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Introduction

In this paper we consider a closed quantum system of the form

i ψ(t) = H(u(t))ψ(t) = (H 0 + u 1 (t)H 1 + • • • + u m (t)H m )ψ(t), (1) 
where ψ(•) describes the state of the system evolving in the unit sphere S of a finite-or infinite-dimensional complex Hilbert space H. The control u(•) = (u 1 (•), . . . , u m (•)) takes values in a subset U of R m and represents external fields. The Hamiltonian H(u) is a self-adjoint operator on H for every u ∈ U . System (1) is exactly (respectively, approximately) controllable if every point of S can be steered to (respectively, steered arbitrarily close to) any other point of S, by an admissible trajectory of [START_REF] Adami | Controllability of the Schrödinger equation via intersection of eigenvalues[END_REF].

When the dimension of H is finite, the exact controllability of (1) has been characterized in [START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF] in terms of the Lie algebra generated by {H(u) | u ∈ U }. In the infinite-dimensional case, if the controlled Hamiltonians H 1 , . . . , H m are bounded, exact controllability can be ruled out by functional analysis arguments ( [START_REF] Ball | Controllability for distributed bilinear systems[END_REF][START_REF] Illner | Limitations on the control of Schrödinger equations[END_REF][START_REF] Turinici | On the controllability of bilinear quantum systems[END_REF]). Sufficient conditions for approximate controllability have been obtained by proving exact controllability of restrictions of [START_REF] Adami | Controllability of the Schrödinger equation via intersection of eigenvalues[END_REF] to spaces where the controlled Hamiltonians are unbounded ( [START_REF] Beauchard | Local controllability of a 1-D Schrödinger equation[END_REF][START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF][START_REF] Beauchard | Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control[END_REF]). Other sufficient conditions for approximate controllability have been obtained by control-Lyapunov arguments ( [START_REF] Beauchard | Semi-global weak stabilization of bilinear Schrödinger equations[END_REF][START_REF] Mirrahimi | Lyapunov control of a quantum particle in a decaying potential[END_REF][START_REF] Vahagn Nersesyan | Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications[END_REF][START_REF] Nersesyan | Global exact controllability in infinite time of Schrödinger equation[END_REF]) and Lie-Galerkin techniques ( [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF][START_REF] Boscain | Multi-input schrdinger equation: controllability, tracking, and application to the quantum angular momentum[END_REF][START_REF] Boussaid | Weakly-coupled systems in quantum control[END_REF][START_REF] Chambrion | Periodic excitations of bilinear quantum systems[END_REF][START_REF] Chambrion | Controllability of the discrete-spectrum Schrödinger equation driven by an external field[END_REF]).

Both in the finite-and the infinite-dimensional case, checking the above-mentioned controllability criteria is not an easy task. Typical conditions require that the eigenvalues of H 0 are non-resonant (e.g., all gaps are different or rationally independent) and that the controlled Hamiltonians "sufficiently couple" the eigenstates of H 0 . Hence many efforts were made to find easily checkable sufficient conditions for controllability of [START_REF] Adami | Controllability of the Schrödinger equation via intersection of eigenvalues[END_REF].

Notice that most of the conditions mentioned above are obtained for single-input systems (m = 1). An alternative technique fully exploiting the multi-input framework uses adiabatic theory to obtain approximate descriptions of the evolution of (1) for slowly varying control functions u(•) [START_REF] Adami | Controllability of the Schrödinger equation via intersection of eigenvalues[END_REF][START_REF] Boscain | Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues[END_REF][START_REF] Guérin | Control of quantum dynamics by laser pulses: Adiabatic Floquet theory[END_REF]. Adiabatic methods work when the spectrum exhibits eigenvalue intersections. In [START_REF] Boscain | Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues[END_REF], in the case m = 2, it is shown how to exploit the existence of conical intersections (see Figure 1 and Definition 5) between every pair of subsequent eigenvalues to induce an approximate population transfer from any eigenstate to any other eigenstate or any nontrivial superposition of eigenstates (without controlling the relative phases). This kind of partial controllability is named spread controllability in [START_REF] Boscain | Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues[END_REF].

In this paper we study the whole controllability implications of the conditions ensuring spread controllability, namely the existence of conical intersections between every pair of subsequent eigenvalues. A relevant advantage of these conditions is that they consist in qualitative structural properties of the spectrum of H(u) as a function of u ∈ U . This might be useful when the explicit expression of the Hamiltonian is not known, but one has information about its spectrum (as it happens in many experimental situations).

In the following we say that the spectrum of H(•) is conically connected if all eigenvalue intersections are conical, each pair of subsequent eigenvalues is connected by a conical intersections such that all other eigenvalues are simple (see Figure 2). A notable property of conical connectedness is that it is a structurally stable property for m = 2 (when restricted to real Hamiltonians) and for m = 3. This structural stability dates back to the 1920s ( [START_REF] Born | Beweis des adiabatensatzes[END_REF][START_REF] Neumann | überdas Verhalten von Eigenwerten bei Adiabatischen Prozessen[END_REF]) and is discussed in more details in Section 2.1 (see Remark 6).

The main results of the paper about the relations between conically connected spectra and controllability are the following:

• if H is finite-dimensional and the spectrum of H(•) is conically connected then Lie{H(u) | u ∈ U } is equal to u(n) if the trace of H(u)
is nonzero for some u ∈ U or su(n) otherwise. In particular (1) is exactly controllable and the same is true for its lift in U(n) or SU(n);

• if H is infinite-dimensional and the spectrum of H(•) is conically connected then ( 1) is approximately controllable. (For a counterpart of the finite-dimensional lifted-system controllability, see Remark 16.)

Motivated by the exact/approximate dichotomy in the controllability of finite-/infinite-dimensional systems, we investigate in the last part of the paper the equivalence between exact and approximate controllability. We have already seen that exact controllability cannot hold when dim(H) = ∞, since we assume H 1 and H 2 to be bounded. When dim(H) < ∞ we prove that exact and approximate controllability are indeed equivalent, both for (1) and its lift on U(n) or SU(n). This last result holds in the more general setting where H(u) depends on u in a possibly nonlinear way.

The structure of the paper is the following. In Section 2 we introduce the basic definitions related to controllability and conical intersections and we prove the finite-dimensional exact controllability of a system exhibiting a conically connected spectrum and of its lift in U(n) or SU(n) (Theorem 8). In Section 3 we prove that an infinite-dimensional system having a conically connected spectrum is approximately controllable (Theorem 13). Finally, in Section 4 we prove the equivalence between approximate and exact controllability for finite-dimensional closed quantum mechanical systems.

2 Conical intersections and exact controllability in finite dimension

Basic definitions and facts

In this section we introduce some definitions and recall some basic facts about control systems evolving on finite-dimensional manifolds. We first define approximate and exact controllability for a smooth control system

q(t) = f (q(t), u(t)) (Σ) defined on a connected manifold M with controls u(•) taking values in U ⊂ R m .
Definition 1

• The reachable set A q 0 from a point q 0 ∈ M for (Σ) is the set of points q 1 ∈ M such that there exist a time T ≥ 0 and a L ∞ control u : [0, T ] → U for which the solution of the Cauchy problem q(t) = f (q(t), u(t)) starting from q(0) = q 0 is well defined on [0, T ] and satisfies q(T ) = q 1 .

• The system (Σ) is said to be exactly controllable if for every q 0 ∈ M we have A q 0 = M .

• The system (Σ) is said to be approximately controllable if for every q 0 ∈ M we have that A q 0 is dense in M .

A relevant class of control systems for our discussion is given by right-invariant control systems on Lie groups, namely, systems for which M is a connected Lie group and each vector field f (•, u), u ∈ U , is right-invariant. Lemma 3 below is a classical result concerning right-invariant control systems on compact Lie groups (see, e.g., [START_REF] Assoudi | On subsemigroups of semisimple Lie groups[END_REF] and [23, p. 155]).

Definition 2 Let (Σ) be a right-invariant control system and denote by e the identity of the group M . Let Lie{f (e, u) | u ∈ U } be the Lie algebra generated by {f (e, u) | u ∈ U }, i.e., the smallest subalgebra of the Lie algebra of M containing {f (e, u) | u ∈ U }. The orbit G of (Σ) is the connected subgroup of M whose Lie algebra is Lie{f (e, u) | u ∈ U }.

Lemma 3 Let M be a connected compact Lie group and consider a right-invariant control system (Σ) on M . The following conditions are equivalent:

• (Σ) is exactly controllable; • the orbit G of (Σ) is equal to M ; • Lie{f (e, u) | u ∈ U } is the Lie algebra of M .
The last condition is usually referred to as the Lie-bracket generating condition.

A general controlled closed quantum system evolving in a finite-dimensional Hilbert space can be written as

i ψ(t) = H(u(t))ψ(t), (2) 
where ψ : [0, T ] → S 2n-1 ⊂ C n denotes the state of the system and H(u) is a Hermitian matrix smoothly depending on u ∈ U ⊂ R m . From now on let us take n ≥ 2, otherwise the controllability problem is trivial. Naturally associated with ( 2) is its lift on the unitary group U(n),

i ġ(t) = H(u(t))g(t), (3) 
which is right-invariant and permits to write the solution ψ(•) of ( 2) starting from ψ 0 as ψ(t) = g(t)ψ 0 where g(•) is the solution of (3) starting from the identity. Lemma 3 implies that (3) is controllable in U(n) if and only if the Lie algebra generated by {iH(u

) | u ∈ U } is equal to u(n). If the trace of each matrix H(u), u ∈ U , is zero, then (3) is well posed in SU(n) and its exact controllability in SU(n) is equivalent to the condition Lie{iH(u) | u ∈ U } = su(n).
In order to deduce the controllability properties of (2) from those of (3) one has to turn towards the classification of transitive actions of subgroups of U(n) onto S 2n-1 ⊂ C n . As a consequence, system (2) is exactly controllable if and only if

Lie{iH(u) | u ∈ U } ⊇ su(n) if n is odd an algebra conjugate to sp(n/2) if n is even. (4) 
(See [START_REF] Domenico | Introduction to quantum control and dynamics[END_REF].) Of special interests for this paper are closed control-affine quantum system driven by m external fields, satisfying the following assumption:

(A) Let m ≥ 2 and U be an open and connected subset of R m . We assume that H(•) is control-affine, i.e., it has the form

H(u) = H 0 + u 1 H 1 + • • • + u m H m .
In the following, under assumption (A), we focus on the controllability of the system

i ψ(t) = (H 0 + u 1 (t)H 1 + • • • + u m (t)H m )ψ(t), ψ(t) ∈ S 2n-1 , (5) 
and its lift

i ġ(t) = (H 0 + u 1 (t)H 1 + • • • + u m (t)H m )g(t), g(t) ∈ U(n). ( 6 
)
Remark 4 Let us briefly discuss the role of the assumptions listed in hypotheses (A).

The affine structure of H with respect to the control is natural in quantum control ( [START_REF] Domenico | Introduction to quantum control and dynamics[END_REF]) and allows the application of the controllability criteria we are using in the following (see Proposition 11). Moreover, the connectedness of U is required in order to apply adiabatic techniques in the whole set of control parameters.

A crucial hypothesis that we shall use to prove exact controllability of (6) (and hence, in particular, of ( 5)) is the existence of conical intersections (in the space of controls) between consecutive energy levels, and the fact that these conical intersections occur at distinct points in the space of controls. More precisely: Definition 5 Let (A) be satisfied. Let Σ(u) = {λ 1 (u), . . . , λ n (u)} be the spectrum of H(u), where the eigenvalues λ 1 (u) ≤ • • • ≤ λ n (u) are counted according to their multiplicities. We say that ū ∈ U is a conical intersection between the eigenvalues λ j and λ j+1 if λ j (ū) = λ j+1 (ū) has multiplicity two and there exists a constant c > 0 such that for any unit vector v ∈ R m and t > 0 small enough we have

λ j+1 (ū + tv) -λ j (ū + tv) > ct . (7) 
See Figure 1 for the picture of a conical intersection. Notice that the hypothesis m ≥ 2 guarantees that conical intersections do not disconnect U . This is crucial in the arguments below (see, in particular, Lemma 9.) Remark 6 Conical intersections are not pathological phenomena. On the contrary, they happen to be generic for m = 3 or for m = 2, when restricted to real Hamiltonians, in the following sense.

Let us first consider the case m = 2. Let sym(n) be the set of all n × n symmetric real matrices. Then, generically with respect to the pair (H 1 , H 2 ) in sym(n) × sym(n) (i.e., for all (H 1 , H 2 ) in an open and dense subset of sym(n) × sym(n)), for each u = (u 1 , u 2 ) ∈ R 2 and λ ∈ R such that λ is a multiple eigenvalue of H 0 +u 1 H 1 +u 2 H 2 , the eigenvalue intersection u is conical. Moreover, each conical intersection u is structurally stable, in the sense that small perturbations of H 0 , H 1 and H 2 give rise, in a neighborhood of u, to conical intersections for the perturbed H. See Section 3 for a version of this result in infinite dimension and [START_REF] Boscain | Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues[END_REF] for more details.

In the case m = 3, let Herm(n) be the space of n × n Hermitian matrices. Then, generically with respect to the triple

(H 1 , H 2 , H 3 ) in Herm(n) 3 , for each u = (u 1 , u 2 , u 3 ) ∈ R 3 and λ ∈ R such that λ is a multiple eigenvalue of H 0 + u 1 H 1 + u 2 H 2 + u 3 H 3 ,
the eigenvalue intersection u is conical. Structural stability also holds, in the same sense as above. See [START_REF] Chittaro | Adiabatic control of quantum control systems with three inputs[END_REF] for more details and a discussion on the infinitedimensional counterpart of these properties.

The following definition identifies the Hamiltonians for which we can guarantee exact controllability from qualitative properties of their spectra. Roughly speaking we require all their eigenvalues to be connected by conical intersections and the conical intersections to occur at different points in the space of controls. Definition 7 Let (A) be satisfied. We say that the spectrum Σ(•) of H(•) is conically connected if all eigenvalue intersections are conical and for every j = 1, . . . , n -1, there exists a conical intersection ūj ∈ U between the eigenvalues λ j , λ j+1 , with λ l (ū j ) simple if l = j, j + 1.

See Figure 2 for a conically connected spectrum.

Conical connectedness implies exact controllability

The main result of Section 2 is the following theorem.

Theorem 8 Let (A) be satisfied and assume that the spectrum Σ(•) of H(•) is conically connected. Then the Lie algebra generated by {iH(u) | u ∈ U } is either u(n) or su(n) (in the case H 0 , . . . , H m ∈ su(n)). Hence, system (6) is either exactly controllable in U(n) or well-posed and exactly controllable in SU(n).

The proof of the theorem is based on the following lemma. 

U such that if n j=1 α j λ j (ū) = 0 with (α 1 , . . . , α n ) ∈ Q n and ū ∈ Ū then α 1 = α 2 = • • • = α n . Proof. For every α = (α 1 , . . . , α n ) ∈ Q n define U α = {u ∈ U | n j=1 α j λ j (u) = 0}.
Let Ū be the complement in U of the union of all U α such that α j = α k for some j, k ∈ {1, . . . , m}.

Notice that, by definition of conical intersection and since m ≥ 2, {u ∈ U | Σ(u) is simple} is connected. Thanks to the analyticity of the spectrum in {u ∈ U | Σ(u) is simple}, either U α = U or U α has empty interior. The proof is completed by showing that if

U α = U then α 1 = • • • = α n .
Indeed, in this case U α has empty interior for every α such that α j = α k for some j, k ∈ {1, . . . , m} and the countable union of subsets of R m with empty interior and zero measure has empty interior and zero measure.

Assume that U α = U . Consider j ∈ {1, . . . , n-1} and an analytic path γ : R → U such that γ(0) = ūj , γ(0) = 0, where ūj ∈ U is a conical intersection between the eigenvalues λ j , and λ j+1 , with λ l (ū j ) simple if l = j, j + 1.

Since U α = U , we have for every t ∈ R, n l=1 α l λ l (γ(t)) = 0.

By analytic dependence of the spectrum along γ in a neighbourhood of γ(0) [START_REF] Rellich | Perturbation theory of eigenvalue problems[END_REF], the functions

t → λ j (γ(t)) if t < 0 λ j+1 (γ(t)) if t ≥ 0, t → λ j+1 (γ(t)) if t < 0 λ j (γ(t)) if t ≥ 0,
and t → λ l (γ(t)), l = j, j + 1, are analytic in a neighborhood of 0. Hence,

α j+1 λ j (γ(t)) + α j λ j+1 (γ(t)) + l =j,j+1 α l λ l (γ(t)) = 0
for t in a neighborhood of 0. Then

(α j -α j+1 )(λ j (γ(t)) -λ j+1 (γ(t))) = 0
for t in a neighborhood of 0. By definition of conical intersection it must be α j = α j+1 . Since j is arbitrary, we deduce that α 1 = • • • = α n concluding the proof.

Remark 10

The lemma fails to hold if m = 1, i.e., for single input systems. Consider for instance n = 3, H 0 = diag(0, 1, 2) and H 1 = diag(1, 1, 0). Then the eigenvalues of H(u) are u, u + 1 and 2. The spectrum is conically connected, but clearly Ū = ∅. Notice that Lie(iH 0 , iH 1 ) is made only by diagonal matrices and therefore {iH 0 , iH 1 } does not generate u(n). Hence, this example also shows that Theorem 8 does not hold if we remove the hypothesis m ≥ 2.

The proof of Theorem 8 is based on the following adaptation of a controllability criteria for single-input quantum control systems appeared in [10, Proposition 3.1]. The proof can be obtained following exactly the same arguments as in [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF].

Proposition 11 Let A 0 , A 1 , . . . , A m be skew-Hermitian n × n matrices. Denote by λ 1 , . . . , λ n the eigenvalues of A 0 , repeated according to their multiplicities and let φ 1 , . . . , φ n be an orthonormal basis of associated eigenvectors. Let

S 0 = {(j, k) ∈ {1, . . . , n} 2 | ∃ l ∈ {1, . . . , m} such that φ j , A l φ k = 0}.
Assume that there exists S ⊆ S 0 such that the graph having 1, . . . , n as nodes and S as set of edges is connected. Assume, moreover, that for every (j, k) ∈ S and (r, s) ∈ S 0 \ {(j, k)} we have λ j -λ k = λ r -λ s . Then Lie(A 0 , . . . , A m ) = su(n) if A 0 , . . . , A m ∈ su(n) and Lie(A 0 , . . . , A m ) = u(n) otherwise.

With a Hamiltonian H(•) as in assumption (A ∞ ) we can associate the control system

i ψ(t) = (H 0 + u 1 (t)H 1 + • • • + u m (t)H m )ψ(t), ψ(t) ∈ S, (8) 
where S is the unit sphere of H. Existence of solutions of ( 8) for u of class L ∞ and H 1 , . . . , H m bounded is classical (see [START_REF] Pazy | Semigroups Of Linear Operators And Applications To Partial Differential Equations[END_REF]).

A typical case for which (A ∞ ) is satisfied is when H 0 = -∆ + V , where ∆ is the Laplacian on a domain Ω ⊂ R d (with suitable boundary conditions if Ω = R d ), V is a regular enough real-valued potential bounded from below, H = L 2 (Ω, C), and H 1 , . . . , H m are multiplication operators by L ∞ real-valued functions.

Conical connectedness implies approximate controllability in infinite dimension

The main technical assumption of this section is the following.

(B) The spectrum of H 0 is discrete without accumulation points and each eigenvalue has finite multiplicity.

Under assumptions (A ∞ ) and (B) the spectrum of H(u), u ∈ U , with eigenvalues repeated according to their multiplicities, can be described by Σ ∞ (u) = {λ j (u)} j∈N with λ j (u) ≤ λ j+1 (u) for every j ∈ N and each λ j (•) continuos on U . In analogy with Definition 7, we say that Σ(•) is conically connected if all eigenvalue intersections λ j = λ j+1 , j ∈ N, are conical (the definition of conical intersection extends trivially to this case) and for every j ∈ N there exists a conical intersection ūj ∈ U between the eigenvalues λ j , λ j+1 , with λ l (ū j ) simple if l = j, j + 1.

Remark 12

Recall from [START_REF] Boscain | Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues[END_REF] that conical intersections are generic in the case m = 2 in the reference case where

H = L 2 (Ω, C), H 0 = -∆ + V 0 : D(H 0 ) = H 2 (Ω, C) ∩ H 1 0 (Ω, C) → L 2 (Ω, C), H 1 = V 1 , H 2 = V 2 ,
with Ω a bounded domain of R d and V j ∈ C 0 (Ω, R) for j = 0, 1, 2. Indeed, generically with respect to the pair

(V 1 , V 2 ) in C 0 (Ω, R) × C 0 (Ω, R) (i.e., for all (V 1 , V 2 ) in a countable intersection of open and dense subsets of C 0 (Ω, R) × C 0 (Ω, R)), for each u ∈ R 2 and λ ∈ R such that λ is a multiple eigenvalue of H 0 + u 1 H 1 + u 2 H 2 ,
the eigenvalue intersection u is conical. Moreover, each conical intersection u is structurally stable, in the sense that small perturbations of V 0 , V 1 and V 2 give rise, in a neighbourhood of u, to conical intersections for the perturbed H.

The main purpose of this section is to extend Theorem 8 to the infinite-dimensional case, as follows.

Theorem 13 Let hypotheses (A ∞ ) and (B) be satisfied. If the spectrum Σ(•) is conically connected then ( 8) is approximately controllable.

The proof of Theorem 13 follows the same pattern as the one of Theorem 8. The first step is the following straightforward generalisation of Lemma 9.

Lemma 14 Let hypotheses (A ∞ ) and (B) be satisfied and assume that the spectrum Σ(•) is conically connected. Then there exists Ū ⊂ U which is dense and with zero-measure complement in U such that for each N ∈ N,

N j=1 α j λ j (ū) = 0 with (α 1 , . . . , α N ) ∈ Q N and ū ∈ Ū implies α 1 = α 2 = • • • = α N = 0.
In particular the spectrum of H(ū) for ū ∈ Ū as in Lemma 14 is such that two spectral gaps λ k (ū) -λ j (ū) and λ r (ū) -λ s (ū) are different if (k, j) = (r, s) and k = j, r = s.

In the infinite-dimensional case, the role of Proposition 11 is played by the following corollary of [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF]Theorem 2.6].

Proposition 15 Let hypotheses (A ∞ ) and (B) be satisfied. Assume that there exists

ū ∈ U such that λ k (ū) -λ j (ū) = λ r (ū) -λ s (ū) if (k, j) = (r, s), (k, j), (r, s) ∈ N 2 \ {(l, l) | l ∈ N}. Denote by (φ j (ū)) j∈N a Hilbert basis of eigenvectors of H(ū) and let S = {(j, k) ∈ N 2 | φ j (ū), H l φ k (ū) = 0 for some l = 1, . . . , m}.
If the graph having N as set of nodes and S as set of edges is connected then (8) is approximately controllable in S.

The proof of Theorem 13 is then concluded as follows: Lemma 14 guarantees the existence of ū such that the spectral gaps of Σ(ū) are all different; this allows to deduce the conclusion from Proposition 15 provided that no proper linear subspace of H spanned by eigenvectors of H(ū) is invariant for [START_REF] Beauchard | Semi-global weak stabilization of bilinear Schrödinger equations[END_REF]. As in the finite-dimensional case, this can be be proved by adiabatic methods, deducing from [30, Corollary 2.5] (or [START_REF] Boscain | Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues[END_REF]Proposition 3.4]) that for every pair of eigenvectors of H(ū) there exists and admissible trajectory of (8) connecting them with arbitrary precision.

Remark 16 Following [START_REF] Boscain | Multi-input schrdinger equation: controllability, tracking, and application to the quantum angular momentum[END_REF], a stronger version of Proposition 15, and hence of Theorem 13, could be stated, namely: under the same hypotheses, for every l ∈ N, ψ 1 , . . . , ψ l ∈ S, ε > 0, and every unitary transformation Υ of H, there exists a control function u : [0, T ] → U such that, for every j = 1, . . . , l the solution of (8) having ψ j as initial conditions arrives in a ε-neighborhood of Υ(ψ j ) at time T . Notice that this is the natural counterpart of controllability of the lift of (5) in the group of unitary transformations proved in Section 2.

4 Equivalence between exact and approximate controllability for finite-dimensional systems

In the previous sections we have seen several sufficient conditions for controllability, which is exact in the finite-dimensional case and approximate in the infinitedimensional one.

Our aim is to show that in the finite-dimensional case approximate controllability always yields exact controllability for systems of the type

i ψ(t) = H(u(t))ψ(t), ψ(t) ∈ S 2n-1 , u(t) ∈ U ⊂ R m , (9) 
or

i ġ(t) = H(u(t))g(t), g(t) ∈ G , u(t) ∈ U ⊂ R m , (10) 
where G denotes the group SU(n) if the trace of H(u) is zero for every u ∈ U and U(n) otherwise.

More precisely, we have the following.

Theorem 17 System ( 9) is approximately controllable if and only it is exactly controllable. The same holds for system [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF].

Remarks on Theorem 17

The proof of Theorem 17 is based on some results in representation theory, recalled in the following section. The statement of Theorem 17 for the lifted problem in SU(n) is folklore. Indeed, the proof follows from the following 1942 result by Smith [29, note on p. 312], as detailed below.

Theorem 18 ([29]) If a dense subgroup Ĝ of a simple Lie group G of dimension larger than 1 contains an analytic arc, then Ĝ = G.

Proof of Theorem 17 in the case G = SU(n). Let [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF] be approximately controllable in SU(n). Then, the orbit from the identity is a dense subgroup Ĝ of SU(n). Any trajectory of [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF] with constant u is an analytic arc, contained in Ĝ . Then Ĝ = SU(n), i.e., the orbit is the whole group. Lemma 3 yields that the accessible set coincides with G , i.e., that system (10) is exactly controllable.

Notice that the argument does not apply for G = U(n), since U(n) is not simple. Moreover, the equivalence between approximate and exact controllability on the sphere does not follow from the result on the lifted system. It is well-known, indeed, that approximate/exact controllability on the group and on the sphere are not equivalent since, as already recalled, if the Lie algebra generated by {iH(u) | u ∈ U } is equal to sp(n/2) then ( 9) is exactly controllable, while [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF] is not (even approximately).

Some facts from group-representation theory

In this section, we recall the two basic main facts from representation theory that are needed in order to prove Theorem 17. We consider a finite-dimensional representation of a Lie group G, X : G → L(h), where h is a finite dimensional complex Hilbert space and L(h) denotes the space of endomorphisms of h.

Theorem 19 below is stated by Dixmier in [START_REF] Dixmier | Les C * -algèbres et leurs représentations[END_REF]. We need it for Lie groups, although it holds more generally for locally compact topological groups.

We recall that the intersection of the kernels of all unitary irreducible finitedimensional representations of a group G is a subgroup of G. Then, G is said to be injectable in a compact group1 if this subgroup is reduced to the identity of G. The second key fact that we need is due to Weil (see [33, p. 66]).

Proposition 20 ([19] 13.1.8) Let G = G 1 × G 2 be the Cartesian product of two locally compact topological groups, and let X be an irreducible representation of G. Define the representation X 1 of G 1 as X 1 (g 1 ) := X(g 1 , e) and the representation X 2 of G 2 as X 2 (g 2 ) := X(e, g 2 ). If X 1 and X 2 lie in a semisimple class of representations, then X is equivalent to the tensor product

X 1 ⊗ X 2 with X 1 , X 2 irreducible representations of G 1 , G 2 , respectively.
We would need to specify what a semisimple class of representations is, see [33, p. 65]. For our purpose, however, it is enough to recall that any class of bounded representation is semisimple (see, e.g., [33, p. 70]).

Remark 21

We finally recall some elementary properties for unitary representations of R p . First recall that each irreducible unitary representation is a character, namely, a representation of the type χ ξ (x) := e iξ•x for some ξ ∈ R p (see, e.g., [4, 6.1]). As a consequence we have that, for p ≥ 1, unitary irreducible representations of R p are not faithful.

Proof of Theorem 17

It is clear that exact controllability implies approximate controllability. The proof that approximate controllability implies exact controllability is based on the following two results.

Proposition 22 Let G be a connected Lie subgroup of U (n). If the inclusion repre- sentation  : G → U (n) is irreducible, then G is compact. Proof.
Observe that the inclusion  :

G → U (n) is a faithful (by definition) representation of G over C n , since U (n) ⊂ L(C n ) = gl(n, C).
Then, the kernel of  is reduced to {e}, and thus G is injectable in a compact group.

Applying Theorem 19, we have that G = R p × K with p ≥ 0 and K a compact group. Remark that  is unitary, hence bounded. As already recalled, the class of bounded representations of G is semisimple. Then we can apply Proposition 20, that gives us two irreducible bounded representations X 1 : R p → L(C m 1 ) and X 2 : K → L(C m 2 ) such that  is equivalent to X 1 ⊗ X 2 .

Since R p is abelian and X 1 is irreducible, then m 1 = 1. Bounded irreducible (one dimensional) continuous representations of R p must be unitary. Hence X 1 is a character of R p .

Since  is faithful, then X 1 and X 2 are faithful too. In conclusion, X 1 is a faithful irreducible unitary representation of R p . Then, thanks to Remark 21, we have that p = 0. Then G = K is compact.

Remark 23

The connectedness assumption in the statement of Proposition 22 is crucial: the groups SE(2, N ) in [START_REF] Boscain | Hypoelliptic diffusion and human vision: a semi-discrete new twist on the Petitot theory[END_REF] are counterexamples in the non-connected case.

Lemma 24 Let G be a subgroup of U (n) such that Gz is dense in S 2n-1 for every z ∈ S 2n-1 . Then  : G → U (n) is an irreducible representation of G.

Proof. Assume by contradiction that the inclusion is not irreducible, so that there exists a proper subspace h of C n which is invariant with respect to the action of G. Now take z ∈ h ∩ S 2n-1 and observe that Gz ⊂ h ∩ S 2n-1 . Thus Gz is not dense, leading to a contradiction.

We can now conclude the proof of Theorem 17.

Let G be the orbit of [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF], i.e., the subgroup of G whose Lie algebra is generated by {iH(u) | u ∈ U } (see Definition 2).

Assume that system ( 9) is approximately controllable. The reachable set from a point z ∈ S 2n-1 for ( 9) is contained in the orbit Gz. Hence, Gz is dense in S 2n-1 and Lemma 24 guarantees that the inclusion  : G → U (n) is an irreducible representation of G. We can then apply Proposition 22 and conclude that G is compact. In particular, Gz is compact in S 2n-1 for every z ∈ S 2n-1 . Finally, being Gz dense and compact in S 2n-1 , it coincides wit S 2n-1 , i.e., system (9) is exactly controllable.

Let now [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF] be approximately controllable. Hence, G is dense in G . In particular, system (9) is also approximately controllable and, according to the argument above, G is compact. Hence G = G , i.e., by Lemma 3, ( 10) is exactly controllable. This concludes the proof of Theorem 17.

Remark 25 If the attainable set of system [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF] is dense in any subgroup G of U (n) which acts transitively on S 2n-1 , then the same argument as above shows that ( 9) is exactly controllable in S 2n-1 and ( 10) is exactly controllable in G.

Figure 1 :

 1 Figure 1: A conical intersection when m = 2: the surfaces represent two eigenvalues of H(u 1 , u 2 ) as functions of u 1 and u 2 .

Figure 2 :

 2 Figure 2: A conically connected spectrum in the case m = 2.

  Theorem 19 ([19] 16.4.8) Let G be a connected, locally compact group. Then G is injectable in a compact group if and only if G = R p × K with p ≥ 0 and K a compact group.

The definition given here is not the most natural, since injectability in a compact group is related to the notion of compact group associated with a topological group that is defined via an universal property: For each topological group G there exists a compact group Σ and a continuous morphism α : G → Σ such that for any compact group Σ and continuous morphism α : G → Σ it exists a continuous morphism β : Σ → Σ such that α = β • α. We give here only the definition that fits better with our purposes. For such beautiful theory, see[19, 16.4].
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Proof of Theorem 8. Applying Lemma 9 we deduce the existence of u 0 ∈ U such that if n j=1 α j λ j (u 0 ) = 0 with (α 1 , . . . , α n ) ∈ Q n then α 1 = • • • = α n . In particular, the spectrum of H(u 0 ) is simple and two spectral gaps λ j (u 0 )-λ k (u 0 ) and λ r (u 0 )-λ s (u 0 ) are different if (j, k) = (r, s) and j = k, r = s. Let φ 1 , . . . , φ n be an orthonormal basis of eigenvectors of H(u 0 ).

Let us conclude the proof by applying Proposition 11 to A 0 = iH(u 0 ), A j = iH j for j = 1, . . . , m: to this purpose, we are left to prove that the graph having 1, . . . , n as nodes and

as set of edges is connected.

Assume by contradiction that such graph is not connected. Then there exists a proper subspace V of C n generated by eigenvectors of H(u 0 ) which is invariant for the evolution of [START_REF] Beauchard | Local controllability of a 1-D Schrödinger equation[END_REF]. Without loss of generality V = span{φ 1 , . . . , φ r } with r < n.

Since the spectrum is conically connected, we can apply [30, Corollary 2.5] and deduce that there exists an admissible trajectory of (5) steering φ 1 to an arbitrary small neighbourhood of {e iθ φ n | θ ∈ R}. (See also [START_REF] Boscain | Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues[END_REF]Proposition 3.4] for a rephrasing in control terms of [30, Corollary 2.5], which deals with general adiabatic evolutions through conical intersections. The result is stated in [START_REF] Boscain | Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues[END_REF] in the case m = 2 for symmetric Hamiltonians but actualy holds in the general case.) The contradiction is reached, since V ∩ {e iθ φ n | θ ∈ R} = ∅.

Conical intersections and approximate controllability in infinite dimension

In this section we extend the controllability analysis of the previous section to systems of the form (5) evolving in infinite-dimensional spaces. Consider a separable infinite-dimensional complex Hilbert space H. In this section we make the following assumption: