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Directed connected operators: asymmetric
hierarchies for image filtering and segmentation

Benjamin Perret, Jean Cousty, Olena Tankyevych, Hugues Talbot, Member, IEEE, Nicolas Passat

Abstract —Connected operators provide well-established solutions for
digital image processing, typically in conjunction with hierarchical
schemes. In graph-based frameworks, such operators basically rely on
symmetric adjacency relations between pixels. In this article, we intro-
duce a notion of directed connected operators for hierarchical image
processing, by also considering non-symmetric adjacency relations. The
induced image representation models are no longer partition hierar-
chies (i.e., trees), but directed acyclic graphs that generalize standard
morphological tree structures such as component trees, binary partition
trees or hierarchical watersheds. We describe how to efficiently build
and handle these richer data structures, and we illustrate the versatility >
of the proposed framework in image filtering and image segmentation.

Index Terms —Mathematical morphology, connected operators, hierar-
chical image representation, antiextensive filtering, segmentation.

1 INTRODUCTION @ (b)

RAPHS are a popular framework for image processingig. 1. (a) Neurite image. (b) Directed connected filtering
G and analysis. They allow for the representation of various (a).

adjacency relations (the edges) between pixels (the wesitic

Valuation can appear both on the vertices in order to model

a luminance information, or on the edges as a measureTdfey have been successfully applied in a wide spectrum of
dissimilarity. Following the historical symmetric defiigih of applications (see [10] [11, Ch. 7] for a recent surveys).-Con
adjacency [1], [2], most methods rely on undirected graphgected operators focus on the notion of connected compsnent
Nevertheless, some recent works aimed at extending thése maximal sets of vertices in which a path exists between
beyond the symmetry hypothesis in order to improve the rany two vertices. Their very principle is that the only alkmiv
sults of popular image segmentation algorithms. These svoideration is the deletion of connected components, thus en-
have led to different seeded segmentation algorithms basguiing that they can neither create nor shift contours, hiyt o

on the directed graph framework, and generally show betféatten images. The extension of this approach to grayscale
performances than their symmetric counterpart. Such worikaages (vertex or edge weighted graphs) leads to the definiti
include min-cuts [3], the random-walker [4], and shortemthp of several hierarchical representations: the componesd tr
forests [5]. Following these successful attempts, we pgego [12], the binary partition tree [13], or the tree of shape][1
explore how directed graphs can enrich and improve anottiggnificant effort has been devoted to efficiently construct
family of graph operators: the connected operators. Amieli these hierarchies [12], [15], [16], [17] and to understand
nary version of this work was presented in a recent conferertbe relations that exist between them [18], [19]. A general

paper [6]. scheme to define a connected operator consists of a four step
procedure: (1) construct the hierarchical representaifcihe
1.1 Connected operators image; (2) compute attributes at each node of the represen-

Connected operators [7], [8], [9] are popular image prdogss tation; (3) select relevant nodes according to their aiteb
tools defined in the framework of mathematical morphologyalues; and (4) reconstruct a filtered image or a segmentatio
. ) map and/or extract features from the selected nodes. From an
Benjamin Perret, Jean Cousty, and Hugues Talbot are with EH®EE- licati . . d h beerhiado
Paris and the Université Paris-Est Marne-la-Vallée, LIGNaris, France ?pp |c§1t|ve \_/lewpomt, Conn_eCte operators' ave bee _VB .
({b.perret,j.cousty,h.talbot}@esiee. fr). in various image processing and analysis tasks, including

Olena Tankyevych is with the Université Paris-Est CrétaSl, Paris, France filtering [12] segmentation [20] interactive segmemiat[Zl]
(olena.tankyevych@u-pec.fr). ’ ' ’

Nicolas Passat is with the Université de Reims Champagderfe, [22], retrieval [23], classification [24], or registratioj25].
CReSTIC, Reims, France (nicolas.passat@univ-reims.fr). Applications range from biomedical imaging [26], [27], via
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a—b—cC¢c—d| |a—b c—d| |a2b—ced 1.2 Contributions
T NN N\ - : .
e—f g| |le—f gl leaf g In this article, we introduce the new notion dfrected con-

@ (b) © nected componenrdirected componentr D-component for
brief) which generalizes the notion of connected compoteent
Fig. 2. Differences between undirected and directed directed graphs (Sec. 2). Furthermore, we establish atioijec
graphs (see text). theorem (Th. 3) between the D-components and the strongly
connected components. In particular, this allows us to oaly
well-established tools in graph theory.
We propose the notion oflirected component hierarchy
astronomy [28], [29], remote sensing [30], [31], to documenvhich extends D-components to weighted graphs (Sec. 2).
analysis [32], [33]. This structure is a directed acyclic graph, and thus gelyasal

The design of connected operators faces two major issug! @ iree. But, thanks to the bijection given in Th. 3, we show
(1) do structures of interest appear in the hierarchicat reE;Iat this structure indeed generalizes the standard ctsthec
resentation? and (2) how can one discriminate structurestgfmPonent wees [12], [13]. . .
interest in the hierarchy? The first issue, often associtied In Se_c. 4 we propose an _eff|C|ent algorithm for b_undlng
the linkage/leakage problem, has been investigated throJBese h|_erarch|es. '_I'he algorithm haﬁg'(n_jL m)) time
the definition of second-generation connections [34], ,[3 omplexity, wheren is the numberpfvertlce& is the number
[36], [37], constrained connectivity [38], and hypercoatiens f arcs, and’ is the number of welg_ht values.

[33], [39]. The second issue of selecting relevant nodes og‘Then' we present _several strategies to select releyan‘snode
the hierarchy is twofold: (1) the definition of attributesath ©! @ D-component hierarchy in order to handle the increased
provide a suitable feature space to separate relevant nog@IIplexity of this structure compared to standard compbnen

from the others; and (2) the definition of robust and accurat&es (Sec. 5). More precisely, these strate_gles are (mi;ign
node selection processes. Although classical shape uaéisib ensure the consistency of the node selection process irs term

(area, elongation, various notions of complexity,...) aften of p-components. .
considered, a larger effort has been extended in the definiti Finally, we show the versatility of the proposed framework

of node selection processes, which have evolved from sim %_presenting two applicatior_ls ir_' image filteri_ng and segmen
global thresholding [9], [12], [20] to more complex stratesy ation (Sec. 6). For both applications, we provide the cetepl

like energy-minimization [40], [41], or connected filtegirof process from the construction of the directed graph to the
the nodes in feature spaces ’[42] ’ production of the final result. In particular, we show howopri

_ _ . information can be injected as a directional informationhe
Although the mentioned solutions are effective, they aggraphs and we give examples on how the particular structure

not perfect, and we investigate here how the reformulati¢yt the hierarchy can be used to define new kinds of node
of connected operators in the context of directed graphs Cariputes.

offer improved practical solutions. Consider the toy exiEmp

given in Fig. 2(a), the given graph is connected and thus the D |RECTED CONNECTEDNESS
two possible results of a connected operator are either the

. : . first goal of this article is to extend connected opesgator
empty graph or the graph itself. If we want to achieve a fm%rhe _ . ) .
result, for instance having identified that the “rectangia’the rom undirected to directed graphs (Sec. 2.1), via emplpyin

left is indeed onlyweaklyconnected (perhaps due to noise otnhﬁ. dr:rectgd c(cj)nnec_tegnes(xzarz DE-’c?nne_ctedr:_e $stpara:gg$f,
some topological considerations) to the “triangle” on tight; which we Introduce in Sec. 2.2. Before investigating , .
one possible solution is simply to remove the edgdec): ences between D-connectedness and connectedness (defined i

: . . : the usual frameworks of undirected graphs or connectiofs [4
this corresponds to second generation connections (Hig). 2( ! : . .
However, by doing this, we lose the information about thgh. 2] [34]), we first discuss the deep links that exist betwee

initial proximity of these two structures. In the directecgh D-co“nected_réess dand the n(cj)tlon gf s;rong 2cgnr;e4(f:tedness,
framework, an intermediate solution is to remove an arc [pually considered on irected graphs (Secs. 2.3, 2.4).

only one direction. Then, if we consider the two strongly

connected components, we are able to consider the two p&rs Graphs

as separate while still being related (Fig. 2(c)). MorepveA directed graph(or simply, agraph & is a pair (V, A),
the chosen direction of the remaining arc can convey soméereV is a nonempty finite set, and is composed of pairs
useful information for further processing. A practical ede of elements ofl/, i.e., A is a subset o/ x V. Each element
of this principle is shown in Fig. 1: here the different partsef V' is called avertex a point, or a node (of®) and each
of the neurite are separated based on a vesselness [43] mlement of A is called anarc (of &). A subgraph of® is a
classification and the directed arcs are constructed irr ¢ode graph &, = (V,,.A,) such thatV, is a subset of/, and A,
always go from the least reliable towards the most reliabie a subset ofA.

structures, as identified in the vesselness: from backgroun If & is a graph, its vertex set is denoted By®) and the
to vessels, to blobs. Then a filtering based on two attributesc set by A(®).

that measure the relations (directional information) agtire The transpose of a grapt® is the unique graph with the
structures produces the result shown in Fig. 1(b) (Sec. 6). same vertices a&, and such that for any of its ar¢s, y),
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a d f .h Y5 Y5 ¢ c
¢ Y, Y- ! a—b _>b — b
ll)/ <<e> g/£ L 2 Y4/Y6 a a

@ (b) (@ (b) (c)
Fig. 3. (a) An example of a directed graph (the vertices
and arcs are represented by circles and arrows, respec-
tively) whose D-components are X; = {a,b,¢,d, e}, Xo =
{d,e},Xg = {f},X4 = {g,hJ},X{) = {h,i}, and Xg =
{i} and whose S-components are Y7 = {a,b,c},Ys =
{d7 6}3Y3 = {f}7Y4 = {9}7Y5 = {h}' and Y5 = {Z}
(b) The DAG ©(®) of the S-components of the graph is
depicted in (a).

Fig. 4. Some elementary graphs.

may intersect without being included in one another. Ingdeed
let us consider an additional vertexsee Fig. 4(b)) such that
¢ is a predecessor df but not a predecessor af while ¢

is neither a successor @f nor b. Then, the D-components
DCCg(a) andDCCg(c) both containb but are not included
in each other since is in DCCg (a) but not inDCCg (c) and

¢ is in DCCg(c) but not inDCCg (a). However, similarly to

. . . ... th f conn mponents, if a vertels in a D-
the_ pair (y, ) is an arc of&. We say thf"“‘ﬁ IS symr_ne'Frlcn‘ ::oem;?)?leenot)(??her? ?;eedwchoolepg-sort:bonsz‘nt%f%ﬁsepziris

& is thg same as its transpose. 'I_'h@is;s symmetric if f_or included inX. In other words, the underlying binary relation
any of its arcs(x, y), the pair(y, x) is also an arc oB. Itis o5 o ccessor of” is in general not an equivalence reldign

well }<nown that any symmetric graph can be associated tOis always reflexive and transitive. It can also be observatl th
a unique undirected graph, and conversely.

Let® b h hf in & in general the D-components of a graph and of its transp@se ar
. et® be a graph, at rfom a verte>;'c toa \;]ertheXy (m_ ) not the same. For instance the graphs depicted in Figs. d() a
Is a sequencéxy, .. '_’."W) of vertices of& suc thatro — " (c) are the transpose of each other and the D-components of
xe =y, and for any: in {1,...,¢}, the pair(z;,_1,z;) is an

the first are{c, b}, {a, b}, and{b} whereas the D-components
arc of &. We say thaty is a successor of: (in &) and that efc,b}, {a,b} {0} P

) . . X of the second ar¢b, a, c}, , and{al.
x is a predecessor ofj (in &) if there exists a path from: ¢b,a,ch {c} {a}
to y. The singleton(x) is a (trivial) path and therefore is a
successor and a predecessor of itself. 2.3 Strongly connected components

The notion of a strongly connected component is fundamental
in graph theory [45, pp. 552-557].
) ) A subsetX of the vertex set of a grapl® is strongly
In order to take into account “directed subsets” of verticggnnected (fo®) if any two verticese andy of X are suc-
(i.e., subsets containing some points that play the pdaticucessors of each other, i.e..c DCCe(y) andy € DCC (z).
rqle of “basepoints” or “roots”), we present the notion of & strongly connected componefar S-componeptof & is a
directed connected compone(or D-componert subsetX of vertices of& that is strongly connected and that
Definition 1: Let & be a graph and let be a vertex o®. s maximal for this property, i.e., any subseti6{e) which
The directed connected component of basepairs the set, is glso a proper superset &f is not strongly connected. We
denoted byDCCg (), of all the successors afin &. This set  genote bySCCg the set of all S-components .
DCCg(x) is also called @-component o5, and we denote  This set SCCe of all S-components of a grapks —
by DCCy the set of all the D-components &. contrarily to the seDCCg of all D-components — is a partition
For instance, in the grapl® depicted in Fig. 3(a), the of the vertex set 08, i.e., the union 0BCCy is V(&) and the
verticesg, h and are the three successors @f Thus, the intersection of any two distinct S-componentsédfis empty.
D-componenDCCy (g) is the set{g, h,i}. Observe also that |n fact, the relation “is in the same S-component as” is an
a vertex is a basepoint of a D-component if it is a predecesgQjuivalence relation. Thus, for any vertexof &, there is
of all the vertices in this D-component. For instance, the sg ynique S-component, denoted B¢'Ce (), that contains
{a,b,c,d, e} is a D-component anblis a predecessor of all the ;,  For instance, the S-components of the graph depicted in
vertices in this D-component. Therefore, the §etb, c,d,e}  Fig. 3(a) are{a, b, c}, {d,e}, {f}, {g}, {h} and {i}.
is the D-component of basepoitit Note that this set is also
the D-component of basepoinésand c.
In contrast to connected components, the set of all
components of a graph is not necessarily a partition of its v&siven two verticest andy of a graph® that belong to the
tex set. Indeed a vertex may belong to several D-componergame S-component, any successar & a successor af and
For instance (see Fig. 4(a)), let us consider two verticasd vice versa. Therefore, the D-components of basepairdad
b such thath is a successor af but a is not a successor @f y are the same. Conversely, if the D-components of basepoints
Then, the poinb is in the D-component of basepoimtand in 2 andy are the same, thenis a successor af and vice versa,
the D-component of basepoiht These two D-componentsi.e., z andy are inDCCg (y) and inDCCg (z), respectively.
are distinct sinces belongs to the former one but not toln other wordse andy are in the same S-component. Hence,
the later. However, these components are linked by inalusids-components and D-components are equivalent according to
DCCg(b) € DCCg(a). More generally, some D-componentghe following property:

2.2 Directed connected components

B:4 Links between D- and S-components
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Property 2: Let & be a graph. Two vertices and y of In the next sections, we exploit these links between D-
& are in the same S-component &f if and only if the D- components and S-components to design efficient algorithms
component of basepoint is equal to the D-component offor image processing.
basepointy

3 DIRECTED COMPONENT HIERARCHIES

Connected operators act on an image represented as a functio

This implies that all the basepoints enabling the definitiothrough the connected components of its level sets (Sek. 3.1
of a given D-component form a unique S-component. Eadthese connected components are organized — via the inclusio
D-component is then associated to a unique S-componeawiationship — in a tree structure, known as the componeat tr
In other words, there is a bijection between the set of 12]. In this section, we extend this structure from undieelc
components of¢> to the set of S-components @. This graphs to (directed) graphs. To this end, we present themmti
bijection can be expressed based on fhieected Acyclic of strong component treSec. 3.2) and oflirected component
Graph (DAG) of S-components. hierarchy (Sec. 3.3) that encode the inclusion relations of

We associate to any graph the directed graphi©(®), the S-components and D-components of all level sets. The
whose vertices are the S-components®ofand that is such main result of this section states that the directed commutone
that the pair(X,Y") of S-components o is an arc of©(®) hierarchy can be represented as an enriched version of the
whenever there exists an afe,y) of & such thatz andy strong component tree, that will be further used to define
are in the S-component¥ andY’, respectively. This graph D-connected operators and efficient algorithms to compute
has been well studied in graph theory. In particular, it i#hem. Itis also observed that the directed component luleyar
acyclic, i.e., for any two distinct D-components andY’, the generalizes the tree structures involved in connectedatqrer
componentX cannot be both a successor and a predecesdefinition (Sec. 3.4).
of Y in ©(&). Therefore, this grap®(®) is called theDAG
of the S-components @. For instance, the DAG of the S-3 1 siack of graphs

cgmponents of the graph depicted in Fig. 3(a) is depicted i the framework of undirected graphs, connected operators

Fig. 3(b). For any S-componeii of a graph®, we denote by .

Be (X) the union of the successors &f in the graphd (&) and_gomponent trees have been propo_sed for the two possible
® families of weights: those on the vertices and those on the

DCCe¢(z) = DCCg(y) <= SCCs(x) = SCCs(y) (1)

Be(X) = UDCCD(®)(X) (2) €dges. In the first case, a level set is a subset of vertices. In
the second case, a level set is made of edges, and one censider
Theorem 3:Let & be a graph. the subgraphs induced by these edges to obtain connected

« The mapBs is a bijection fromSCCy to DCCg Whose components. In both cases, the connected components are
inverseBgl (i.e., VX € SCCe Bgl(B@(X)) — X) is defined within a series of nested subgraphs induced by the

such that for any D-componet of & we have level sets. In order to handle these two cases in a unified and
more general setting, one may consider — instead of weights
Bg'(X)={z € V(®)| DCCs(z) = X} (3) on either edges or vertices — a series of nested subgraphs.
o ] Following this approach, we start this section by presentin
« The D-component of any basepointis th_e union of the he notion of astack of graphs
successors of the S-componéi®Ce () in D (&) Definition 4: A stack (of graphs)s a finite sequencé =
_ (&, ..., &,) of graphs such that, for anyin {1,...,/¢}, the
DCCe(x) = B (SCCo () “) graph®,; is )a subgraph o3, ;. For anyi in }0, e ,E]i, we
Th. 3 is illustrated in Diag. (5). In particular, for a givensay that®; is a level set ofS (at altituded). A S- (resp. D-)
graph @, it can be seen that if one knows the S-componef@mponent ofS is a pair (i, X) such thatX is a S- (resp.
X containing a vertex: of &, then the D-component” of D-) component of the level set & at altitudei. The set of
basepointz can be recovered as the direct imageX¥oby the all S- (resp. D-) components of the stackis denoted by
bijection B, which can be obtained from the DA®(&). SCCs (resp.DCCs). The stackS is connectedvheneverd,
Conversely, if the directed componetit of basepointz is IS strongly connected.
known, then one can recover the S-component containing Fig. 5 first row shows a connected stack composed of
as the inverse image df by B. This inverse imag#, ' (Y) five graphs(&o,...,®,). In the following, without loss of
of the D-component’ is called theroot of Y (for &). generality, we assume that the weights of the graphs are
positive integers with a maximal value
When the domain of an image is considered as the vertex
SCCg DCCg set of a grapi®, i.e., when the vertices correspond to pixels,
the image itself directly leads to a stack of graphs: eacél lev
B

v set &; (resp.®,_;) is the subgraph induced by the pixels

By whose value is greater (resp. lower) thafand whose arc set
contains any arc o# that links two pixels of value greater
DCCyo(s) U (resp. lower) than). In this case, the obtained stack is said to

C (5) beupper-(resp.lower-)induced by the image
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For image segmentation tasks, one may also consider sima subset of the D-componekit if and only if the (i — 1)-
ilarity measures between pixels that are linked by an anc (fparent of the root ofX is a successor of the root &f in the
instance, derived from a gradient. Examples of such measuBAG of S-components o
for undirected graphs can be found in [46], [47], [48], [49], 71 .
[50]). This measure is a function that weights the arcs of thg €Y <= PARi_1(Bg, (X)) € DCCo(s,_,)(Bs,_, (Y))
graph &. Such an arc-weighted graph also leads to a stack ) (6)
of graphs: each level sab; (resp.®,_;) is the subgraph More generally, a D-componedf of &, is a subset of a D-
induced by the arcs of weight greater (resp. lower) thancomponent” of &; (with 7 > j) if and only if the intersection
(and whose vertex set contains any pixelébfinked by one between the a_ncestors of the rootXfand the successors of
of these arcs). Such a stack is said toupper-(resp.lower- the root of Y in ©(&;) is nonempty. In other words, the
Jinduced by the similarity measurBor segmentation methodsSet of DAGs of the S-components of all level sets, paired to
based on hierarchies of partitions [13], [38], one may want the parent relation gllows us to test the inclusion of any D-
ensure that all levels in the graph stack remain a partition e°MPonents belonging to the stask _
the domain. This can ease further segmentation methods t&¢€finition 6: The D-component hierarchy af is the graph
produce partitions as shown in [18]. A stack obtained by thy¢hose nodes are the S-componentsSo&nd such that there

process is said to beompleted is an arc from a S-componef,Y) of S to a S-component
Important notation. In the remaining part of this section, (i, X) of S if
S ={6y,...,8,} denotes a connected stack. e (4,Y) is the parent ofi, X); or

o j =4 and(Y,X) is an arc of the DAGD(&;) of S-
components of5;.
For instance, the D-components of the stack in Fig. 5 are
depicted in the second row of Fig. 5. The associated D-
component hierarchy is depicted in Fig. 6(c).

3.2 Strong component tree

Let X be a S-component ab;, for i in {1,...,¢}. Since®;
is a subgraph o®,_1, X is strongly connected i®;_;. As
the S-components of a graph partition its vertex set, the

componentX of &, is included in a unique S-component of As a corollary of Th. 5, there is an isomorphism between
®,_,. This unique/S—component @,_, that includesX is the order induced by the D-component hierarchy of the stack

denoted byPAR,_; (X) and is called théi — 1)-parent of X S and the _partigl (_erer_ on the D—component;&fsuch that
(in S). We also say that the S-componént 1, PAR,_; (X)) (»X) E (j,Y) if ¢ < jandX C Y. In particular, the S-
of S is the parentof the S-componenti, X). The set of all component;, Y is the parent ofi, X) if and only if By, (Y')
S-components of equipped with the parent relation is a tre&S the minimal element (for the_ inclusion relation) among
called thestrong componentor S-componeittree of S. all the D-components o®; that include the D-component
Following the usual terminology on trees, given two gBe, (X). A direct consequence of this isomorphism is that the

components(s, X) and (j,Y) of the stackS, we say that D-component hierarchy af is a DAG. In particular, it can be
(j,Y) is anancestor of(i, X) and that(i, X) is a descen- seen that two S-components at the same level set cannot be

dant of (j,Y) if there exists a sequend€y, ...,C,) of S- linked by a cycle since the DAG of S-components of a graph

components o such thatCy = (i, X), C,, = (j,Y), andCy, is acyclic. It can also be seen that two S-components of two
is the parent ofC,_, for any k c It o n}. For instance distinct level sets cannot be linked by a cycle either since a

Fig. 6(a) shows the S-component tree of the stack of Fig. #-component of a given level set cannot be both an ancestor
and a descendant of a S-component of another level set.

3.3 Directed component hierarchy

Since distinct D-components of the same graph can be linka
by inclusion (see Sec. 2.2), it can be seen that for a givéhe framework presented in this section for handling the
iin {1,...,¢}, a D-component of$; can be included in components of a stack of graphs generalizes the handling of
several D-components af; ;. Therefore, contrarily to the connected components via component trees, in both edge- and
case of S-components, the inclusion relations between ertex-weighted undirected graphs.
components of successive level sets cannot be directly usethdeed, it can be seen that if a graph is symmetric, then a set
for organizing the D-components in a tree structure. Atyual of vertices is a D-component if and only if it is a connected
as we will see later in this section, the D-components can bemponent in the associated undirected graph. Furthermore
arranged as a DAG that is sufficient to recover the inclusiguch a set is a D-component if and only if it is a S-component.
relationship between any two D-component. Furthermore, dhlence, in the case of a stack whose level sets are all synemetri
to the bijection between S-components and D-componergs (geaphs, the D-component hierarchy and the S-component tree
Th. 3), this DAG corresponds to an enriched version of the &re indeed the same. Moreover, if a stack is upper (resprjowe
component tree. This structure leads to efficient methdds, tinduced by an image, then its D-component hierarchy is also
will be described in Secs. 4, 5, for designing D-connectdtle max- (resp. min-) tree of that image. If a stack is upper
operators. The next theorem is the key result for estabijshi(resp. lower) induced by an arc similarity measure, then its
the properties of this fundamental DAG. D-component hierarchy is the max- (resp. min-) tree of the
Theorem 5:Let X andY be two D-components ab; and associated undirected edge-weighted graph. In this lad, ca
&,;_1, respectively, withi in {1,...,¢}. The D-componeni if the stack is furthermore completed, then the D-component

él Generalization of tree structures
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—i—a

e

f—E—

() &4

Fig. 5. Astack § = (&g, ®1, 65, &3, B,4). First row: Each color represents a S-component. Second row: Each color
represents a D-component (vertices with more than one color belong to all the associated D-components).

?oo\o Y009

Aedl  evoess

(a) S-component tree. (b) DAGs of S-components. (c) D-component hierarchy.

Fig. 6. (a) The S-component tree associated to the stack S of Fig. 5’s first row. (b) The DAGs shown from top to bottom
row are the DAGs of S-components of the graphs &, ..., ®, of Fig. 5's first row. (c) The D-component hierarchy of
the stack S of Fig. 5’s second row. This hierarchy is the S-component tree (a) enriched by the relation provided by the
DAGs of S-components of all level sets of S (b). The red arrows correspond to the extra links that can also be deduced
by transitivity.

tree is exactly the partition tree [18] (also known as theerticesy of V adjacent tox (i.e., such thaiz,y) is in A).

quasi flat zones hierarchy [38], [51], [52] ar-tree [53]) of This representation allows us to access to the list of \estic

the image. As shown in [18], completed stacks also alloadjacent to a given vertex in constant time.

us to retrieve the binary partition trees [13] and hierasahi  The overall construction procedure is described in Alg. 1.

minimum spanning forests or watersheds [54] [11, Ch. 9].[55}s results consist of: a labeling of each level of the stack
into S-componentsi{abel;), the adjacency lists of the DAGs

4 BUILDING D-COMPONENT HIERARCHIES of S-components at each level of the stadk;), and the

. . . . arent relation between the S-components of successigets lev
In this section, we describe how to build the D-component HE P

erarchy of a stack of grapl&= {&,,...,6,} (Sec. 4.1), and 5t the stack PAR,).

. X : For each leveli of the stack, the algorithm consists of
we discuss the computational cost of this process (Sec. 4'%I)|ree steps: (1) label the vertices®f into S-components: (2)

construct the DAG of S-components &, i.e., the adjacency

4.1 Algorithm lists representing the DAG; and (3) define the parent reiatio
For the sake of concision, we assume here that the stdxtween these S-components and those at altituelé.
S is constructed from a vertex-weighted gragh= (V, .A) Step (1) is carried out by one of the Tarjan [56] or Kosaraju-

(see Sec. 3.1). We also assume that graphs are represente8Hayir [57] algorithms, which both produce a labeling in
adjacency lists: for each vertex of V, we store the list of S-components of the vertices of a directed graph in linear
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O(|V] + |A|) time. We assume that the labels are integel®en reached from (line 13). The two outer loops visit each
and that the labels at the different levels are all distinet,( vertex once, and for each vertex, its adjacency list is se@nn
Label; N Label; = for i # j); so they can be used as arrayThe algorithm can thus be run in line@(|V'| + |A|) time.

indices. For the sake of readability, we consider that tlsalte

Step (3) is performed by Alg. 3. The algorithm produces an

Label; is at the same time the set of labels®f®;), denoted array such that, for every labelof the S-component labeling

by Label;, and the map that associates to each verteof

V(8,) its label, denoted byLabel; [x].

Algorithm 1: D-component hierarchy construction.

a A W N P

Input: S = {®o, ..., 8.}, a stack of graphs.

Output: Label;, S-component labeling for eaghn {0,...,¢}.
Output: Suc;, array of adjacency lists for eachin {0,...,¢}.

Output: PAR;, parent relation for eachin {0, ..., ¢}.
for ¢ from £ to 0 do
Label; <+ S-component labeling(®;)
Suc; < adjacency lists(&;, Label;)
if ¢ # ¢ then
L PARiJrl < parent relation(QSiH, Labeli+1, Labeli)

Algorithm 2: Adjacency lists construction.

1

A W N

o »

10
11
12
13

Input: &;, a graph.
Input: Label;, S-component labeling a,.
Output: Suc;, array of adjacency lists ab;.
foreach v € Label; do

Suci[v] + 0

SCCv] + 0

Flag[v] + undefined

foreach z € V(&;) do
| SCC[Label;[x]] + SCC[Label;[z]] U {x}

foreach v € Label; do
foreach z € SCC|[v] do
foreach (z,y) € A(®;) do
v’ < Label;[y]
if v # v and Flag[v'] # v then
Suc;[v] < Suc;[v] U {Label;[y]}
L Flagly] < v

Algorithm 3: Parent relation definition.

1
2

Input: &,44, a directed graph.

Input: Label;+1, a labeling of the S-components &f; ;.
Input: Label;, a labeling of the S-components ;.
Output: PAR,;+1, parent relation orLabel;+1 and Label;.
foreach z € V(®,41) do

| PAR[Label;1[z]] < Label;[x]

S-component of;. For any scanned S-compone$i€ C/[v]
of label v, the adjacent vertices of all the verticesS@'C/v]

at leveli+1, the element of index in the array is the label of
the S-component in the levélthat includes the S-component
v. The algorithm loops through each vertexn V(&,,) of

the previous level + 1, and finds the label&.abel; 1 [x] and
Label;[z] of its associated S-components at levels 1 and

i. It then defines the labdlabel;[z] as the parent of the label
Label;1+1]x]. In order to achieve a linea®(|V|) complexity,

the labels have to be determined in constant time which is
done by storing them for each vertex during the S-component
labeling.

4.2 Complexity analysis

The time complexity of Alg. 1 i€ (¢.(]V|+|.A])). In particular
the algorithm is efficient if¢ is small, for instance in the
case of8-bit images. As there are at mogt| levels (each
vertex can have a different weight), this complexity is atiu
O(|VI(JV]+]Al])). Moreover, if we do not restrict ourselves to
vertex-weighted graphs, there are at m@3t+-|.A| levels (each
vertex and arc is added one after the other, in the worst case)
which leads to a complexity aP((|V'|+].4|)?). However, one
may notice that we generally have< |V| + | A

The algorithm can be improved by observing that a S-
component at level is strongly connected at level — 1.
Based on this fact, we can use a more complex algorithm
to build the subgraph at levél Instead of considering the
graph induced by the vertices of weights higher thanve
can add to the DAG of S-components at level 1, the
vertices and the arcs that appear at leverhis requires the
use of a union-find structure to dynamically manage the S-
components. Indeed, it generates an additional cost lgaddin
a o(a(|V]).(JV| + |A])?) worst case complexity, where is
the — extremely slowly growing — inverse of the Ackermann
function. Practically, it has been experimentally obsdrtleat
the improved algorithm is about six times faster than thécbas
one.

5 NODE SELECTION IN D-COMPONENT HIER-
ARCHIES

Similarly to connected operators, D-connected operatons ¢

Step (2) is performed by Alg. 2. It produces the adjacengjst of processing a hierarchical data structure, namedy th
list of each vertex of the DAG of the S-components of the lev&l-component hierarchy. This processing requires to saect
set of & at altitudei. To this end, it successively scans eactiscard nodes according to criteria that are specificalfindd

according to the considered application (Sec. 5.1). Threxcted
nodes can then be used, e.g., to obtain a segmentation or

are considered. If one of these adjacent vertices belongstdofilter an image. Some applications will be described in
another S-componerfiCC|[v’] of label v’ (i.e., if v’ # v, line  Sec. 6. Since D-component hierarchies are not tree stasgtur

11), and if SCC[v’] has not yet been reached frafftC'C|[v]

D-connected operators are more difficult to develop than

(i.e., if Flag[v'] # v, line 11), then the labed’ is added to classically connected ones (Sec. 5.2). In particular, thgyire
the adjacency list ob (line 12), andv’ is flagged as having specific regularization strategies (Sec. 5.3).
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5.1 Node selection criteria |[A—B—C| |[A—B—C| |[A—B—C|

A node selection criteriow is a mapping that associates a (a) H; (b) H; (c) H;
Boolean value to each node/component of a hierarchical data ‘

structure. Given a component, we say that the criterion B_’C‘ ‘A_’B ‘ ‘A C‘
holds true(resp.falsg for C, or thatC' satisfieqresp.violateg (d) o1 (e) o2 () o3
o if o(C) equals true (resp. false).
A classical example of a criterion, is one that discards ‘A ‘ ‘ C‘ ‘ B ‘
small nodes, often associated to noise, which is defined by (9) 71 (h) 53 (i) o3
oA(C) = { true if AregC’) > ¢ (7y Fig. 7. First row: a graph (DAG) H;, composed of three
false otherwise nodes that are selected (in green) or discarded (in red)

where Area is a measure of the area of the component, Y respect to some criterion o; (see Sec. 5.2). Each
example the number of vertices ifi, while ¢ is the area NOde corresponds to a S-component (4, B and C, re-
threshold value. spectively), and models a D-component (AUBUC, BUC
Many other criteria have been proposed in the literatur@d C, respectively). Second row: subgraphs induced by
Most are obtained by replacing Area by some other attribfs® nodes that satisfy the criterion o; (represented by
in Eq. (7). Proposed attributes focus on different aspégs: green_mrcles). Thl_rd row: subgraphs induced by the nodes
the shape of the component, e.g., the geometrical momentd/t Violate the criterion o; (represented by red squares).
the compactness; (2) the gray level content of the compepnent
e.g., the volume or the entropy; (3) the topology of the
hierarchy, e.g., the number of children of the component;
(4) combination of the previous types of attributes, elge t
dynamic or the Mumford-Shah energy. It is also possible & B+ and holds false fo€’; ando holds true ford, €, and
replace a constant threshold by a more complex processhmds falsg fo_rB. T_he second line ShOWS the graphs associated
the definition of the criterion, e.g., criteria based on gger (© €ach criterion, i.e., the subgraphs induced by the ndu#s t

minimization (Viterbi in [12]) or on shape-space filterirgg]. satisfy the criterion. The_ thi_rd Iipe shows the graphs iredlic
by the negation of the criterion, i.e., the graphs inducethiey

nodes that violate the criterion. For the first criteriongcén

5.2 The case of D-connected operators be seen that the D-components of the graph induced, kare
Thinking in terms of D-connected operators, one may desiaso D-components aoff;, but the D-component of the graph
to mark each D-component as selected or discarded. Howeweluced byay is not a D-component off;. The converse
— in contrast to the case of connected operators — we may fatliation appears for the second criterion: the D-compbnen
into situations such as the one previously depicted in Fig),4 of the graph induced by; is also a D-component off;,
where two D-components overlap. This creates an ambigudug the D-components of the graph induced dy are not.
situation whenever only one of them is selected, while thénally, with the third criterion, neither the D-componeruf
other is discarded. It is not obvious to determine how tilne graphs induced bys nor by a3 are D-components off;.
proceed with the S-components that correspond to overigppi Thus, we identify two desirable, yet generally exclusive,
D-components. properties. Given a criterioa we say that:

A first partial answer to this question consists of consid- , ¢ is selectiveif the D-components of the graph induced
ering the criterion on the S-components instead of the D- py s on H; are also D-components df;;
components. On the one hand, this choice better suits tiae dat, ¢ is discardingif the D-components of the graph induced
structure constructed in Sec. 4. On the other hand, due to the by 7 on H; are also D-components df;.

bijection between D-components and S-components (Th. 8),thermore, we say that a D-componéhof H; is selected
this strategy is information lossless. (resp.discarded by ¢ if C is also a D-component of the graph
In the following, we consider a stack = {&, ..., &} induced byo (resp.7). Thus,C is selected (resp. discarded) if

of graphs. We also consider, for anyn {0,...,(}, theDAG  ne criteriono holds true (resp. false) for every S-component
at altitude i denoted byH;, defined as the subgraph of th&ntained inC. Nevertheless, we have seen in Fig. 7 that

D-component hierarchy of' induced by the S-componentsiy general, a criterions is neither selective nor discarding.
of S at altitudes (i.e., induced by the set of componentgonsequently, we propose several regularization stestebat

{(i,©) € SCCs}). Observe that there is an arcHy fromthe 40, s to propose a selective or a discarding criteriomfro
componenii, C) to the componenti, Cz) whenever there is any criteriono.

an arc fromC to Cs in the dag9 (®;) of S-components ab;.

Therefore, in the following and when no confusion may occur, o _

if C' = (i,C") is an S-component af, we use the symbal’, -3 Regularization strategies

instead ofC”, for the associated strong componétitof &;. Given a criteriono, we propose four different regularized
For simplicity — but without loss of generality — we considecriteria of o. Two of them are selective, namedgl-Min,, and

the example of the grapH;, depicted in the first row of Fig. 7, Sel-Max,. The other two are discarding, namdBjis-Min,

such thatV' (H;) is {A, B,C} and A(H;) is {(4, B), (B,C)}. andDis-Max,. Fig. 8(a) shows a grapf;, while Fig. 8(b)

ch column of Fig. 7 corresponds to a different criterien:
holds true forB, C, and holds false fod; o holds true for
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A A
B>0—>D—>E B E
F—G H— 1 F—G
(a) H; (b) o
A\
E B/C—>D—>E

F—G F—G

(c) Sel-Min, (d) Dis-Max,
A A

TC—D—E

F—G F—G

(e) Sel-Max (f) Dis-Min,

Fig. 8. Node selection (regularization) strategies. (a) The
DAG H; of the S-components {A,B,C,D,E,F,G,H,I}.
We assume that the components represented as green
circles (resp. red squares) satisfy (resp. violate) the given
criterion o. (b—f) The graphs induced by the criterion o,
Sel-Min,, Dis-Max,, Sel-Max,, and Dis-Min,.

shows the result of a non-selective and non-discardingrait
o on H;. Then, we have the following regularized criteria:

we have:
V  oec)= /e (12
CeDCCy, (C) C'eDCC_y, (C)
A oc)= A oC) (W3
CeDCCx, (C') C’eDCC_g, (C)

Remark 8:The simplest criteria — that include in particular
the criteriono 4 — are those that aricreasing We say that
a criteriono is increasing if, for any two S-components
and C’ such that the D-component rooted @ is included
in the D-component rooted 6", o(C) = true implies that
o(C") = true. So, given an increasing criterienand a S-
component’, if o holds true forC, we immediately know that
all the predecessors 6f also satisfyo. Conversely, ifo holds
false forC, we immediately know that all the successorg’of
violate o, or, in other words, all the S-components contained
in the D-component of roof’ violate the criterion. Thus, any
increasing criteriorr is discarding. We then have equals to
Dis-Min, and toDis-Max,-.

The previous discussions focused on node selection for a
single level of the hierarchy. Nevertheless, a similar leimgje
exists in order to ensure result consistency between the dif
ferent levels of the hierarchy, i.e., in order to avoid “lgile
between two or more levels.

The previously defined regularization rules can also be used
on the S-component tree, by considering the ancestors. (resp
descendants) instead of the the predecessors (resp. sus)es

« Sel-Min, selects the D-components such that every conhese new — but similar — hierarchical criteria are denoted

tained S-component satisfies the criteriorfFig. 8(c)).

Sel-Max-H, Sel-Min-H, Dis-Max-H, and Dis-Min-H:

« Dis-Max, discards the D-components such that ev- ¢ Sel-Max-H, holds true for all the descendants of a node

ery contained S-component violates the criterien
(Fig. 8(d)).

o Sel-Max, selects the D-components whose root S-

component satisfies the criterien(Fig. 8(e)).

o Dis-Min, discards the D-components whose root S-

component violates the criterian (Fig. 8(f)).

Thus, for any level of the hierarchy and for any component

C of the DAG H; at altitudei, we have

Sel-Min, (C) = A o(C") (8)
C'eDCCx, (C)

Dis-Max, (C) = \/ @) (9)
C’eDCCx, (C)

Sel-Max, (C) = \ a(C) (10)
CEeDCCx, (C)

Dis-Min, (C) = N\ o@) (1)
CeDCCxy, (C")

where A\ and\/ are the Boolean “and” and “or” operators.

that satisfiesr.

o Sel-Min-H, holds false for all the ancestors of a node
that violateso.

o Dis-Min-H, holds false for the descendants of a node
that violateso.

o Dis-Max-H, holds true for all the ancestors of a node
that satisfiesr.

One may notice that th®is-Min-H, (resp. Dis-Max-H,)
strategy is indeed the analogue of the usual min (resp. max)
filtering rules of the classical component trees [12].

Remark 9: The definition of an increasing criterion is con-
sistent with the parent relation. In other words, given a
criterion ¢ and two S-component§’ and C’ such thatC’
is a descendant &f” (i.e.,C’ C C), the D-component rooted
in C" is included in the D-component rooted @y and thusr
is increasing ifo(C”) = true implieso(C) = true (which is
the usual definition of an increasing criterion for the dieals
component tree). In this context, for an increasing cioteti,
all the proposed regularization strategiesooyield the same
result ass due to the tree structure of the S-components at the

Property 7: Leto be a criterion on the D-component hierardifferent levels (by opposition to the DAG of the S-compaisen

chy of the stackS = {&,, ..

as the regularized criteriobis-Max, (resp.Sel-Min,) with
respect to the transpose stael§ = {—®,,..., -6}, where

., ®,}. The regularized criterion gt g single level).
Sel-Max, (resp.Dis-Min,) with respect toS is the same

6 ILLUSTRATIONS

—8, is the transpose of the grah. More precisely, for any The goal of this section is to illustrate the versatility of

DAG H; at altitude: of S and for any component' of H;,

the proposed framework to solve practical image processing
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problems. To this end, two applications are presented. \& fir
show that the proposed framework can be used to design a
filtering procedure adapted to the processing of neuritgésa
(Sec. 6.1). Then, we propose a marker-based segmentation pr
cedure that uses a D-component hierarchy to take into atcoun
a preliminary classification of the image pixels. Resultshis
procedure are shown on a cardiac image (Sec. 6.2).

6.1 Image filtering

The D-component hierarchy can be used to perform image
filtering, i.e., to obtain a new image based on the node
selection procedure (see Sec. 5.1). This requires recutisiy

the image from the D-component hierarchy. (a) Classification. (b) D-component filtewr .
Given a D-component hierarchyf of a stack S =
(&,...,®;) and a criterions on S, the reconstruction’ .- J o

of H for o is a function that associates to each verterf 8 R
&, the altitude of the smallest node &f that holds true for i
o and that contains. Formally, for allv in &g, we have

If(v) =max{i € [0,/] | L
(i,C) € V(H), veC, o((i,C)) =truet  (14) | A

The most natural way to construct image filters is thus to . ) " ’
obtain a stack from the original image considered as a vertex A .
weighted graph. In this case, the altitudes in the hierarchy .
correspond to gray levels. Also note that the reconstractio N .
process (Eqg. (14)) does not take account of D-components, e T
and it is thus important to use a regularized criterion (SeR). :
in order to keep or remove D-components during the filtering

process. One image filtering strategy using the D-componeny. 9. D-component filter on a neurite image. (a) A clas-

(c) Added. (d) Removed.

hierarchy is illustrated in neurite image filtering. sification of Fig. 1(a) into neurite “tubes” (gray), “blobs”
(black), and “background” (white) used to generate the
6.1.1 Neurite filtering directed adjacency. (b) Results of the filtering criterion o .

In this example, we consider a sample image of a neurécr? What has been added |n_(b) compared to (). (d) What
as been removed from (a) in (b).

grown in vitro (Fig. 1(a)), with associated neurites (i.is,
axon and dendrites). The objective is to derive measures of

neurite tree compleglty, which are useful in various tolacry 6.1.2 Filtering criteria
assays, called neurite outgrowth assays [58]. Whereasteguri
do form a tree, apparent overlap in vitro complexify the latyo We propose an original criteriarn, which relies exclusively on
The challenges of such images are low contrast of neurite Y€ specific structure of the D-component hierarchy, coegpar
background elements unrelated to neurite structures als vi@lthe classical component tree. The criterion aims to hoiel t

as noise, making it complex to segment based only on gy neurite tubes using the following two heuristics: (1)uaé
intensity criterion. must be connected at least to two other structures; and (2) a

In our application, we rely on a vesselness-like local abjefube is connected at its extremities: t.he length of the viader
caracterization [43], which enables us to classify regions between a tube and the structures it is connected to should be
tubes, blobs and background (Fig. 9(a)). This allows us gnall- _
construct an asymmetric adjacency relation where tubebean Formally, for any leveli of the h!erarchy and for.any
linked to blobs but not the other way around. However, each efmponentC’ of the DAG H; at altitude s, the criterion
the three classes is linked to its own class, while backgtosin o1 Telies on two attributes: the number of adjacent nodes
linked to all classes. Then, we take into account both iritensNAdi(C') of €' and the number of arcs NQut) going out
and geometrical classification in order to filter the imagg. B°f C' into an adjacent node. For example, in Fig. 3(a), the S-
imposing asymmetric blob-to-vessel connection, we explgiomponenta,b, ¢} has one adjacent S-compongnt e}, but
the fact that the tube classification is under-segmented dhfas two arcs going out of itc, d) and (¢, e).
we seek to complete the missing information by searching the NAd(C) = |{C" € V(H)) | (C,C") € A(H))}] (15)

connections from the blob and the background classes with , ,
this more robust tube class. NOut(C) = [{(c,c') € A(&;) | c€ O, ¢ C}|  (16)
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Then, the criterionr; is defined by

() = {true if NAGI(C) > 2 and NOU(C) <20,
false otherwise

One can note that the second condition N@Qt < 20 was

adjusted empirically. Nevertheless, it roughly corregfsoto

a frontier of6 pixels with 8-neighbourhood (3 arcs going out L _"l-‘- ‘K_._

of each pixel on the frontier). More complex measures can be

proposed in order to obtain a scale invariance property.

(a) Original

6.1.3 Result

The filtered imagefg of Fig. 1(a) according tar; is repre-
sented in Fig. 9(b). It can be seen that the reconstructad-str
tures are mostly thin and elongated as expected. Nevesthele
we still miss a few neurite tubes: this problem can be solved
by regularizing the criteriom; (Sec. 5.3). Indeed, the chosen
adjacency allows us to say with confidence that whenever the
criterion holds true for a node, then its successors (whah ¢
only be classified as blobs or tubes by the vesselness) are als
part of the neurite. Thus, we want to select the D-components
whose root S-component is selecteddgywhich correspond to

the regularized criterionts given bySel-Max,, . Furthermore,

in order to fully reconstruct the brightness of the selected
S-components, we can perform a hierarchical regularizatio
setting the final criteriorss to Sel-Max-H,,. The filtered
imagelg of the image Fig. 1(a) according &g is represented

in Fig. 1(b). Moreover, Fig. 9(c) shows the non null pixels of
I (Fig. 9(b)) that were classified as background with the (€) So: Over-segmentation  (f) Directed segmentation
vesselness (F|g. 9(a)), i.e., the false negatives. We caerod Fig. 10. lllustration of a segmentation procedure based
that the selection process was able to recover severalt@euri ™., D-component hierarchy. In (b.c.e), the consid-
tubes that were classified as background. Conversely, (Y. 9

shows the null pixels oI;,’{ (Fig. 9(b)) that were not classifiedered sets are superimposed in red to the original image

) . . hereas in (d,f), the internal border of the segmentation
as background with the vesselness (Fig. 9(a)), i.e., thee farclasults are superimposed in red to the original image.

positives. We can see that isolated structures were cbyrect
identified as non-neurite parts.

6.2 Marker based segmentation weight of the symmetric ar¢y, z) from y to z. The setting

. . . f th igh ill i h ipti f
In this section, we illustrate the use of the proposed fraomew of the weight mapw will be given after the description o

: ) . he segmentation procedure and a property of its result that
in a marker-based image segmentation procedure. To tglﬁtded us for defining the map.

end, we consider the magnetic resonance image of the héart ) )
shown in Fig. 10(a). From this image, we aim at segmenting GVen the arc-weighted grapké, w) and two sets of pixels,
the left ventricular myocardium (see the segmented reault §enoted byO and B, which correspond to the marker of the
Fig. 10(f)) from the two markers of the myocardium and opPiect (myocardium, see Fig. 10(b)) and of the background
the background that are shown in red in Figs. 10(b,c). Fer tHf€€ Fig- 10(c)), respectively, our method consists of tepss

illustration, the markers were manually overlaid on thedgma
However, in a clinical context, these markers may be obthine graph (&, w) (or more precisely of the completed stack
via an automated procedure (see, €.g., [59]). , lower induced by the similarity measute see Sec. 3.1);
As is classically done with graph based segmentation meth—) ggject from this hierarchy all D-components rooted in
ods, we con5|der_ an arc w_e|g_htt_ad gra(m w) such that the a pixel marked with the label object (i.e., a vertex that
arc weights functiono is a dissimilarity measure based on the belongs ta0) and that does not contain any pixel marked

gradient magnitude of the image. The vertex setbofs the as background (i.e., any vertex that belongs3jo
domain of the image to be processed (i.e., a rectangulaesubs '

of Z?) and the arc set o® is given by the 4-adjacency rela-The resulting segmentation, denoted 8y_. 5, is the union
tion: the pair(z,y) is an arc of® if |x; —y1|+|z2 —y2| =1, of the selected D-components. More formally, the segmenta-
wherex = (z1,22) andy = (y1,y2). The graph consideredtion is made of the components selected, by the regulariza-
in our illustration is symmetric but the weight of an dre y) tion Sel-Max,,, of a simple criterioro, defined for any level
from a pixel z to a pixel y is not necessarily equal to the: of the hierarchy and for any componefitof the DAG H;

1) build the D-component hierarchy of the weighted
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at altitude: by and therefore, by Eqg. (21), the vertgxdoes not belong to

the segmented objeco_, 5. On the other hand, when the
74(C) = true <= CNO # 0 and DCCx, (C)NB =0 (18) \yeight of every arc starting at is maximal (i.e., in the cases

Step 1 is performed by the algorithm of Sec. 4, whereas Stdgere the connection value from the object marker is not
2 is performed by recursive traversals of the hierarchy, ~ also maximal), the point generally belongs to the segmented
The segmentation result can be characterized owing td®€ctSo—, 5. These observations allow us to design a strategy
directed version of a measure widely used for segmentatishtake into account some prior information in the arcs wisigh
purposes in undirected weighted graphs, namely the cdp-order to ease the connect|_on of a given point e!ther to the
nection value [60], [61] (also called degree of conneqtivitbaCkgrour!d marker or to. object marker. Indegd, if we have
[62] or fuzzy connectedness [46] up to an inversionugf 900d confidence that a pixel belongs to the object (but not
If 7 = (20, ..., is a path in®, theconnection valu&’, () Nigh enough to put it in the object marker), we can increase
of 7 is the maximum weight of the arcs af the weights of the arcs going out framin order to harden its
. o connection to the background. Conversely, if we are confiden
T (m) = { max{w(z;, i) [ i € [L, ]} if = non-trivial  that a pixelz belongs to the background, we have to increase
0 otherwise the weights of the arcs ending in

, ) (19) Following this strategy, we set the teri(x, y) in Eq. (22)
The (directed) connection valu&,, (z,y) from a vertexe 0f & 5504 on 3 first classification of the image pixels that pro-

to a vertexy is then defined as the minimum of the connectiog,ces 4 ot of false positives but tends to minimize the false
values of the paths from to y negatives. In other words, this classification tends to pred
Y. (z,y) = min{Y,(r) | 7 is a path fromz to y} (20) @ superset, dgnoted _bﬁo, qf the (_axpected segm.entation
result. In our illustration,S, is obtained by excluding the
Hence, by the very definition of a D-component hierarchy, éxtremal intensity values, which corresponds to blood atd f
can be shown that the segmentation reslyt, 5 is the set for the brightest pixels and to lungs for the darkest ones(se
of all vertices whose directed connection value from a wertgig. 10(e)). Hence, we are confident that the points that do
marked as object is less than the one to a vertex markedn@s belong toS, do not belong to the object that we seek
background, i.e., for any € V(®), we have to segment. Then, the terr{$(z,y)} are set up in order to
ease the connection of the pixels that do not belon§gtato
the background markeB. This is done by multiplying by a
nstant value the weight of any afe, y) ending at a pixel
assified as background

T € Sop gélg{Tw(o, x)} < Il]Iélg{Tw(.%', b)} (21)

From the previous characterizations of the proposed sé
mentation method, we can say intuitively that the weigh
of the arcs should be higher in the border of the object to 5 (1 ifyé¢S,
be segmented than inside and outside this object. In order (z,y) = { K otherwise (24)
to produce such a map and, following the work of [5], the
weightw(z, ) of the arc(z,y) is the product of a symmetric Wherex > 1.

term V(z, y) and a non necessarily symmetric tedifx, ) The result of our method (with = 1.5) for the my-
ocardium segmentation is presented in Fig. 10(f).
w(z,y) = V(z,y) x i(z,y) (22)

The first termV(z, y) plays the role of a gradient magni-7  CONCLUSION
tude. For our illustration, it is defined as the absoluteedéfhce | this article, we have introduced and investigated a motio

of intensity between the pixels and y. If I denotes the of directed connectedness. This has led us to the proposal
grayscale image to be segmented we have of new (directed) connected operators, no longer based on
_ _ partition hierarchies organized as trees, but on partitiorers
Viwy) = (@) = 1)l (23) organized as DAGs.
when no further knowledge on the objects to be segmented-rom a theoretical viewpoint, we have provided a relevant
exist, symmetric weights can be used. In this case the secovaly to generalize various connected operators, based en tre
termd(z,y) is set to a constant value. For instance, the imagé&uctures, previously proposed in the literature. Thig fead
of Fig. 10(d) is obtained by the proposed method from the a better understanding of the common properties between
markersO and B shown in Figs. 10(b,c) when a constanthese operators, but also to clarify some subtle difference
value is used for the map. between those that lie in the framework of directed conmkcte
However, when domain knowledge is available, the secongerators, and those that do not, such as hyperconnections.
term §(x,y) can be used to ease the connection of a pixkl this context, it is relevant to develop an axiomatizatain
either to the background or to the foreground marker. Frodirected connectedness such as was done in [63], in order
Eqg. (21), we remark that if the weight of every afe,y) to compare it to the axiomatizations already proposed for
ending at a vertey is set to an infinite value (i.e., a maximalconnections [44, Ch. 2] and hyperconnections [64].
weight), then the vertey does not belong to the segmented From both the theoretical and algorithmic viewpoints, iti wi
objectSo_. . Indeed, in this case, the connection value froralso be useful to compare the links that exist between the
any point o of the markerO to the vertexy is maximal DAGs induced by directed connectedness, with other nan-tre
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structures that have been recently introduced to extend tBle P. Salembier and J. Serra, “Flat zones filtering, conmkopeerators, and
framework of connected operators, for instance in the cése o filters by reconstructionEEE T Image Processol. 4, pp. 1153-1160,
hypertrees [37] or component graphs [65], [66], that counti 9] 995
an extension of component trees to multivalued images.

From a methodological point of view, we have showf.Y]
that the cover hierarchies obtained when considering tidec
connectedness can be efficiently handled by taking advantgn]
of the intrinsic links that exist between directed connéctet12
and strongly connected components, the latter ones be nd
organized as trees. Based on these properties, the cotgplexi
of the initial algorithm proposed in this article for buitgj [13]
cover hierarchies, can be improved by using the recent-incre
mental algorithm proposed in [67] for building the DAG ofi14]

Commun Image Rvol. 11, pp. 224-236, 2000.

strongly connected componentsd N3/2) time complexity.
gly P (ﬁ.( ) P Y L. Najman and M. Couprie, “Building the component tree iragi-linear

E. J. Breen and R. Jones, “Attribute openings, thinnjrgsl granulome-
tries,” Comput Vis Image Undvol. 64, pp. 377-389, 1996.

P. Salembier and M. H. F. Wilkinson, “Connected operstérreview of
region-based morphological image processing techniqUeEE Signal
Proc Mag vol. 26, pp. 136-157, 2009.

L. Najman and H. Talbot, EdsMathematical Morphology: From Theory
to Applications ISTE/J. Wiley & Sons, 2010.

P. Salembier, A. Oliveras, and L. Garrido, “Anti-extess connected
operators for image and sequence processifitEE T Image Process
vol. 7, pp. 555-570, 1998.

P. Salembier and L. Garrido, “Binary partition tree asefficient repre-
sentation for image processing, segmentation and informatimieval,”
IEEE T Image Processol. 9, pp. 561-576, 2000.

P. Monasse and F. Guichard, “Scale-space from a levetltree,’J Vis

Moreover, beyond the standard attribute-based antiejxrtensllsl time,” IEEE T Image Proceswol. 15, pp. 35313539, 2006.
filtering developed in this article, other approaches dflifi [16] T. Géraud, E. Carlinet, S. Crozet, and L. Najman, “A quisar
algorithm to compute the tree of shapes of nD imagesJSMM, ser.
devoted to tree structures can be ac_iapted to the case aedirec Legct Notes Compput %G, vol. 7883, 2023’ op. 97_103_
connected operators, and in particular the optimal tree- %71 E. Carlinet and T. Géraud, “A comparison of many max-treegotation
segmentation paradigms initially proposed in [40], andHeir algorithms,” inISMM, ser. Lect Notes Comput Sc, vol. 7883, 2013, pp.
i i 73-84.
formalized in the. fra_mew_ork Of. connected operators [68] [éS] J. Cousty, L. Najman, and B. Perret, “Constructive lifdetween some
From an applicative viewpoint, we note that the directed " morphological hierarchies on edge-weighted graphsiSMM, ser. Lect
connectedness framework is quite versatile and useful for Notes Comput Sc, vol. 7883, 2013, pp. 86-97.
filtering and segmentation tasks. Applications will be mexe [19] L. Najman, J. Cousty, and B. Perret, “Playing with Kruskgorithms
. . . - for morphological trees in edge-weighted graphs,T$MM, ser. Lect
tensively proposed in further works, with complete valioiat Notes Comput Sc, vol. 7883, 2013, pp. 135-146.
protocols and comparison with similar approaches proposid] R.Jones, “Connected filtering and segmentation usimgpecment trees,”
; ; ; ; ; Comput Vis Image Undvol. 75, pp. 215-228, 1999.
in the Ilter_ature, for instance in [5]. MoreO\_/er, the imag ] M. A Westenberg, J. B, T. M. Roerdink, and M. H. F. Wilson,
segmentation method proposed in Sec. 6.2 is built upon the' «oumetric attribute filtering and interactive visualizat using the
classical symmetric 4-adjacency relation on pixels andnupo  max-tree representation|EEE T Image Processvol. 16, pp. 2943—
imi ficati i i Qi 2952, 2007.
a prellm!nary.cIaSIS|f|c'at|or'1 Of. the Image plxe!s. PromISIn&Z] N. Passat, B. Naegel, F. Rousseau, M. Koob, and J.-LteBiann,
perspectives in this direction include considering a deéc “Interactive segmentation based on component-treRattern Recogn
pixel adjacency graph where each pixel is adjacent to its vol. 44, pp. 2539-2554, 2011,
nearest neighbors in a feature space such as done notabli#$h L- Chen, M. W. Berry, and W. W. Hargrove, “Using dendrbsignatures
. . e . . . for feature extraction and retrievallit J Imag Syst Techvol. 11, pp.
[69] and considering a fuzzy classification instead of apcris 243 253, 2000.
one. [24] E.R. Urbach, J. B. T. M. Roerdink, and M. H. F. Wilkinsd@onnected
i ; ; i ; shape-size pattern spectra for rotation and scale-imtaciassification
Soqrce code correspond.mg to this article |s.avallable at th of gray-scale images|EEE T Pattern Analvol, 20, pp. 272.285, 2007,
following url: http://www.esiee.fr/~perretb/dc-hiectny.html.  [25] 3. Mattes, M. Richard, and J. Demongeot, “Tree represiemt for image
matching and object recognition,” DGCI, ser. Lect Notes Comput Sc,
vol. 1568, 1999, pp. 392—-405.
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