

Sem

Synt

String

Constr

(b) Adding a con-
straint (Constraint).

Lyield

LinterSemLinterSyntax

SyntSem

Sem

String

Syntax

(c) Distinguishing
syntactic and seman-
tic ambiguities (Elab-
oration).

Fig. 1: Diagrams of systems of ACGs.

having the distinguished type. If we then also consider a lexicon and its abstract
signature, then the language we get by mapping the abstract language of the
signature through the lexicon is called an object language.

An ACG for us will then be just a collection of signatures with their distin-
guished types and the lexicons connecting these signatures, which we will write
down in diagrams such as the ones in Figure 1.

The most common pattern will have us using two object signatures, ΣString

and ΣSem, for the surface forms of utterances (strings) and their logical forms
(logical propositions) and an abstract signature, ΣSynt, which is connected to
both of the object signatures via lexicons (as we can see in Figure 1(a)). Parsing
is then just a matter of inverting the surface lexicon to get the abstract term
and then applying to it the logical lexicon. Generation is symmetric, we simply
invert the logical lexicon and apply the surface lexicon.

1.3 Systems of ACGs

Besides the pattern in Figure 1(a), there have been other techniques of decom-
posing linguistic description in the ACG literature. Here we will focus on two
that are relevant to our work.

The first constitutes the Constraint pattern used throughout [6]. Imagine we
want our grammar to enforce a particular linguistic constraint, say that tensed
clauses form islands for quantifier scope, and suppose we want to proceed by
refining our types so as to make linguistic structures violating the constraint
untypable. We could dive into our grammar and rewrite it to use the new types.
However, we can also keep the existing grammar intact and complement it with
a signature and a lexicon that translates that signature to the abstract-most
signature of our existing grammar (Figure 1(b)). Usually, the new signature
will resemble the prior abstract-most one, albeit with more fine-grained types
necessary to express the constraint in question.



4

This pattern is practical for examining linguistic constraints one-by-one and
demonstrating that the formalism is capable of expressing them individually.
However, this pattern does not serve us much in the context of ACGs when we
try to build a grammar which incorporates many of these at the same time. This
is due to the fact that after grafting on the first constraint, its added signature
now becomes the abstract-most signature in the grammar. Any other constraint
that would be added using the Constraint pattern would have to be translated
into this new signature. This would mean that the type systems of newly added
constraints would have to re-enforce all of the constraints introduced before,
therefore nullifying almost any benefit of the pattern.

Another pattern we will briefly mention is the Elaboration pattern in which
an edge in the diagram (a lexicon) is expanded into two edges and an intermedi-
ate node (signature). We can illustrate this pattern on Tree Adjoining Grammars
[7]. Suppose we have a signature describing TAG derivation trees and a lexicon
which maps them to their yield. We might want to make this grammar richer,
and arguably more synoptic, by elaborating the translation from derivation trees
to yields by introducing derived trees and describe separately how both deriva-
tion trees produce derived trees and how derived trees produce the yields. This
way, we can make emerge a potentially useful linguistic structure.

This pattern was used in [8] to elaborate the translation from the common
Montague-style [9] higher-order signature to its yield by introducing lower-order
syntactic structures more reminiscent of TAG or CFG trees. This helps make
a clear distinction between ambiguities caused by syntax and by semantics by
segregating the purely syntactic description in the Syntax signature from the
issues of operator scope that have to be solved in the SyntSem signature (Fig-
ure 1(c)). However, in classical ACGs, we cannot exploit this pattern as much
as we would like. If we were to use this grammar as a kernel on top of which
we would like to express a syntactic constraint, we would not be able to attach
the constraint’s signature directly to the Syntax node but we would instead
need to attach it to SyntSem4. This means that the syntactic constraint would
end up being expressed in terms of the types of the syntax-semantics interface
(SyntSem) rather than just pure syntax (Syntax), which only adds unnecessary
complexity.

2 The Problem of Multiple Constraints

We will consider several linguistic constraints that have been given formal treat-
ments in grammatical formalisms.

In French, negation is signalled by prepending the particle ne to the negated
verb in conjunction with using a properly placed accompanying word, such as a
negative determiner, in one of the verb’s arguments. This phenomenon has been
elegantly formalized in the Frigram interaction grammar [10].

4 This is due to the fact that ACG diagrams are always arborescences, in which the
root node represents the abstract language from whose terms are generated the terms
of all the object languages.



5

(1) Jean ne parle à aucun collègue.
(Jean speaks to no colleague.)

(2) Jean ne parle à la femme d’aucun collègue.
(Jean speaks to the wife of no colleague.)

(3) Aucun collègue de Jean ne parle à sa femme.
(No colleague of Jean’s speaks to his wife.)

We see here that the negative determiner aucun can be present in the subject
or the object of the negated verb and it can modify the argument directly or be
attached to one of its complements. Furthermore, we note that omitting either
the word ne or the word aucun while keeping the other produces a sentence
which is considered ungrammatical.

This difference in syntactic behavior between noun phrases that contain a
negative determiner and those that do not has implications for our grammar.
Since two terms that have an identical type in an ACG signature can be freely
interchanged in any sentence, we are forced to assign two different types to these
two different kinds of noun phrases.

This leads us to a grammar in which we subdivide the atomic types N and
NP into subtypes that reflect whether or not they contain a negative determiner
inside. Types of the other constants, such as the preposition de seen in (2) and
(3), will constrain their arguments to have compatible features on their types
and will propagate the information carried in the features to its result type, e.g.:

Nde1 : NPNEG=F −◦NNEG=F −◦NNEG=F

Nde2 : NPNEG=F −◦NNEG=T −◦NNEG=T

Nde3 : NPNEG=T −◦NNEG=F −◦NNEG=T

In the above, we elaborate the types NP and N with features (NEG=F

and NEG=T ) and we give the different types for the preposition de in the
fragment for negation (N). The types accept an NP and an N as arguments
with any combination of values for the feature NEG, except for the case when
both the prepositional NP and the N being modified both contain free negative
determiners (i.e. there is no Nde4 : NPNEG=T −◦NNEG=T −◦NNEG= . . .). This
encodes a constraint that there can be only one free negative determiner per
phrase (free as in not hidden inside an embedded clause). Besides this constraint,
the types also dictate how the information about negative determiners should
propagate from the argument constituent to the complex constituent (in this
case, it is simple disjunction).

Enforcing other constraints leads us to subdividing our “atomic” types even
further (e.g. the authors of [6] add features to the S and NP types to imple-
ment constraints about extraction). Other phenomena, such as agreement on
morphological properties like number, gender, person or case, intuitively lead us
to make our types even more specific.

If we were to use this approach to write a grammar that enforces multiple
constraints at the same time, we would end up with complicated types, like
the one below, which provide complete specifications of the various possible
situations (in this grammar (C), the preposition de has 12 different types).



6

Cde11 : NPNEG=T ,V AR=F,NUM=PL−◦NNEG=F,NUM=SG−◦NNEG=T ,NUM=SG

This creates two problems. Firstly, the number of such types grows expo-
nentially with the number of features added. This can be fixed by introducing
dependent types into the type system as in [11]. However, while this allows us to
abstract over the combinations of feature values and write our grammar down
concisely, it does not take away the complexity. The treatments of the various
linguistic phenomena are all expressed in the same types making it hard to see
whether they are independent or not. Since the treatments cannot be considered
in isolation, reasoning about the entire grammar becomes difficult and so does
enhancing it with more constraints. This is a fatal problem for a grammar which
strives to cover a wide range of linguistic facts. We firmly believe that simplicity
is a fundamental requirement for constructing a large and robust grammar and
our proposal aims to reclaim that simplicity.

In our grammar, we would like to combine several constraints (Figure 1(b)),
and possibly to also separate the syntactic ambiguities from the purely semantic
ones (Figure 1(c)). However, trying to mix these strategies in the ACG framework
forces us to solve all the constraints in a single type signature or contaminate
the syntax-semantics interface with the implementation details of the syntactic
layer, both of which introduce incidental complexity we want to avoid.

We would like to have a system which would be characterized by a diagram
like the one on Figure 2 where the constraint signatures delimit the legal syn-
tactic structures independently of each other and without interfering with the
syntax-semantics interface. However, ACG diagrams are limited to arborescences
and we are obliged to generalize them in order to get the expected interpretation.

3 Graphical ACGs

We define a graphical abstract categorial grammar as a directed acyclic graph
(DAG) whose nodes are labeled with signatures (and distinguished types) and
whose edges are labeled with lexicons, in other words, a mathematical reification
of an ACG diagram that has been generalized from arborescences to DAGs.
We then search for an appropriate semantics for these structures, i.e. how to
determine what languages are defined by a graphical ACG.

3.1 Nodes as Languages

We first follow a paradigm in which nodes of the diagrams are interpreted as
languages with the edges telling us how these languages are defined in terms of
each other. A single arrow leading to a language means that the target language
is produced from the source by mapping it through a lexicon. We now argue
that the suitable meaning of two or more edges arriving at the same node is
intersection of languages based both on the simplicity of the resulting definitions
and on our expectations about the desired semantics.



7

Lyield

Lconstr1 Lconstr2 LinterSemLinterSyntax

String

Syntax

SyntSem

Sem

Constr1 Constr2

Fig. 2: A graphical ACG that implements two independent syntactic constraints
and distinguishes syntactic and semantic ambiguities.

In an ACG diagram, a node with no inbound edges stands for an abstract
language. This language is defined as the set of terms having the correct type.
If a node has an inbound edge, and therefore a parent, then the elements of its
language are also obliged to have an antecedent in the parent language. It is a
small step to go from this definition to the following: the language of a node
is the set of terms having the correct type and an antecedent in the language
of any of its parent nodes. This correctly characterizes the current use of ACG
diagrams, recognizing abstract languages as a special case of object languages.
Furthermore, this restatement generalizes to DAGs and gives us the desired
semantics for implementing multiple constraints: intersection.

We can formalize the above definitions by introducing the notions of intrinsic
and extrinsic languages associated with some node v in a graphical ACG G:

IG(v) = {t 2 Λ(Σv) | `Σv
t : Sv}

EG(v) = IG(v) \
\

(u,v)∈E

L(u,v)(EG(u))

The intrinsic language is just the set of terms built on the node’s signature
and having the node’s distinguished type. The extrinsic language is established
by taking the extrinsic languages of its predecessors, mapping them through
lexicons and taking their intersection, or just taking the node’s intrinsic language
if it has no predecessors.

We then examine the relationship between the languages defined by ACGs
and graphical ACGs (G-ACGs). Intrinsic languages correspond exactly to ab-
stract languages and therefore the sets of languages definable by both are equal.

I = A



8

G-ACG extrinsic languages correspond to ACG object languages with inter-
section. More formally, while ACG object languages are ACG abstract languages
closed on transformation by a lexicon, G-ACG extrinsic languages are ACG ab-
stract languages closed on transformation by a lexicon and intersection5.

O = AL

E = AL∩

If we want our grammatical framework to be modular w.r.t. the different lin-
guistic constraints it encodes, we essentially need intersection6. Not only would
we want a framework in which intersection is possible, we would also like it to
be an easy operation. Graphical ACGs make intersections trivial to encode and
as for expressive power, we know, from the equations above, that object lan-
guages are as expressive as extrinsic languages iff object languages are closed
on intersection (which is, at this moment, conjectured to be false). This means
that graphical ACGs are either a conservative extension providing a more con-
venient way of expressing intersection or are extending ACGs by adding only
intersection, which enables constraint-based composition of grammars.

Right

Top

Bottom

Left

Fig. 3: The diamond-shaped G-ACG D.

While the interpretation of G-ACGs given above does have some nice prop-
erties, it fails to predict the intuitive understanding of more complex ACG dia-
grams. This is most visible in the diamond-shaped grammar on Figure 3. If we
take a term from ED(Bottom), we know it has antecedents both in ED(Left) and
ED(Right). However, these two do not have to share an antecedent in ED(Top).

5 Can be shown by induction on the topological ordering of any given graphical ACG.
6 If I have a grammar that enforces A and a grammar that enforces B, then I want to
have access to the grammar of the language where both A and B are enforced.



9

This contradicts the generative story one might imagine in which a single term
from Top generates terms in Left and Right which generate a term in Bottom.

We can observe another peculiarity on a more practical example. Consider
the G-ACG in Figure 2. In classical ACGs, one can always take an element in
a signature, like Sem, and by transduction find its corresponding element in an
another signature, like Syntax. However, in a G-ACG such as this, it is possible
that the Syntax term we obtain by transduction does not belong to EG(Syntax)
because it lacks antecedents in either Constr1 or Constr2. This means that the
notion of an extrinsic language is not capable to give us the set of all meaning
terms in Sem which actually correspond to syntactically correct sentences in
this G-ACG.

The above characteristics motivated us to explore alternative interpretations
of G-ACGs. We will present one such alternative now, which exchanges the
language-algebraic point of view for a generative one.

3.2 Nodes as Terms

In the new paradigm, we interpret the nodes of the graph as terms and the edges
as statements that one term is mapped into another using a lexicon. This leads
us to the definition of the pangraphical7 language of a node u in a G-ACG G.

A term t belongs to PG(u) whenever there exists a labeling T of the nodes
of the graph such that:

– Tu = t.
– For all v 2 V (G), `Σv

Tv : Sv.
– For all (v, w) 2 E(G), L(v,w)(Tv) = Tw.

If we compare this new interpretation of G-ACGs to the former one, we find
out that in the case when the graph of the grammar is an arborescence, they are
actually equivalent. This means that in classical ACGs, where all the diagrams
are arborescences, the two metaphors (nodes as languages and nodes as terms)
can be, and are, used interchangeably. However, as we start to consider non-
arborescent graphs, we find, interestingly, that the two paradigms diverge (i.e.
9G, u. EG(u) 6= PG(u)).

The newly defined pangraphical languages solve the problem of extrinsic
languages giving us counter-intuitive interpretations for some specific G-ACGs.
Specifically, the members of PD(Bottom) in the diamond grammar have a single
antecedent in PD(Top) and the language PG(Sem) (from Figure 2) contains only
meanings expressible by syntactically correct sentences.

Pangraphical languages turn out to be at least as expressive as the extrin-
sic languages8. The proof is carried out by transforming a G-ACG such that

7 As opposed to extrinsic languages, which are constrained only by their predecessors
in the graph, pangraphical languages are constrained by the entire graph.

8 This might come as no surprise given the extended domain of constraints compared
to extrinsic languages (constrained by the entire graph as opposed to just the node’s
predecessors).



10

LConti

LSemLSyn

Sem

Conti

Syn

String

(a) An extraction constraint

LCont2LCont1

LSem

LCont3

LSyn

String

Cont3Cont2Cont1

Syn

Sem

(b) G-ACG merging the three ex-
traction constraints.

Fig. 4: Combining the constraints on extraction.

a particular node will have the same pangraphical language in the latter G-
ACG as the extrinsic language it had in the former. The nodes of the newly
constructed G-ACG correspond to paths in the former one terminating in the
node in question9. Thus the labelling of nodes with terms which certifies a given
term’s presence in the pangraphical language of the new G-ACG also serves as a
proof of its presence in the extrinsic language of the old G-ACG and vice versa.

This gives us the following ladder of expressivity

I ✓ E ✓ P

which can be complemented with the following series

IG(u) ◆ EG(u) ◆ PG(u)

4 Illustration

In this final section, we assemble a G-ACG which integrates the French negation
constraint discussed in Section 2, the constraints on extraction introduced in
[6] and a constraint handling agreement in a single grammar specification to
demonstrate our approach.

We start with the extraction constraints. [6] describes three different con-
straints on extraction, all of them expressed using the Constraint pattern (Fig-
ure 4(a)). We can take the union of these three G-ACGs to get the G-ACG
on Figure 4(b). Next, we can incorporate knowledge from [8], by splitting the
LSyn lexicon and introducing a new intermediate signature (Figure 5(a)). The
new signature, Syntax, deals purely with syntax without any issues of operator
scope and its functions have lower-order types than those in Syn. We will finally

9 This means that when the G-ACG is D, the diamond grammar, and the node
in question is Bottom, then we will have two different nodes for the two paths
[Top, Left, Bottom] and [Top,Right,Bottom].



11

LCont2 LCont3LCont1

Lamb LSem

Lsyntax

String

Cont3Cont2Cont1

Syn

Syntax Sem

(a) Elaborating the lexicon from
syntax to strings.

LCont2

LAgr

LCont3

LNeg

LCont1

LambLSem

Lsyntax

String

Cont3Cont2Cont1

Syn

Syntax

Neg

Sem

Agr

(b) Adding our own syntactic con-
straints, Neg and Agr.

Fig. 5: Building the example grammar up to its final state.

add our contribution, the signatures Neg and Agr and the lexicons LNeg and
LAgr which implement the constraint on negation we discussed before and some
simple notion of agreement, respectively (Figure 5(b)).

We notice that while the three constraints introduced in [6] are expressed
in terms of the Syn signature, our constraints Agr and Neg use a different
interface, the Syntax signature, to constrain the languages being defined. The
Conti constraints are not actually constraining syntax itself, but the syntax-
semantics interface. This is in some cases a deliberate decision, since e.g. Cont1
is the constraint enforcing that quantifier scope must not escape outside of tensed
clauses. The Syntax signature is not equipped to talk about operator scope and
so the constraint is expressed above the Syn signature. On the other hand,
constraints Cont2 and Cont3 from [6] are purely syntactic and therefore could
be more easily expressed in terms of Syntax instead of Syn. However, we see it
as a perk of our approach that we can ignore that and import the constraints
wholesale without having to adapt them.

4.1 The Neg Signature

We will now look under the covers of the two signatures implementing the con-
straints, starting with negation and the Neg signature.

As was said in Section 2, we will proceed by splitting the atomic types N and
NP into NNEG=F and NNEG=T , and NPNEG=F and NPNEG=T , respectively.
We will use these new types to distinguish whether an N or NP phrase contains
a negative determiner that can pair up with a negated verb. Where before we
had a single type, we will now have possibly multiple types to account for the
different values of the arguments’ NEG features. Here are some representative
examples:



12

Naucun : NNEG=F −◦NPNEG=T

Nle1 : NNEG=F −◦NPNEG=F

Nle2 : NNEG=T −◦NPNEG=T

Nnetv
1

: (NPNEG=F −◦NPNEG=F −◦ S)−◦ (NPNEG=T −◦NPNEG=F −◦ S)

Nnetv
2

: (NPNEG=F −◦NPNEG=F −◦ S)−◦ (NPNEG=F −◦NPNEG=T −◦ S)

Nnetv
3

: (NPNEG=F −◦NPNEG=F −◦ S)−◦ (NPNEG=T −◦NPNEG=T −◦ S)

Naime : NPNEG=F −◦NPNEG=F −◦ S

Nque1 : (NPNEG=F −◦ S)−◦NNEG=F −◦NNEG=F

Nque2 : (NPNEG=F −◦ S)−◦NNEG=T −◦NNEG=T

We see that the negative determiner aucun can only attach to phrases which
do not already contain a free negative determiner and that the resulting phrase is
marked as having a free negative determiner. On the other hand, the determiner
le does not have any interaction with the new NEG feature and is still able to
take any N phrase, preserving any free negative determiners inside. The type of
the negative particle ne modifies a verb (in the example above,Nnetv

i

, a transitive
verb) and produces a new verb that makes sure that at least one of its arguments
contains a negative determiner. Verbs are not agnostic about the NEG feature.
By default, they specifically demand it to be false, since a negative determiner
cannot be coupled with a non-negated verb. Finally, the types of the relativizer
que tell us two other things: the NP trace is considered as containing no negative
determiners, and a relative clause does not care about or alter the presence of
free negative determiners in the N it modifies.

The lexicon which translates from this signature to Syntax is a straightfor-
ward relabeling. Its items can be characterized by the following schema:

LNeg(Nwordformi
) = Cwordform

where Cwordform is the constant in Syntax corresponding to the wordform.

4.2 The Agr Signature

The Agr signature will be constructed using the same strategy as Neg. N and
NP will be subdivided intoNNUM=SG,NNUM=PL,NPNUM=SG andNPNUM=PL

(we only treat number agreement in this example). Here are some example types:

Atatou : NNUM=SG

Atatous : NNUM=PL

Ale : NNUM=SG −◦NPNUM=SG

Ales : NNUM=PL −◦NPNUM=PL

Aaime1 : NPNUM=SG −◦NPNUM=SG −◦ S

Aaime2 : NPNUM=SG −◦NPNUM=PL −◦ S



13

Aqui1 : (NPNUM=SG −◦ S)−◦NNUM=SG −◦NNUM=SG

Aqui2 : (NPNUM=PL −◦ S)−◦NNUM=PL −◦NNUM=PL

The types for nouns and determiners are quite predictable. For the transitive
verb aime, we see that we need a second type to account for the fact that aime
does not care about the number of the object. Finally, the relativizer qui enforces
that the number of the trace NP in the relative clause must be the same as the
number of the N being modified.

The lexicon LAgr follows exactly the same schema as that of LNeg.

4.3 Limits of Modularity

We have decomposed our grammar into 9 signatures and 8 lexicons. Besides mak-
ing the grammar more readable and easily navigable, it also makes the grammar
more attractive from a computational point of view. The complexity of parsing
the highest abstract-most structures and verifying all the constraints is decom-
posed into smaller subtasks. A string can be parsed into its representation at
the Syntax level fairly easily (compared to parsing it at the higher levels) since
Syntax employs types of lower orders than the more abstract signatures. Finding
the syntactic structure for a string is thus feasible. We then proceed to verify-
ing the syntactic constraints. Here we can observe that the lexicons LNeg and
LAgr are mere relabelings and therefore parsing (i.e. constraint verification) is
trivial (i.e. decidable). Now in order to determine the meaning of our sentence,
we have to continue parsing by finding an antecedent in Syn. This involves
higher-order types used to encode the various scope-bearing operators. Finally,
we can opt in to verify the high-level syntax-semantics constraints which employ
dependent types. However, the lexicons in this case resemble relabelings and a
semi-decidable procedure could be used to solve the problem. Having the gram-
mar decomposed like this opens it up for computational processing by letting us
engage in different tactics at different stages instead of having to parse a single
hidden structure which enforces grammaticality w.r.t. every constraint. G-ACGs
share these perks also with classical ACGs but they let use this composition in
another dimension, which facilitates the writing of multiple constraints.

However, it is important to keep in mind that the composability demon-
strated above is limited only to the composition of constraints. If we would like
to extend our language with, e.g., a new lexical category, then every signature
and every lexicon would have to be extended to cover this new category. It is also
important to point out that the constraint signatures that we have been compos-
ing are not light-weight objects. They are usually defined by taking an existing
signature that describes the language at a relevant level and by strengthening
(usually all) the types of that signature to enforce the constraint10. However,

10 This makes the expressivity of model-theoretic syntactic formalisms such as Inter-
action Grammars, in which adding the lexical items for ne and aucun along with
enforcing the Neg constraint takes only two tree descriptions [10], even more striking
when compared to our approach.



14

most of these type alterations are mundane and we believe that this is fertile
ground for applying metagrammars.

5 Conclusion

We have considered the problem of building a wide-coverage ACG, specifically
the problem of expressing a multitude of linguistic constraints. We have exam-
ined previous techniques and found no satisfying solution. We have thus provided
an extension of the ACG formalism to solve the problem and justified the need
for the increased expressivity. This embedding of syntactic constraints will con-
tribute to an effort to define a syntax-semantics interface and later to build
discourse structures.

In the end, our approach lets us define the syntax in a clean way using the
idiomatic style of categorial grammars (simple atomic types like N , NP and S)
and then define the constraints themselves the same way as they are defined in
ACG research (such as is the case with [6]).

Interesting avenues of future work include: digging deeper into the language-
theoretical properties of G-ACGs (Are ACG object languages closed on intersec-
tion? Are extrinsic languages as expressive as pangraphical languages?), search-
ing for a metagrammatical description of constraint signatures to ease work on
G-ACG grammars, and finally building large-scale grammars to verify the us-
ability of our approach.

References

1. De Groote, P.: Towards abstract categorial grammars. In: Proceedings of the
39th Annual Meeting on Association for Computational Linguistics, Association
for Computational Linguistics (2001) 252–259

2. De Groote, P.: Towards a montagovian account of dynamics. In: Proceedings of
SALT. Volume 16. (2006)

3. Qian, S., Amblard, M.: Event in compositional dynamic semantics. In: Logical
Aspects of Computational Linguistics. (2011)

4. Asher, N., Pogodalla, S.: Sdrt and continuation semantics. In: New Frontiers in
Artificial Intelligence. Volume 6797 of Lecture Notes in Computer Science. (2011)

5. Asher, N., Pogodalla, S.: A montagovian treatment of modal subordination. In:
Proceedings of SALT. Volume 20. (2011) 387–405

6. Pogodalla, S., Pompigne, F.: Controlling extraction in abstract categorial gram-
mars. In: Formal Grammar. (2012)

7. de Groote, P.: Tree-adjoining grammars as abstract categorial grammars. In:
TAG+6, Proceedings of the sixth International Workshop on Tree Adjoining Gram-
mars and Related Frameworks, Università di Venezia (2002) 145–150

8. Pogodalla, S.: Generalizing a proof-theoretic account of scope ambiguity. In: 7th
International Workshop on Computational Semantics. (2007)

9. Montague, R.: The proper treatment of quantification in ordinary english
10. Perrier, G.: A french interaction grammar. In: International Conference on Recent

Advances in Natural Language Processing. (2007)
11. de Groote, P., Maarek, S.: Type-theoretic extensions of abstract categorial gram-

mars. ESSLLI 2007 (2007)


	Integration of Multiple Constraints in ACG

