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Directed connected operators: Asymmetric
hierarchies for image filtering and segmentation

Benjamin Perret, Jean Cousty, Olena Tankyevych, Hugues Talbot, Member, IEEE, Nicolas Passat

0
Abstract—Connected operators provide well-established solutions for . i
digital image processing, typically in conjunction with hierarchical SRy )
schemes. In graph-based frameworks, such operators basically rely on \!

symmetric adjacency relations between pixels. In this article, we intro-
duce a notion of directed connected operators for hierarchical image
processing, by also considering non-symmetric adjacency relations. The
induced image representation models are no longer partition hierar-
chies (i.e., trees), but directed acyclic graphs that generalize standard
morphological tree structures such as component trees, binary partition
trees or hierarchical watersheds. We describe how to efficiently build
and handle these richer data structures, and we illustrate the versatility
of the proposed framework in image filtering and image segmentation.

Index Terms—Mathematical morphology, connected operators, hierar-
chical image representation, antiextensive filtering, segmentation.

b
1 INTRODUCTION (@) ®)

G RAPHs are an effective framework for image processin§id- 1. (&) Neurite image; (b) directed connected filtering.
and analysis. They allow for the representation of various
adjacency relations (the edges) between pixels (the wesitic

Valuation can appear both on the vertices in order to mOdf’J'ney have been successful in a wide spectrum of applications

some information €.g. luminance) and on the edges as §eq10][11, Ch. 7] for recent surveys). Connected opesato
relationship measure. Following the historical symmeded- ¢ . <" on the notion of connected componeiis, maximal

inition of adjacencyl[L],[[2], most methods rely on undiet oo of vertices in which a path exists between any two
graphs. ﬁome recent r\]/vorki have aimed at extending thl%?tices. Their principle is that the only allowed operatis
beyond the symm_etry ypof[ esis in order to improve popu fHe deletion of connected components, thus ensuring tegt th
image segmentation algorithms. These works have led i, neither create nor shift contours. The extension of this

different algorithms based on the directed graph_framewo%proach to grayscale images (vertex or edge weighted graph
and generally show better performances than their symeelfl, s 4 the definition of several hierarchical represantat

counterpa;t. Such Wor:kfs include min'ﬁUtS, [31, Landom-waik the component treé [12], the binary partition treel [13], foe t
[4], and shortest path forests| [S]. Following these sudoessyee of shapes [14]. Significant effort has been devoted to

atte_mpts, We propose to explorg how directed graphs C@i‘ﬁciently construct these hierarchiés|[12],][15],[[1@/] and
enrich and improve another family of graph operators: th§', jerstand the relations that exist between thern [18], [1
connected operators. A preliminary version of this work Wag general definition scheme for connected operator consfsts
presented in([6]. four steps: (1) construct the image hierarchical reprediemt

(2) compute attributes at each node of the representat®n; (
1.1 Connected operators select relevant nodes according to these attributes; apd (4
Connected operators|[7],1[8].1[9] are effective image pssee produce a filtered image or a segmentation map. Connected
ing tools set in the framework of mathematical morphologyperators have been used for filterihgl[12], segmentati6h [2

o _ interactive segmentatiori_[21]| [R2], retrieval [23], dds
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a—ph—c—d| |la—p c—d| |laz2b—c2d We propose the notion oflirected component hierarchy
T NN N\ which extends D-components to weighted graphs (Skc. 2).
D@ 9| [e—f 9| le=f g This structure is a directed acyclic graph, and thus gelyesal

(a) (b) (c) not a tree. However, using a bijection proven in[Th. 3, we show

that this structure indeed generalizes the standard ctathec
component trees [12], [13].

In Sec.[4# we propose an efficient algorithm for building
these hierarchies. The algorithm hasOdl.(n + m)) time
complexity, wheren is the number of vertices, is the number
8f'arcs, and is the number of weight values.

Then, we present several strategies to select relevansnode
of a D-component hierarchy in order to handle the increased
}Somplexity of this structure compared to standard compbnen
trees (Sec[]5). These strategies are designed to ensure the

sistency of the node selection process in terms of D-
mponents.

Fig. 2. Undirected and directed graphs (see text).

and (2) discriminating structures of interest in this hiehg.
The first issue has been investigated through the definiti
of second-generation connections|[34],1[35].1[36].![37ne
strained connectivity| [38], and hyperconnections] [3309][3
The second issuég. selecting relevant nodes of the hierarch
is twofold: (1) defining attributes that provide a suitatdature
space able to characterize relevant nodes; and (2) defin
robust and accurate node selection processes. Although c

sical shape attributes (area, elongation, various notins Finall, we discuss the methodological and applicative

complexity, ...) are often considered, significant effoash relevance of the D-component hierarchy (SEE. 6). Beyond

been extended to propose node selechop prcc)cess’(,es. Tr?t%sgbvious relationship with standard symmetric conngcte
have evolved from simple global thresholding [9L.1[121. IZOoperators we also establish links with non-local paradigm
to energy-minimization strategie§ [40], [41] and conndcte '

S . of image processing [44]. In this context, the usefulness of
filtering in feat_ure spaces [4_2]' . D-component hierarchy is assessed in the challenging dase o
_ These solutions are effectlve_but are not perfect. We INV&Stinal image segmentation, where it is compared both guali
tigate here how .the reformulation of conn_ected operators #i0ely and quantitatively to non-local symmetric morphgitzal

the context of directed graphs can offer improved practicghnoaches as well as gold standard retinal approaches. Thi
splutlons. C9n3|der the toy example given in Hig. 2(a). T%alysis is completed by two other application examples
given graph is connected and thus the only two possiblet®sy, jmage filtering and segmentation, in order to emphasise
of a connected operator are either the empty graph or thé\rgfy \ersaility of the proposed framework. In particulae w

itself. To achieve a finer result, for instance knowing & t g6\ how prior information can be injected as a directional
rectangle” on the left is onlyveaklyconnected (perhaps duejntormation in the graphs and we give examples on how the
to noise or some topological considerations) to the “tiahg aicylar structure of the hierarchy can be used to defime ne
on the right, one possible solution is simply Fo remove f‘hﬁnds of node attributes.

edge{b, c}: this corresponds to second generation connections

Fig.[2(b)). However, by proceeding in this way we lose th
i(nfgrmagtié)n about the i)r:itri)al proxim?ty of the tw)g structs. 5 DIRECTED CONNECTEDNESS

In the directed graph framework, a less radical solutiorois The first goal of this article is to extend connected opesator
remove an arc in only one direction. Then, if we consider tffeom undirected to directed graphs (Secl]2.1), via emplpyin
two strongly connected components, we can identify the twWae directed connectedneg®r D-connectednesparadigm,
parts as separate but still related (Fiy. 2(c)). The dioactf Which we introduce in SeE. 2.2. Before investigating théedif

the remaining arc can also convey some useful information fences between D-connectedness and connectedness (defined i
further processing. An example of this principle is shown ithe usual frameworks of undirected graphs or connectloBis [4
Fig.[D: here the different parts of the neurite are sepanagady Ch. 2] [34]), we first discuss the deep links that exist betwee

a vesselnes$ [43] prior classification and the directed ames D-connectedness and the notion of strong connectedness,
constructed so as to always point from least to most reliaigually considered on directed graphs (Secs.[2.3, 2.4).
structure, as identified in the vesselness: from background

to vessels, to blobs. Filtering based on two attributes thatl Graphs

measure the relations (directional information) produttes A directed graph(or simply,

agraph) & is a pair (V, A),
result shown in Figl11(b) (SeEl 6). graph) & is a pair (V, A)

whereV is a nonempty finite set, and is composed of pairs
of elements ofl/, i.e, A is a subset oV x V. Each element
of V is called avertex a point, or a node (of®) and each
element of A is called anarc (of &). A subgraph of® is a
In this article, we introduce the new notion directed con- graph®, = (V,,.A,) such thatV, is a subset o/, and A4,
nected componer(directed componentr D-componentfor is a subset ofd. If & is a graph, its vertex set is denoted by
short) which generalizes the notion of connected compaieentl/ (&) and its arc set byd(®).

directed graphs (Selcl 2). Furthermore, we establish atioijec  The transpose of a grapl® is the unique graph with the
theorem (Th[B) between the D-components and the stronglyme vertices a&, and such that for any of its ards;, ),
connected components. In particular, this allows us to oely the pair(y,z) is an arc of&. We say that® is symmetricif
well-established tools in graph theory. & is the same as its transpose. Thésjs symmetric if for

1.2 Contributions
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a d f h Ys Y3 c c
c Y, —Ys 1 a—b _=3b b
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@ (b) @ (b) ©

Fig. 3. (a) A directed graph (the vertices and arcs are
represented by circles and arrows, respectively) whose

Fig. 4. Some elementary graphs.

D-components are X; = {a,b,c,d,e}, Xo = {d,e}, X3 = is neither a successor af nor b. Then, the D-components
{ft, X4 = {9,hi},Xs = {h,i} and Xg = {i}, and DCCg(a) andDCCg(c) both containb but are not included
whose S-components are Y7 = {a,b,c},Ys = {d,e}, Y3 = in each other since is in DCCg (a) but not inDCCg (c) and
{f}, Yy ={g},Ys = {h} and Y5 = {i}. (b) The DAG D(6) cisin DCCg(c) but not inDCCg (a). However, similarly to
of the S-components of the graph is depicted in (a). the case of connected components, if a vettels in a D-

componentX, then the whole D-component of basepoinis

included inX. In other words, the underlying binary relation
any of its arcs(z, y), the pair(y,z) is also an arc of5. Itis  “js a successor of” is in general not an equivalence reldtign
well known that any symmetric grapt can be associated tojs always reflexive and transitive. We also note that in gainer

a unique undirected graph, and conversely. _ the D-components of a graph and of its transpose are not the
~ Let® be a graph, ath from a vertex to a vertexy (in &) same. For instance the graphs depicted in Fipys. 4(b) and (c)
is a sequencéxy, . .., z¢) of vertices of® such thatry = z, are the transpose of each other and the D-components of the

z¢ =y, and for anyi in {1,...,¢}, the pair(z;—1,;) is an first are{c, b}, {a,b}, and{b} whereas the D-components of
arc of &. We say thaty is a successor of: (in &) and that the second argb, a,c}, {c}, and{a}.

x is a predecessor ofy (in &) if there exists a path from:

to y. The singleton(z) is a (trivial) path and therefore is a 2.3 Strongly connected components

successor and a predecessor of itself. The notion of a strongly connected component is fundamental
in graph theory([46, pp. 552-557].
2.2 Directed connected components A subset X of the vertex set of a grapk® is strongly

connected (foi®) if any two verticesz andy of X are suc-

In order to take into account “directed subsets” of vertlcecsessors of each othdre,, = € DCCg (y) andy € DOCeg ().

("le" Sle E)t?ets co_n:aylynmg“ sortn? points that E’I?g/ the t.part'iutarstrongly connected componefdr S-componentof & is a
(rjc_Je ?d asep0|tncsj or 100 Sm)r, Sve presen " € notion OF & psetx of vertices ofe that is strongly connected and that
irected connected componep -componer) is maximal for this propertyi.e., any subset of/(&) which

Def_|n|t|on 1:Let & be a graph and let be a vertex ofb. is also a proper superset &f is not strongly connected. We
The directed connected component of basepains the set, denote bySCCy the set of all S-components df

]d)ecrgted b)DClC@(x)l,l O(;thhe Successorﬁsﬁafindﬁ.ﬂ:jis St This set SCCe of all S-components of a grapkh —
s(2) is also calle -component o, and we denote contrarily to the seDCCy of all D-components — is a partition

by DC_Cé the set of ;‘" the D-compgnentg &. . h of the vertex set o, i.e., the union ofSCCg is V(&) and the
Ff’r Instance, n the graplb depicted in Fig[B(a), the jyiersection of any two distinct S-componentséfis empty.

verticesg, h and i are Fhe three successors @f Thus, the In fact, the relation “is in the same S-component as” is an

D-componenDCCe (g) is the set{g, h,i}. Observe also that o ialence relation. Thus, for any vertexof &, there is

a vertex is a basepoint of a D-component if it is a predeces%lorumque S-component, denoted B¢:Cq (), that contains

of all the vertices in this D-component. For instance, the s¢ £, instance, the S-components of the graph depicted in

{a,b,c,d, e} is a D-component antlis a predecessor of all the Fi a) ar b d nY and {i
vertices in this D-component. Therefore, the &etb, c,d, e} 9-3(=2) are{a, b,c}, {d,e}, {1} {9} {h} {i}-
is the D-component of basepoitit Note that this set is also 5 4 | inks between D- and S-components

the D-component of basepointsandc, iven two vertices: andy of a graph® belonging to the same
In contrast to connected components, the set of all 2lven two vert Y grap ging

components of a graph is not necessarily a partition of its v% '(r:sogq?r?gg%?en%hS:g_ii?gfi;;%?f;sgrgmasgd \gfs
tex set. Indeed a vertex may belong to several D—componeq grsa. ' comp P Y dit
€ same. Conversely, if the D-components of basepaints

For instance (see Figl 4(a)), let us consider two verticaad . ,
( (@) andy are the same, thenis a successor af and vice versa,

b such thath is a successor af but a is not a successor @f ie. » andy are iINDCC and inDCC respectivel
Then, the poinb is in the D-component of basepoiatand in =" * ¢"Y s (y) ®(x), resp Y-
In other wordsx andy are in the same S-component. Hence,

the D-component of basepoint These two D—componentss_Com onents and D-components are equivalent according to

are distinct sinces belongs to the former one but not tothe foll?)win ronert P quiv ng
the later. However, these components are linked by inatusio g. property. .

Property 2:Let & be a graph. Two verticesandy of & are

DCCg(b) € DCCg(a). More generally, some D-components . :

; . o ! In the same S-component éf if and only if the D-component

may intersect without being included in one another. Indee

let us consider an additional vertexsee Fig[#(b)) such that Of basepointz is equal to the D-component of basepajnt
c is a predecessor df but not a predecessor af while ¢ DCCg(z) = DCCg(y) <= SCCex(z) =SCCx(y) (1)
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This implies that all the basepoints enabling the definitiorlationship — in a tree structure, known as the componest tr
of a given D-component form a unique S-component. Ea¢h2]. In this section, we extend this structure from undieelc
D-component is then associated to a unique S-componegraphs to (directed) graphs. To this end, we present themsoti
In other words, there is a bijection between the set of f strong component tregSec[3.2) and oflirected component
components of and the set of S-components @ This hierarchy (Sec.[3.B) that encode the inclusion relations of
bijection can be expressed based on fhieected Acyclic the S-components and D-components of all level sets. The
Graph (DAG) of S-components. main result of this section is that the directed component

We associate to any graph the directed graph©(®), hierarchy can be represented as an enriched version of the
whose vertices are the S-componentsdofand that is such strong component tree. This enriched version can be further
that the pair(X,Y") of S-components o is an arc of©(®) used to define D-connected operators, and to propose efficien
whenever there exists an afe,y) of & such thatz andy algorithms. It is also observed that the directed component
are in the S-component¥ and Y, respectively. This graph hierarchy generalizes the tree structures involved in eoraa
has been well studied in graph theory. In particular, it igsperator definition (Se€_3.4).
acyclic,i.e, for any two distinct D-component& andY’, the
componentX cannot be both a successor and a predecesaoi Stack of araohs
of Y in ©(&). Therefore, this grap®(®) is called theDAG ™ grap
of the S-components @. For instance, the DAG of the S-In the framework of undirected graphs, connected operators
components of the graph depicted in Hig. 3(a) is depicted &md component trees have been proposed for the two possible
Fig.[3(b). For any S-compones of a graphe, we denote by families of weights: those on the vertices and those on the
Bg(X) the union of the successors &f in the graph®(¢) edges. In the first case, a level set is a subset of verticesevho

connected components are those of the subgraph induced by
B (X) = U DCCp(s)(X) (2) these vertices. In the second case, a level set is made df,edge
and one considers the subgraphs induced by these edges to
obtain connected components. In both cases, the connected
components are defined within a series of nested subgraphs
induced by the level sets. In order to handle these two cases i
a unified and more general setting, one may consider — instead
-1 _ _ of weights on either edges or vertices — a series of nested
B (X) = 1w e V(®)| DCCo(x) =X} (3) subgraphs. Following this approach, we start this sectypn b
« The D-component of any basepoints the union of the presenting the notion of stack of graphs
successors of the S-compon@tiCe () in D(®) Definition 4: A stack (of graphs)s a finite sequence =
(&, ..., &) of graphs such that, for anyin {1,...,/¢}, the
DCCe () = Be(SCCe(x)) “) graph®; is a subgraph o#5,_,. For anyi in go, ... ,é? we

Th.[3 is illustrated in Diag.[{5). In particular, for a givensay that®; is a level set ofS (at altituded). A S- (resp. D-)
graph @, it can be seen that if one knows the S-componef@mponent ofS is a pair (i, X) such thatX is a S- (resp.

X containing a vertex: of &, then the D-component of D-) component of the level set & at altitudei. The set of
basepointz can be recovered as the direct image¥oby the all S- (resp. D-) components of the stadkis denoted by
bijection Be, which can be obtained from the DA®(&). SCCs (resp.DCCs). The stackS is connectedvheneverd,
Conversely, if the directed componeht of basepointz is is strongly connected.
known, then one can recover the S-component containing Fig. [8 first row shows a connected stack composed of
as the inverse image of by Be. This inverse imagd,'(Y) five graphs(®o,...,8,4). In the following, without loss of
of the D-component” is called theroot of Y (for &). generality, we assume that the weights of the graphs are
positive integers with a maximal value
When the domain of an image is considered as the vertex set

Theorem 3:Let & be a graph.

o The mapBg is a bijection fromSCCg to DCCg Whose
inverse By ' (i.e, VX € SCCs, Bg'(Bs(X)) = X) is
such that for any D-componeti of & we have

SC?V DCCe of a graph®, i.e., when the vertices correspond to pixels, the

Y — image itself directly leads to a stack of graphs: each legtl s
\Bq_j /r &, (resp.®,_;) is the subgraph induced by the pixels whose

DCCop () U value is greater (resp. lower) thafi.e. the graph whose vertex

®)  setthe pixels of values greater (resp. lower) thamd whose

In the next sections, we exploit these links between [¥C Set contains any arc @ that links two of these pixels). In
components and S-components to design efficient algorithiS €ase, the obtained stack is said taupger-(resp.lower,)

for image processing. induced by the image . .
For image segmentation tasks, one may also consider sim-

ilarity measures between pixels that are linked by an anc (fo
3 DIRECTED COMPONENT HIERARCHIES instance, derived from a gradient). Examples of such measur
Connected operators act on an image represented as a fundtio undirected graphs can be found in[47],1[48].1[49],1[50],
through the connected components of its level sets (Sdk. 3[B1]. This measure is a function that weights the arcs of the
These connected components are organized — via the inclugioaph®. Such an arc-weighted graph also leads to a stack of
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o iin {1,...,¢}, a D-component of®; can be included in
i several D-components a&;_;. Therefore, contrarily to the
case of S-components, the inclusion relations between D-
® 0 M components of successive level sets cannot be directlyfosed
organizing the D-components in a tree structure. Fortlyate
O O @ as we will see later in this section, the D-components can be
arranged as a DAG that is sufficient to recover the inclusion
@-0-0 &-C-O relationship between any two D-components. Furthermare, d

to the bijection between S-components and D-componergs (se
Fig. 6. (a) The S-component tree associated to the Th [3), this DAG corresponds to an enriched version of the
stack S of Fig. Bl first row. (b) The DAGs shown from  s_component tree. This structure leads to efficient methods
top to bottom row are the DAGs of S-components of that are described in Seds.[d, 5, for designing D-connected
the graphs &,..., &, of Fig. Bl first row. () The D- gperators. The next theorem is the key result for establishi
component hierarchy of the stack S of Fig.[B second row.  the properties of this fundamental DAG.
This hierarchy is the S-component tree (a) enriched by Theorem 5:Let X andY be two D-components ab; and
the relation provided by the DAGs of S-components of all ¢, || respectively, withi in {1,...,¢}. The D-componenf
level sets of S (b). The red arrows are the extra links that s 5 subset of the D-componetit if and only if the (i — 1)-
are deduced by transitivity. parent of the root ofX is a successor of the root &f in the
DAG of S-components o#;

graphs: each level se¥; (resp.&,._;) is the subgraph induced X CY <= PAR,_1(Bg (X)) € DCCy(e,_,)(Bg. , (Y))

by the arcs of weight greater (resp. lower) thigne., the graph (6)
whose arc set contains any arc of weight greater (resp. JowerMore generally, a D-compone¥ of &, is a subset of a D-
thani and whose vertex set contains any pixel®flinked component” of &; (with ¢ > 5) if and only if the intersection
by one of these arcs). Such a stack is said tayeer-(resp. between the ancestors of the rootXfand the successors of
lower) induced by the similarity measur&or segmentation the root of Y in ©(®;) is nonempty. In other words, the
methods based on hierarchies of partitidns [13]] [38], oag mset of DAGs of the S-components of all level sets, paired to
want to ensure that all levels in the graph stack remaintlae parent relation allows us to test the inclusion of any D-
partition of the domain by preserving all pixels as vertiogs components belonging to the stasSk

every level set. This can ease further segmentation metibods Definition 6: The D-component hierarchy af is the graph
produce partitions as shown in_18]. A stack obtained by thighose nodes are the S-componentsSofnd such that there

process is said to beompleted is an arc from a S-componefy,Y) of S to a S-component
Important notation. In the remaining part of this section, (¢, X) of S if
S ={6&y,...,8,} denotes a connected stack. e (j,Y) is the parent ofi, X); or

« j =4 and(Y,X) is an arc of the DAGD(&;) of S-
components of5;.

. . For instance, the D-components of the stack in Elg. 5 are

_LetX be a S-component_ ab;, for i in {1""’6}1 Sinced; depicted in the second row of Fig] 5. The associated D-

Is a subgraph ob;_,, X is strongly connected iKb;_,. AS omponent hierarchy is depicted in Fig. 6(c).

the S-components pf a graph partmor_] its vertex set, the %'As a corollary to Th[b, there is an isomorphism between

(Q:Sompo_?ﬁntx ‘.Jf ®iS'S included T(; unlcgﬁets'—c?rgp:)r}e'nt Ofthe order induced by the D-component hierarchy of the stack
i—1- 17IS UNique S-component @;—, thal INCIUGESA 1S ¢ anq the partial order on the D-componentsSobuch that

denoted byPAR,;_;(X) and is called thszfl)-parent(of; (i, X)C (j,Y) if i < j and X C Y. In particular, the S-

(in S). We also say that the S-componéit 1, PAR,; 1 (X cc;m onen . V') is the parent ofi. X) if and onl .fB’ v

of S is the parentof the S-componenti, X). The set of all P U, P 0, X) yif Be, (V)

. . S is the minimal element (for the inclusion relation) among
S-components of equipped with the parent relation is a tre%ll the D-components o5, that include the D-component
called thgstrong componen(tqr S-componeptiree PfS' s,(X). A direct consequence of this isomorphism is that
Following the usual terminology on trees, given two Sthe'

% d(iY) of th KS h D-component hierarchy df is a DAG. In particular, two
cqmpo.nents(z, ) an (‘7_’ ) of the sta_c , we say that S-components at the same level set cannot be linked by a cycle
(7,Y) is anancestor of(i, X) and that(i, X) is a descen-

_ . ) since the DAG of S-components of a graph is acyclic. It can
dant of (j,Y) if there exists a sgquenc(é*o, ol Cn) of S- also be seen that two S-components of two distinct level sets
components of such thatCy = (4, X), C,, = (4,Y), andCy,

) ! cannot be linked by a cycle either since a S-component of a
is the parent ofCy,_; for any k € {1,...,n}. For instance, y acy b

. . iven level set cannot be both an ancestor and a descendant
Fig.[6(a) shows the S-component tree of the stack of[Hig. f a S-component of another level set

3.2 Strong component tree

3.3 Directed component hierarchy 3.4 Generalization of tree structures

Since distinct D-components of the same graph can be link€de framework presented in this section for handling the
by inclusion (see Se¢._2.2), it can be seen that for a giveamponents of a stack of graphs generalizes the handling of
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E

=
®) & (9) & (h) &2 (i) &3 () &4

Fig. 5. A stack S = (8¢, 61,65, B3, ®,). First row: Each color represents a S-component. Second row: Each color
represents a D-component (vertices with more than one color belong to all the associated D-components).

connected components via component trees, in both edge- ahd-components at each level of the sta@ug), and the
vertex-weighted undirected graphs. parent relation between the S-components of successigslev
Indeed, it can be seen that if a graph is symmetric, then a séthe stack PAR;).
of vertices is a D-component if and only if it is a connected For each leveli of the stack, the algorithm consists of
component in the associated undirected graph. Furthermateee steps: (1) label the vertices®f into S-components; (2)
such a set is a D-component if and only if it is a S-componemonstruct the DAG of S-components &f, i.e., the adjacency
Hence, in the case of a stack whose level sets are all synemélists representing the DAG; and (3) define the parent reaiatio
graphs, the D-component hierarchy and the S-component ttetween these S-components and those at altitudé.
are indeed the same. Moreover, if a stack is upper (resprjowe Step (1) is carried out by either the Tarjan|[57] or Kosaraju-
induced by an image, then its D-component hierarchy is alStarir [58] algorithms, which both produce a labeling in
the max- (resp. min-) tree of that image. If a stack is upp&-components of the vertices of a directed graph in linear
(resp. lower) induced by an arc similarity measure, then it8(|V| + |A|) time. We assume that the labels are integers
D-component hierarchy is the max- (resp. min-) tree of thend that the labels at the different levels are all distinet, (
associated undirected edge-weighted graph. In this |ast, cd abel, N Label; = 0 for ¢ # j); so they can be used as array
if the stack is furthermore completed, then the D-componeindices. For the sake of readability, we consider that tisalte
tree is exactly the partition tree [18] (also known as theabel is at the same time the set of labels®f®,), denoted
quasi flat zones hierarchy [38], [52], 53] aertree [54]) of by Label, and the map that associates a label, denoted by
the image. As shown in_[18], completed stacks also allobabel[z], to each vertex: of V(&;).
us to retrieve the binary partition treess [13] and hierasahi  Step (2) is performed by Ald.] 2. It produces the adjacency
minimum spanning forests or watersheds [55] [11, Chl_9].[5@]st of each vertex of the DAG of the S-components of the level
set of & at altitudei. To this end, it successively scans each

4 BUILDING D-COMPONENT HIERARCHIES S-component of®;. For any scanned S-componeBCQu]

In this section, we describe how to build the D-component h?—f label v, the adjacent vertices of all the verticesSC(]

erarchy of a stack of graplg = { ®,} (Sec[ZL), and are considered. If one of these adjacent vertices belongs to
— Oy y

- / ! (i H ! 1
we discuss the computational cost of this process (Sek. 4.%2;) thair dsifcgggg,r]] e:: S?}Q Sgtlagg; r((la:chlfe(;] fzzgcl(lf::j]e

_ (i.e, if Flag[v'] # v, line 11), then the label’ is added to

4.1 Algorithm the adjacency list of (line 12), andv’ is flagged as having
For the sake of concision, we assume here that the stdmen reached from (line 13). The two outer loops visit each
S is constructed from a vertex-weighted gragh= (V,.A) vertex once, and for each vertex, its adjacency list is sednn
(see Sed_3l1). We also assume that graphs are representefingyalgorithm can thus be run in lineé@r(|V| + |A|) time.
adjacency lists: for each vertex of V, we store the list of  Step (3) is performed by Ald.]3 which produces an array
verticesy of V' adjacent tox (i.e, such that(z,y) is in .A). such that, for every labe} of the S-component labeling at
This representation allows us to access to the list of \esticlevel i 4 1, the element of index in the array is the label of
adjacent to a given vertex in constant time. the S-component in the levelthat includes the S-component

The overall construction procedure is described in Alg. 2. The algorithm loops through each vertexin V(®;.1)
Its results consist of: a labeling of each level of the st&ck of the previous level + 1, and finds the labelsabel [z
into S-componentsL@bel), the adjacency lists of the DAGsand Label[z] of its associated S-components at levels 1



ASYMMETRIC HIERARCHIES FOR IMAGE FILTERING AND SEGMENTATION 7

Algorithm 1: D-component hierarchy construction. at leveli. Instead of considering the graph induced by the
Input: S = {®, ..., ®,}, a stack of graphs. vertices of weights higher thafy we can add to the DAG
Output: Label, S-component labeling for eachin {0,...,¢}. of S-components at levél— 1, the vertices and the arcs that
Output: Sug, array of adjacency lists for eachin {0, ..., ¢}. appear at level. This requires the use of a union-find structure

Output: PAR;, parent relation for eachin {0,..., (}. to dynamically manage the S-components. This generates an
1 for i from £10 0 do dditional cost leading to @(a(|V'|).(|V'| +].AJ)?) worst
2 Label « S-component labeling(&;) addiuonal cost leading to (a([V)-(IV]+]A])?) /orst case
3 Sug + adjacency lists(®;, Label) complexity, wherex is the extremely slowly growing inverse
4 if i # ¢ then of the Ackermann function. Practically, we have verifiedttha
5 | PAR;41 < parent relation(®;41, Label. 1, Label) the improved algorithm is about six times faster than thécbas
one.
Algorithm 2: Adjacency lists construction. 5 SELECTING NODES

Input: &;, a graph.
Input: Label,, S-component labeling ab,.
Output: Sug, array of adjacency lists ab;.

Similarly to connected operators, D-connected operatons ¢
sist of processing a hierarchical data structure, namedy th

1 foreach v € Label; do D-component hierarchy. This processing requires selgam
2 Sugv] < 0 discarding nodes according to criteria that are specificall
3 L SCQu] «- 0 _ defined according to the considered application (Set. BHb.
4 | Flag[v] « undefine selected nodes can then be used, to obtain a segmentation
5 foreach z € V(&,) do or to filter an image. Some applications will be described in
6 | SCQLabeli[z]] « SCqLabeli[x]] U {} Sec[®. Since D-component hierarchies are not tree stastur
7 foreach v € Label; do D-connected operators are more difficult to develop than
8 | foreach z € SCqy] do classically connected ones (Secl5.2). In particular, tagyire
9 foreach (z,y) € A(&;) do o o .
0 v« Label;[y] specific regularization strategies (Secl 5.3).
1n if v # v and Flagv'] # v then
12 L Sug[v] < Suglv] U { Labeli[y]} 5.1 Node selection criteria
13 Flag[y] + v
A node selection criteriory is a predicate associating a
- Boolean value to each node/component of a hierarchical data
structure. Given a component, we say that the criterion
Algorithm 3: Parent relation definition. holds true(resp.falsg) for C', or thatC satisfieresp.violateg
Input: ®,.1, a directed graph. o if o(C) equals true (resp. false).
Input: Label1, a labeling of the S-components &f; ;. A classical criteriono 4 that discards small nodes, often
Input: Label, a labeling of the S-components &f;. associated to noise, is defined by
Output: PAR; 1, parent relation orLabel;; andLabel. )
1 foreach = € V(®,11) do oa(C) = { true if AredC) >t @
2 | PAR[Labelii1[x]] < Label;[z] false otherwise

where Area is a measure of the area of the component, for

example the number of vertices i@, while ¢ is the area
and i. It then defines the labelabel[z] as the parent of threshold value.
the labelLabel[x]. In order to achieve a linea®(|V]) Many other criteria have been proposed in the literature.
complexity, the labels have to be determined in constare tirviost are obtained by replacing Area by some other attribute
which is achieved by storing them for each vertex during ttieé Eq. (#). Proposed attributes focus on different aspes:
S-component labeling. the shape of the componertg, the geometrical moments or
the compactness; (2) the gray level content of the component
. ; e.g, the volume or the entropy; (3) the topology of the
4.2 .CompIeX|ty.anaIyS|s . ) hierarchy,e.g, the number of children of the component; or
The time complexity of Alg.IL i) (£.(|V[+|Al)). In particular 4y combination of the previous types of attributesg, the
the algquthm is efficient i is small, for instance in the casegynamic or the Mumford-Shah energy. It is also possible to
of 8-bit images. As there are at mot| levels (each vertex rgnace a constant threshold by a more complex process in
can have a different weight), this complexity is bounded Qe gefinition of the criteriong.g, criteria based on energy

O([VI(IV] + |A])). However, if we do not restrict ourselvesyinimization (Viterbi in [12]) or on shape-space filterirgZ].
to vertex-weighted graphs, there are at m@st+ |.A| levels

(each vertex and arc is added one after the other), so in the
worst case, this leads to a complexity 6f(|V| + |.A])2). -2 The case of D-connected operators

However, one can generally assume that |V| + |A|. Thinking in terms of D-connected operators, one may desire
The algorithm can be improved by observing that a $e mark each D-component as selected or discarded. However
component at level is strongly connected at level- 1. Thus, - in contrast to the case of connected operators — we may fall

we can use a more complex algorithm to build the subgraptto situations such as the one depicted in Eig. 4(b), wheoe t
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lA—B—C| |[A—B—C| |[A—B—C| A A
“3C—D—E C E
(a) H; (b) H; (c) H; B
| B—C| |[A—B | |4 C| F—G H—I||F—G
(d) o1 (e) o2 ) o3 (a) H; ©) o
A C B A
[ I ) o |4~ pp
(9) o1 (h) 72 (i) o3 B
Fig. 7. First row: a graph (DAG) H;, composed of nodes F—aG F—aG
that are selected (_in green) or discarded (in red) with (¢) Sel-Min,, (d) Dis-Max,
respect to some criterion o; (see Sec. [5.2). Each node
corresponds to a S-component (4, B and C, respec- A\ A
C—D—FE

tively), and models a D-component (AUBUC, BUC and
C, respectively). Second row: subgraphs induced by the
nodes that satisfy o; (green circles). Third row: subgraphs F—G F—G
induced by the nodes that violate o; (red squares).

(e) Sel-Max (f) Dis-Min,

. _ ~ Fig. 8. Node selection (regularization) strategies. (a) The
D-components overlap. This creates an ambiguous situatigpg H; of the S-components {A,...,I}. The compo-
if one of the_m is selected, while th_e other is discarde@ients represented as green circles (resp. red squares)
It is not obvious how to proceed with the S-componenigaiisfy (resp. violate) o. (b—f) The graphs induced by o

that correspond to overlapping D-components. A first partige]_Min, , Dis-Max,, Sel-Max,, and Dis-Min,,.
answer to this question consists of considering the oiteoin

the S-components instead of the D-components. This choice

better suits the data structure constructed in Bec. 4. A wel Thus, we identify two desirable, yet generally exclusive,

due to the bijection between D-components and S-componeptgperties. Given a criterion we say that:

(Th.[3), this strategy is information lossless. « o is selectiveif the D-components of the graph induced
In the following, we consider a stack = {&,,...,&,} by o on H; are also D-components df;;

of graphs. We also consider, for anyn {0, ..., ¢}, the DAG « o is discardingif the D-components of the graph induced

at altitude i denoted byH;, defined as the subgraph of the by & on H; are also D-components df;.

D-component hierarchy of induced by the S-componentsgrthermore, we say that a D-componéhof H; is selected
of S at altitudes (i.e, induced by the set of componentgresp. discarded by o if C is also a D-component of the
{(i,C) € SCCs}). We observe that there is an arcify from  graph induced byo (resp. 7). Thus, C is selected (resp.
the component(i,C;) to the component(i,C;) whenever giscarded) if the criteriom holds true (resp. false) for every
there is an arc fromC; to C; in the DAG ©(&;) of S-  s.component contained i@. Nevertheless, we have seen in
components of%;. Thus, when no confusion may occur, ifrig [7 that in general, a criterion is neither selective nor
C = (i,C") is a S-component of, we use the symbol’, giscarding. Consequently, we propose several regulaizat

instead_ofC_’,_for the as_sociated strong componéﬁtof ®;. strategies that transform any criterion into a selectiveaor
For simplicity — and without loss of generality — we considegiscarding criterion.

the example of the grapH;, depicted in the first row of Figl7,
such thal (H;) is {A,B,C} and A(H;) is {(A, B),(B,C)}. L .
Each colurgm c))f Fjiig]7 corgesponcgs t()) a g%ﬁere%t(critergp: 5.3 Regularization sirategies

holds true forB, C, and holds false for; o, holds true for Given a criteriono, we propose four different regularized
A, B, and holds false fo€'; and o3 holds true forA, C, and criteria ofo. Two of them are selective, namefyl-Min,, and
holds false forB. The second line shows the graphs associatéél-Max,. The other two are discarding, namel}is-Min,

to each criterioni.e., the subgraphs induced by the nodes thand Dis-Max,. Fig.[8(a) shows a graph/;, while Fig.[8(b)
satisfy the criterion. The third line shows the graphs iretlic Shows the result of a non-selective and non-discardingrait

by the negation of the criteriong., the graphs induced by thec on H;. Then, we have the following regularized criteria:
nodes that violate the criterion. For the first criterioncén « Sel-Min, selects the D-components such that every con-

be seen that the D-components of the graph induceg, lare tained S-component satisfies the criteriorFig. [8(c)).
also D-components off;, but the D-component of the graph « Dis-Max, discards the D-components such that ev-
induced byay is not a D-component off;. The converse ery contained S-component violates the criterien
situation is true for the second criterion: the D-component (Fig.[8(d)).

of the graph induced by is also a D-component off;, o Sel-Max, selects the D-components whose root S-
but the D-components of the graph induced dy are not. component satisfies the criterien(Fig. [8(e)).

Finally, with the third criterion, neither the D-componerdf o Dis-Min,, discards the D-components whose root S-
the graphs induced by; nor by a3 are D-components aoff;. component violates the criterian (Fig. [8(f)).
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Thus, for any level of the hierarchy and for any componentn effect, theDis-Min-H,, (resp.Dis-Max-H,) strategy is the

C of the DAG H; at altitudei, we have analogue of the usual min (resp. max) filtering rules of the
. _ , classical component trees [12].
Sel-Min, (C') = ) /\ (¢ (8) Remark 9increasing criteria are consistent with the parent-
¢rebOC,(O) child relation. Given a criteriow and two S-component§’
Dis-Max, (C) = \/ a(C) (9) andC’ such thatC’ is a descendant af' (i.e., C’ C C), the
C’eDCCy, (C) D-component rooted irC’ is included in the D-component
) g S N L
Sel-Max, (C) = \/ o(C") (10) rooted inC, and thuss is increasing ifo(C”) = true implies

o(C) = true (which is the usual definition of an increasing

Cebe0n, () criterion). Thus, for an increasing criterion all the proposed

Dis-Min, (C) = /\ a(C") (11) regularization strategies of yield the same result as due to
CeDCCy, (C7) the tree structure of the S-components at the differenideve
(by opposition to the DAG of the S-components at a single

where A\ and\/ are the Boolean “and” and “or” operators.
Property 7: Let o be a criterion on the D-component
hierarchy of the stackS = {®,...,6,}. The regularized
criterion Sel-Max, (resp.Dis-Min,) with respect toS is the © EXPERIMENTS AND DISCUSSION
same as the regularized criterib¥is-Max, (resp.Sel-Min,) In this section we illustrate the relevance of the proposed
with respect to the transpose staels = {—&,...,—&,}, D-component hierarchy framework. This relevance derives
where—®; is the transpose of the grah;. More precisely, from its compliance with efficient image processing paratig
for any DAG H; at altitude: of S and for any component”  already proposed in the literature. This is notably the case

level).

of H;, we have: of the non-local approaches, as discussed in Bet. 6.1, and
\/ o(C') = \/ o(C) (12) ;hown by Tm _exp(?]rimental _\ll_alide;ticr)]n in the context ﬁf rdtina
Cepcen (€ Crepce (0) image analysis. The versatility of the D-componer_lt !mrc_
i i framework is exemplified by proposing two applications in
/\ o(C") = /\ a(C") (13) Sec[&.2: one in neurite image filtering and the other in eardi
CeDCC, (C7) C¢’eDCC_y, (C) image segmentation.

Remark 8:The simplest criteria — that include in particular _ _
the criteriono 4 — are those that arimcreasing We say that 6.1 D-component hierarchy and non-locality

a criteriono is increasing if, for any two S-components |ocal approaches for image processing rely on the assumptio
and ¢’ such that the D-component rooted @ is included that neighboring pixels are often strongly correlated. He t
in the D-component rooted i6”, o(C) = true implies that graph-based formalism, this is generally interpreted by-co
o(C") = true. So, given an increasing criterienand a S- sidering standard — symmetric — adjacency relationgdmor
component, if & holds true forC, we immediately know that 73, that model such spatial neighborhoods| [59].
all the predecessors 6t also satisfyr. Conversely, ifr holds  |n contrast, non-local approaches consider correspordenc
false forC, we immediately know that all the successor<bf petween pixels that are closely related from a statistical —
violate o, or, in other words, all the S-components containéfistead of spatial — point of view. In this framework, all
in the D-component of roaf’ violate the criterion. Thus, any pixels are adjacent to one another. Each adjacency link is
increasing criterior is discarding. In this case; is equal to  weighted by a distance that models the similarity between
Dis-Min,, and toDis-Max,-. pixels, or more typically between regions around them (a
The previous discussions focused on node selection fopatch). This approach was popularized [in[60] and [44] for
single level of the hierarchy. Nevertheless, a similar lelmgle image segmentation and filtering and extended to segmenta-
exists in order to ensure result consistency between the dibn, reconstruction[61] and classificatidn [62].
ferent levels of the hierarchy,e, in order to avoid “holes” A common issue with this approach is its algorithmic
between two or more levels. complexity. In the graph-based formalism, non-localitylies
The previously defined regularization rules can also be usgfpping a complete graph onto the processed image, leading
on the S-component tree, by considering the ancestors. (regpprohibitive computational costs. Practically, the rocal
descendants) instead of the the predecessors (resp. sus)esapproach is approximated in a fashion similar keearest
These new — but similar — hierarchical criteria are denotefighbors, bya priori limiting potential pairing between

Sel-Max-H, Sel-Min-H, Dis-Max-H, and Dis-Min-H: pixels, for instance based on spatial distance. In so doing,
« Sel-Max-H, holds true for all the descendants of a nodthe graph modeling the image becomes sparse, and it also
that satisfiesr. becomes directed. Indeed, a pikelan be within the:-nearest
« Sel-Min-H, holds false for all the ancestors of a nod@eighbors of a pixek while a is not within those ofb, for
that violateso. instance due to window size restrictioris [[44]. In particula
« Dis-Min-H,, holds false for the descendants of a nod&volving non-local approaches in hierarchical frameveork
that violateso. naturally leads to handling D-component hierarchies.

o Dis-Max-H, holds true for all the ancestors of a node In previous works, these asymmetric, directed adjacencies
that satisfiesr. are not fully exploited, for instance in_[60] where the graph
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(a) Image 2 of DRIVE  (b) Filter 12
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Fig. 9. Segmentation results on the DRIVE database. On (a) Image 19 of DRIVE (b) Non-local adjacency
each row, from left to right: pre-processed image, filtering

result, and evaluation of the segmentation. Fig. 10. Non-local adjacency relation. (a) Distal vessels

of the 19th retinal image of the DRIVE database. (b) Adja-
cency relation shown on a critical threshold of (a). Green

is symmetrized. We propose to use this directed informatidiKS represent symmetric edges while red arrows are

in the D-component framework to achieve improved result2Symmetric refations. Each S-component is associated to
Retinal image (or eye fundus) analysis (see Figs. 9 (a) aﬁ&olor printed in a small circle inside each pixel.

(d)) necessitates to perform blood vessels segmentation, f

measuring features like length, width, tortuosity or biing e see that the ends of the vessels form thin elongated
complexity, that can help physicians diagnose and foll@v-th_components while noise pixels appear as less spatially

several pathologies. The difficulty of retinal images lieshe  gictured D-components. The problem can thus be formtilate
separation of the faint and thin vessels from the backgrougd he deletion of non-vessel-like D-components.

noise. These vessels appear as disconnected groups &f pixefps |eads to a selection criterion aiming at removing small

that can only be distinguished from the background by theiggie structures that are not elongated (using a moment base

spatial coherency. In order to solve this issue, we proposediongation measure) and large scale structures (usingrte fi
construct a non-local directed adjacency relation thaval ,oment of Hu [63]). Given a set of pixel&, we denote

us to reconnect those groups of pixels, retaining the pitisgib |, 11yq(X) the central moment ok of order pq: 1,4(X) is
to reject spurious groups of pixels whose spatial arrangeme,q 103, ex (@ — 2(X))P(y — g(x))? with z(X) and
do not resemble a vessel. _ 3(X) the coordinates of the centroid of. Then, we have
We consider the D-component hlergrclﬁg/ of the stack Elongationf X) = /A1 (X)/A2(X) With Ak (X) = poo(X) +
S ={&y,...,®,} lower-induced by the image on a non-locaLOQ(X) + (=R /22, (X) + (p20(X) — p102(X))2. Finally,

graph & = &, (Sec.[3.1). The vertex set @, is tglus the the first Hu moment of is defined by HY(X) = (ji20(X)+
domain of the imagei€., a rectangular subset &-). The L102(X))/Card(X).

arc set of&, corresponds to the traditional 4-neighborhood Then, given a nod€ of the hierarchyi(e., a S-component
augmented with non-local arcs based on therightest pixels &, for somei € [0, £]) and the D-componedCC rooted

around each pixel. in C (i.e, DCCc = Be, (C)), the criterionsy is defined by
Formally, given a pixek = (1, z2), let Ny(x) be the set of '

4-adjacent neighbors of: Ny(z) = {y = (y1,2), |1 —y1| + false if AregDCCc) <ty

|z2 — yo| = 1} and letBy n(z) be thek brightest pixels in a false ift; < Area(DCC¢) < 1000

N x N window centered on: (z excluded). Then the arc set oy (C) = and ElongatioDCC¢) > to

of & is given by: A(So) = U, cv(s){ (2, 9), y € Na(2)} U v false if 1000 < Areaq DCCc)

{(y,x),y € Bg,n(x)}). In all the following experiments we and Hy (DCC¢) > t3

setk = 3 and N = 9. The idea behind this construction is true otherwise

that the brightest pixels are more likely to belong to a viesse (14)

A jumpis then a possible extension of this vessel. with t1, to and t; three thresholds that will be adjusted

Fig. is a close up on a distal vessel of a retinaldependently in each experiment. The first case in EJ. (14)
image and Fig[ I0(b) shows eritical threshold (selected discards very small components for which geometric measure
manually) with the associated adjacency relation. As eigagc are not reliable. We also consider the regularized criterio
there are many non-symmetric links (red arrows). Moreovergy = Dis-Min,,, which discards a whole D-component
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whenever its root S-component does not satisfy 4) NL symmetric (Max)criterion oy, on a non-local sym-
The D-component hierarchy can be used to perform image metric adjacency where the edgg, ¢q) belongs to the
filtering, i.e, to obtain a new image based on the node  adjacency if the edge§;,p) or (p,q) are in the asym-

selection procedure. This requires to definergeonstruction metric adjacency;
IH of the hierarchyH with respect to the criteriow as a 5) NL symmetric (Min)criterion oy on a non-local sym-
function that maps each vertexof &, to the altitude of the metric adjacency where the edge, ¢) belongs to the
smallest node off that satisfiesr and that contains adjacency if(p,q) and (¢,p) are in the asymmetric
Ho N , adjacency;
I3 (v) =max{i € [0, ]| 6) Xu: connected attribute filter proposed in [65] on a local
(1,C) e V(H), veC, o((i,C)) =true}  (15) and symmetric graph with a complex morphological

Figs.[® (b) and (e) show the results of retinal image filtering filtering strategy;
using the criteriorrzy-. The resulting filtered image is quiteMendonca [[66] and Staal [64] provide the state of the art
clean. A final segmentation is obtained by selecting everny nanethods. It can be noted that, with Mendongca, the parameters
zero pixel from this filtered image. of the method are adjusted independently for each imagi, the
The following results rely on the DRIVE (Digital Reti- methodology differs thus from the classical one.
nal Images for Vessel Extraction) database] [64], which is The results show that the proposed method 1) achieves
composed of 20 test images. Each image of sizex®# the same performances as Stall. In 2) when one removes the
pixels is encoded in 24 bits RGB and comes with 2 expemregularization strategy, the accuracy goes a bit down stgpwi
segmentations and a mask of the eye fundus. The segmentatiiat the notion of D-component is indeed a good model for
of an image is evaluated with 3 measures (pixels outside thessels in this application. In 3) all the information abdut
eye fundus mask do not count): the true positive rate (TPBRYmMponents is dropped: thus, the method relies only on the
(resp. true negative rate (TNR)) is the number of true pasitiS-component tree. The accuracy is lower than in 1) and 2)
(resp. negative) pixels divided by the total number of pasit which shows the interest of exploiting the adjacency refati
(resp. negative) pixels, and the accuracy is the sum of tramong the S-componentse(, the DAG of S-components). In
positive and negative pixels divided by the total number @f) and 5) we measure the gain due to the asymmetric approach.
pixels. The score on the base is the mean of the image scdfes this, we construct two symmetric non-local adjacency
plus the standard deviation of the accuracy (that meashees following two classical strategies: min (only symmetrigged
stability of the algorithm). In our experiments, we usedyonlare kept) and max (every edge is symmetrized). In both cases
the green channel, which is pre-processed using a black ttige score is lower than in every other experiment. While
hat (difference between a closing and the original imag#) withe max strategy leads to connecting a lot of noise to the
a disk structuring element of diameter 5 pixels. This openat vessels (with no mean to disconnect it), the min strategy
flattens the background of the image and inverts its contrass indeed quite close to a local approach as most non-local

Method TPR  TNR  Accuracy (o) edges of the asymmetric adjacency are asymmetric. 6) is a

7nd expert 07761 09725 0.9473 (0.004djonnected attribute fllters (local symmetric adjacencyo_hwi
RNL D-components (15,0.2,1) 0.7079 0.9790 0.9442 (0.0063)complex node selection strategy recently proposed_ih [65]
NL D-components (15,0.2,1) 0.7046  0.9790  0.9439 (0.006dich provides a reference score for classical connectedsil

NL S-components (30,0.15,1.3) 0.7024 0.9789 0.9434 (0)0070

NL symmetric (Max) (15,0.2,1.3) 0.6528 0.9828  0.9404 (0.0083 All these experiments s_how the importance of each element
NL symmetric (Min) (15,0.15,1.35) ~ 0.6980 0.9786  0.9425 (670 of the method — non-locality (1, 2, 3, 4, and 5), asymmetry and
EIU [251 ('°C2'”Symme”'c) 0.6924 0.9779 0.9413 (0.00785-components (1, 2, and 3), D-component (1 and 2), regular-

endoncal|6] 0.7344 09764~ 0.9452 (O'OOGZB&ation (1) — with a gradual improvement of the performances

Staal [64] 0.7193 0.9773  0.9442 (0.0065 _
TABLE 1 when they are combined.

Result comparison on the DRIVE retinal image database.
The methods of the first group are all connected filters. 62 Other application examples
The last two methods are the state of the art. o
6.2.1 Neurite filtering

The proposed framework was also used to filter a sample
We have conducted a set of experiments (see[Tab. 1) in orifaage of a neuron with associated neuritég.(its axon
to clearly identify the benefit of each aspect of the methodnd dendrites), grown in vitro (FidJ 1(a)). We rely on a
The evaluated methods are (the best found parameter valugsselness-like local object characterizatibn [43], When-
(t1,t2,t3) for the criteriacy and ory are given in Tab[ll ables us to classify pixels into tubes, blobs and background
after the method name): We constructed an undirected pixel adjacency graph where a
1) RNL D-componentsregularized criteriono gy, on the pixel classified as a tube is linked to its 4-adjacent neighbo
non-local asymmetric adjacency; classified as blobs but not the other way around. However,
2) NL D-componentscriterion oy on the non-local asym- two 4-adjacent pixels of the same class are linked in both
metric adjacency; directions, while any background pixel is linked to all its 4
3) NL S-componentsame as above but where the criterioadjacent pixels. The vertices of this directed graph ara the
oy computes the features (area, elongation,)Hun the weighted by the gray values of the corresponding pixels and
S-components instead of the D-components; the associated D-component hierarchy is built. Relevadeso
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of the hierarchy are selected by a criterion using two h&osis connected operators, no longer based on partition hidesrch
(1) a tube must have a (directed) connection with at least tweganized as trees, but on partition covers organized assDAG
other structures; and (2) a tube is connected at its extesnit From a theoretical viewpoint, we have provided a relevant
the length of the interval between a tube and the structunsay to generalize various tree-based connected operators
it is connected to should be small. Similar criteria cann®t kpreviously proposed in the literature. This may lead to a
designed in the framework of component tree on undirecteétter understanding of the common properties betweer thes
graphs, since in that framework a component cannot be camperators, and also helps to clarify some subtle difference
nected to another (otherwise the two connected componebé&tween those that lie in the framework of directed conmecte
would not be maximal connected sets). Then, from the selectaperators, and those that do not, such as hyperconnections.
components, a filtered image can be reconstructed [(Fig). 1(bh this context, it is relevant to develop an axiomatizatain
More details on this illustration are provided in an appgnddirected connectedness such as was doneé ih [70], in order
section, which can be found on-line as supplemental méterim compare it to the axiomatizations already proposed for
connections[[45, Ch. 2] and hyperconnectidng [71].
6.2.2 Marker based segmentation From both the theoretical and algorithmic viewpoints, iyma

In this section, a D-component hierarchy is used in a mark@g0 be useful to compare the links that exist between the
based image segmentation procedure. To this end, we blGGs induced by directed connectedness, with other nan-tre
a directed arc-weighted graph from the image which is fructures that have been recently introduced to extend the
be segmented. Intuitively, this weighted graph corresponﬁamework of connected operators, for instance in the cése o
to a directed gradient. Then, we construct the D-compondhtPertrees [37] or component graps|[721.1[73], that comi
hierarchy associated to this graph and select D-compoirent§n €xtension of component trees to multivalued images.
order to obtain a segmentation. The D-components are edlect From a methodological viewpoint, we have shown that the
using user-provided markers of the object of interest and &fVer hierarchies obtained when considering directed con-
the background. More precisely, a D-component is selectBgctedness can be efficiently handled by taking advantage
whenever it is rooted in a pixel marked as object and it do&§ the intrinsic links that exist between directed connecte
not contain any pixel marked as background. The resultif§d strongly connected components, the latter being argeni
segmentation is the union of the selected D-components. N {rees. Based on these properties, the complexity of the
Fig. I illustrates this procedure for the segmentation 8iitial @lgorithm proposed in this article for building oewv
the myocardium in a MRI of the heart. A weighted directefiiérarchies, can be improved by using the recent increrhenta
4-adjacency graph is obtained from a rough pre-classificati2/gorithm proposed in_[74] for building the DAG of strongly
of the image pixels that produces a lot of false negati@nnected components i@(N?/?) time complexity. More-
background pixels but tends to minimize the false positses( OVer, beyond the standard attribute-based anti-exterfitives
Fig. [[1(c)). This classification is obtained by excluding tndeveloped in this article, other approaches |n|t_|aIIy dedao
extremal intensity values, which corresponds to blood atd frée structures can be _adapted to th_e case of directed d¢ednec
for the brightest pixels and to lungs for the darkest. Thea, tOPerators, and in particular the optimal tree-cut segntienta
weight of an arqz, y) between two 4-adjacent pixetsandy paradigms initially proposed in [40], and further formalizin
is obtained as the absolute difference of intensity betweerin® framework of connected operators|[75].
andy if y is not “pre-classified as background” or itis setifo ~_From the applicative viewpoints, we have shown that the
times the absolute difference of intensity betweerand y d|rect§d connectedqess framework is sunab_le for _effltyent
if y is pre-classified as background. Figsl 11(d) and (f) shd¥gndling non-local image processing paradigms, in their —
the results obtained wheii — 1 and K — 1.5. Note that Standard - nearest neighbor version. The directed connect-
whenK = 1 the weights of an ar¢z, y) and of its symmetric edr_1ess framework is also quit_e versatile and_the_n useful for
(y,z) are always the same and correspond to the magnitU¢f¥1ous filtering and segmentation tasks. Applicationd
of a simple intensity gradient. In this case, our method fBOré extensively proposed in further works, in particulgr b
the same a< [13][[67] for undirected graphs with symmetrf@mparisons W|th.3|m|Iar approaches proposed in the fitera
edge-weights. However, wheR is greater than 1, the arcture, for instance in[s]. o _
weights are not symmetric and the proposed weighting sjyate Sogrce code correspond_mg to this article |s_ava|IabIe at th
tends to facilitate the connection of the pixels pre-clesias following url: http://www.esiee.fr/~perretb/dc-hiecdry.htm].
background to the background marker. Figl 11 clearly shows
this behavior and therefore illustrate the benefits of theotitd ACKNOWLEDGMENT
non-symmetric method over its undirected symmetric variarrhis work was funded with FrencAgence Nationale de la
More details on this method, including a link with the notwin  Recherchegrant agreements ANR-10-BLAN-0205 and ANR-
connection value [68][ [69] and the oriented IFT segmeoitati 12-MONU-0010.
framework [5] can be found on-line as supplemental material
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Directed connected operators: Asymmetric
hierarchies for image filtering and segmentation
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Benjamin Perret, Jean Cousty, Olena Tankyevych, Hugues Talbot, Member, IEEE, Nicolas Passat

A NEURITE FILTERING

In this example, we consider a sample image of a neuron
grown in vitro (Fig. [I(@)), with associated neurites (i.e., its
axon and dendrites). The objective is to derive measures of
neurite tree complexity, which are useful in various toxicology
assays, called neurite outgrowth assays [1]. Whereas neurites
do form atree, apparent overlap in vitro complexify the layout.
The challenges of such images are low contrast of neurite vs.
background elements unrelated to neurite structures as well
as noise, making it complex to segment based only on an
intensity criterion.

In our application, we rely on a vesselness-like local object
characterization [2], which enables to classify regions into
tubes, blobs and background (Fig. [(c)). This alows us to
construct an asymmetric adjacency relation where tubes can be
linked to blobs but not the other way around. However, each of
the three classes is linked to its own class, while background is
linked to al classes. Then, we take into account both intensity
and geometrical classification in order to filter the image. By
imposing asymmetric blob-to-vessel connection, we exploit
the fact that the tube classification is under-segmented and
we seek to complete the missing information by searching the
connections from the blob and the background classes with
this more robust tube class.

A.1 Filtering criteria

We propose an original criterion o; which relies exclusively on
the specific structure of the D-component hierarchy, compared
to the classical component tree. The criterion aims to hold true
for neurite tubes using the following two heuristics: (1) a tube
must be connected at least to two other structures; and (2) a
tube is connected at its extremities: the length of the interval
between a tube and its adjacent structures should be small.
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Formally, for any level i of the hierarchy and for any
component C' of the DAG H; at altitude 4, the criterion
o1 relies on two attributes: the number of adjacent nodes
NAdj(C) of C and the number of arcs NOut(C') going out
of C into an adjacent node. For example, in Fig. 3 in [3], the
S-component Y7 {a, b, ¢} has one adjacent S-component {d, e},
but it has two arcs going out of it, (¢,d) and (c,e).

NAdj(C) = {C" € V(H;), (C,C") € A(Hy)} (D)
NOUt(C) = |{(c,¢) € A(®;), ce C.d ¢ C} (2

Then, the criterion o, is defined by

1(C) = {true if NAd.](C) > 2 and NOut(C) < 20 3
false otherwise

One can note that the second condition NOut(C) < 20 was

adjusted empirically. Nevertheless, it roughly corresponds to

afrontier of 6 pixels with a 8-neighborhood (3 arcs going out

of each pixel on the frontier). More complex measures could

be proposed in order to obtain a scale invariance property.

A.2 Result

The filtered image Igf of Fig. d(a) according to oy is repre-
sented in Fig. [I(d). It can be seen that the reconstructed struc-
tures are mostly thin and elongated, as expected. Nevertheless,
we still miss afew neurite tubes: this problem can be solved by
regularizing the criterion o, (see Sec. 5.3 in [3]). Indeed, the
chosen adjacency allows us to say that whenever the criterion
holds true for a node, then its successors (which can only be
classified as blobs or tubes by the vesselness) are also part of
the neurite. Thus, we want to select the D-components whose
root S-component is selected by o4, which corresponds to the
regularized criterion o, given by Sel-Max,,. Furthermore,
in order to fully reconstruct the brightness of the selected
S-components, we can perform a hierarchical regularization,
setting the final criterion o5 to Sel-Max-H,,. The filtered
image 1 of the image Fig.[I(a) according to o5 is represented
in Fig. [(b). Moreover, Fig. [d(e) shows the non null pixels of
I};{ (Fig. [[(d)) that were classified as background with the
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(8 Neurite image. (b) Filtering.
. f
CN by
- ;
b o) \ -
e S y
".‘ ..._?.', - II

(c) Classification. (d) D-component filter o .

-

(f) Removed.

(e) Added.

Fig. 1. D-component filter on a neurite image. (a) Neurite
image. (b) Directed connected filtering. (c) A classifi-
cation of (a) into neurite “tubes” (gray), “blobs” (black),
and “background” (white) used to generate the directed
adjacency. (d) Results of the filtering criterion o4 . () What
has been added in (b) compared to (a). (f) What has been
removed from (a) in (b).

vesselness (Fig. [I(c)), i.e., the false negatives. We can observe
that the selection process was able to recover severa neurite
tubes that were classified as background. Conversely, Fig. [I(f)
shows the null pixels of I}Z (Fig.[d(d)) that were not classified
as background with the vesselness (Fig. [I{c)), i.e, the false
positives. We can see that isolated structures were correctly
identified as non-neurite parts.

B MARKER BASED SEGMENTATION

In this section, we illustrate the use of the proposed framework
in a marker-based image segmentation procedure. To this
end, we consider the magnetic resonance image of the heart
shown in Fig. (a). From this image, we aim at segmenting
the left ventricular myocardium (see the segmented result in
Fig. [Xf)) from the two markers of the myocardium and of
the background that are shown in red in Figs. [2(b,c). For this
illustration, the markers were manually overlaid on the image.
However, in aclinical context, these markers may be obtained
via an automated procedure (see, e.g., [4]).

Asisclassically done with graph based segmentation meth-
ods, we consider an arc weighted graph (&, w) such that the
arc weights function w is a dissimilarity measure based on the
gradient magnitude of the image. The vertex set of & is the
domain of the image to be processed (i.e., a rectangular subset
of Z?) and the arc set of & is given by the 4-adjacency rela-
tion: the pair (z,y) isan arc of & if |z1 —y1|+ |22 —y2| = 1,
where z = (z1,22) and y = (y1,y2). The graph considered
in our illustration is symmetric but the weight of an arc (x, y)
from a pixel = to a pixel y is not necessarily equal to the
weight of the symmetric arc (y,«) from y to . The setting
of the weight map w will be given after the description of
the segmentation procedure and a property of its result that
guided us for defining the map w.

Given the arc-weighted graph (&, w) and two sets of pixels,
denoted by O and B, which correspond to the marker of the
object (myocardium, see Fig.[2(b)) and of the background (see
Fig. (c)), respectively, our method consists of two steps:

1) build the D-component hierarchy of the weighted
graph (&, w) (or more precisely of the completed stack
lower induced by the similarity measure w, see Sec. 3.1
in [3]);

2) select from this hierarchy al D-components rooted in
a pixel marked with the label object (i.e., a vertex that
belongsto O) and that does not contain any pixel marked
as background (i.e., any vertex that belongs to B).

The resulting segmentation, denoted by So_. 5, is the union
of the selected D-components. More formally, the segmenta-
tion is made of the components selected by the regulariza-
tion Sel-Max,,, of a simple criterion o, defined for any level
1 of the hierarchy and for any component C of the DAG H;
at dtitude i by

04(C) =true<= CNO # 0 and DCCx,(C)NB =10 (4)

Step 1 is performed by the algorithm of Sec. 4 in [3], whereas
Step 2 is performed by recursive traversals of the hierarchy.
The segmentation result can be characterized owing to
a directed version of a measure widely used for segmen-
tation purposes in undirected weighted graphs, namely the
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(a) Original

(b) O: myocardium (c) B: background

(d) Symmetric result (e) So: Over-seg (f) Directed result

Fig. 2. Segmentation based on the D-component hierarchy. (b,c,e) The considered sets are superimposed in red to
the original image. (d,f) The internal border of the segmentation results are superimposed in red to the original image.

connection value [5], [6] (also called degree of connectivity
[7] or fuzzy connectedness [[8] up to an inversion of w).
If T = (xo,...,x¢) isapathin &, the connection value T, (1)
of 7 is the maximum weight of the arcs of =

Ty () = max{w(z;,x;-1),% € [1,£]} if = non-trivia
W= 00 otherwise
©)

The (directed) connection value T, (x, y) froma vertex = of &
to a vertex y is then defined as the minimum of the connection
values of the paths from x to y

T.(z,y) = min{Y, (7),r isapah from z toy}  (6)

Hence, by the very definition of a D-component hierarchy, it
can be shown that the segmentation result Sp_. 5 is the set
of all vertices whose directed connection value from a vertex
marked as object is less than the one to a vertex marked as
background, i.e., for any = € V (&), we have

z € Sop = gélg{Tw(o, )} < gél}g{'rw(m,b)} @]

From the previous characterizations of the proposed seg-
mentation method, we can say intuitively that the weights
of the arcs should be higher in the border of the object to
be segmented than inside and outside this object. In order
to produce such a map and, following the work of [9], the
weight w(z,y) of the arc (x, y) is the product of a symmetric
term V(z,y) and a non necessarily symmetric term 6(z, y)

w(z,y) = V(z,y).0(z,y) (8)

The first term V(z,y) plays the role of a gradient magni-
tude. For our illustration, it is defined as the absol ute difference
of intensity between the pixels x and y. If I denotes the
grayscale image to be segmented we have

V(z,y) = [I(z) - I(y)| ©)

when no further knowledge on the objects to be segmented
exists, symmetric weights can be used. In this case the second
term &(x, y) is set to a constant value. For instance, the image
of Fig. [A(d) is obtained by the proposed method from the
markers O and B shown in Figs.[Z(b,c) when a constant value
is used for the map 6.

However, when domain knowledge is available, the second
term §(x,y) can be used to ease the connection of a pixel
either to the background or to the foreground marker. From
Eq. (@), we remark that if the weight of every arc (z,y)

ending at a vertex y is set to an infinite value (i.e., a maximal
weight), then the vertex y does not belong to the segmented
object So_, . Indeed, in this case, the connection value from
any point o of the marker O to the vertex y is maximal
and therefore, by Eq. (@), the vertex y does not belong to
the segmented object Sp_, . On the other hand, when the
weight of every arc starting at - is maximal (i.e., in the cases
where the connection value from the object marker is not
also maximal), the point = generally belongs to the segmented
object So—; g. These observations alow us to design a strategy
to take into account some prior information in the arcs weights
in order to ease the connection of a given point either to the
background marker or to object marker. Indeed, if we have
good confidence that a pixel x belongs to the object (but not
high enough to put it in the object marker), we can increase
the weights of the arcs going out from « in order to harden its
connection to the background. Conversely, if we are confident
that a pixel = belongs to the background, we have to increase
the weights of the arcs ending in x.

Following this strategy, we set the term §(z,y) in Eq. (B
based on afirst classification of the image pixels that produces
many false positives but tends to minimize the false negatives.
In other words, this classification tends to produce a superset,
denoted by Sy, of the expected segmentation result. In our
illustration, Sy is obtained by excluding the extremal intensity
values, which correspond to blood and fat for the brightest
pixels and to lungs for the darkest ones (see Fig.[2(e)). Hence,
we are confident that the points that do not belong to Sy do
not belong to the object that we seek to segment. Then, the
terms {§(z, y) } are set up in order to ease the connection of the
pixels that do not belong to S, to the background marker B.
This is done by multiplying by a constant value the weight of
any arc (x,y) ending at a pixel classified as background

1 ifyé¢s
O(w,y) = { K otherwise (19)
where K > 1.

The result of our method (with K = 1.5) for the my-

ocardium segmentation is presented in Fig. 2(f).
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