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Directed connected operators: Asymmetric
hierarchies for image filtering and segmentation

Benjamin Perret, Jean Cousty, Olena Tankyevych, Hugues Talbot, Member, IEEE, Nicolas Passat

✦

Abstract—Connected operators provide well-established solutions for
digital image processing, typically in conjunction with hierarchical
schemes. In graph-based frameworks, such operators basically rely on
symmetric adjacency relations between pixels. In this article, we intro-
duce a notion of directed connected operators for hierarchical image
processing, by also considering non-symmetric adjacency relations. The
induced image representation models are no longer partition hierar-
chies (i.e., trees), but directed acyclic graphs that generalize standard
morphological tree structures such as component trees, binary partition
trees or hierarchical watersheds. We describe how to efficiently build
and handle these richer data structures, and we illustrate the versatility
of the proposed framework in image filtering and image segmentation.

Index Terms—Mathematical morphology, connected operators, hierar-
chical image representation, antiextensive filtering, segmentation.

1 INTRODUCTION

GRAPHS are an effective framework for image processing
and analysis. They allow for the representation of various

adjacency relations (the edges) between pixels (the vertices).
Valuation can appear both on the vertices in order to model
some information (e.g. luminance) and on the edges as a
relationship measure. Following the historical symmetricdef-
inition of adjacency [1], [2], most methods rely on undirected
graphs. Some recent works have aimed at extending these
beyond the symmetry hypothesis in order to improve popular
image segmentation algorithms. These works have led to
different algorithms based on the directed graph framework,
and generally show better performances than their symmetric
counterpart. Such works include min-cuts [3], random-walkers
[4], and shortest path forests [5]. Following these successful
attempts, we propose to explore how directed graphs can
enrich and improve another family of graph operators: the
connected operators. A preliminary version of this work was
presented in [6].

1.1 Connected operators

Connected operators [7], [8], [9] are effective image process-
ing tools set in the framework of mathematical morphology.

Benjamin Perret, Jean Cousty, and Hugues Talbot are with theESIEE-
Paris and the Université Paris-Est Marne-la-Vallée, LIGM,Paris, France
({b.perret,j.cousty,h.talbot}@esiee.fr).
Olena Tankyevych is with the Université Paris-Est Créteil,LISSI, Paris, France
(olena.tankyevych@u-pec.fr).
Nicolas Passat is with the Université de Reims Champagne-Ardenne,
CReSTIC, Reims, France (nicolas.passat@univ-reims.fr).

(a) (b)

Fig. 1. (a) Neurite image; (b) directed connected filtering.

They have been successful in a wide spectrum of applications
(see [10] [11, Ch. 7] for recent surveys). Connected operators
focus on the notion of connected components,i.e., maximal
sets of vertices in which a path exists between any two
vertices. Their principle is that the only allowed operation is
the deletion of connected components, thus ensuring that they
can neither create nor shift contours. The extension of this
approach to grayscale images (vertex or edge weighted graphs)
leads to the definition of several hierarchical representations:
the component tree [12], the binary partition tree [13], or the
tree of shapes [14]. Significant effort has been devoted to
efficiently construct these hierarchies [12], [15], [16], [17] and
to understand the relations that exist between them [18], [19].
A general definition scheme for connected operator consistsof
four steps: (1) construct the image hierarchical representation;
(2) compute attributes at each node of the representation; (3)
select relevant nodes according to these attributes; and (4)
produce a filtered image or a segmentation map. Connected
operators have been used for filtering [12], segmentation [20],
interactive segmentation [21], [22], retrieval [23], classifi-
cation [24], and registration [25]. Applications range from
biomedical imaging [26], [27], to astronomy [28], [29], via
remote sensing [30], [31] and document analysis [32], [33].

Connected operators face two major issues: (1) making
structures of interest appear in the hierarchical representation;
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Fig. 2. Undirected and directed graphs (see text).

and (2) discriminating structures of interest in this hierarchy.
The first issue has been investigated through the definition
of second-generation connections [34], [35], [36], [37], con-
strained connectivity [38], and hyperconnections [33], [39].
The second issue,i.e. selecting relevant nodes of the hierarchy
is twofold: (1) defining attributes that provide a suitable feature
space able to characterize relevant nodes; and (2) defining
robust and accurate node selection processes. Although clas-
sical shape attributes (area, elongation, various notionsof
complexity, . . . ) are often considered, significant effort has
been extended to propose node selection processes. These
have evolved from simple global thresholding [9], [12], [20]
to energy-minimization strategies [40], [41] and connected
filtering in feature spaces [42].

These solutions are effective but are not perfect. We inves-
tigate here how the reformulation of connected operators in
the context of directed graphs can offer improved practical
solutions. Consider the toy example given in Fig. 2(a). The
given graph is connected and thus the only two possible results
of a connected operator are either the empty graph or the graph
itself. To achieve a finer result, for instance knowing that the
“rectangle” on the left is onlyweaklyconnected (perhaps due
to noise or some topological considerations) to the “triangle”
on the right, one possible solution is simply to remove the
edge{b, c}: this corresponds to second generation connections
(Fig. 2(b)). However, by proceeding in this way we lose the
information about the initial proximity of the two structures.
In the directed graph framework, a less radical solution is to
remove an arc in only one direction. Then, if we consider the
two strongly connected components, we can identify the two
parts as separate but still related (Fig. 2(c)). The direction of
the remaining arc can also convey some useful information for
further processing. An example of this principle is shown in
Fig. 1: here the different parts of the neurite are separatedusing
a vesselness [43] prior classification and the directed arcsare
constructed so as to always point from least to most reliable
structure, as identified in the vesselness: from background,
to vessels, to blobs. Filtering based on two attributes that
measure the relations (directional information) producesthe
result shown in Fig. 1(b) (Sec. 6).

1.2 Contributions

In this article, we introduce the new notion ofdirected con-
nected component(directed componentor D-component, for
short) which generalizes the notion of connected componentto
directed graphs (Sec. 2). Furthermore, we establish a bijection
theorem (Th. 3) between the D-components and the strongly
connected components. In particular, this allows us to relyon
well-established tools in graph theory.

We propose the notion ofdirected component hierarchy
which extends D-components to weighted graphs (Sec. 2).
This structure is a directed acyclic graph, and thus generally is
not a tree. However, using a bijection proven in Th. 3, we show
that this structure indeed generalizes the standard connected
component trees [12], [13].

In Sec. 4 we propose an efficient algorithm for building
these hierarchies. The algorithm has aO(ℓ.(n + m)) time
complexity, wherem is the number of vertices,n is the number
of arcs, andℓ is the number of weight values.

Then, we present several strategies to select relevant nodes
of a D-component hierarchy in order to handle the increased
complexity of this structure compared to standard component
trees (Sec. 5). These strategies are designed to ensure the
consistency of the node selection process in terms of D-
components.

Finally, we discuss the methodological and applicative
relevance of the D-component hierarchy (Sec. 6). Beyond
its obvious relationship with standard symmetric connected
operators, we also establish links with non-local paradigms
of image processing [44]. In this context, the usefulness of
D-component hierarchy is assessed in the challenging case of
retinal image segmentation, where it is compared both qualita-
tively and quantitatively to non-local symmetric morphological
approaches as well as gold standard retinal approaches. This
analysis is completed by two other application examples
in image filtering and segmentation, in order to emphasise
the versatility of the proposed framework. In particular, we
show how prior information can be injected as a directional
information in the graphs and we give examples on how the
particular structure of the hierarchy can be used to define new
kinds of node attributes.

2 DIRECTED CONNECTEDNESS

The first goal of this article is to extend connected operators
from undirected to directed graphs (Sec. 2.1), via employing
the directed connectedness(or D-connectedness) paradigm,
which we introduce in Sec. 2.2. Before investigating the differ-
ences between D-connectedness and connectedness (defined in
the usual frameworks of undirected graphs or connections [45,
Ch. 2] [34]), we first discuss the deep links that exist between
D-connectedness and the notion of strong connectedness,
usually considered on directed graphs (Secs. 2.3, 2.4).

2.1 Graphs

A directed graph(or simply, a graph) G is a pair (V,A),
whereV is a nonempty finite set, andA is composed of pairs
of elements ofV , i.e., A is a subset ofV × V . Each element
of V is called avertex, a point, or a node (ofG) and each
element ofA is called anarc (of G). A subgraph ofG is a
graphG⋆ = (V⋆,A⋆) such thatV⋆ is a subset ofV , andA⋆

is a subset ofA. If G is a graph, its vertex set is denoted by
V (G) and its arc set byA(G).

The transpose of a graphG is the unique graph with the
same vertices asG, and such that for any of its arcs(x, y),
the pair(y, x) is an arc ofG. We say thatG is symmetricif
G is the same as its transpose. Thus,G is symmetric if for
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Fig. 3. (a) A directed graph (the vertices and arcs are
represented by circles and arrows, respectively) whose
D-components are X1 = {a, b, c, d, e}, X2 = {d, e}, X3 =
{f}, X4 = {g, h, i}, X5 = {h, i} and X6 = {i}, and
whose S-components are Y1 = {a, b, c}, Y2 = {d, e}, Y3 =
{f}, Y4 = {g}, Y5 = {h} and Y6 = {i}. (b) The DAG D(G)
of the S-components of the graph is depicted in (a).

any of its arcs(x, y), the pair(y, x) is also an arc ofG. It is
well known that any symmetric graphG can be associated to
a unique undirected graph, and conversely.

Let G be a graph, apath from a vertexx to a vertexy (in G)
is a sequence(x0, . . . , xℓ) of vertices ofG such thatx0 = x,
xℓ = y, and for anyi in {1, . . . , ℓ}, the pair(xi−1, xi) is an
arc of G. We say thaty is a successor ofx (in G) and that
x is a predecessor ofy (in G) if there exists a path fromx
to y. The singleton(x) is a (trivial) path and thereforex is a
successor and a predecessor of itself.

2.2 Directed connected components

In order to take into account “directed subsets” of vertices
(i.e., subsets containing some points that play the particular
role of “basepoints” or “roots”), we present the notion of a
directed connected component(or D-component).

Definition 1: Let G be a graph and letx be a vertex ofG.
The directed connected component of basepointx is the set,
denoted byDCCG(x), of all the successors ofx in G. This set
DCCG(x) is also called aD-component ofG, and we denote
by DCCG the set of all the D-components ofG.

For instance, in the graphG depicted in Fig. 3(a), the
verticesg, h and i are the three successors ofg. Thus, the
D-componentDCCG(g) is the set{g, h, i}. Observe also that
a vertex is a basepoint of a D-component if it is a predecessor
of all the vertices in this D-component. For instance, the set
{a, b, c, d, e} is a D-component andb is a predecessor of all the
vertices in this D-component. Therefore, the set{a, b, c, d, e}
is the D-component of basepointb. Note that this set is also
the D-component of basepointsa andc.

In contrast to connected components, the set of all D-
components of a graph is not necessarily a partition of its ver-
tex set. Indeed a vertex may belong to several D-components.
For instance (see Fig. 4(a)), let us consider two verticesa and
b such thatb is a successor ofa but a is not a successor ofb.
Then, the pointb is in the D-component of basepointa and in
the D-component of basepointb. These two D-components
are distinct sincea belongs to the former one but not to
the later. However, these components are linked by inclusion:
DCCG(b) ⊆ DCCG(a). More generally, some D-components
may intersect without being included in one another. Indeed,
let us consider an additional vertexc (see Fig. 4(b)) such that
c is a predecessor ofb but not a predecessor ofa, while c

a b
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Fig. 4. Some elementary graphs.

is neither a successor ofa nor b. Then, the D-components
DCCG(a) andDCCG(c) both containb but are not included
in each other sincea is in DCCG(a) but not inDCCG(c) and
c is in DCCG(c) but not inDCCG(a). However, similarly to
the case of connected components, if a vertexx is in a D-
componentX, then the whole D-component of basepointx is
included inX. In other words, the underlying binary relation
“is a successor of” is in general not an equivalence relationbut
is always reflexive and transitive. We also note that in general
the D-components of a graph and of its transpose are not the
same. For instance the graphs depicted in Figs. 4(b) and (c)
are the transpose of each other and the D-components of the
first are{c, b}, {a, b}, and{b} whereas the D-components of
the second are{b, a, c}, {c}, and{a}.

2.3 Strongly connected components
The notion of a strongly connected component is fundamental
in graph theory [46, pp. 552–557].

A subsetX of the vertex set of a graphG is strongly
connected (forG) if any two verticesx andy of X are suc-
cessors of each other,i.e., x ∈ DCCG(y) andy ∈ DCCG(x).
A strongly connected component(or S-component) of G is a
subsetX of vertices ofG that is strongly connected and that
is maximal for this property,i.e., any subset ofV (G) which
is also a proper superset ofX is not strongly connected. We
denote bySCCG the set of all S-components ofG.

This set SCCG of all S-components of a graphG –
contrarily to the setDCCG of all D-components – is a partition
of the vertex set ofG, i.e., the union ofSCCG is V (G) and the
intersection of any two distinct S-components ofG is empty.
In fact, the relation “is in the same S-component as” is an
equivalence relation. Thus, for any vertexx of G, there is
a unique S-component, denoted bySCCG(x), that contains
x. For instance, the S-components of the graph depicted in
Fig. 3(a) are{a, b, c}, {d, e}, {f}, {g}, {h} and{i}.

2.4 Links between D- and S-components
Given two verticesx andy of a graphG belonging to the same
S-component, any successor ofx is a successor ofy and vice
versa. Therefore, the D-components of basepointsx andy are
the same. Conversely, if the D-components of basepointsx
andy are the same, thenx is a successor ofy and vice versa,
i.e., x andy are inDCCG(y) and inDCCG(x), respectively.
In other wordsx andy are in the same S-component. Hence,
S-components and D-components are equivalent according to
the following property.

Property 2:Let G be a graph. Two verticesx andy of G are
in the same S-component ofG if and only if the D-component
of basepointx is equal to the D-component of basepointy

DCCG(x) = DCCG(y) ⇐⇒ SCCG(x) = SCCG(y) (1)



4 B. PERRET et al.: DIRECTED CONNECTED OPERATORS

This implies that all the basepoints enabling the definition
of a given D-component form a unique S-component. Each
D-component is then associated to a unique S-component.
In other words, there is a bijection between the set of D-
components ofG and the set of S-components ofG. This
bijection can be expressed based on theDirected Acyclic
Graph (DAG) of S-components.

We associate to any graphG the directed graphD(G),
whose vertices are the S-components ofG and that is such
that the pair(X,Y ) of S-components ofG is an arc ofD(G)
whenever there exists an arc(x, y) of G such thatx and y
are in the S-componentsX and Y , respectively. This graph
has been well studied in graph theory. In particular, it is
acyclic, i.e., for any two distinct D-componentsX andY , the
componentX cannot be both a successor and a predecessor
of Y in D(G). Therefore, this graphD(G) is called theDAG
of the S-components ofG. For instance, the DAG of the S-
components of the graph depicted in Fig. 3(a) is depicted in
Fig. 3(b). For any S-componentX of a graphG, we denote by
BG(X) the union of the successors ofX in the graphD(G)

BG(X) =
⋃

DCCD(G)(X) (2)

Theorem 3:Let G be a graph.

• The mapBG is a bijection fromSCCG to DCCG whose
inverseB−1

G
(i.e., ∀X ∈ SCCG, B−1

G
(BG(X)) = X) is

such that for any D-componentX of G we have

B−1
G

(X) = {x ∈ V (G) | DCCG(x) = X} (3)

• The D-component of any basepointx is the union of the
successors of the S-componentSCCG(x) in D(G)

DCCG(x) = BG(SCCG(x)) (4)

Th. 3 is illustrated in Diag. (5). In particular, for a given
graphG, it can be seen that if one knows the S-component
X containing a vertexx of G, then the D-componentY of
basepointx can be recovered as the direct image ofX by the
bijection BG, which can be obtained from the DAGD(G).
Conversely, if the directed componentY of basepointx is
known, then one can recover the S-component containingx
as the inverse image ofX by BG. This inverse imageB−1

G
(Y )

of the D-componentY is called theroot of Y (for G).

x
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In the next sections, we exploit these links between D-
components and S-components to design efficient algorithms
for image processing.

3 DIRECTED COMPONENT HIERARCHIES

Connected operators act on an image represented as a function
through the connected components of its level sets (Sec. 3.1).
These connected components are organized – via the inclusion

relationship – in a tree structure, known as the component tree
[12]. In this section, we extend this structure from undirected
graphs to (directed) graphs. To this end, we present the notions
of strong component tree(Sec. 3.2) and ofdirected component
hierarchy (Sec. 3.3) that encode the inclusion relations of
the S-components and D-components of all level sets. The
main result of this section is that the directed component
hierarchy can be represented as an enriched version of the
strong component tree. This enriched version can be further
used to define D-connected operators, and to propose efficient
algorithms. It is also observed that the directed component
hierarchy generalizes the tree structures involved in connected
operator definition (Sec. 3.4).

3.1 Stack of graphs

In the framework of undirected graphs, connected operators
and component trees have been proposed for the two possible
families of weights: those on the vertices and those on the
edges. In the first case, a level set is a subset of vertices whose
connected components are those of the subgraph induced by
these vertices. In the second case, a level set is made of edges,
and one considers the subgraphs induced by these edges to
obtain connected components. In both cases, the connected
components are defined within a series of nested subgraphs
induced by the level sets. In order to handle these two cases in
a unified and more general setting, one may consider – instead
of weights on either edges or vertices – a series of nested
subgraphs. Following this approach, we start this section by
presenting the notion of astack of graphs.

Definition 4: A stack (of graphs)is a finite sequenceS =
(G0, . . . ,Gℓ) of graphs such that, for anyi in {1, . . . , ℓ}, the
graphGi is a subgraph ofGi−1. For anyi in {0, . . . , ℓ}, we
say thatGi is a level set ofS (at altitudei). A S- (resp. D-)
component ofS is a pair (i,X) such thatX is a S- (resp.
D-) component of the level set ofS at altitudei. The set of
all S- (resp. D-) components of the stackS is denoted by
SCCS (resp.DCCS ). The stackS is connectedwheneverG0

is strongly connected.
Fig. 5 first row shows a connected stack composed of

five graphs(G0, . . . ,G4). In the following, without loss of
generality, we assume that the weights of the graphs are
positive integers with a maximal valueℓ.

When the domain of an image is considered as the vertex set
of a graphG, i.e., when the vertices correspond to pixels, the
image itself directly leads to a stack of graphs: each level set
Gi (resp.Gℓ−i) is the subgraph induced by the pixels whose
value is greater (resp. lower) thani (i.e. the graph whose vertex
set the pixels of values greater (resp. lower) thani and whose
arc set contains any arc ofG that links two of these pixels). In
this case, the obtained stack is said to beupper-(resp.lower-)
induced by the image.

For image segmentation tasks, one may also consider sim-
ilarity measures between pixels that are linked by an arc (for
instance, derived from a gradient). Examples of such measures
for undirected graphs can be found in [47], [48], [49], [50],
[51]. This measure is a function that weights the arcs of the
graphG. Such an arc-weighted graph also leads to a stack of
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Fig. 6. (a) The S-component tree associated to the
stack S of Fig. 5, first row. (b) The DAGs shown from
top to bottom row are the DAGs of S-components of
the graphs G0, . . . ,G4 of Fig. 5, first row. (c) The D-
component hierarchy of the stack S of Fig. 5, second row.
This hierarchy is the S-component tree (a) enriched by
the relation provided by the DAGs of S-components of all
level sets of S (b). The red arrows are the extra links that
are deduced by transitivity.

graphs: each level setGi (resp.Gℓ−i) is the subgraph induced
by the arcs of weight greater (resp. lower) thani (i.e., the graph
whose arc set contains any arc of weight greater (resp. lower)
than i and whose vertex set contains any pixel ofG linked
by one of these arcs). Such a stack is said to beupper- (resp.
lower-) induced by the similarity measure. For segmentation
methods based on hierarchies of partitions [13], [38], one may
want to ensure that all levels in the graph stack remain a
partition of the domain by preserving all pixels as verticesof
every level set. This can ease further segmentation methodsto
produce partitions as shown in [18]. A stack obtained by this
process is said to becompleted.

Important notation. In the remaining part of this section,
S = {G0, . . . ,Gℓ} denotes a connected stack.

3.2 Strong component tree

Let X be a S-component ofGi, for i in {1, . . . , ℓ}. SinceGi

is a subgraph ofGi−1, X is strongly connected inGi−1. As
the S-components of a graph partition its vertex set, the S-
componentX of Gi is included in a unique S-component of
Gi−1. This unique S-component ofGi−1 that includesX is
denoted byPARi−1(X) and is called the(i− 1)-parent ofX
(in S). We also say that the S-component(i−1,PARi−1(X))
of S is the parent of the S-component(i,X). The set of all
S-components ofS equipped with the parent relation is a tree
called thestrong component(or S-component) tree ofS.

Following the usual terminology on trees, given two S-
components(i,X) and (j, Y ) of the stackS, we say that
(j, Y ) is an ancestor of(i,X) and that(i,X) is a descen-
dant of (j, Y ) if there exists a sequence(C0, . . . , Cn) of S-
components ofS such thatC0 = (i,X), Cn = (j, Y ), andCk

is the parent ofCk−1 for any k ∈ {1, . . . , n}. For instance,
Fig. 6(a) shows the S-component tree of the stack of Fig. 5.

3.3 Directed component hierarchy

Since distinct D-components of the same graph can be linked
by inclusion (see Sec. 2.2), it can be seen that for a given

i in {1, . . . , ℓ}, a D-component ofGi can be included in
several D-components ofGi−1. Therefore, contrarily to the
case of S-components, the inclusion relations between D-
components of successive level sets cannot be directly usedfor
organizing the D-components in a tree structure. Fortunately,
as we will see later in this section, the D-components can be
arranged as a DAG that is sufficient to recover the inclusion
relationship between any two D-components. Furthermore, due
to the bijection between S-components and D-components (see
Th. 3), this DAG corresponds to an enriched version of the
S-component tree. This structure leads to efficient methods,
that are described in Secs. 4, 5, for designing D-connected
operators. The next theorem is the key result for establishing
the properties of this fundamental DAG.

Theorem 5:Let X andY be two D-components ofGi and
Gi−1, respectively, withi in {1, . . . , ℓ}. The D-componentX
is a subset of the D-componentY if and only if the (i − 1)-
parent of the root ofX is a successor of the root ofY in the
DAG of S-components ofGi

X ⊆ Y ⇐⇒ PARi−1(B
−1
Gi

(X)) ∈ DCCD(Gi−1)(B
−1
Gi−1

(Y ))
(6)

More generally, a D-componentX of Gi is a subset of a D-
componentY of Gj (with i ≥ j) if and only if the intersection
between the ancestors of the root ofX and the successors of
the root of Y in D(Gj) is nonempty. In other words, the
set of DAGs of the S-components of all level sets, paired to
the parent relation allows us to test the inclusion of any D-
components belonging to the stackS.

Definition 6: The D-component hierarchy ofS is the graph
whose nodes are the S-components ofS and such that there
is an arc from a S-component(j, Y ) of S to a S-component
(i,X) of S if

• (j, Y ) is the parent of(i,X); or
• j = i and (Y,X) is an arc of the DAGD(Gi) of S-

components ofGi.
For instance, the D-components of the stack in Fig. 5 are

depicted in the second row of Fig. 5. The associated D-
component hierarchy is depicted in Fig. 6(c).

As a corollary to Th. 5, there is an isomorphism between
the order induced by the D-component hierarchy of the stack
S and the partial order on the D-components ofS such that
(i,X) ⊑ (j, Y ) if i ≤ j and X ⊆ Y . In particular, the S-
component(j, Y ) is the parent of(i,X) if and only ifBGj

(Y )
is the minimal element (for the inclusion relation) among
all the D-components ofGj that include the D-component
BGi

(X). A direct consequence of this isomorphism is that
the D-component hierarchy ofS is a DAG. In particular, two
S-components at the same level set cannot be linked by a cycle
since the DAG of S-components of a graph is acyclic. It can
also be seen that two S-components of two distinct level sets
cannot be linked by a cycle either since a S-component of a
given level set cannot be both an ancestor and a descendant
of a S-component of another level set.

3.4 Generalization of tree structures

The framework presented in this section for handling the
components of a stack of graphs generalizes the handling of
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(f) G0 (g) G1 (h) G2 (i) G3 (j) G4

Fig. 5. A stack S = (G0,G1,G2,G3,G4). First row: Each color represents a S-component. Second row: Each color
represents a D-component (vertices with more than one color belong to all the associated D-components).

connected components via component trees, in both edge- and
vertex-weighted undirected graphs.

Indeed, it can be seen that if a graph is symmetric, then a set
of vertices is a D-component if and only if it is a connected
component in the associated undirected graph. Furthermore,
such a set is a D-component if and only if it is a S-component.
Hence, in the case of a stack whose level sets are all symmetric
graphs, the D-component hierarchy and the S-component tree
are indeed the same. Moreover, if a stack is upper (resp. lower)
induced by an image, then its D-component hierarchy is also
the max- (resp. min-) tree of that image. If a stack is upper
(resp. lower) induced by an arc similarity measure, then its
D-component hierarchy is the max- (resp. min-) tree of the
associated undirected edge-weighted graph. In this last case,
if the stack is furthermore completed, then the D-component
tree is exactly the partition tree [18] (also known as the
quasi flat zones hierarchy [38], [52], [53] orα-tree [54]) of
the image. As shown in [18], completed stacks also allow
us to retrieve the binary partition trees [13] and hierarchical
minimum spanning forests or watersheds [55] [11, Ch. 9] [56].

4 BUILDING D-COMPONENT HIERARCHIES

In this section, we describe how to build the D-component hi-
erarchy of a stack of graphsS = {G0, . . . ,Gℓ} (Sec. 4.1), and
we discuss the computational cost of this process (Sec. 4.2).

4.1 Algorithm

For the sake of concision, we assume here that the stack
S is constructed from a vertex-weighted graphG = (V,A)
(see Sec. 3.1). We also assume that graphs are represented by
adjacency lists: for each vertexx of V , we store the list of
verticesy of V adjacent tox (i.e., such that(x, y) is in A).
This representation allows us to access to the list of vertices
adjacent to a given vertex in constant time.

The overall construction procedure is described in Alg. 1.
Its results consist of: a labeling of each level of the stackS
into S-components (Labeli), the adjacency lists of the DAGs

of S-components at each level of the stack (Suci), and the
parent relation between the S-components of successive levels
of the stack (PARi).

For each leveli of the stack, the algorithm consists of
three steps: (1) label the vertices ofGi into S-components; (2)
construct the DAG of S-components ofGi, i.e., the adjacency
lists representing the DAG; and (3) define the parent relation
between these S-components and those at altitudei+ 1.

Step (1) is carried out by either the Tarjan [57] or Kosaraju-
Sharir [58] algorithms, which both produce a labeling in
S-components of the vertices of a directed graph in linear
O(|V | + |A|) time. We assume that the labels are integers
and that the labels at the different levels are all distinct (i.e.,
Labeli ∩ Labelj = ∅ for i 6= j); so they can be used as array
indices. For the sake of readability, we consider that the result
Labeli is at the same time the set of labels ofD(Gi), denoted
by Labeli, and the map that associates a label, denoted by
Labeli[x], to each vertexx of V (Gi).

Step (2) is performed by Alg. 2. It produces the adjacency
list of each vertex of the DAG of the S-components of the level
set ofG at altitudei. To this end, it successively scans each
S-component ofGi. For any scanned S-componentSCC[v]
of label v, the adjacent vertices of all the vertices inSCC[v]
are considered. If one of these adjacent vertices belongs to
another S-componentSCC[v′] of label v′ (i.e., if v′ 6= v, line
11), and if SCC[v′] has not yet been reached fromSCC[v]
(i.e., if Flag[v′] 6= v, line 11), then the labelv′ is added to
the adjacency list ofv (line 12), andv′ is flagged as having
been reached fromv (line 13). The two outer loops visit each
vertex once, and for each vertex, its adjacency list is scanned.
The algorithm can thus be run in linearO(|V |+ |A|) time.

Step (3) is performed by Alg. 3 which produces an array
such that, for every labelv of the S-component labeling at
level i+ 1, the element of indexv in the array is the label of
the S-component in the leveli that includes the S-component
v. The algorithm loops through each vertexx in V (Gi+1)
of the previous leveli + 1, and finds the labelsLabeli+1[x]
and Labeli[x] of its associated S-components at levelsi + 1
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Algorithm 1: D-component hierarchy construction.
Input: S = {G0, . . . ,Gℓ}, a stack of graphs.
Output: Labeli, S-component labeling for eachi in {0, . . . , ℓ}.
Output: Suci, array of adjacency lists for eachi in {0, . . . , ℓ}.
Output: PARi, parent relation for eachi in {0, . . . , ℓ}.

1 for i from ℓ to 0 do
2 Labeli ← S-component labeling(Gi)
3 Suci ← adjacency lists(Gi, Labeli)
4 if i 6= ℓ then
5 PARi+1 ← parent relation(Gi+1, Labeli+1, Labeli)

Algorithm 2: Adjacency lists construction.
Input: Gi, a graph.
Input: Labeli, S-component labeling ofGi.
Output: Suci, array of adjacency lists ofGi.

1 foreach v ∈ Labeli do
2 Suci[v]← ∅
3 SCC[v]← ∅
4 Flag[v]← undefined

5 foreach x ∈ V (Gi) do
6 SCC[Labeli[x]]← SCC[Labeli[x]] ∪ {x}

7 foreach v ∈ Labeli do
8 foreach x ∈ SCC[v] do
9 foreach (x, y) ∈ A(Gi) do

10 v′ ← Labeli[y]
11 if v′ 6= v and Flag[v′] 6= v then
12 Suci[v]← Suci[v] ∪ {Labeli[y]}
13 Flag[y]← v

Algorithm 3: Parent relation definition.
Input: Gi+1, a directed graph.
Input: Labeli+1, a labeling of the S-components ofGi+1.
Input: Labeli, a labeling of the S-components ofGi.
Output: PARi+1, parent relation onLabeli+1 andLabeli.

1 foreach x ∈ V (Gi+1) do
2 PAR[Labeli+1[x]]← Labeli[x]

and i. It then defines the labelLabeli[x] as the parent of
the label Labeli+1[x]. In order to achieve a linearO(|V |)
complexity, the labels have to be determined in constant time
which is achieved by storing them for each vertex during the
S-component labeling.

4.2 Complexity analysis

The time complexity of Alg. 1 isO(ℓ.(|V |+|A|)). In particular
the algorithm is efficient ifℓ is small, for instance in the case
of 8-bit images. As there are at most|V | levels (each vertex
can have a different weight), this complexity is bounded by
O(|V |(|V | + |A|)). However, if we do not restrict ourselves
to vertex-weighted graphs, there are at most|V |+ |A| levels
(each vertex and arc is added one after the other), so in the
worst case, this leads to a complexity ofO((|V | + |A|)2).
However, one can generally assume thatℓ ≪ |V |+ |A|.

The algorithm can be improved by observing that a S-
component at leveli is strongly connected at leveli−1. Thus,
we can use a more complex algorithm to build the subgraph

at level i. Instead of considering the graph induced by the
vertices of weights higher thani, we can add to the DAG
of S-components at leveli− 1, the vertices and the arcs that
appear at leveli. This requires the use of a union-find structure
to dynamically manage the S-components. This generates an
additional cost leading to aO(α(|V |).(|V |+ |A|)2) worst case
complexity, whereα is the extremely slowly growing inverse
of the Ackermann function. Practically, we have verified that
the improved algorithm is about six times faster than the basic
one.

5 SELECTING NODES

Similarly to connected operators, D-connected operators con-
sist of processing a hierarchical data structure, namely the
D-component hierarchy. This processing requires selecting or
discarding nodes according to criteria that are specifically
defined according to the considered application (Sec. 5.1).The
selected nodes can then be used,e.g., to obtain a segmentation
or to filter an image. Some applications will be described in
Sec. 6. Since D-component hierarchies are not tree structures,
D-connected operators are more difficult to develop than
classically connected ones (Sec. 5.2). In particular, theyrequire
specific regularization strategies (Sec. 5.3).

5.1 Node selection criteria

A node selection criterionσ is a predicate associating a
Boolean value to each node/component of a hierarchical data
structure. Given a componentC, we say that the criterionσ
holds true(resp.false) for C, or thatC satisfies(resp.violates)
σ if σ(C) equals true (resp. false).

A classical criterionσA that discards small nodes, often
associated to noise, is defined by

σA(C) =

{

true if Area(C) > t
false otherwise

(7)

where Area is a measure of the area of the component, for
example the number of vertices inC, while t is the area
threshold value.

Many other criteria have been proposed in the literature.
Most are obtained by replacing Area by some other attribute
in Eq. (7). Proposed attributes focus on different aspects:(1)
the shape of the component,e.g., the geometrical moments or
the compactness; (2) the gray level content of the component,
e.g., the volume or the entropy; (3) the topology of the
hierarchy,e.g., the number of children of the component; or
(4) combination of the previous types of attributes,e.g., the
dynamic or the Mumford-Shah energy. It is also possible to
replace a constant threshold by a more complex process in
the definition of the criterion,e.g., criteria based on energy
minimization (Viterbi in [12]) or on shape-space filtering [42].

5.2 The case of D-connected operators

Thinking in terms of D-connected operators, one may desire
to mark each D-component as selected or discarded. However
– in contrast to the case of connected operators – we may fall
into situations such as the one depicted in Fig. 4(b), where two
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A B C

(a) Hi

A B C

(b) Hi

A B C

(c) Hi

B C

(d) σ1

A B

(e) σ2

A C

(f) σ3

A

(g) σ1

C

(h) σ2

B

(i) σ3

Fig. 7. First row: a graph (DAG) Hi, composed of nodes
that are selected (in green) or discarded (in red) with
respect to some criterion σj (see Sec. 5.2). Each node
corresponds to a S-component (A, B and C, respec-
tively), and models a D-component (A∪B∪C, B∪C and
C, respectively). Second row: subgraphs induced by the
nodes that satisfy σj (green circles). Third row: subgraphs
induced by the nodes that violate σj (red squares).

D-components overlap. This creates an ambiguous situation
if one of them is selected, while the other is discarded.
It is not obvious how to proceed with the S-components
that correspond to overlapping D-components. A first partial
answer to this question consists of considering the criterion on
the S-components instead of the D-components. This choice
better suits the data structure constructed in Sec. 4. As well,
due to the bijection between D-components and S-components
(Th. 3), this strategy is information lossless.

In the following, we consider a stackS = {G0, . . . ,Gℓ}
of graphs. We also consider, for anyi in {0, . . . , ℓ}, theDAG
at altitude i, denoted byHi, defined as the subgraph of the
D-component hierarchy ofS induced by the S-components
of S at altitude i (i.e., induced by the set of components
{(i, C) ∈ SCCS}). We observe that there is an arc inHi from
the component(i, C1) to the component(i, C2) whenever
there is an arc fromC1 to C2 in the DAG D(Gi) of S-
components ofGi. Thus, when no confusion may occur, if
C = (i, C ′) is a S-component ofS, we use the symbolC,
instead ofC ′, for the associated strong componentC ′ of Gi.

For simplicity – and without loss of generality – we consider
the example of the graphHi, depicted in the first row of Fig. 7,
such thatV (Hi) is {A,B,C} andA(Hi) is {(A,B), (B,C)}.
Each column of Fig. 7 corresponds to a different criterion:σ1

holds true forB, C, and holds false forA; σ2 holds true for
A, B, and holds false forC; andσ3 holds true forA, C, and
holds false forB. The second line shows the graphs associated
to each criterion,i.e., the subgraphs induced by the nodes that
satisfy the criterion. The third line shows the graphs induced
by the negation of the criterion,i.e., the graphs induced by the
nodes that violate the criterion. For the first criterion, itcan
be seen that the D-components of the graph induced byσ1 are
also D-components ofHi, but the D-component of the graph
induced byσ1 is not a D-component ofHi. The converse
situation is true for the second criterion: the D-component
of the graph induced byσ2 is also a D-component ofHi,
but the D-components of the graph induced byσ2 are not.
Finally, with the third criterion, neither the D-components of
the graphs induced byσ3 nor byσ3 are D-components ofHi.

A
C E

F G

B
D

H I

(a) Hi

A
C E

F G

(b) σ

E

F G

(c) Sel-Minσ

A
C E

F G

B
D

(d) Dis-Maxσ

A
C E

F G

D

(e) Sel-Maxσ

A

F G

(f) Dis-Minσ

Fig. 8. Node selection (regularization) strategies. (a) The
DAG Hi of the S-components {A, . . . , I}. The compo-
nents represented as green circles (resp. red squares)
satisfy (resp. violate) σ. (b–f) The graphs induced by σ:
Sel-Minσ, Dis-Maxσ, Sel-Maxσ, and Dis-Minσ.

Thus, we identify two desirable, yet generally exclusive,
properties. Given a criterionσ we say that:

• σ is selectiveif the D-components of the graph induced
by σ on Hi are also D-components ofHi;

• σ is discardingif the D-components of the graph induced
by σ on Hi are also D-components ofHi.

Furthermore, we say that a D-componentC of Hi is selected
(resp. discarded) by σ if C is also a D-component of the
graph induced byσ (resp. σ). Thus, C is selected (resp.
discarded) if the criterionσ holds true (resp. false) for every
S-component contained inC. Nevertheless, we have seen in
Fig. 7 that in general, a criterionσ is neither selective nor
discarding. Consequently, we propose several regularization
strategies that transform any criterion into a selective ora
discarding criterion.

5.3 Regularization strategies

Given a criterionσ, we propose four different regularized
criteria ofσ. Two of them are selective, namelySel-Minσ and
Sel-Maxσ. The other two are discarding, namelyDis-Minσ
andDis-Maxσ. Fig. 8(a) shows a graphHi, while Fig. 8(b)
shows the result of a non-selective and non-discarding criterion
σ on Hi. Then, we have the following regularized criteria:

• Sel-Minσ selects the D-components such that every con-
tained S-component satisfies the criterionσ (Fig. 8(c)).

• Dis-Maxσ discards the D-components such that ev-
ery contained S-component violates the criterionσ
(Fig. 8(d)).

• Sel-Maxσ selects the D-components whose root S-
component satisfies the criterionσ (Fig. 8(e)).

• Dis-Minσ discards the D-components whose root S-
component violates the criterionσ (Fig. 8(f)).
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Thus, for any leveli of the hierarchy and for any component
C of the DAGHi at altitudei, we have

Sel-Minσ(C) =
∧

C′∈DCCHi
(C)

σ(C ′) (8)

Dis-Maxσ(C) =
∨

C′∈DCCHi
(C)

σ(C ′) (9)

Sel-Maxσ(C) =
∨

C∈DCCHi
(C′)

σ(C ′) (10)

Dis-Minσ(C) =
∧

C∈DCCHi
(C′)

σ(C ′) (11)

where
∧

and
∨

are the Boolean “and” and “or” operators.
Property 7: Let σ be a criterion on the D-component

hierarchy of the stackS = {G0, . . . ,Gℓ}. The regularized
criterion Sel-Maxσ (resp.Dis-Minσ) with respect toS is the
same as the regularized criterionDis-Maxσ (resp.Sel-Minσ)
with respect to the transpose stack−S = {−G0, . . . ,−Gℓ},
where−Gi is the transpose of the graphGi. More precisely,
for any DAGHi at altitudei of S and for any componentC
of Hi, we have:

∨

C∈DCCHi
(C′)

σ(C ′) =
∨

C′∈DCC−Hi
(C)

σ(C ′) (12)

∧

C∈DCCHi
(C′)

σ(C ′) =
∧

C′∈DCC−Hi
(C)

σ(C ′) (13)

Remark 8:The simplest criteria – that include in particular
the criterionσA – are those that areincreasing. We say that
a criterion σ is increasing if, for any two S-componentsC
and C ′ such that the D-component rooted inC is included
in the D-component rooted inC ′, σ(C) = true implies that
σ(C ′) = true. So, given an increasing criterionσ and a S-
componentC, if σ holds true forC, we immediately know that
all the predecessors ofC also satisfyσ. Conversely, ifσ holds
false forC, we immediately know that all the successors ofC
violate σ, or, in other words, all the S-components contained
in the D-component of rootC violate the criterion. Thus, any
increasing criterionσ is discarding. In this case,σ is equal to
Dis-Minσ and toDis-Maxσ.

The previous discussions focused on node selection for a
single level of the hierarchy. Nevertheless, a similar challenge
exists in order to ensure result consistency between the dif-
ferent levels of the hierarchy,i.e., in order to avoid “holes”
between two or more levels.

The previously defined regularization rules can also be used
on the S-component tree, by considering the ancestors (resp.
descendants) instead of the the predecessors (resp. successors)
These new – but similar – hierarchical criteria are denoted
Sel-Max-H, Sel-Min-H, Dis-Max-H, andDis-Min-H:

• Sel-Max-Hσ holds true for all the descendants of a node
that satisfiesσ.

• Sel-Min-Hσ holds false for all the ancestors of a node
that violatesσ.

• Dis-Min-Hσ holds false for the descendants of a node
that violatesσ.

• Dis-Max-Hσ holds true for all the ancestors of a node
that satisfiesσ.

In effect, theDis-Min-Hσ (resp.Dis-Max-Hσ) strategy is the
analogue of the usual min (resp. max) filtering rules of the
classical component trees [12].

Remark 9:Increasing criteria are consistent with the parent-
child relation. Given a criterionσ and two S-componentsC
andC ′ such thatC ′ is a descendant ofC (i.e., C ′ ⊆ C), the
D-component rooted inC ′ is included in the D-component
rooted inC, and thusσ is increasing ifσ(C ′) = true implies
σ(C) = true (which is the usual definition of an increasing
criterion). Thus, for an increasing criterionσ, all the proposed
regularization strategies ofσ yield the same result asσ due to
the tree structure of the S-components at the different levels
(by opposition to the DAG of the S-components at a single
level).

6 EXPERIMENTS AND DISCUSSION

In this section we illustrate the relevance of the proposed
D-component hierarchy framework. This relevance derives
from its compliance with efficient image processing paradigms
already proposed in the literature. This is notably the case
of the non-local approaches, as discussed in Sec. 6.1, and
shown by an experimental validation in the context of retinal
image analysis. The versatility of the D-component hierarchy
framework is exemplified by proposing two applications in
Sec. 6.2: one in neurite image filtering and the other in cardiac
image segmentation.

6.1 D-component hierarchy and non-locality

Local approaches for image processing rely on the assumption
that neighboring pixels are often strongly correlated. In the
graph-based formalism, this is generally interpreted by con-
sidering standard – symmetric – adjacency relations onZ

2 or
Z
3, that model such spatial neighborhoods [59].
In contrast, non-local approaches consider correspondence

between pixels that are closely related from a statistical –
instead of spatial – point of view. In this framework, all
pixels are adjacent to one another. Each adjacency link is
weighted by a distance that models the similarity between
pixels, or more typically between regions around them (a
patch). This approach was popularized in [60] and [44] for
image segmentation and filtering and extended to segmenta-
tion, reconstruction [61] and classification [62].

A common issue with this approach is its algorithmic
complexity. In the graph-based formalism, non-locality implies
mapping a complete graph onto the processed image, leading
to prohibitive computational costs. Practically, the non-local
approach is approximated in a fashion similar tok-nearest
neighbors, bya priori limiting potential pairing between
pixels, for instance based on spatial distance. In so doing,
the graph modeling the image becomes sparse, and it also
becomes directed. Indeed, a pixelb can be within thek-nearest
neighbors of a pixela while a is not within those ofb, for
instance due to window size restrictions [44]. In particular,
involving non-local approaches in hierarchical frameworks
naturally leads to handling D-component hierarchies.

In previous works, these asymmetric, directed adjacencies
are not fully exploited, for instance in [60] where the graph
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(a) Image 2 of DRIVE (b) Filter IHσRV
(c) Segmentation

(d) Image 19 of DRIVE (e) Filter IHσRV
(f) Segmentation

Fig. 9. Segmentation results on the DRIVE database. On
each row, from left to right: pre-processed image, filtering
result, and evaluation of the segmentation.

is symmetrized. We propose to use this directed information
in the D-component framework to achieve improved results.

Retinal image (or eye fundus) analysis (see Figs. 9 (a) and
(d)) necessitates to perform blood vessels segmentation, for
measuring features like length, width, tortuosity or branching
complexity, that can help physicians diagnose and follow-up
several pathologies. The difficulty of retinal images lies in the
separation of the faint and thin vessels from the background
noise. These vessels appear as disconnected groups of pixels
that can only be distinguished from the background by their
spatial coherency. In order to solve this issue, we propose to
construct a non-local directed adjacency relation that allows
us to reconnect those groups of pixels, retaining the possibility
to reject spurious groups of pixels whose spatial arrangement
do not resemble a vessel.

We consider the D-component hierarchyH of the stack
S = {G0, . . . ,Gℓ} lower-induced by the image on a non-local
graphG = G0 (Sec. 3.1). The vertex set ofG0 is thus the
domain of the image (i.e., a rectangular subset ofZ2). The
arc set ofG0 corresponds to the traditional 4-neighborhood
augmented with non-local arcs based on thek brightest pixels
around each pixel.

Formally, given a pixelx = (x1, x2), letN4(x) be the set of
4-adjacent neighbors ofx: N4(x) = {y = (y1, y2), |x1−y1|+
|x2 − y2| = 1} and letBk,N (x) be thek brightest pixels in a
N ×N window centered onx (x excluded). Then the arc set
of G0 is given by:A(G0) =

⋃

x∈V (G)({(x, y), y ∈ N4(x)} ∪
{(y, x), y ∈ Bk,N (x)}). In all the following experiments we
set k = 3 andN = 9. The idea behind this construction is
that the brightest pixels are more likely to belong to a vessel.
A jump is then a possible extension of this vessel.

Fig. 10(a) is a close up on a distal vessel of a retinal
image and Fig. 10(b) shows acritical threshold (selected
manually) with the associated adjacency relation. As expected,
there are many non-symmetric links (red arrows). Moreover,

(a) Image 19 of DRIVE (b) Non-local adjacency

Fig. 10. Non-local adjacency relation. (a) Distal vessels
of the 19th retinal image of the DRIVE database. (b) Adja-
cency relation shown on a critical threshold of (a). Green
links represent symmetric edges while red arrows are
asymmetric relations. Each S-component is associated to
a color printed in a small circle inside each pixel.

we see that the ends of the vessels form thin elongated
D-components while noise pixels appear as less spatially
structured D-components. The problem can thus be formulated
as the deletion of non-vessel-like D-components.

This leads to a selection criterion aiming at removing small
scale structures that are not elongated (using a moment based
elongation measure) and large scale structures (using the first
moment of Hu [63]). Given a set of pixelsX, we denote
by µpq(X) the central moment ofX of orderpq: µpq(X) is
equal to

∑

(x,y)∈X(x − x̄(X))p(y − ȳ(x))q with x̄(X) and
ȳ(X) the coordinates of the centroid ofX. Then, we have
Elongation(X) =

√

λ1(X)/λ2(X) with λk(X) = µ20(X) +

µ02(X) + (−1)k
√

4µ2
11(X) + (µ20(X)− µ02(X))2. Finally,

the first Hu moment ofX is defined by Hu1(X) = (µ20(X)+
µ02(X))/Card2(X).

Then, given a nodeC of the hierarchy (i.e., a S-component
of Gi for somei ∈ [[0, ℓ]]) and the D-componentDCCC rooted
in C (i.e., DCCC = BGi

(C)), the criterionσV is defined by

σV (C) =



































false if Area(DCCC) ≤ t1

false if t1 < Area(DCCC) ≤ 1000
and Elongation(DCCC) > t2

false if 1000 < Area(DCCC)
and Hu1(DCCC) > t3

true otherwise
(14)

with t1, t2 and t3 three thresholds that will be adjusted
independently in each experiment. The first case in Eq. (14)
discards very small components for which geometric measures
are not reliable. We also consider the regularized criterion
σRV = Dis-MinσV

which discards a whole D-component
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whenever its root S-component does not satisfyσV .
The D-component hierarchy can be used to perform image

filtering, i.e., to obtain a new image based on the node
selection procedure. This requires to define thereconstruction
IHσ of the hierarchyH with respect to the criterionσ as a
function that maps each vertexv of G0 to the altitude of the
smallest node ofH that satisfiesσ and that containsv

IHσ (v) =max{i ∈ [[0, ℓ]] |

(i, C) ∈ V (H), v ∈ C, σ((i, C)) = true} (15)

Figs. 9 (b) and (e) show the results of retinal image filtering
using the criterionσRV . The resulting filtered image is quite
clean. A final segmentation is obtained by selecting every non-
zero pixel from this filtered image.

The following results rely on the DRIVE (Digital Reti-
nal Images for Vessel Extraction) database [64], which is
composed of 20 test images. Each image of size 565×584
pixels is encoded in 24 bits RGB and comes with 2 expert
segmentations and a mask of the eye fundus. The segmentation
of an image is evaluated with 3 measures (pixels outside the
eye fundus mask do not count): the true positive rate (TPR)
(resp. true negative rate (TNR)) is the number of true positive
(resp. negative) pixels divided by the total number of positive
(resp. negative) pixels, and the accuracy is the sum of true
positive and negative pixels divided by the total number of
pixels. The score on the base is the mean of the image scores
plus the standard deviation of the accuracy (that measures the
stability of the algorithm). In our experiments, we used only
the green channel, which is pre-processed using a black top-
hat (difference between a closing and the original image) with
a disk structuring element of diameter 5 pixels. This operation
flattens the background of the image and inverts its contrast.

Method TPR TNR Accuracy (σ)
2nd expert 0.7761 0.9725 0.9473 (0.0048)
RNL D-components (15,0.2,1) 0.7079 0.9790 0.9442 (0.0063)
NL D-components (15,0.2,1) 0.7046 0.9790 0.9439 (0.0064)
NL S-components (30,0.15,1.3) 0.7024 0.9789 0.9434 (0.0070)
NL symmetric (Max) (15,0.2,1.3) 0.6528 0.9828 0.9404 (0.0083)
NL symmetric (Min) (15,0.15,1.35) 0.6980 0.9786 0.9425 (0.0067)
Xu [65] (local symmetric) 0.6924 0.9779 0.9413 (0.0078)
Mendonça [66] 0.7344 0.9764 0.9452 (0.0062)
Staal [64] 0.7193 0.9773 0.9442 (0.0065)

TABLE 1
Result comparison on the DRIVE retinal image database.
The methods of the first group are all connected filters.

The last two methods are the state of the art.

We have conducted a set of experiments (see Tab. 1) in order
to clearly identify the benefit of each aspect of the method.
The evaluated methods are (the best found parameter values
(t1, t2, t3) for the criteriaσV and σRV are given in Tab. 1
after the method name):

1) RNL D-components: regularized criterionσRV on the
non-local asymmetric adjacency;

2) NL D-components: criterionσV on the non-local asym-
metric adjacency;

3) NL S-components: same as above but where the criterion
σV computes the features (area, elongation, Hu1) on the
S-components instead of the D-components;

4) NL symmetric (Max): criterion σV on a non-local sym-
metric adjacency where the edge(p, q) belongs to the
adjacency if the edges(q, p) or (p, q) are in the asym-
metric adjacency;

5) NL symmetric (Min): criterion σV on a non-local sym-
metric adjacency where the edge(p, q) belongs to the
adjacency if (p, q) and (q, p) are in the asymmetric
adjacency;

6) Xu: connected attribute filter proposed in [65] on a local
and symmetric graph with a complex morphological
filtering strategy;

Mendonça [66] and Staal [64] provide the state of the art
methods. It can be noted that, with Mendonça, the parameters
of the method are adjusted independently for each image, their
methodology differs thus from the classical one.

The results show that the proposed method 1) achieves
the same performances as Stall. In 2) when one removes the
regularization strategy, the accuracy goes a bit down showing
that the notion of D-component is indeed a good model for
vessels in this application. In 3) all the information aboutD-
components is dropped: thus, the method relies only on the
S-component tree. The accuracy is lower than in 1) and 2)
which shows the interest of exploiting the adjacency relation
among the S-components (i.e., the DAG of S-components). In
4) and 5) we measure the gain due to the asymmetric approach.
For this, we construct two symmetric non-local adjacency
following two classical strategies: min (only symmetric edges
are kept) and max (every edge is symmetrized). In both cases
the score is lower than in every other experiment. While
the max strategy leads to connecting a lot of noise to the
vessels (with no mean to disconnect it), the min strategy
is indeed quite close to a local approach as most non-local
edges of the asymmetric adjacency are asymmetric. 6) is a
connected attribute filters (local symmetric adjacency) with
a complex node selection strategy recently proposed in [65]
which provides a reference score for classical connected filters.

All these experiments show the importance of each element
of the method – non-locality (1, 2, 3, 4, and 5), asymmetry and
S-components (1, 2, and 3), D-component (1 and 2), regular-
ization (1) – with a gradual improvement of the performances
when they are combined.

6.2 Other application examples

6.2.1 Neurite filtering
The proposed framework was also used to filter a sample
image of a neuron with associated neurites (i.e., its axon
and dendrites), grown in vitro (Fig. 1(a)). We rely on a
vesselness-like local object characterization [43], which en-
ables us to classify pixels into tubes, blobs and background.
We constructed an undirected pixel adjacency graph where a
pixel classified as a tube is linked to its 4-adjacent neighbors
classified as blobs but not the other way around. However,
two 4-adjacent pixels of the same class are linked in both
directions, while any background pixel is linked to all its 4-
adjacent pixels. The vertices of this directed graph are then
weighted by the gray values of the corresponding pixels and
the associated D-component hierarchy is built. Relevant nodes
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of the hierarchy are selected by a criterion using two heuristics:
(1) a tube must have a (directed) connection with at least two
other structures; and (2) a tube is connected at its extremities:
the length of the interval between a tube and the structures
it is connected to should be small. Similar criteria cannot be
designed in the framework of component tree on undirected
graphs, since in that framework a component cannot be con-
nected to another (otherwise the two connected components
would not be maximal connected sets). Then, from the selected
components, a filtered image can be reconstructed (Fig. 1(b)).
More details on this illustration are provided in an appendix
section, which can be found on-line as supplemental material.

6.2.2 Marker based segmentation

In this section, a D-component hierarchy is used in a marker
based image segmentation procedure. To this end, we build
a directed arc-weighted graph from the image which is to
be segmented. Intuitively, this weighted graph corresponds
to a directed gradient. Then, we construct the D-component
hierarchy associated to this graph and select D-componentsin
order to obtain a segmentation. The D-components are selected
using user-provided markers of the object of interest and of
the background. More precisely, a D-component is selected
whenever it is rooted in a pixel marked as object and it does
not contain any pixel marked as background. The resulting
segmentation is the union of the selected D-components.

Fig. 11 illustrates this procedure for the segmentation of
the myocardium in a MRI of the heart. A weighted directed
4-adjacency graph is obtained from a rough pre-classification
of the image pixels that produces a lot of false negative
background pixels but tends to minimize the false positive (see
Fig. 11(c)). This classification is obtained by excluding the
extremal intensity values, which corresponds to blood and fat
for the brightest pixels and to lungs for the darkest. Then, the
weight of an arc(x, y) between two 4-adjacent pixelsx andy
is obtained as the absolute difference of intensity betweenx
andy if y is not “pre-classified as background” or it is set toK
times the absolute difference of intensity betweenx and y
if y is pre-classified as background. Figs. 11(d) and (f) show
the results obtained whenK = 1 and K = 1.5. Note that
whenK = 1 the weights of an arc(x, y) and of its symmetric
(y, x) are always the same and correspond to the magnitude
of a simple intensity gradient. In this case, our method is
the same as [13], [67] for undirected graphs with symmetric
edge-weights. However, whenK is greater than 1, the arc
weights are not symmetric and the proposed weighting strategy
tends to facilitate the connection of the pixels pre-classified as
background to the background marker. Fig. 11 clearly shows
this behavior and therefore illustrate the benefits of the directed
non-symmetric method over its undirected symmetric variant.
More details on this method, including a link with the notionof
connection value [68], [69] and the oriented IFT segmentation
framework [5] can be found on-line as supplemental material.

7 CONCLUSION

We have introduced and investigated a notion of directed con-
nectedness. This has led us to the proposal of new (directed)

connected operators, no longer based on partition hierarchies
organized as trees, but on partition covers organized as DAGs.

From a theoretical viewpoint, we have provided a relevant
way to generalize various tree-based connected operators
previously proposed in the literature. This may lead to a
better understanding of the common properties between these
operators, and also helps to clarify some subtle differences
between those that lie in the framework of directed connected
operators, and those that do not, such as hyperconnections.
In this context, it is relevant to develop an axiomatizationof
directed connectedness such as was done in [70], in order
to compare it to the axiomatizations already proposed for
connections [45, Ch. 2] and hyperconnections [71].

From both the theoretical and algorithmic viewpoints, it may
also be useful to compare the links that exist between the
DAGs induced by directed connectedness, with other non-tree
structures that have been recently introduced to extend the
framework of connected operators, for instance in the case of
hypertrees [37] or component graphs [72], [73], that constitute
an extension of component trees to multivalued images.

From a methodological viewpoint, we have shown that the
cover hierarchies obtained when considering directed con-
nectedness can be efficiently handled by taking advantage
of the intrinsic links that exist between directed connected
and strongly connected components, the latter being organized
in trees. Based on these properties, the complexity of the
initial algorithm proposed in this article for building cover
hierarchies, can be improved by using the recent incremental
algorithm proposed in [74] for building the DAG of strongly
connected components inO(N3/2) time complexity. More-
over, beyond the standard attribute-based anti-extensivefilters
developed in this article, other approaches initially devoted to
tree structures can be adapted to the case of directed connected
operators, and in particular the optimal tree-cut segmentation
paradigms initially proposed in [40], and further formalized in
the framework of connected operators [75].

From the applicative viewpoints, we have shown that the
directed connectedness framework is suitable for efficiently
handling non-local image processing paradigms, in their –
standard –k nearest neighbor version. The directed connect-
edness framework is also quite versatile and then useful for
various filtering and segmentation tasks. Applications will be
more extensively proposed in further works, in particular by
comparisons with similar approaches proposed in the litera-
ture, for instance in [5].

Source code corresponding to this article is available at the
following url: http://www.esiee.fr/~perretb/dc-hierarchy.html.
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A NEURITE FILTERING

In this example, we consider a sample image of a neuron
grown in vitro (Fig. 1(a)), with associated neurites (i.e., its
axon and dendrites). The objective is to derive measures of
neurite tree complexity, which are useful in various toxicology
assays, called neurite outgrowth assays [1]. Whereas neurites
do form a tree, apparent overlap in vitro complexify the layout.
The challenges of such images are low contrast of neurite vs.
background elements unrelated to neurite structures as well
as noise, making it complex to segment based only on an
intensity criterion.

In our application, we rely on a vesselness-like local object
characterization [2], which enables to classify regions into
tubes, blobs and background (Fig. 1(c)). This allows us to
construct an asymmetric adjacency relation where tubes can be
linked to blobs but not the other way around. However, each of
the three classes is linked to its own class, while background is
linked to all classes. Then, we take into account both intensity
and geometrical classification in order to filter the image. By
imposing asymmetric blob-to-vessel connection, we exploit
the fact that the tube classification is under-segmented and
we seek to complete the missing information by searching the
connections from the blob and the background classes with
this more robust tube class.

A.1 Filtering criteria

We propose an original criterion σ1 which relies exclusively on
the specific structure of the D-component hierarchy, compared
to the classical component tree. The criterion aims to hold true
for neurite tubes using the following two heuristics: (1) a tube
must be connected at least to two other structures; and (2) a
tube is connected at its extremities: the length of the interval
between a tube and its adjacent structures should be small.
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Formally, for any level i of the hierarchy and for any
component C of the DAG Hi at altitude i, the criterion
σ1 relies on two attributes: the number of adjacent nodes
NAdj(C) of C and the number of arcs NOut(C) going out
of C into an adjacent node. For example, in Fig. 3 in [3], the
S-component Y1{a, b, c} has one adjacent S-component {d, e},
but it has two arcs going out of it, (c, d) and (c, e).

NAdj(C) = |{C ′ ∈ V (Hi), (C,C
′) ∈ A(Hi)}| (1)

NOut(C) = |{(c, c′) ∈ A(Gi), c ∈ C, c′ /∈ C}| (2)

Then, the criterion σ1 is defined by

σ1(C) =

{

true if NAdj(C) ≥ 2 and NOut(C) ≤ 20

false otherwise
(3)

One can note that the second condition NOut(C) ≤ 20 was
adjusted empirically. Nevertheless, it roughly corresponds to
a frontier of 6 pixels with a 8-neighborhood (3 arcs going out
of each pixel on the frontier). More complex measures could
be proposed in order to obtain a scale invariance property.

A.2 Result

The filtered image IHσ1
of Fig. 1(a) according to σ1 is repre-

sented in Fig. 1(d). It can be seen that the reconstructed struc-
tures are mostly thin and elongated, as expected. Nevertheless,
we still miss a few neurite tubes: this problem can be solved by
regularizing the criterion σ1 (see Sec. 5.3 in [3]). Indeed, the
chosen adjacency allows us to say that whenever the criterion
holds true for a node, then its successors (which can only be
classified as blobs or tubes by the vesselness) are also part of
the neurite. Thus, we want to select the D-components whose
root S-component is selected by σ1, which corresponds to the
regularized criterion σ2 given by Sel-Maxσ1

. Furthermore,
in order to fully reconstruct the brightness of the selected
S-components, we can perform a hierarchical regularization,
setting the final criterion σ3 to Sel-Max-Hσ2

. The filtered
image IHσ3

of the image Fig. 1(a) according to σ3 is represented
in Fig. 1(b). Moreover, Fig. 1(e) shows the non null pixels of
IHσ1

(Fig. 1(d)) that were classified as background with the
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(a) Neurite image. (b) Filtering.

(c) Classification. (d) D-component filter σ1.

(e) Added. (f) Removed.

Fig. 1. D-component filter on a neurite image. (a) Neurite
image. (b) Directed connected filtering. (c) A classifi-
cation of (a) into neurite “tubes” (gray), “blobs” (black),
and “background” (white) used to generate the directed
adjacency. (d) Results of the filtering criterion σ1. (e) What
has been added in (b) compared to (a). (f) What has been
removed from (a) in (b).

vesselness (Fig. 1(c)), i.e., the false negatives. We can observe
that the selection process was able to recover several neurite
tubes that were classified as background. Conversely, Fig. 1(f)
shows the null pixels of IHσ1

(Fig. 1(d)) that were not classified
as background with the vesselness (Fig. 1(c)), i.e., the false
positives. We can see that isolated structures were correctly
identified as non-neurite parts.

B MARKER BASED SEGMENTATION

In this section, we illustrate the use of the proposed framework
in a marker-based image segmentation procedure. To this
end, we consider the magnetic resonance image of the heart
shown in Fig. 2(a). From this image, we aim at segmenting
the left ventricular myocardium (see the segmented result in
Fig. 2(f)) from the two markers of the myocardium and of
the background that are shown in red in Figs. 2(b,c). For this
illustration, the markers were manually overlaid on the image.
However, in a clinical context, these markers may be obtained
via an automated procedure (see, e.g., [4]).

As is classically done with graph based segmentation meth-
ods, we consider an arc weighted graph (G, w) such that the
arc weights function w is a dissimilarity measure based on the
gradient magnitude of the image. The vertex set of G is the
domain of the image to be processed (i.e., a rectangular subset
of Z2) and the arc set of G is given by the 4-adjacency rela-
tion: the pair (x, y) is an arc of G if |x1−y1|+ |x2−y2| = 1,
where x = (x1, x2) and y = (y1, y2). The graph considered
in our illustration is symmetric but the weight of an arc (x, y)
from a pixel x to a pixel y is not necessarily equal to the
weight of the symmetric arc (y, x) from y to x. The setting
of the weight map w will be given after the description of
the segmentation procedure and a property of its result that
guided us for defining the map w.

Given the arc-weighted graph (G, w) and two sets of pixels,
denoted by O and B, which correspond to the marker of the
object (myocardium, see Fig. 2(b)) and of the background (see
Fig. 2(c)), respectively, our method consists of two steps:

1) build the D-component hierarchy of the weighted
graph (G, w) (or more precisely of the completed stack
lower induced by the similarity measure w, see Sec. 3.1
in [3]);

2) select from this hierarchy all D-components rooted in
a pixel marked with the label object (i.e., a vertex that
belongs to O) and that does not contain any pixel marked
as background (i.e., any vertex that belongs to B).

The resulting segmentation, denoted by SO→B , is the union
of the selected D-components. More formally, the segmenta-
tion is made of the components selected by the regulariza-
tion Sel-Maxσ4

of a simple criterion σ4 defined for any level
i of the hierarchy and for any component C of the DAG Hi

at altitude i by

σ4(C) = true ⇐⇒ C ∩O �= ∅ and DCCHi
(C)∩B = ∅ (4)

Step 1 is performed by the algorithm of Sec. 4 in [3], whereas
Step 2 is performed by recursive traversals of the hierarchy.

The segmentation result can be characterized owing to
a directed version of a measure widely used for segmen-
tation purposes in undirected weighted graphs, namely the
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(a) Original (b) O: myocardium (c) B: background (d) Symmetric result (e) S0: Over-seg (f) Directed result

Fig. 2. Segmentation based on the D-component hierarchy. (b,c,e) The considered sets are superimposed in red to
the original image. (d,f) The internal border of the segmentation results are superimposed in red to the original image.

connection value [5], [6] (also called degree of connectivity
[7] or fuzzy connectedness [8] up to an inversion of w).
If π = (x0, . . . , x�) is a path in G, the connection value Υw(π)
of π is the maximum weight of the arcs of π

Υw(π) =

{

max{w(xi, xi−1), i ∈ [[1, �]]} if π non-trivial
0 otherwise

(5)
The (directed) connection value Υw(x, y) from a vertex x of G
to a vertex y is then defined as the minimum of the connection
values of the paths from x to y

Υw(x, y) = min{Υw(π), π is a path from x to y} (6)

Hence, by the very definition of a D-component hierarchy, it
can be shown that the segmentation result SO→B is the set
of all vertices whose directed connection value from a vertex
marked as object is less than the one to a vertex marked as
background, i.e., for any x ∈ V (G), we have

x ∈ SO→B ⇐⇒ min
o∈O

{Υw(o, x)} < min
b∈B

{Υw(x, b)} (7)

From the previous characterizations of the proposed seg-
mentation method, we can say intuitively that the weights
of the arcs should be higher in the border of the object to
be segmented than inside and outside this object. In order
to produce such a map and, following the work of [9], the
weight w(x, y) of the arc (x, y) is the product of a symmetric
term ∇(x, y) and a non necessarily symmetric term δ(x, y)

w(x, y) = ∇(x, y).δ(x, y) (8)

The first term ∇(x, y) plays the role of a gradient magni-
tude. For our illustration, it is defined as the absolute difference
of intensity between the pixels x and y. If I denotes the
grayscale image to be segmented we have

∇(x, y) = |I(x)− I(y)| (9)

when no further knowledge on the objects to be segmented
exists, symmetric weights can be used. In this case the second
term δ(x, y) is set to a constant value. For instance, the image
of Fig. 2(d) is obtained by the proposed method from the
markers O and B shown in Figs. 2(b,c) when a constant value
is used for the map δ.

However, when domain knowledge is available, the second
term δ(x, y) can be used to ease the connection of a pixel
either to the background or to the foreground marker. From
Eq. (7), we remark that if the weight of every arc (x, y)

ending at a vertex y is set to an infinite value (i.e., a maximal
weight), then the vertex y does not belong to the segmented
object SO→B . Indeed, in this case, the connection value from
any point o of the marker O to the vertex y is maximal
and therefore, by Eq. (7), the vertex y does not belong to
the segmented object SO→B . On the other hand, when the
weight of every arc starting at x is maximal (i.e., in the cases
where the connection value from the object marker is not
also maximal), the point x generally belongs to the segmented
object SO→B . These observations allow us to design a strategy
to take into account some prior information in the arcs weights
in order to ease the connection of a given point either to the
background marker or to object marker. Indeed, if we have
good confidence that a pixel x belongs to the object (but not
high enough to put it in the object marker), we can increase
the weights of the arcs going out from x in order to harden its
connection to the background. Conversely, if we are confident
that a pixel x belongs to the background, we have to increase
the weights of the arcs ending in x.

Following this strategy, we set the term δ(x, y) in Eq. (8)
based on a first classification of the image pixels that produces
many false positives but tends to minimize the false negatives.
In other words, this classification tends to produce a superset,
denoted by S0, of the expected segmentation result. In our
illustration, S0 is obtained by excluding the extremal intensity
values, which correspond to blood and fat for the brightest
pixels and to lungs for the darkest ones (see Fig. 2(e)). Hence,
we are confident that the points that do not belong to S0 do
not belong to the object that we seek to segment. Then, the
terms {δ(x, y)} are set up in order to ease the connection of the
pixels that do not belong to S0, to the background marker B.
This is done by multiplying by a constant value the weight of
any arc (x, y) ending at a pixel classified as background

δ(x, y) =

{

1 if y /∈ S0

K otherwise
(10)

where K > 1.
The result of our method (with K = 1.5) for the my-

ocardium segmentation is presented in Fig. 2(f).
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