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At the origins and in the vanguard of peri-dynamics,
non-local

and higher gradient continuum mechanics.
An underestimated and still topical contribution of Gabrio

Piola
by Francesco dell’Isola, Ugo Andreaus and Luca Placidi

Gabrio Piola’s scientific papers have been underestimated in the mathematical-physics litera-

ture. Indeed a careful reading of them proves that they are original, deep and far reaching. Actually

-even if his contribution to mechanical sciences is not completely ignored- one can undoubtedly say

that the greatest part of his novel contributions to mechanics, although having provided a great

impetus and substantial influence on the work of many preminent mechanicians, is in fact generally

ignored. It has to be remarked that authors [10] dedicated many efforts to the aim of unveiling the

true value of Gabrio Piola as a scientist; however, some deep parts of his scientific results remain

not yet sufficiently illustrated. Our aim is to prove that non-local and higher gradient continuum

mechanics was conceived already in Piola’s works and to try to explain the reasons of the unfortu-

nate circumstance which caused the erasure of the memory of this aspect of Piola’s contribution.

Some relevant differential relationships obtained in Piola [Piola, 1845-6] are carefully discussed,

as they are still nowadays too often ignored in the continuum mechanics literature and can be

considered the starting point of Levi-Civita’s theory of Connection for Riemannian manifolds.

1 Introduction

Piola’s contribution to the mechanical sciences is not completely ignored: indeed his contribution

to the formulation of balance equations of force in Lagrangian description is universally recognized

(when and how this first re-discovery of Piola occurred will be the object of another investigation).

In this context the spirit of Piola’s works can be recognized in many modern contributions (see e.g.

[100]). One can undoubtedly say that the greatest part of his novel contributions to Mechanics,
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although having imparted a great momentum to and substantial influence on the work of many

prominent mechanicians, is in fact generally ignored.

Although the last statement may seem at first sight exaggerated, the aim of the present paper

is exactly to prove it while presenting the evidence of a circumstance which may seem surprising:

some parts the works of Gabrio Piola represent a topical contribution as late as the year 2013.

Those who have appreciated the works of Russo [105], [106] will not be at all shocked by

such a statement, as there is evidence that many scientific contributions remained unsurpassed

for centuries, if not millennia. Therefore one thesis that we want to put forward in this paper is

that the contribution of Gabrio Piola should not be studied with the attitude of the historian of

science but rather with the mathematical rigor needed to understand a contemporary textbook or

a research paper.

On the other hand, the authors question the concept of ”historical method” especially when

applied to history of science and history of mathematics. We claim that there is not any pecu-

liar ”historical method” to be distinguished from the generic ”scientific method” which has to be

applied to describe any other kind of phenomena, although the subject of the investigation is as

complex as those involved in the transmission, storage and advancement of scientific knowledge.

A fortiori, however, imagine that one could determine precisely in what constitutes such a ”histor-

ical method”: then it MUST include the capability of the historician to understand, master and

reconstruct rigorously the mathematical theories which he has decided to study from the historical

point of view. In other words: a historician of a particular branch of mathematics has to master

completely the theory whose historical development he wants to describe. It is rather impossible,

for instance, that somebody who does not know the theory of integration could recognize that (see

[106]) Archimedes actually used rigorous arguments leading to the proof of the existence of the

integral of a quadratic function. Moreover, together with the linguistic barriers (one has to know

doric Greek to understand Archimedes and XIXth century Italian to understand Gabrio Piola),

there are also notational difficulties: one should not naively believe that HIS OWN notations are

advanced and modern while the notations found in the sources are clumsy and primitive. Actually
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notations are a matter of ”arbitrary choice” and from this point of view - remember that mathe-

matics is based on axiomatic definition of abstract concepts to which the mathematician assigns

a meaning by means of axioms and definitions - all notations are equally acceptable. Very often

historians of mathematics 1 decide that a theory is much more modern than it actually is, simply

because they do not find ”the modern symbols” or the ”modern nomenclature” in old textbooks.

For instance, if one does not find in a textbook the symbol
∫

, this does not mean that the integral

was not known to the author of that textbook. It could simply mean that the technology of print-

ing at the age of that textbook required the use of another symbol or of another symbolic method.

Indeed some formulas by Lagrange or Piola seem at first sight to the authors of the present paper

to resemble, for their complicated length, lines of commands for LaTeX. Actually the historian has

to READ carefully the textbooks which he wants to assess and interpret: when these books are

books whose content is a mathematical theory, reading them implies reading all the fundamental

definitions, lemmas and properties, which are needed to follow its logical development.

In the authors’ opinion, in Truesdell and Toupin [140] the contribution of Piola to mechanical

sciences is accounted for only partially while in Truesdell [139] it is simply overlooked. It has to be

remarked that authors [10] dedicated many efforts to the aim of unveiling the true value of Gabrio

Piola as a scientist; however, some deep parts of his scientific results remain not yet sufficiently

illustrated.

Our aim is

• to prove that non-local and higher gradients continuum mechanics was conceived already in

Piola’s works starting from a clever use of the Principle of Virtual Work

• to explain the unfortunate circumstances which caused the erasure from memory of this

aspect of Piola’s contribution, although his pupils respected so greatly his scientific standing

that they managed to dedicate an important square to his name in Milan (close to the

Politecnico) to be named after him, while a statue celebrating him was erected in the Brera

1See for instance Russo (2003) page 53 and ff. for what concerns the difficulties found by historicians who did not
know trigonometry in recognizing that Hellenist science had formulated it but with different fundamental variables
and notations
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Palace, also in Milan.

Finally some differential relationships obtained in [Piola, 1845-6] are carefully discussed, as they

are still nowadays too often used without proper attribution in the continuum mechanics literature

and can be considered the starting point of the Levi-Civita theory of Connection in Riemannian

manifolds.

The main source for the present paper is the work

Piola, G., Memoria intorno alle equazioni fondamentali del movimento di corpi

qualsivogliono considerati secondo la naturale loro forma e costituzione, Modena,

Tipi del R.D. Camera, (1845-1846),

but the authors have also consulted other works by Piola [Piola, 1825], [Piola, 1833], [Piola, 1835],

[Piola, 1856].

In all the above-cited papers by Piola the kinematical descriptor used is simply the placement

field defined on the reference configuration: in these works there is no trace of more generalized

models of the type introduced by the Cosserats [21]. However the spirit of Piola’s variational

formulation (see, e.g., [6], [7], [25], [52], [53], [60], [74], [137], [138]) and his methods for introducing

generalized stress tensors can be found in the papers by Green and Rivlin ([54], [55] [56] and [57])

and also many modern works authored for instance by Neff and his co-workers, [87], [90], [94] and

of by Forest and his co-workers [49], [50].

2 Linguistic, ideological and cultural barriers impeding the

transmission of knowledge

It is evident to many authors and it is very often recognized in the scientific literature that linguistic

barriers may play a negative role in the transmission and advancement of science. We recall here,

for instance, that Peano [96] in 1903, being aware of the serious consequences which a Babel effect

can have on the effective collaboration among scientistis, tried to push the scientific community
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towards the use of Latin or of an especially constructed ”lingua franca” in scientific literature, i.e.

the so-called latino sine flexione.

Actually in Russo [105], [106] the author clearly analyses the consequences of the existence of

those linguistic ideological and cultural barriers which did not permit the Latin speaking scholars

to understand the depth of Hellenistic science: the beginning of the economical and social processes

leading to the Middle Ages.

2.1 Gabrio Piola as a protagonist of Italian Risorgimento (Resurgence)

It is surprising that some important contributions to mechanics of a well-known scientist remained

unnoticed and have been neglected for a so long a time. Actually, after a careful observation

of distinct traces and by gathering hints and evidences, one can propose a well-founded conjec-

ture: Gabrio Piola has been a leading cultural and scientific protagonist of Italian Risorgimento

(Resurgence).

The main evidence of this statement has been found, e.g., in his eulogy in memoriam of his

”Maestro” Vincenzo Brunacci. This eulogy was written in 1818 (three years after the famous Rimini

Proclamation by Giocchino Murat that, to give an idea of its content, started with ”Italians! The

hour has come to engage in your highest destiny” and which is generally considered as the beginning

of the Italian Resurgence). In this eulogy (completely translated in the Appendix B) there is a

continuous reference to the Italian Nation which, in that time, could pursue some serious legal

difficulties for the author of such a eulogy, leading eventually to the loss of his personal freedom.

The eulogy starts with the words

“ It is extremely painful for us to announce in this document the death of a truly great man,

who, as during his life, was a glory for Italy, ”

and ends with the words

“May these last achievements of such an inventive and ingenious Geometer be delivered up to

a capable and educated scholar, who could enlighten them as they deserve, for the advancement

of SCIENCES, for the glory of the AUTHOR and for the prestige of ITALY”.
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In the body of the eulogy one can find the following statements:

• “ It seemed as if the Spirit of Italy who was in great sufferance because in that time the most

brilliant star of all mathematical sciences, the illustrious Lagrangia, had left the Nation, that

Spirit wanted to have the rise of another star, which being born on the banks of the river

Arno, was bound to become the successor of the first one. This consideration is presenting

itself even more spontaneous by when we will remark that Brunacci was the first admirer in

Italy of the luminous Lagrangian doctrines, the scientist who diffused and supported them,

the scientist who in his studies was always a very creative innovator in their applications.

His first Maestri were two famous Italians, Father Canovai and the great geometer Pietro

Paoli ”

We remark that here Piola refers to Lagrange by his true and original Italian name, Lagrangia,

that he refers to Italy as a unique cultural entity, that he deemed to exist the “Spirit of Italy”,

that he refers to as Italians two scientists who were Professors in Pisa (outside the Kingdom of

Lombardy–Venetia, where Piola lived and worked) .

• “It is not licit for me neglecting to indicate another subject in which -with honored efforts- our

professor distinguished himself. The Journal of Physical Chemistry of Pavia was illustrated

in many of his pages by his erudite pen; I will content myself to indicate here three Memoirs

where he examines the doctrine of capillary attraction of Monsieur Laplace, comparing it

with that of Pessuti and where, with his usual frankness which is originated by his being

persuaded of how well-founded was his case, he proves with his firm reasonings, whatever

it is said by the French geometers, some propositions which are of great praise for the

mentioned Italian geometer.”

For the purposes of this paper, we note that Piola remarked that Brunacci gave in these

memoirs of the Journal of Physical Chemistry, the role of the champion of Italian science to the

Italian Pesutti as counterposed to the french geometer M. Laplace.

Brunacci greatly influenced Piola’s scientific formation and rigorously cultivated his ingenious
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spirit, as Piola himself recognized in many places of his works. Piola was initiated by Brunacci

to Mathematical Analysis but was immediately attracted -since his first original creations- to

Mathematical Physics, which he based on the Principle of Virtual Velocities (as Lagrange called

what has been later called the Principle of Virtual Work)

Actually the aim of the whole scientific activity of Gabrio Piola has been to demonstrate that

such a Principle can be considered the basis of the Postulation of every Mechanical Theory, see e.g.

the papers [11], [12], [13], [14], [15], [16], [33], [34], [75], [76] for the inclusion of the dissipative effects.

Indeed he developed -by using the Lagrangian Postulation- modern continuum mechanics, being

-to our knowledge- the first author who introduced the dual in power of the gradient of velocity in

the referential description of a continuous body. The coefficients of what will be recognized to be

a distribution in the modern sense (as defined by Schwartz) were to be identified later, after the

revolutionary theories introduced by Ricci and Levi-Civita, as a double tensor, the Piola stress

tensor.

Some of the results presented in Piola’s works (e.g. those concerning continua the strain energy

of which depends on higher gradients of the strain measures) can be regarded even nowadays as

among the most advanced available in the literature.

2.2 Piola’s works did not receive their due attention because they are

written in Italian.

It is clear that the strongest limiting factor to the full recognition of Piola’s contribution to Contin-

uum Mechanics must be found in his ”ideological” choice: the use of the Italian language. Moreover

he used a very elegant and erudite style which can be understood and appreciated only by a few

specialists and he did not care if his works would be translated into other languages (as later was

decided by Levi-Civita who -instead- cared to have some of his works translated into English and

who wrote directly some others in French (see the works by Ricci-Curbastro and Levi-Civita [64],

[65], [66], [104]).

It is clear that, in a historical period when all scientists of a given Nation were using their own

7



language in higher studies, when in every University the official spoken language was the National

one and where all textbooks, essays and scientific Memoirs were written in the mother language

of the authors, Piola could not accept to admit the inferiority of his own mother language and

decided to use it for publishing his works.

A well-founded conjecture about this linguistic choice can be advanced: although Piola was

surely fluent in French (he edited in Italian some works by Cauchy and cites long French excerpts

by Poisson) he decided (”per la gloria dell’Italia”) for the glory of Italy to use his mother language,

in an historical climate in which the Italian Nation was not yet the united and independent and

therefore was not able to self-determine its destiny. This was a patriotic choice which was repaid

by a nearly complete neglect of his contribution to mechanical science, exacerbated by the fact

that Italian authors seem to have underestimated his contributions (for a detailed analysis of this

point see [10]).

From a general point of view, the linguistic barriers often play a very puzzling role in the diffu-

sion of ideas and theories. As discussed in [105], [106] the diffusion of Hellenistic science actually

was slowed by the great barrier represented by the ignorance of the language used, but not stopped.

The information slowly flowed from East to West, and althought it needed some centuries, and in

the end, maybe translated into a Latin difficult to understand, still keeping Greek nomenclature

and terminology, this science managed to pollinate the Italian and European Renaissance; however,

the linguistic transfer corresponded to a nearly complete loss of the knowledge about the identity

of the scientists who had first formulated the ideas at the basis of the scientific revolution. Even

the true period of the appearance of the scientific method was finally postponed for more than a

millennium.

It has not to be considered astonishing, then, that the contribution of Piola still is permeating

the modern Continuum Mechanic literature, but is generally misunderstood, also by those who

know better his contributions.

Indeed linguistic barriers are very often insurmountable.
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2.3 The mathematics used by Piola in his mechanics treatises

The mathematics used by Piola is in every aspect modern, except in a very important point. Indeed

as Levi-Civita’s absolute calculus was invented many years later, Piola’s presentation proceeds

firmly and rigorously but encumbered by a very heavy component-wise notation, which in the eyes

of a modern mechanician conveys an undeserved appearance of primitiveness. The reader should

not believe that Piola would refuse (as some mechanicians still do!) to use the powerful tools given

to us by Levi-Civita. Indeed -again as proven in the eulogy he wrote for honoring his ”Maestro”

Vincenzo Brunacci- Gabrio Piola knew how important are the choice of the right notation and the

conceptual tools for the advancement of science. Furthermore, he calls ”obscurantists” those who

refused the nominalistic and conceptual improvements introduced by Lagrange in Mathematical

Analysis.

Unfortunately Piola did not have available to him the tool he needed to progress more quickly in

his research. It is astonishing to discover how many results he managed to obtain notwithstanding

this limitation.

3 Non-Local Continuum Theories in Piola’s works

In the work by Piola [Piola, 1845-6] the homogenized theory which is deduced by means of the

identification of powers in the discrete micro-model and in the continuous macro-model can be

called (in the language used by Eringen [46], [48]) a non-local theory. Also some Italian authors

(see e.g. [99]), who contributed to the field with important papers, seem not to give explicit

recognition that they were reformulating (and extending) the results already found by Piola.

In Appendix A we translate those parts of Piola’s work which are most relevant in the present

context and in this section we translate into modern symbols the formulas which the reader may

find in such an appendix in their original form. Moreover, we will recall in a less suggestive, but

more direct and modern, language the statements made by Piola.

It is our opinion that some of Piola’s arguments can compete in depth and generality, even
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nowadays, with those which can be found in some of the most advanced modern presentations.

Postponing the analysis of Piola’s homogeneization process to a subsequent investigation, we limit

ourselves here to describe the continuum model which he deduces from the Principle of Virtual

Velocities for a discrete mechanical system constituted by a finite set of molecules, which he con-

siders to be (or, because of his controversy with Poisson, he must accept as) the most fundamental

Principle in his Postulation process.

In Piola [Piola, 1845-6] (Capo I, pag. 8) the reference configuration of the considered deformable

body is introduced by labelling each material particle with the three Cartesian coordinates (a, b, c) .

It is suggestive to remark that the same notation is used in Hellinger [59], see e.g., pag.605. We

will denote by the symbol X the position occupied by each of the considered material particles in

the reference configuration. The placement of the body is then described by the set of three scalar

functions (Capo I, pag.8 and then pages 11-14)

x (a, b, c) , y (a, b, c) , z (a, b, c)

which, by using a compact notation, we will denote with the symbol χ mapping any point in the

reference configuration into its position in the actual one.

3.1 Piola’s non-local internal interactions

In Capo VI, on page 149 Piola introduces:

“the quantity ρ (equations (3),(5), (6)) has the value given by the equation

ρ2 = [x (a+ f, b+ g, c+ k)− x (a, b, c)]
2

+ [y (a+ f, b+ g, c+ k)− y (a, b, c)]
2

(8)

+ [z (a+ f, b+ g, c+ k)− z (a, b, c)]
2
.

”
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So by denoting with the symbol X̄ the particle labelled by Piola with the coordinates (a + f ,

b+ g, c+ k) we have, in modern notation, that

ρ2(X, X̄) =
∥∥χ(X̄)− χ(X)

∥∥2
. (8bis)

In Capo VI on page 150 we read the following expression for the internal work, relative to a virtual

displacement δχ, followed by a very clear remark:

“

∫
da

∫
db

∫
dc

∫
df

∫
dg

∫
dk · 1

2
Kδρ (10)

[...] In it the integration limits for the variables f, g, k will depend on the surfaces which bound

the body in the antecedent configuration, and also on the position of the molecule m, which is

kept constant, that is by the variables a, b, c which after the first three will also vary in the same

domain.”

Here the scalar quantity K is introduced as the intensity of the force (see the page 147 of the

translated part of [Piola, 1845-6] in Appendix A) exerted by the particle X̄ on the particle X and

the 1
2 is present as the action reaction principle holds. The quantity K is assumed to depend on

X̄,X and ρ and manifestly it is measured in
[
N (m)

−6
]

(SI Units). In the number 72 starting on

page 150 (translated completely in the appendix A) Piola discusses the physical meaning of this

scalar quantity and consequently establishes some restrictions on the constitutive equations which

have to be assigned to it. Indeed he refrains from any effort to obtain for it an expression in terms

of microscopic quantities and limits himself to require its objectivity by assuming its dependence

on ρ, an assumption which will have in the sequel some important consequences. Moreover he

argues that if one wants to deal with continua more general than fluids (for a discussion of this

point one can have a look on the recent paper [5]) then it may depend (in a symmetric way) also
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on the Lagrangian coordinates of both X̄ and X : therefore

K(X̄,X, ρ) = K(X, X̄, ρ).

On Page 151,152 we then read some statements which cannot be rendered clearer:

“As a consequence of what was were said up to now we can, by adding up the two integrals (1),

(10), and by replacing the obtained sum in the first two parts of the general equation (1) num◦.16.,

formulate the equation which includes the whole molecular mechanics. Before doing so we will

remark that it is convenient to introduce the following definition

Λ =
1

4

K

ρ
(11)

by means of which it will be possible to introduce the quantity Λδρ2 instead of the quantity 1
2Kδρ

in the sextuple integral (10); and that inside this sextuple integral it is suitable to isolate the part

relative to the triple integral relative to the variables f, g, k, placing it under the same sign of triple

integral with respect to the variables a, b, c which includes the first part of the equation: which is

manifestly allowed. In this way the aforementioned general equation becomes

∫
da

∫
db

∫
dc ·

{(
X − d2x

dt2

)
δx+

(
Y − d2y

dt2

)
δy +

(
Z − d2z

dt2

)
δz

+

∫
df

∫
dg

∫
dk · Λδρ2

}
+ Ω = 0 (12)

where it is intended that (as mentioned at the beginning of the num◦.71.) it is included in the

Ω the whole part which may be introduced because of the forces applied to surfaces, lines or

well-determined points and also because of particular conditions which may oblige some points to

belong to some given curve or surface. ”

Piola is aware of the technical difficulty which he could be obliged to confront in order to

calculate the first variation of a square root: as he knows that these difficulties have no physical
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counterparts, instead of K he introduces another constitutive quantity Λ which is the dual in work

of the variation δρ2.

Remark 1 Boundedness and attenuation assumptions on K and Λ. Note that Piola ex-

plicitly assumes the summability of the function Λδρ2 = 1
4
K
ρ δρ

2 = 1
2Kδρ and the boundedness of

the function K. As a consequence when ρ is increasing then Λ decreases.

Remark 2 Objectivity of Virtual Work. Note that δρ2 and Λ(X, X̄, ρ) are invariant (see

[127]) under any change of observer and as Piola had repeadedly remarked, see e.g. Capo IV,

num.48, page 86-87, the expression for virtual work has to verify this condition. Remark also that,

as the work is a scalar, in this point Piola’s reasoning is rendered difficult by his ignorance of

Levi-Civita’s tensor calculus. In another formalism the previous formula can be written as follows

∫
B

[(bm(X)− a(X)) δχ(X) +

(∫
B

Λ(X, X̄, ρ)δρ2µ(X̄)dX̄

)
]µ(X)dX + δW (∂B) = 0 (12bis)

where B is the considered body, ∂B its boundary, µ is the volume mass density, bm(X) is the

(volumic) mass specific externally applied density of force, a(X) the acceleration of material point

X, and δW (∂B) the work expended on the virtual displacement by actions on the boundary ∂B and

eventually the first variations of the equations expressing the applied constraints on that boundary

times the corresponding Lagrange multipliers.

In Eringen [48], [46], [47], the non-local continuum mechanics is founded on a Postulation based

on Principles of balance of mass, linear and angular momenta, energy and entropy. However in

[47] a chapter on variational principles is presented.

One can easily recognize by comparing, for example, the presentation in [47] with (12bis) that

in the works by Piola the functional

(∫
B

Λ(X, X̄, ρ)δρ2µ(X̄)dX̄

)
(N1)

is assumed to satisfy a slightly generalized version of what in [47] pag. 34 is called the
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Smooth Neighborhood Hypothesis

which reads (in Eringen’s work the symbol V is used with the same meaning as our symbol B,

X ′ instead of X̄, x instead of χ, t′ denotes a time instant, the symbol () ,Ki denotes the partial

derivatives with respect to Ki − th coordinate of X, and is assumed the convention of sums over

repeated indices) as follows:

“Suppose that in a region V0 ⊂ V, appropriate to each material body, the independent variables

admit Taylor series expansions in X ′−X in V0 [...] terminating with gradients of order P,Q, etc.,

x(X ′, t′) = x(t′) +
(
X ′K1

−XK1

)
x,K1

(t′)

+ ...+
1

P !

(
X ′K1

−XK1

)
....
(
X ′KP −XKP

)
x,K1...KP (t′),

and [...]. If the response functionals are sufficiently smooth so that they can be approximated by

the functionals in the field of real functions

x(t′), x,K1 (t′), ...., x,K1...KP (t′), (3.1.6)

[...]

we say that the material at X [...] satisfies a smooth neighborhood hypothesis. Materials of this

type, for P > 1, Q > 1 are called nonsimple materials of gradient type.”

Actually Piola is not truncating the series and keeps calculating the integrals on the whole

body B. Although no explicit mention can be found in the text of Piola, because of the arguments

presented in remark 1, it is clear that he uses a weaker form of the Attenuating Neighborhood

Hypotheses stated on page 34 of [47].

To be persuaded of this statement the reader will need to proceed to the next section.

To conclude this section we need to remark (see Appendix C) that in very recent times, as a

karstic river, the ideas of Piola are back on the stage of Continuum Mechanics.

The idea of an internal interaction which does not fall in the framework of Cauchy continuum

mechanics is again attracting the attention of many researchers. Following Piola’s original ideas
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modern ”peridynamics”2 assumes that the force applied on a material particle of a continuum

actually depends on the deformation state of a whole neighbourhood of the particle.

3.2 An explicit calculation of the Strong Form of the Variational Prin-

ciple (12bis).

A more detailed discussion about the eventual novelties contained in the formulation of peridy-

namics when compared with e.g. Eringen’s non-local continuum mechanics is postponed to further

investigations. In this section we limit ourselves to compute explicitly the Euler-Lagrange equation

corresponding to the Variational Principle (12bis). To this end we need to treat algebraically the

expression

∫
B

(∫
B

Λ(X, X̄, ρ)δρ2µ(X̄)dX̄

)
µ(X)dX (N2)

by calculating explicitly

δρ2 = δ

(
3∑
i=1

(
χi(X̄)− χi(X)

) (
χi(X̄)− χi(X)

))

With simple calculations we obtain that (Einstein convention is applied from now on)

δρ2 =
(
2
(
χi(X̄)− χi(X)

) (
δχi(X̄)− δχi(X)

))
which once placed in (N2) produces

∫
B

∫
B

(
2Λ(X, X̄, ρ)µ(X̄)µ(X)

(
χi(X̄)− χi(X)

)) (
δχi(X̄)− δχi(X)

)
dX̄dX =

=
1

2

(∫
B
f i(X̄)δχi(X̄)dX̄ +

∫
B
f i(X)δχi(X)dX,

)
2We remark that (luckily!) the habit of inventing new names (alhough sometimes the related concepts are not

so novel) is not lost in modern science (see [106] for a discussion of the importance of this attitude in science) and
that the tradition of using Greek roots for inventing new names is still alive.
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where we have introduced the internal interaction force (recall that Piola, and we agree with his

considerations as presented in his num.72 on pages 150-151, assumes that Λ(X, X̄, ρ) = Λ(X̄,X, ρ))

by means of the definition

f i(X̄) :=

∫
B

(
4Λ(X, X̄, ρ)µ(X̄)µ(X)

(
χi(X̄)− χi(X)

))
dX

By a standard localization argument one easily gets that (12bis) implies

ai(X) = bim(X) + f i(X) (N3)

which (see also Appendix C) is exactly the starting point of modern ”peridynamics”.

Many non-local continuum theories were formulated since the first formulation by Piola: we

cite here for instance [46], [47], [48], [123]. Remarkable also are the following more modern papers

[26], [27], [31], [35], [38], [39], [63], [111], [121], [133], [134], [136].

The non-local interaction described by the integral operators introduced in the present subsec-

tions are not to be considered exclusively as interactions of a mechanical nature: indeed recently a

model of biologically driven tissue growth has been introduced (see e.g. [3], [72], [73]) where such

a non-local operator is conceived to model the biological stimulus to growth.

3.3 Piola’s higher gradient continua

The state of deformation of a continuum in the neighbourhood of one of its material points can be

approximated by means of the Green deformation measure and of all its derivatives with respect

to Lagrangian referential coordinates. Piola never considers the particular case of linearized de-

formation measures (which is physically rather unnatural): his spirit has been recovered in many

modern works, among which we cite [122], [128].

Indeed in Capo VI, on page 152, Piola develops in Taylor series δρ2 (also by using his regularity

assumptions about the function Λ(X, X̄, ρ) and the definition (11)) and replaces the obtained

development in (N1).
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In a more modern notation (see Appendix A for the word by word translation) starting from

χi(X̄)− χi(X) =

∞∑
N=1

1

N !

(
∂Nχi(X)

∂Xi1 ....∂XiN

(X̄i1 −Xi1)....(X̄iN −XiN )

)

Piola gets an expression for the Taylor expansion with respect to the variable X̄ of center X for

the function,

ρ2(X̄,X) =
(
χi(X̄)− χi(X)

) (
χi(X̄)− χi(X)

)
He estimates and explicitly writes first, second and third derivatives of ρ2 with respect to the

variable X̄. This is what we will do in the sequel, repeating his algebraic procedure with the only

difference consisting in the use of Levi-Civita tensor notation.

We start with the first derivative

1

2

∂ρ2(X̄,X)

∂X̄α
=
(
χi(X̄)− χi(X)

) ∂χi(X̄)

∂X̄α
(N4)

We remark that when X̄ = X this derivative vanishes. Therefore the first tem of Taylor series for

ρ2 vanishes. We now proceed by calculating the second and third order derivatives :

1

2

∂2ρ2(X̄,X)

∂X̄α∂X̄β
=
∂χi(X̄)

∂X̄β

∂χi(X̄)

∂X̄α
+
(
χi(X̄)− χi(X)

) ∂2χi(X̄)

∂X̄α∂X̄β
=

=: Cαβ(X̄) +
(
χi(X̄)− χi(X)

) ∂2χi(X̄)

∂X̄α∂X̄β
;

1

2

∂3ρ2(X̄,X)

∂X̄α∂X̄β∂X̄γ
=
∂Cαβ(X̄)

∂X̄γ
+
∂χi(X̄)

∂X̄γ

∂2χi(X̄)

∂X̄α∂X̄β
+
(
χi(X̄)− χi(X)

) ∂3χi(X̄)

∂X̄α∂X̄β∂X̄γ
(N5)

The quantities of this last equation are exactly those described in [Piola, 1845-6] on page 157

concerning the quantities appearing in formulas (14) on page 153.

We now introduce the result (formula (N12)) found in Appendix D (in order to remain closer

17



to Piola’s presentation we refrain here from using Levi-Civita alternating symbol)

Fiγ
∂2χi

∂Xα∂Xβ
=

1

2

(
∂Cαγ
∂Xβ

+
∂Cβγ
∂Xα

− ∂Cβα
∂Xγ

)

so that by replacing in (N5) we get

1

2

∂3ρ2(X̄,X)

∂X̄α∂X̄β∂X̄γ
=

1

2

(
∂Cαγ
∂Xβ

+
∂Cβγ
∂Xα

+
∂Cβα
∂Xγ

)
+
(
χi(X̄)− χi(X)

) ∂3χi(X̄)

∂X̄α∂X̄β∂X̄γ
(N6)

so that when X̄ = X we get that the third order derivatives of ρ2 can be expressed in terms of

the first derivatives of Cγβ .

Now we go back to read in Capo VI n.73 page 152-153:

“ 73. What remains to be done in order to deduce useful consequences from the equation (12)

is simply a calculation process. Once recalled the equation (8), it is seen, transforming into series

the functions in the brackets, so that one has

ρ2 =

(
f
dx

da
+ g

dx

db
+ k

dx

dc
+
f 2

2

d2x

da2
+ ec.

)2

+

(
f
dy

da
+ g

dy

db
+ k

dy

dc
+
f 2

2

d2y

da2
+ ec.

)2

+

(
f
dz

da
+ g

dz

db
+ k

dz

dc
+
f 2

2

d2z

da2
+ ec.

)2

;

and by calculating the squares and gathering the terms which have equal coefficients:

ρ2 = f 2t1 + g 2t2 + k 2t3 + 2fgt4 + 2fkt5 + 2gkt6

+ f 3T1 + 2f 2gT2 + 2f 2kT3 + f g2T4 + ec. (13)

in which expression the quantities t1, t2, t3, t4, t5, t6 represent the six trimonials which are alreay
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familiar to us, as we have adopted such denominations since the equations (6) in the num◦.34.; and

the quantities T1, T2, T3, T4, ec. where the index goes to infinity, represent trinomials of the same

nature in which derivatives of higher and higher order appear. ”

Then the presentation of Piola continues with the study of the algebraic structure of the trino-

mial constituting the quantities T1, T2, T3, as shown by the formulas appearing in Capo VI, n.73

on pages 153-160. The reader will painfully recognize that these huge component-wise formulas

actually have the same structure which becomes easily evident in formula N6 and in all formulas

deduced, with Levi-Civita Tensor Calculus, in Appendices D and E.

What Piola manages to recognize (also with a courageous conjecture, see Appendices D and E)

is that in the expression of Virtual Work all the quantities which undergo infinitesimal variation

(which are naturally to be chosen as ”measures of deformation” ) are indeed either components of

the deformation measure C or components of one of its gradients.

Indeed in the num.74 page 156 one reads:

“74. A new proposition, to which the reader should pay much attention, is that all the trinomials

T1, T2, T3, etc. where the index goes to infinity , which appear in the previous equation (17), can be

expresses by means of the only first six t1, t2, t3, t4, t5, t6, and of their derivatives with respect to

the variables a, b, c of all orders. I started to suspect this analytical truth because of the necessary

correspondence which must hold between the results which are obtained with the way considered

in this Capo and those results obtained with the way considered in the Capos III and IV. ”

This statement is true and its importance is perfectly clear to Piola: for a discussion of the

mathematical rigor of his proof the reader is referred to the Appendix E.

In order to transform the integral expression (N1)

(∫
B

Λ(X, X̄, ρ)δρ2(X, X̄)µ(X̄)dX̄

)

Piola remarks that (pages 155-156)

“When using the equation (13) to deduce the value of the variation δρ2 , it is clear that the

characteristic δ will need to be applied only to the trinomials we have discussed up to now, so that
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we will have:

δρ2 = f 2δt1 + g 2δt2 + k 2δt3 + 2fg δt4 + 2fk δt5 + 2gk δt6

+ f 3δT1 + 2f 2gδT2 + 2f 2kδT3 + f g2δT4 + ec. (16)

Indeed the coefficients f 2, g 2, k 2, 2fg, etc. are always of the same form as the functions giving

the variables x, y, z in terms of the variables a, b, c, and therefore cannot be affected by that

operation whose aim is simply to change the form of these functions. Vice versa, by multiplying

the previous equation (16) times Λ and then integrating with respect to the variables f, g, k in order

to deduce from such calculation the value to be given to the forth term under the triple integral

of the equation (12), such an operation is affecting only the quantities Λf 2,Λg 2, etc. and the

variations δt1, δt2, δt3....δT1, δT2, ec. cannot be affected by it, as the trinomials t1, t2, t3....T1, T2, ec.

(one has to consider carefully which is their origin) do not contain the variables f, g, k : therefore

such variations result to be constant factors, times which are to be multiplied the integrals to be

calculated in the subsequent terms of the series. ”

Using a modern notation we have that

ρ2(X̄,X) =

∞∑
N=1

1

N !

∂Nρ2(X̄,X)

∂X̄i1 ....∂X̄iN

∣∣∣∣
X=X̄

(X̄i1 −Xi1)....(X̄iN −XiN )

and therefore that

δρ2(X̄,X) =

∞∑
N=1

1

N !

(
δ
∂Nρ2(X̄,X)

∂X̄i1 ....∂X̄iN

∣∣∣∣
X=X̄

)
(X̄i1 −Xi1)....(X̄iN −XiN ).
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As a consequence

∫
B

Λ(X, X̄, ρ)δρ2(X̄,X)µ(X̄)dX̄ =

=

∞∑
N=1

1

N !

(
δ
∂Nρ2(X̄,X)

∂X̄i1 ....∂X̄iN

∣∣∣∣
X=X̄

)(∫
B

Λ(X, X̄, ρ)
(
(X̄i1 −Xi1)....(X̄iN −XiN )

)
µ(X̄)dX̄

)

If we introduce the tensors

T i1...iN. (X) :=

(∫
B

Λ(X, X̄, ρ)
(
(X̄i1 −Xi1)....(X̄iN −XiN )

)
µ(X̄)dX̄

)

we get, also by recalling formula (N18) from Appendix E,

∫
B

Λ(X, X̄, ρ)δρ2(X̄,X)µ(X̄)dX̄ =

∞∑
N=1

1

N !

(
δLα1....αn

(
C(X), ..,∇n−2C(X)

))
T i1...iN. (X)

Piola states that

“After these considerations it is manifest the truth of the equation:

∫
df

∫
dg

∫
dk · Λδρ2 = (17)

(1) δt1 + (2) δt2 + (3) δt3 + (4) δt4 + (5) δt5 + (6) δt6

+ (7) δT1 + (8) δT2 + (9) δT3 + (10) δT4 + ec.

where the coefficients (1), (2), etc. indicated by means of numbers in between brackets, must be

regarded to be each a function of the variables a, b, c as obtained after having performed the said

definite integrals. ”

In order to establish the correct identification between Piola’s notation and the more mod-

ern notation which we have introduced the reader may simply consider the following table (i =
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1, 2, ....n, ....)

T i1...iN. � (1), (2), ec. δLα1....αn

(
C, ..,∇n−2C

)
� δTi .

After having accepted Piola’s assumptions the identity (12bis) becomes

∫
B

(
(bm(X)− a(X)) δχ(X) +

∞∑
N=1

1

N !

(
δLα1....αn

(
C(X), ..,∇n−2C(X)

))
T i1...iN. (X)

)
µ(X)dX

+ δW (∂B) = 0

By a simple re-arrangement and by introducing a suitable notation the last formula becomes

∫
B

(
(bm(X)− a(X)) δχ(X) +

∞∑
N=1

〈
∇NδC(X)|S.(X)

〉)
µ(X)dX + δW (∂B) = 0 (12tris)

where S is a N − th order contravariant totally symmetric tensor3 and the symbol 〈|〉 denotes the

total saturation (inner product) of a pair of totally symmetric contravariant and covariant tensors.

Indeed on pages 159-160 of [Piola, 1845-6] we read

“75. Once the proposition of the previous num. has been admitted, it is manifest that the

equation (17) can assume the following other form

∫
df

∫
dg

∫
dk · Λδρ2 = (18)

(α) δt1 + (β) δt2 + (γ) δt3 + ....+ (ε)
δdt

1

da
+ (ζ)

δdt
1

db
+ (η)

δdt
1

dc

+ (ϑ)
δdt

2

da
+ ....+ (λ)

δd2t
1

da2
+ (µ)

δd2t
1

dadb
+ ....+ (ξ)

δd2t
2

da2
+ (o)

δd2t
2

dadb
+ ec.

in which the coefficients (α) , (β) .... (ε) .... (λ) ....ec. are suitable quantities given in terms of the

3The constitutive equations for such tensors must verify the condition of frame invariance. When these tensors
are defined in terms of a deformation energy (that is when the Principle of Virtual Work is obtained as the first
variation of a Least Action Principle) the objectivity becomes a restriction on such an energy. The generalization
of the results in Steigmann (2003) to the N-the gradient continua still needs to be found.
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coefficients (1) , (2) .... (7) , (8) .... of the equation (17): they depend on the quantities t1, t2....t6, and

on all order derivatives of these trinomials with respect to the variables a, b, c . Then the variations

δt1, δt2....(with the index varying up to infinity) and the variations of all their derivatives of all

orders
δdt

1

da ,
δdt

1

db , ec. appear in the (18) only linearly ”

4 Weak and Strong Evolution Equations for Piola Continua

To our knowledge a formulation of the Principle of Virtual Work for N−th gradient Piola Continua

equivalent to (12tris) is found in the literature only in [32], but the authors were unaware of the

previous work of Piola.

The reader is referred to the aforementioned paper for the detailed presentation of the needed

Postulation process and the subsequent procedure of integration by parts needed for transforming

the weak formulation of evolution equations given by (12tris) into a strong formulation in which

suitable bulk equations and the corresponding boundary conditions are considered.

We shortly comment here about the relative role of Weak and Strong formulations, framing it

in a historical perspective.

Since at least the pioneering works by Lagrange the Postulation process for Mechanical Theories

was based on the Least Action Principle or on the Principle of Virtual Work.

One can call ”Variational” both these Principles as the Stationarity Condition for Least Action

requires that for all admissible variations of motion the first variation of Action must vanish,

statement which, as already recognized by Lagrange him-self, implies a form of the Principle of

Virtual Work.

However in order to ”compute” the motions relative to given initial data the initiators of

Physical Theories needed to integrate by parts the Stationarity Condition which they had to

handle.

In this way they derived some PDEs with some boundary conditions which sometimes were

solved by using analytical or semi-analytical methods.

From the mathematical point of view this procedure is applicable when the searched solution
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have a stronger regularity than the one strictly needed to formulate the basic variational principle.

It is a rather ironic circumstance that nowadays very often those mathematicians who want to

prove well-posedness theorems for PDEs (which originally were obtained by means of an integration

by part procedure) start their reasonings by applying in the reverse direction the same integration

by parts process: indeed very often the originating variational principle of all PDEs is forgotten.

Some examples of mathematical results which exploit in an efficient way the power of variational

methods are those presented for instance in Neff [89], [91], [92].

Actually even if one refuses to accept the idea of basing all physical theories on variational

principles, he is indeed obliged, in order to find the correct mathematical frame for his models, to

”prove” the validity of a weak form appliable to his painfully formulated balance laws. In reality

(see [29]) his model will not be acceptable until he has been able to reformulate it in a ”weak”

form.

It seems that the process which occurred in mathematical geography, described in Russo [105]-

[106], occurs very frequently in science. While the reader is referred to the cited works for all

details, we recall here the crucial point of Russo’s argument, as needed for our considerations.

Ptolemy presented in his Almagest a useful tool for astronomical calculations: actually his Handy

Tables tabulate all the data needed to compute the positions of the Sun, Moon and planets, the

rising and setting of the stars, and eclipses of the Sun and Moon. The main calculation tools in

Ptolemy’s treatise are the deferents and epicycles, which were introduced by Apollonius of Perga

and Hipparchus of Rhodes in the framework of astronomic theories much more advanced than the

one formulated by Ptolemy (if Russo’s conjecture is true). Unfortunately Ptolomy misunderstood

the most ancient (and much deeper) theories and badly re-organized the knowledges, observations

and theories presented in the treatise by Hipparchus (treatise which has been lost): indeed Ptolemy

being ”a practical scientist” gives a too high importance to ”the calculation tools” by blurring in

a list of logical incongruences the rigorous and deep (and eliocentric!) theories formulated by

Hipparchus four centuries before him. Actually in Ptolemy’s vision the calculation tools become

the fundamental ingredients of the mathematical model which he presents.
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This seems to have occurred also in Continuum Mechanics: the Euler-Lagrange equations,

obtained by means of a process of integration by parts, were originally written, starting from

a variational principle, to supply a ”calculation tool” to applied scientists. They soon became

(for simplifying) the ”bulk” of the theories and often the originating variational principles were

forgotten (or despised as too ”mathematical”). For a period balance equations were (with some

difficulties which are discussed e.g. in [29]) postulated ”on physical grounds”.

When the need of proving rigorous existence and uniqueness theorems met the need of de-

veloping suitable numerical methods, and when the many failures of the finite difference schemes

became evident, the variational principles were re-discovered starting from the balance equations.

The variational principles represent at first the starting point of mechanical theories and were

used to get, by means of algebraic manipulation, some tools for performing ”practical calculations”:

i.e., the associated Euler-Lagrange equations or (using another name) balance equations. However,

with a strange exchange of roles, if their basic role is forgotten and balance equations are regarded

as the basic principles from which one has to start the formulation of the theories, then variational

principles need to be recovered as a computational tool.

One question needs to be answered: why in the modern paper [32] a strong formulation was

searched of the evolution equation for N − th gradient continua? The answer is: beacause of the

need of finding for those theories the most suitable boundary conditions !

This point is discussed also in [Piola, 1845-6] as remarked already in [5].

[Piola, 1845-6] on pages 160-161 claims that

“Now it is a fundamental principle of the calculus of variations (and we used it also in this

Memoir in the num.◦ 36. and elsewhere) that one series as the previous one, where the variations

of some quantities and the variations of their derivatives with respect to the fundamental variables

a, b, c appear linearly can be always be transformed into one expression which containes the first

quantities without any sign of derivation, with the addition of other terms which are exact deriva-

tives with respect to one of the three simple independent variables. As a consequence of such a

principle, the expression which follows to the equation (18) can be given
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∫
df

∫
dg

∫
dk · Λδρ2 = (19)

Aδt1 +B δt2 + C δt3 +Dδt4 + Eδt5 + F δt6

+
d∆

da
+
dΘ

db
+
dΥ

dc
.

The values of the six coefficients A,B,C,D,E, F are series constructed with the coefficients

(α) , (β) , (γ) .... (ε) , (ζ) .... (λ) , ec. of the equation (18) which appear linearly, with alternating signs

and affected by derivations of higher and higher order when we move ahead in the terms of said

series: the quantities ∆,Θ,Υ are series of the same form of the terms which are transformed,

in which the coefficients of the variations have a composition similar to the one which we have

described for the six coefficients A,B,C,D,E, F .

Once -instead of the quantity under the integral sign in the left hand side of the equation

(12)- one introduces the quantity which is on the right hand side of the equation (19), it is clear

to everybody that an integration is possible for each of the last three addends appearing in it

and that as a consequence these terms only give quantities which supply boundary conditions.

What remains under the triple integral is the only sestinomial which is absolutely similar to the

sestinomial already used in the equation (10) num.◦ 35. for rigid systems. Therefore after having

remarked the aforementioned similarity the analytical procedure to be used here will result perfectly

equal to the one used in the num.◦ 35, procedure which led to the equations (26), (29) in the num.◦

38 and it will become possible the demonstration of the extension of the said equations to every

kind of bodies which do not respect the constraint of rigidity, as it was mentioned at the end of

the num.◦ 38. It will also be visible the coincidence of the obtained results with those which are

expressed in the equations (23) of the num.◦50. which hold for every kind of systems and which

were shown in the Capo IV by means of those intermediate coordinates p, q, r, whose consideration,

when using the approach used in this Capo, will not be needed.”
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The novel content in [32] consists in the determination of

• the exact structure of the tensorial quantity whose components are called A,B,C,D,E, F

by [Piola, 1845-6]

• the exact structure of the boundary conditions resulting when applying Gauss’ theorem to

the divergence field called by [Piola, 1845-6]

d∆

da
+
dΘ

db
+
dΥ

dc

on a suitable class of contact surfaces.

The considerations sketched about the history of celestial mechanics should persuade the reader

that it is not too unlikely that some ideas by Piola needed 167 years for being further developed

(even if the fact that the authors did not manage to find any intermediate reference does not mean

that such a reference does not exist, maybe in a language even less understandable than Italian).

Earlier papers (nowadays considered fundamental) by Mindlin [79], [80], [81], [107], [108] had

developed a more complete study of Piola Continua, at least up to those whose deformation

energy depends on the Third Gradient, completely characterizing the nature of contact actions in

these cases, or for continua having a kinematics richer than that considered by Piola, including

microdeformations and micro-rotations.

Many important applications can be conceived for higher gradient materials, as for instance

those involving the phenomena described for instance in [1], [27], [30], [51], [71], [72], [103], [112],

[113], [114], [115], [116], [117], [118], [119], [141], [142], [143], [144].

5 One- and Two-dimensional Continua and Micro-Macro

identification procedure as introduced by Piola (1845-6)

On page 19 Piola justifies the introduction of one-dimensional or two-dimensional bodies as follows
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“11. Sometimes mathematicians are used to consider the matter configured not in a volume

with three dimensions but [configured] in a line or in a surface: in these cases we have the so called

linear or surface systems. Indeed [these systems] are nothing else than abstractions and it is just

for this reason that the Geometer should pay the major attention to three dimensional systems.

Nevertheless, it is useful to consider [these systems] because the several analyses for the three kind

of systems provide feedbacks that make clear [such analyses], and moreover [such analyses] are

useful for physical applications, eventhough always in an approximate way, because the bodies,

rigorously speaking, being never deprived in Nature of one or two dimensions.

Although for both linear and surface systems we need special considerations in order to represent

the distribution of the molecules, and [in order] to form the idea of the density and the measure of

the mass, yet [the idea and the measure] are at all similar to the above referred for three dimensional

systems: thus, I will expound them shortly. ”

On page 39 num. 24 and on page 46 num. 29 of [Piola, 1845-6] is studied the structure of the

Principle of Virtual Work in the case in which one or two dimensions of the considered body can

be neglected in the description of its motion.

Piola uses these parts to prepare the reader for the micro-macro identification process for

three-dimensional bodies which he will study later in full detail.

This identification process

• starts from a discrete system of material particles which are placed in a reference configuration

at the nodes of a suitably introduced mesh,

• proceeds with the introduction of a suitable placement field χ having all the needed regularity

properties

• assumes that the values of χ at the aforementioned nodes can be considered an approximation

of the displacements of the discrete system of material particles

• and is based on the identification of Virtual Work expressions in the discrete and continuous

models.

28



While the detailed description of aforementioned identification (see [1], [4], [58]) process is

postponed to further studies, we want here to remark that non-local and higher gradient theories

for beams and shells are already implicitly formulated in [Piola, 1845-6], although the main subject

there is the study of three-dimensional bodies.

The authors have found interesting connections in this context with many of the subsequent

works and the most suggestive are those concerning the theory of shells and plates; namely, [42],

[43], [44], [45], [70], [97], where interesting phenomena involving phase transition are considered,

or the papers by Neff [87], [88], [89], [90], [92], [93].

Moreover the methods started by Piola are used also when describing bidimensional surfaces

carrying material properties as for instance in [62], [77], [78], [98], [124], [125], [131], [132].

Also interesting analogies for what concerns the connections between discrete and continuous

models can be found with papers dealing with one-dimensional continua and their stability as for

instance [67] and [68], where are studied the dynamics of beams or chains of beams, [69], where the

non-linear equations for inextensible cables deduced by Piola are applied to very interesting special

motions, [126] where the case of prestressed networks is considered, [129]and [130], where the spirit

of Piola’s contribution is adapted to the context of spatial rods and the nonlinear theory for spatial

lattices. Concerning the micro-macro identification procedure in the recent literature one can find

many continuators of Piola’s works. Notable are the works [8], [9], [17] in which Piola continua are

obtained by means of homogenization procedures starting from lattice beam microstructures. It is

possible to cite also some studies which consider visco-elastic continuum theories with damage (see

[18], [19], [20], [23], [24]) for microscopically granular or discrete systems as for instance [82], [83],

[84], [85], [101], [102] or other studies of phenomena involving multiscale coupling (see e.g. [86]).
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6 A Conclusion: Piola as precursor of the Italian School of

Differential Geometry

The most important contribution of Gabrio Piola to mechanical sciences is the universally recog-

nized Piola transformation, which allows for the transformation of some equations in a conservative

form from Lagrangian to Eulerian description. The differential geometric content of this contri-

bution does not need to be discussed, as it has been treated in many works and textbooks: we

simply refer to [40] and to the references there cited for a detailed discussion of this point and more

considerations about the relationship between continuum mechanics and differential geometry (see

also [41]).

In the present paper we have shown that there are other major contributions to mechanics by

Gabrio Piola which have been underestimated: we also have tried a first analysis of the reasons

for which this circumstance occurred.

In this concluding section we want to remark that also those results by Piola which we have

described in the present paper have a strong connection with differential geometry (in this context

see also [109], [110]).

The readers is referred to the discussion about ”historical method” which was developped in

the Introduction: knowledge of the basic ideas of differential geometry is required to follow the

considerations which we present here. The criticism usually given to the kind of reconstructions

which we want to present is usually based on the following statement: the historian wanted to read

something which could not be written in such an early stage of knowledge.

We dismiss a priori this criticism on the basis of the following statements

• The inaugural lecture by Riemann dates to 1854 therefore Piola’s results are surely antecedent

but very close in time.

• Riemann is considered one of the founders of Riemannian geometry even if he did not write

any formula using the indicial notation developed by Ricci and Levi-Civita

• Riemannian tensor is named after Riemann even if there is no formal definition of the concept
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of tensor in Riemann’s works.

In his inaugural lecture Riemann discusses one of his main contributions to geometry: i.e. the

condition for which a Riemannian manifold is flat. This study (indirectly influenced by Gauss)

started a flow of investigations in which the Italian School has played a dominant role. We recall

here e.g. Ricci’s Lemma and Identities, the concept of Levi-Civita parallel transport and the Levi-

Civita Theorem about parallel transports compatible with a Riemannian structure. Also referring

to the Appendix F for substantiating our statement we claim that it was indeed Continuum Me-

chanics which originated Differential Geometry and that the Italian School in differential geometry

may have been originated in the works of Piola. Indeed in Appendix D we have proven that Piola

has obtained (component-wise, exactly in the same form in which Riemann obtained all his results)

the equation (N14),

Fiγ
∂2χi

∂Xα∂Xβ
=

1

2

(
∂Cαγ
∂Xβ

+
∂Cβγ
∂Xα

− ∂Cβα
∂Xγ

)
.

This equation is equivalent (see [135] vol.II page 184 ) to the Riemannian condition of flatness.

7 Appendices

7.1 Appendix A. Verbatim translation of excerptions from Piola (1845-

6).

In the following subsubsections, one page for each subsubsection, we translate from Italian to

English the page indicated in the respective title.

7.1.1 CAPO VI On the motion of a generic [deformable] body following the ideas of

the modern scientists about the molecular actions, page 146

At the beginning of the Capo IV it was said that there are two ways for taking into account -in the

general equation of the motion of a generic body- the effect of the constraints established among its
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molecules by internal forces A [first ] way which was introduced consisted in expressing such effects

by means of equations of condition, and therefore by means of the third part of the most general

equation (1) in the num◦.16. : this was the way which we used in the preceding two Chapters. A

second way consisted in considering -following the ideas of modern scientists- the molecular actions

by making use of the second part of the aforementioned equation (1), where are to be included all

the terms introduced by internal active forces: about this second way I will discuss now. This effort

will be performed also because we will see that the two different ways actually lead to the same

results at least for that part of the solution which is the most important and fundamental (and this

agreement is really very reassuring): on the other hand it has to be remarked that the two said

ways are completing each other, and one sheds light on the other so that what was complicated

and difficult in one way becomes easy in the other one.

7.1.2 Page 147

71. Recalling what was said in the numbers 31, 32 to show how, in the case of the systems having

three dimensions, the first part of the general equation (1) num◦.16., due to external forces, is

modified to be represented as follows:

∫
da

∫
db

∫
dc ·

{(
X − d2x

dt2

)
δx+ ec.

}
; (1)

we see now how it has to be modified the second part Smimj Kδρ , which is that one we want

to consider now, while at the same time in the third part we equate to zero all terms expressing

actions applied to all the mass [of considered body] and only retain those terms related to forces

concentrated on surfaces, lines and points.

This second part, once assuming that for each pair of molecules there is acting always an internal

force K, when the number of points is equal to n, when expressed explicitly can be represented as

follows:
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m
1
m

2
K

1,2
δρ

1,2
+m

1
m

3
K

1,3
δρ

1,3
+ .....+m

1
mnK1,nδρ1,n

+m
2
m

3
K

2,3
δρ

2,3
+ .....+m

2
mnK2,nδρ2,n (2)

...
...

+mn−1mn
Kn−1,nδρn−1,n

being in general:

ρi,j =

√
(xj − xi)2

+ (yj − yi)2
+ (zj − zi)2

. (3)

It can be however seen that the subsequent horizontal lines appearing in it , which one after another

have a lacking term with respect to the previous line, can be rewritten in such a way that all have

exactly n terms, by writing, at the place of the equation (2) the quantity

1

2
m1m1K1,1δρ1,1 +

1

2
m1m2K1,2δρ1,2 + .....+

1

2
m1mnK1,nδρ1,n

+
1

2
m

2
m

1
K

2,1
δρ

2,1
+

1

2
m

2
m

2
K

2,2
δρ

2,2
+ .....+

1

2
m

2
mnK2,nδρ2,n

...
... (4)

+
1

2
mim1

Ki,1δρi,1 +
1

2
mim2

Ki,2δρi,2 + .....+mimnKi,nδρi,n

...
...

+
1

2
mnm1Kn,1δρn,1 +

1

2
mnm2Kn,2δρn,2 + .....+

1

2
mnmnKn,nδρn,n.
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To recognize the equality of the two quantities (2), (4), it is enough to observe first that in the

second one the terms containing the variations
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δρ
1,1
, δρ

2,2
.....δρi,i.....δρn,n

are introduced only for maintaining the regularity in the progression of the indices, and it is as if

they where not present, as the radicals ρ1,1 , ρ2,2 ....ρn,n, and their variations are vanishing, as it is

manifest from the generic expression (3). Secondly it has to be observed that the remaining terms

can be pair-wise added: therefore the two terms 1
2m1

m
2
K

1,2
δρ

1,2
+ 1

2m2
m

1
K

2,1
δρ

2,1
are equivalent

to the following one m1m2K1,2δρ1,2 . Indeed it is clear that, because of (3) the quantity ρ1,2 equals

the quantity ρ
2,1

: and that the force K
1,2

equals the force K
2,1

, as it is implied by the Principle

of Action and Reaction and as it will become even clearer for what we will add about the way in

which the generic composition of the internal action K has to be understood. In a similar way the

two terms 1
2m1

m
3
K

1,3
δρ

1,3
+ 1

2m3
m

1
K

3,1
δρ

3,1
will gather into a single one m

1
m

3
K

1,3
δρ

1,3
; and

so on for the other terms. After all previous observations it is easy to persuade oneself that the

quantity (4) is equivalent to the shorter form given by (2).

Any whatsoever of the horizontal series which compose the quantity (4) can be reduced by

means of a triple summation. To be persuaded of the truth of this statement it is needed to recall

the idea of the previously introduced disposition of the molecules by means of the coordinates a, b, c

which allows us to represent the coordinates of the generic molecule mi as given by the following

functions

xi = x (a, b, c) ; yi = y (a, b, c) ; zi = z (a, b, c) . (5)

Once we have also represented as follows:

xj = x (a+ f, b+ g, c+ k) ; yj = y (a+ f, b+ g, c+ k) ; zj = z (a+ f, b+ g, c+ k) (6)

the coordinates xj , yj , zj of the other whatsoever molecule mj , which (if the molecule mi is kept

as fixed) will subsequently pass to mean all the other molecules of considered mass; and we mean
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that these analytical values (6) will vary following the variation of the molecules mj when in them

the variables f, g, k, are changed, while the variables a, b, c. are kept fixed. This is done as if

we were imagining in the preceding ideal configuration that three new axes having as origin the

molecule mi and parallel to those relative to the variables a, b, c, have been introduced,

7.1.4 Page 149

and as if we were calling, f, g, k the coordinates of a molecule whatsoever with respect to said new

axes. Now it is convenient to recall what was said in the num◦.31., when the first part of the

general equation was treated, about the way in which one can imagine how the n points of the

system are distributed following the there given positions relatively to the three axes, which lead

to give to the ensemble of n terms [appearing in that general equation] a structure of triple series:

and it will not be difficult to understand that the (i)− th of the horizontal series which compose

the quantity (4) can be represented by means of the following finite triplicate integral

Σ∆fΣ∆gΣ∆k · 1

2
mimjKδρ, (7)

where the quantity ρ (equations (3),(5),(6)) has the value given by the equation

ρ2 = [x (a+ f, b+ g, c+ k)− x (a, b, c)]
2

+ [y (a+ f, b+ g, c+ k)− y (a, b, c)]
2

(8)

+ [z (a+ f, b+ g, c+ k)− z (a, b, c)]
2
.

The limits of the previous finite integrations will depend, as it was said in the num◦.31., by the

surfaces which are the boundaries of the body in the configuration preceding the real one. The

expression (7) will then be adapted to represent the first, the second, the n− th of the horizontal

series which are composing the quantity (4), by changing in it the coordinates a, b, c of the generic

molecule mi, that is giving to these variables those suitable values which are needed for it to become
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one after the others the molecules m
1
,m

2
....mn ; and as the said horizontal series are exactly n

(and also the terms of each of these series are n) the sum of all sums will be given to us by the

finite sextuple integral

ΣδaΣδbΣδcΣ∆fΣ∆gΣ∆k · 1

2
mimjKδρ. (9)

Let us recall now what we said in the last lines of the num◦.21., about the need of assigning the

value σ3 to the letter m which expresses the mass of the generic molecule: and as in the previous

integral there appears the product of two similar m it will appear manifest that this product must

be replaced by the expression σ3 ·σ3. Once we will have also recalled the analytical theorem written

in the equation (17) in the num◦.26.,

7.1.5 Page 150

theorem of which we will repeat here six times the application, we will be ready to admit that the

preceding finite sextuple integral is transformed into the continuous sextuple integral

∫
da

∫
db

∫
dc

∫
df

∫
dg

∫
dk · 1

2
Kδρ (10)

with the addition of other terms, which then must be neglected. In it the integration limits for the

variables f, g, k will depend on the surfaces which bound the body in the antecedent configuration,

and also on the position of the molecule m, which is kept constant, that is by the variables a, b, c

which after the first three will also vary in the same domain.

72. Let us now spend some time developing some considerations about the internal force K

which is exerted between one molecule and another molecule, being either attractive or repulsive

forces, which would have acted both independently of the applied external forces and because of

the presence of these external forces. To assume that, as it was at first suggested, it is a function

K(ρ) of the molecular distance only, it is admissible only in the case of fluid bodies, as in that

case the part of the action due to the shape of the molecules is not present. In general (the

reader is invited to read once more what said in the num◦.54.) when the action due to the shape
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of molecules cannot be neglected, there [in the expression for K] must appear also those cosines

a1, a2, a3, a4, ec.which are fixing the directions of the edges or axes of the two [involved] molecules

relatively to the three orthogonal axes, cosines whose values are changing from one molecule to

the other and therefore must result to be functions of the corresponding coordinates. It could be

very difficult to find how such functions have to be assigned (and it is sufficient to this aim only to

imagine that said directions could be normal to curved surfaces having various and unknown nature

for different bodies): and beyond the ignorance about the internal structure of these functions, it

is not known how the K depends on them. As a consequence the K, if one wants to keep its most

general possible use, must be a function of the six coordinates, whose values are expressed by the

equations (5), (6): and we cannot presume to express its form, as we can only argue that it has to

be symmetric relatively to said six
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variables when taken three by three: i.e. that when changing the xi, yi, zi into the xj , yj , zj , and

these last into the first ones the [function K ] will remain the same. This is true because it is known

(as there is no reason for the contrary) that one half of K expresses the action of the molecule mj

on the molecule mi, and the other half of K expresses the reciprocal action: it is possible to assume

that the roles of the two molecules are exchanged, and notwithstanding this the analytical values

must remain the same: this observation leads us to conclude the stated property of the analytical

expression, as we mentioned also in the previous num◦. The impossibility of assigning the function

K(xi, yi, zi, xj , yj , zj) can be deduced also by means of other arguments which I wish to omit:

only I will remark how also from this point of view the superiority of the methods which we have

in our hands is emerging: with them one can continue safely to proceed in the argumentation

notwithstanding an ignorance which cannot be defeated. We will add another observation about

the smallness of this molecular force K, by recalling what we said about this subject at the end

of the num◦.22. Similarly to what expounded in the num◦ 18 and following ones, it has to be

regarded as an elementary force which is so small that once considering the resultant of such forces

on a single physical point as acted by all the other molecules of the mas, we have still a very
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small force of the same order of those forces σ3X,σ3Y, σ3Z considered in the num◦.18. To this

concept corresponds perfectly the scaling given by the factor σ6, which we will see to result from

the sextuple integral (9) due to the product mimj of the two elementary masses.

As a consequence of what was were said up to now we can, by adding up the two integrals (1),

(10), and by replacing the obtained sum in the first two parts of the general equation (1) num◦.16.,

formulate the equation which includes the whole molecular mechanics. Before doing so we will

remark that it is convenient to introduce the following definition

Λ =
1

4

K

ρ
(11)

by means of which it will be possible to introduce the quantity Λδρ2 instead of the quantity 1
2Kδρ

in the sextuple integral (10); and that
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inside this sextuple integral it is suitable to isolate the part relative to the triple integral relative to

the variables f, g, k, placing it under the same sign of triple integral with respect to the variables

a, b, c which includes the first part of the equation: which is manifestly allowed. In this way the

aforementioned general equation becomes

∫
da

∫
db

∫
dc ·

{(
X − d2x

dt2

)
δx+

(
Y − d2y

dt2

)
δy +

(
Z − d2z

dt2

)
δz

+

∫
df

∫
dg

∫
dk · Λδρ2

}
+ Ω = 0 (12)

where it is intended that (as mentioned at the beginning of the num◦.71.) it is included in the Ω

the whole part which may be introduced because of the forces applied to surfaces, lines or well-

determined points and also because of particular conditions which may oblige some points to belong

to some given curve or surface. This equation (12) replaces the equation (1) of the num◦.44., or the

equation (12) of the num◦.46., and it is seen how it is expressed differently (while the remaining
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parts are left the same) the part introduced by the reciprocal actions of the molecules which in

those equations were taken into account by means of equations of conditions to hold in the whole

body.

73. What remains to be done in order to deduce useful consequences from the equation (12)

is simply a calculation process. Once recalled the equation (8), it is seen, transforming into series

the functions in the brackets, so that one has

ρ2 =

(
f
dx

da
+ g

dx

db
+ k

dx

dc
+
f 2

2

d2x

da2
+ ec.

)2

+

(
f
dy

da
+ g

dy

db
+ k

dy

dc
+
f 2

2

d2y

da2
+ ec.

)2

+

(
f
dz

da
+ g

dz

db
+ k

dz

dc
+
f 2

2

d2z

da2
+ ec.

)2

;

and by calculating the squares and gathering the terms which have equal coefficients:

ρ2 = f 2t1 + g 2t2 + k 2t3 + 2fgt4 + 2fkt5 + 2gkt6

+ f 3T1 + 2f 2gT2 + 2f 2kT3 + f g2T4 + ec. (13)
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in which expression the quantities t1, t2, t3, t4, t5, t6 represent the six trimonials which are alreay

familiar to us, as we have adopted such denominations since the equations (6) in the num◦.34.; and

the quantities T1, T2, T3, T4, ec. where the index goes to infinity, represent trinomials of the same

nature in which derivatives of higher and higher order appear. In all these trinomials the last two

terms are always similar to the first but they differ in having the letters y, z at the place of the

letter x. Those in which the second derivatives appear are of two kinds. There are those which are

composed with first order and second order derivatives, and these are exactly 18 in number, which
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are listed in the following formula:

dx

da

d2x

da2
+
dy

da

d2y

da2
+
dz

da

d2z

da2

dx

da

d2x

dadb
+
dy

da

d2y

dadb
+
dz

da

d2z

dadb
dx

da

d2x

dadc
+
dy

da

d2y

dadc
+
dz

da

d2z

dadc
dx

db

d2x

dadb
+
dy

db

d2y

dadb
+
dz

db

d2z

dadb
dx

db

d2x

db2
+
dy

db

d2y

db2
+
dz

db

d2z

db2

dx

db

d2x

dbdc
+
dy

db

d2y

dbdc
+
dz

db

d2z

dbdc
dx

dc

d2x

dadc
+
dy

dc

d2y

dadc
+
dz

dc

d2z

dadc
dx

dc

d2x

dbdc
+
dy

dc

d2y

dbdc
+
dz

dc

d2z

dbdc
dx

dc

d2x

dc2
+
dy

dc

d2y

dc2
+
dz

dc

d2z

dc2
(14)

dx

db

d2x

da2
+
dy

db

d2y

da2
+
dz

db

d2z

da2

dx

da

d2x

db2
+
dy

da

d2y

db2
+
dz

da

d2z

db2

dx

da

d2x

dbdc
+
dy

da

d2y

dbdc
+
dz

da

d2z

dbdc
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dx

dc

d2x

da2
+
dy

dc

d2y

da2
+
dz

dc

d2z

da2

dx

db

d2x

dadc
+
dy

db

d2y

dadc
+
dz

db

d2z

dadc
dx

da

d2x

dc2
+
dy

da

d2y

dc2
+
dz

da

d2z

dc2

dx

dc

d2x

dadb
+
dy

dc

d2y

dadb
+
dz

dc

d2z

dadb
dx

dc

d2x

db2
+
dy

dc

d2y

db2
+
dz

dc

d2z

db2

dx

db

d2x

dc2
+
dy

db

d2y

dc2
+
dz

db

d2z

dc2
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Then we have the trinomial constituted with second order derivatives only, and these last are

21 in number, and are listed in the following formula

(
d2x

da2

)2

+

(
d2y

da2

)2

+

(
d2z

da2

)2

(
d2x

db2

)2

+

(
d2y

db2

)2

+

(
d2z

db2

)2

(
d2x

dc2

)2

+

(
d2y

dc2

)2

+

(
d2z

dc2

)2

(
d2x

dadb

)2

+

(
d2y

dadb

)2

+

(
d2z

dadb

)2

(
d2x

dadc

)2

+

(
d2y

dadc

)2

+

(
d2z

dadc

)2

(
d2x

dbdc

)2

+

(
d2y

dbdc

)2

+

(
d2z

dbdc

)2

d2x

da2

d2x

db2
+
d2y

da2

d2y

db2
+
d2z

da2

d2z

db2

d2x

da2

d2x

dc2
+
d2y

da2

d2y

dc2
+
d2z

da2

d2z

dc2

d2x

db2
d2x

dc2
+
d2y

db2
d2y

dc2
+
d2z

db2
d2z

dc2

d2x

da2

d2x

dadb
+
d2y

da2

d2y

dadb
+
d2z

da2

d2z

dadb
d2x

da2

d2x

dadc
+
d2y

da2

d2y

dadc
+
d2z

da2

d2z

dadc
(15)
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d2x

da2

d2x

dbdc
+
d2y

da2

d2y

dbdc
+
d2z

da2

d2z

dbdc
d2x

db2
d2x

dadb
+
d2y

db2
d2y

dadb
+
d2z

db2
d2z

dadb
d2x

db2
d2x

dadc
+
d2y

db2
d2y

dadc
+
d2z

db2
d2z

dadc
d2x

db2
d2x

dbdc
+
d2y

db2
d2y

dbdc
+
d2z

db2
d2z

dbdc
d2x

dc2
d2x

dadb
+
d2y

dc2
d2y

dadb
+
d2z

dc2
d2z

dadb
d2x

dc2
d2x

dadc
+
d2y

dc2
d2y

dadc
+
d2z

dc2
d2z

dadc
d2x

dc2
d2x

dbdc
+
d2y

dc2
d2y

dbdc
+
d2z

dc2
d2z

dbdc
d2x

dadb

d2x

dadc
+

d2y

dadb

d2y

dadc
+

d2z

dadb

d2z

dadc
d2x

dadb

d2x

dbdc
+

d2y

dadb

d2y

dbdc
+

d2z

dadb

d2z

dbdc
d2x

dadc

d2x

dbdc
+

d2y

dadc

d2y

dbdc
+

d2z

dadc

d2z

dbdc
.

The trinomials with third order derivatives are of three kinds: there are those constituted by

derivatives of first and third order, and one can count 30 of them: there are those constituted by

derivatives of second and third order, and they are 60 in number: and there are those which contain

only third order derivatives and they are 55 in number. I am not writing them, as everybody who

is given the needed patience can easily calculate them by himself, as it can be also done for those

trinomials containing derivatives of higher order.

When using the equation (13) to deduce the value of the variation δρ2 , it is clear that the

characteristic δ will need to be applied only to the trinomials we have discussed up to now, so that

we will have:
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δρ2 = f 2δt1 + g 2δt2 + k 2δt3 + 2fg δt4 + 2fk δt5 + 2gk δt6

+ f 3δT1 + 2f 2gδT2 + 2f 2kδT3 + f g2δT4 + ec. (16)
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Indeed the coefficients f 2, g 2, k 2, 2fg, etc. are always of the same form as the functions giving

the variables x, y, z in terms of the variables a, b, c, and therefore cannot be affected by that

operation whose aim is simply to change the form of these functions. Vice versa, by multiplying

the previous equation (16) times Λ and then integrating with respect to the variables f, g, k in order

to deduce from such calculation the value to be given to the forth term under the triple integral

of the equation (12), such an operation is affecting only the quantities Λf 2,Λg 2, etc. and the

variations δt1, δt2, δt3....δT1, δT2, ec. cannot be affected by it, as the trinomials t1, t2, t3....T1, T2, ec.

(one has to consider carefully which is their origin) do not contain the variables f, g, k : therefore

such variations result to be constant factors, times which are to be multiplied the integrals to be

calculated in the subsequent terms of the series. After these considerations it is manifest the truth

of the equation:

∫
df

∫
dg

∫
dk · Λδρ2 = (17)

(1) δt1 + (2) δt2 + (3) δt3 + (4) δt4 + (5) δt5 + (6) δt6

+ (7) δT1 + (8) δT2 + (9) δT3 + (10) δT4 + ec.

where the coefficients (1), (2), etc. indicated by means of numbers in between brackets, must be

regarded to be each a function of the variables a, b, c as obtained after having performed the said

definite integrals. This is the equivalent quantity which should be introduced in the equation (12)
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at the place of the forth term under the triplicate integral.

74. A new proposition, to which the reader should pay much attention, is that all the trinomials

T1, T2, T3, etc. where the index goes to infinity , which appear in the previous equation (17), can be

expresses by means of the only first six t1, t2, t3, t4, t5, t6, and of their derivatives with respect to

the variables a, b, c of all orders. I started to suspect this analytical truth because of the necessary

correspondence which must hold between the results which are obtained with the way considered

in this Capo and those results obtained with the way considered in the Capos III and IV. I have

then verified the stated property for 39 terms of the previous
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series (17), beyond the first six, that is for all trinomials written in the tables (14), and (15),

and after these calculations I abandoned myself to the analogy: and this will be sooner or later

unavoidable, because our series is infinite and it will be impossible to check all its terms. Now I

will say how I performed the stated verification and the importance of the conclusions will justify

the lengthinesses of the calculations, which, except for the prolixity, do not present any difficulty.

Checking the values of the variables t1, t2, t3, t4, t5, t6 ( equations (6) num.◦34.) it is immediate to

recognize that the first nine trinomials of the table (14) respectively have the values:

1

2

dt1
da

;
1

2

dt1
db

;
1

2

dt1
dc

1

2

dt2
da

;
1

2

dt2
db

;
1

2

dt2
dc

1

2

dt3
da

;
1

2

dt3
db

;
1

2

dt3
dc
.

It is then possible to find that (and this can be verified by simple substitution of known values)

the trinomials labelled with the number ten, eleven, thirteen, fifteen, seventeen and eighteen are

equivalent respectively to the following binomials:
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dt4
da
− 1

2

dt1
db

;
dt4
db
− 1

2

dt2
da

;
dt5
da
− 1

2

dt1
dc

dt5
dc
− 1

2

dt3
da

;
dt6
db
− 1

2

dt2
dc

;
dt6
dc
− 1

2

dt3
db
.

And that the trinomials labelled with the numbers twelve, fourteen and sixteen have respectively

these other values:

1

2

dt4
dc

+
1

2

dt5
db
− 1

2

dt6
da

;
1

2

dt4
dc
− 1

2

dt5
db

+
1

2

dt6
da

; − 1

2

dt4
dc

+
1

2

dt5
db

+
1

2

dt6
da

.

In this way the stated proposition is proven relatively to the first 18 trinomials.

Let us now imagine to have formed 18 equations having each as left hand sides the trinomials

of the table (14) and as right hand side respectively the values to which we have proven they are

equal. Among these equations let us consider the
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first, the tenth and the thirteenth ones and let us multiply them orderly times l1,m1, n1, and then

let us sum the obtained results: then let us multiply the same equations again times l2,m2, n2, and

again sum the obtained results : finally let us multiply the same three equations times l3,m3, n3,

and again sum the obtained results : by considering the nine equations of the num.◦14. labelled

(28) , we will manage to get an expression for the values of the three second order derivatives

d2x
da2 ,

d2y
da2 ,

d2z
da2 . Following the same procedure, suitably choosing among the aforementioned 18 equa-

tions, we will determine the values of the other second order derivatives and we will get
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2H
d2x

da2
= l1

dt1
da

+m1

(
2
dt4
da
− dt1

db

)
+ n1

(
2
dt5
da
− dt1

dc

)
2H

d2y

da2
= l2

dt1
da

+m2

(
2
dt4
da
− dt1

db

)
+ n2

(
2
dt5
da
− dt1

dc

)
2H

d2z

da2
= l3

dt1
da

+m3

(
2
dt4
da
− dt1

db

)
+ n3

(
2
dt5
da
− dt1

dc

)
2H

d2x

db2
= l1

(
2
dt4
db
− dt2
da

)
+m1

dt2
db

+ n1

(
2
dt6
db
− dt2

dc

)
2H

d2y

db2
= l2

(
2
dt4
db
− dt2
da

)
+m3

dt2
db

+ n2

(
2
dt6
db
− dt2

dc

)
2H

d2z

db2
= l3

(
2
dt4
db
− dt2
da

)
+m3

dt2
db

+ n3

(
2
dt6
db
− dt2

dc

)
2H

d2x

dc2
= l1

(
2
dt5
dc
− dt3
da

)
+m1

(
2
dt6
dc
− dt3

db

)
+ n1

dt3
dc

2H
d2y

dc2
= l2

(
2
dt5
dc
− dt3
da

)
+m2

(
2
dt6
dc
− dt3

db

)
+ n2

dt3
dc

2H
d2z

dc2
= l3

(
2
dt5
dc
− dt3
da

)
+m3

(
2
dt6
dc
− dt3

db

)
+ n3

dt3
dc

2H
d2x

dadb
= l1

dt1
db

+m1
dt2
da

+ n1

(
dt5
db

+
dt6
da
− dt4

dc

)
2H

d2y

dadb
= l2

dt1
db

+m2
dt2
da

+ n2

(
dt5
db

+
dt6
da
− dt4

dc

)
2H

d2z

dadb
= l3

dt1
db

+m3
dt2
da

+ n3

(
dt5
db

+
dt6
da
− dt4

dc

)
2H

d2x

dadc
= l1

dt1
dc

+m1

(
dt4
dc

+
dt6
da
− dt5

db

)
+ n1

dt3
da
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2H
d2y

dadc
= l2

dt1
dc

+m2

(
dt4
dc

+
dt6
da
− dt6

db

)
+ n2

dt3
da

2H
d2z

dadc
= l3

dt1
dc

+m3

(
dt4
dc

+
dt6
da
− dt5

db

)
+ n3

dt3
da

2H
d2x

dbdc
= l1

(
dt4
dc

+
dt5
db
− dt6
da

)
+m1

dt2
dc

+ n1
dt3
db

2H
d2y

dbdc
= l2

(
dt4
dc

+
dt5
db
− dt6
da

)
+m2

dt2
dc

+ n2
dt3
db

2H
d2z

dbdc
= l3

(
dt4
dc

+
dt5
db
− dt6
da

)
+m3

dt2
dc

+ n3
dt3
db
.

Now, by means of these values, let us look for the values of the trinomials of the table (15).

Recalling the equations (31), (33), (34) in the num.◦ 67. we will see that these values result to

be constituted uniquely by the variables t1, t2....t6 and by their first order derivatives, and this is

exactly what we wanted to prove. For instance the value of the first trinomial

(
d2x

da2

)2

+

(
d2y

da2

)2

+

(
d2z

da2

)2

can be proven to be equal to a fraction whose numerator is

(
t
2
t
3
− t

2

6

)(dt
1

da

)2

+
(
t
1
t
3
− t

2

5

)(
2
dt4
da
− dt1

db

)2

+
(
t
1
t
2
− t

2

4

)(
2
dt5
da
− dt1

dc

)2

+ 2 (t5t6 − t3t4)
dt

1

da

(
2
dt4
da
− dt1

db

)
+ 2 (t4t6 − t2t5)

dt
1

da

(
2
dt6
da
− dt1

dc

)
+ 2 (t

4
t
5
− t

1
t
6
)

(
2
dt4
da
− dt1

db

)(
2
dt5
da
− dt1

dc

)

and whose denominator is:

4
(
t
1
t
2
t
3

+ 2t
4
t
5
t
6
− t

1
t
2

6
− t

2
t
2

5
− t

3
t
2

4

)
.
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Similarly forms can be found for the values of the other twenty trinomials of the table (15) :

therefore it was not exaggerated to affirm that the stated analytical property has been actually

verified for 39 trinomials.

75. Once the proposition of the previous num. has been admitted, it is manifest that the

equation (17) can assume the following other form
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df

∫
dg

∫
dk · Λδρ2 = (18)

(α) δt1 + (β) δt2 + (γ) δt3 + ....+ (ε)
δdt

1

da
+ (ζ)

δdt
1

db
+ (η)

δdt
1

dc

+ (ϑ)
δdt2
da

+ ....+ (λ)
δd2t1
da2

+ (µ)
δd2t1
dadb

+ ....+ (ξ)
δd2t2
da2

+ (o)
δd2t2
dadb

+ ec.

in which the coefficients (α) , (β) .... (ε) .... (λ) ....ec. are suitable quantities given in terms of the

coefficients (1) , (2) .... (7) , (8) .... of the equation (17): they depend on the quantities t1, t2....t6, and

on all order derivatives of these trinomials with respect to the variables a, b, c . Then the variations

δt1, δt2....(with the index varying up to infinity) and the variations of all their derivatives of

all orders
δdt

1

da ,
δdt

1

db , ec. appear in the (18) only linearly. Now it is a fundamental principle of

the calculus of variations (and we used it also in this Memoir in the num.◦ 36. and elsewhere)

that one series as the previous one, where the variations of some quantities and the variations of

their derivatives with respect to the fundamental variables a, b, c appear linearly can be always be

transformed into one expression which containes the first quantities without any sign of derivation,

with the addition of other terms which are exact derivatives with respect to one of the three simple

independent variables. As a consequence of such a principle, the expression which follows to the

equation (18) can be given

∫
df

∫
dg

∫
dk · Λδρ2 = (19)
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Aδt1 +B δt2 + C δt3 +Dδt4 + Eδt5 + F δt6

+
d∆

da
+
dΘ

db
+
dΥ

dc
.

The values of the six coefficients A,B,C,D,E, F are series constructed with the coefficients

(α) , (β) , (γ) .... (ε) , (ζ) .... (λ) , ec. of the equation (18) which appear linearly, with alternating signs

and affected by derivations of higher and higher order when we move ahead in the terms of said

series: the quantities ∆,Θ,Υ are series of the same form of the terms which are transformed, in

which the coefficients of the variations have a composition
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similar to the one which we have described for the six coefficients A,B,C,D,E, F .

Once -instead of the quantity under the integral sign in the left hand side of the equation

(12)- one introduces the quantity which is on the right hand side of the equation (19), it is clear

to everybody that an integration is possible for each of the last three addends appearing in it

and that as a consequence these terms only give quantities which supply boundary conditions.

What remains under the triple integral is the only sestinomial which is absolutely similar to the

sestinomial already used in the equation (10) num.◦ 35. for rigid systems. Therefore after having

remarked the aforementioned similarity the analytical procedure to be used here will result perfectly

equal to the one used in the num.◦ 35, procedure which led to the equations (26), (29) in the num.◦

38 and it will become possible the demonstration of the extension of the said equations to every

kind of bodies which do not respect the constraint of rigidity, as it was mentioned at the end of

the num.◦ 38. It will also be visible the coincidence of the obtained results with those which are

expressed in the equations (23) of the num.◦50. which hold for every kind of systems and which

were shown in the Capo IV by means of those intermediate coordinates p, q, r, whose consideration,

when using the approach used in this Capo, will not be needed.

76. The preceding analysis allows for many useful considerations. First of all I will mention

49



those which are needed to clarify the doubts to which we already tried to answer in the num.◦

63., when we promised to add more explanations exactly in this later number. Starting from the

antecedent ideal configuration of the molecules described by means of the coordinates a, b, c, and

arriving at the real configuration, we intend this second configuration as described by means of

two different reference triples of orthogonal axes, those of the variables p, q, r, and of the variables

x, y, z. To express the real configuration by means of the variables p, q, r we need simply to copy

the preceding analysis writing everywhere p, q, r where previously we had written x, y, z. Now if

we want to pass from the coordinates p, q, r to the coordinates x, y, z, we will observe that in the

case of the fluids, as it was said in the num.◦ 72., the internal force K, or equivalently the quantity

Λ,
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is uniquely a function of the molecular distance ρ ; and if one considers carefully the [algebraic and

differential] form of the coefficients (1), (2), (3)...... in the equation (17), and that of the coefficients

(α), (β), (γ)...... of the equation (18), and finally that of the six coefficients A,B,C,D,E, F in the

equation (19), we will be easily persuaded that in these last six quantities, when introducing the

first reference frame relative to the variables p, q, r, will contain such variables p, q, r only because

these last appear in the radical ρ (equation (8)), and in the six trinomials t1, t2, ....t6 , having

written everywhere the letters p, q, r at the place of the letters x, y, z. Therefore the six quantities

A,B,C,D,E, F will enjoy the analytical property which we have discussed many times, which

consists in changing when undergoing the substitution of the values (31) num.◦ 40. in quantities

which depends in an equal way on the variables x, y, z, as any trace of the nine angular quantities

α1,β1,γ1,α2,ec., disappears because such property is verified by the radical ρ , and by each of the

six trinomials t1, t2....t6 . Now in this case one has only to perform the indicated operations and he

will be persuaded that the situation is exactly the one which we have described, once the equations

among the angular quantities introduced in the num.◦ 33 are recalled. Here is one of those results

forecasting which, at the beginning of the present Capo, we stated preliminarily that the two

conceived ways for calculating the internal constraints among the molecules were illustrating each
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other.

Vice versa the procedure used in the Capo IV. makes possible the treatment of the quantities

at the boundaries which would be very difficult with the present method. We have seen there

(num.◦ 52.) as in the boundary conditions the same six quantities appear which express the effect

of internal forces in the three [bulk] equations valid in all points of the body mass: here, however,

the boundary conditions would be complicated because of the role played by those other quantities

∆,Θ,Υ which appear in the last terms of the equation (19). It is convenient to say that the whole

part introduced by such terms in the limit quantities is playing only an apparent role: and this

analytical fact is often encountered in the calculus of variations. In the questions related to the

calculus of variations which can be referred to formulas involving definite triple integrals, if one

has an equation of condition L = 0 , and considers the differential equations
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dL

da
= 0,

dL

db
= 0,

dL

dc
= 0;

d
2

L

da2 = 0, ec.

of all orders, and if he treats them as if they were many new equations of conditions, multiplying

their variations times undetermined coefficients and introducing the obtained products in the equa-

tions for maximum or minimum under the integral sign and operating the usual transformations he

will add (to the quantity which would have been left without doing the further operations which we

have said) a quantity of the same nature of the trinomial which is at the end of the equation (19).

In such a case one understands that the novelty of the appearance of quantities at the boundaries

can be only aparent, because the aforesaid differentiated equations do not have any new meaning

which was not already expresses by the equation L = 0 alone.

However the requirement that the said boundary quantity must vanish, as here we are not

dealing with a result concerning equations of conditions, which cannot be used more than really

necessary, but simply with a necessary consequence of the comparison of the two presented methods,

[that requirement] could be a tool which can lead us to the discovery of new truths, which could

lead us, for instance, to more detailed investigations about the nature of molecular interactions.
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I limit myself to a simple hint: but concerning the molecular action I cannot avoid to remark

something which seems to me to be not irrelevant. The reader will have discovered that in the

previous analysis to come to the most important conclusions, that is to the equations which hold

for all points of the mass, it was not needed to use the hypotheses accepted by modern Geometers,

and by myself in the §.V in the Memoir which was published in the Tomo XXI of these Atti. It was

said that the molecular action must be appreciable at distances which cannot be sensed and not

appreciable for distances which can be sensed: this statement may be true, but whatever it will

be, one can ignore, in our discussion, such a hypothesis: the integrals with respect to the variables

s, g, k in the equations (17), (18), (19) can be regarded to be extended up at the boundaries of the

body, and not only for very small distances, what is done with some effort.

I will conclude the chapter by imagining an objection. Somebody could say that: ”you have

here calculated the internal actions between
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one molecule and another molecule, and we can agree about this point: but why you have not done

the same also in the Capo IV, where you left out all the second part of the general equation (1)

num.◦ 16 ? Such omission can nullify all the deductions obtained with those analytical procedures”.

I answer as follows: ”I have not taken into account then all the internal actions between pairs of

molecules because at their place I considered the six equations of condition which were treated

there: indeed considering also said actions would have meant to include their effects two times.

Also when one considers the motion of rigid bodies the action between each pair of molecules is

effective, but everybody who knows the spirit of Analytical Mechanics will be persuaded that all

of these actions were accounted for by the six equations (8) in the num.◦ 34. which are valid for

all physical points: on the contrary if one doubt could be raised it could concern the fact that the

six equations of conditions were redundant, and for this reason the considerations in the number

39 became necessary.

The same has to be said in the general case of the equations of conditions (14) in the num.◦

47., which also hold for all points of the mass: the only fact of considering and calculating them is
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equivalent to account for all internal forces, although it is not explicitly detailed how this occurs.

To somebody it could seem -in some aspects- more persuasive the method used in this Capo,

as it allows us to have an explanation about the way in which the molecular actions are acting:

however I believe that those who think in the best way will prefer the method presented in the

Capo IV, which is a method more direct and more powerful, because it is based on that geometrical

principle which assumes the indifference of the choice of the reference frames with respect to the

system, principle which we will need also in the next Capo, and which contains the reason of so

many mechanical truths. Moreover I see that it is possible -by following the flow of reasonings

expounded in the Capo IV- to explain the true meaning of that other lagrangian principle, which

at the beginning of the same Capo we said to be too abstract, and to firmly establish its extension

and the effective way of using it. Aforementioned explication, however, would not be maybe of

great utility, and I state this because I believe that all advantages to which Lagrange was aiming

by postulating that principle could be obtained more directly and naturally by using the procedure

described in the same Capo IV.

7.2 Appendix B Eulogy in memoriam of Vincenzo Brunacci by Gabrio

Piola.

It is extremely painful for us to announce in this document the death of a truly great man, who,

as during his life was a glory for Italy, now moves, because of his loss, everybody inconsolably to

tears. One of the most eminent mathematicians of our time, the illustrious professor Vincenzo

Brunacci of Pavia, suffering for many years because of a painful disease, on the day 16th of the

current month of June was attacked by those very strong convulsions which were consequence of

it, ceased to live surrounded by friendship and religion. To recall the merits of the deceased person

during the time while still everybody cries on his tomb it is really a way for increasing painful

laments, even if it will be simply a meagre tribute of praise which will be written by our pen. Our

intention is not that of presenting a formal elogium; this kind of encomium soon will be heard in

the most erudite academies and in all palaces of sciences.
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Vincenzo Brunacci was born in the fatherland of Galileo the day 3rd of March 1768, his father

first name being Ignazio Maria and his mother being named Elisabetta Danielli.

It seemed as if the Spirit of Italy who was in great sufferance because in that time the most

brilliant star of all mathematical sciences, the illustrious Lagrangia, had left the Nation, that Spirit

wanted to have the rise of another star, which being born on the banks of the river Arno, was bound

to become the successor of the first one.

This consideration is presenting itself even more spontaneous by when we will remark that

Brunacci was the first admirer in Italy of the luminous Lagrangian doctrines, the scientist who

diffused and supported them, the scientist who in his studies was always a very creative innovator

in their applications.

His first Maestri were two famous Italians, Father Canovai and the great geometer Pietro Paoli.

Although in his first youth he was diverted by other studies, which were opposed to his natural

inclinations and from which, because of due respect he could not subtract himself, he still was able

to cultivate at the same time those studies for which he had been born.

Very soon he was pupil only of the classic textbooks and of himself. Very soon, as he did not

allow to any man to see his genius while being born or in his first childhood, in the ”opuscolo

analitico”, printed in Livorno in the year 1792, he showed his fully developed creative ingenuity in

that part of ”sublime calculus” in which he was bound to find the subject for great discoveries.

Called as Professor of Nautical Sciences in the College of Naval cadets in Livorno in the year

1796 he published the Navigation Treatise of which were printed three more editions more and

more improved and detailed. This work was and still is the only Italian textbook which is really

suitable to educate the practical pilot.

In the year 1798 was printed in Florence the work entitled ”Calculus of linear equations”. In

this oeuvre our author showed that he could successfully compete with the most eminent geometers

of Europe.

Postponing to a later discussion, as it will be suitable to do so while talking about another book,

the exposition of the many merits of this book, we will limit ourselves here to say that while Laplace
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was calling falsely not-integrable certain linear equations in which second order partial differentials

appear, while Paoli and Lacroix were investigating the same subject and started to doubt about

the statements of the mentioned French geometer, Brunacci gave a method for integrating similar

equations, being able to generalize it to all differential orders. Paoli himself, by exposing this

method for a particular case in the third of the parts which form the supplement to his Elements

of Algebra, calls illustrious geometer that scientist [i.e. Brunacci himself] who had been his student.

A voice finally was uttered from that place which had given birth to such eminent scientists

as Cavalieri, Frisi, Agnesi, and Oriani and Brunacci was called to occupy the empty chair [of

mathematics] in Pavia. He arrived there in the year 1800 and although he arrived in a place where

the Mathematical Sciences were not ignored he met the greatest expectations and advanced the

fame [of that chair] to a yet unrivalled dignity.

Indeed it is not sufficient to be erudite in science to become its professor, it is necessary to have

the gift of the word, the capacity of finding the right way to explain it. These gifts were given to

him in the highest, unrivalled level. Whoever heard him will admit that my expressions although

admired however are not enough to reveal the truth. The mathematical teaching when coming

from his lips was losing every difficulty and bitterness, and developed with a peculiar charm and

incantation [the mathematical teaching] was at the same time education for the mind and pleasure

for the ears. It was then that the mathematical schools on the banks of Ticino river reached

the prestige which also nowadays is honoring them. It was then that Vincenzo, having dedicated

himself completely to his science, started with all his forces to promote it.

The ”Analisi Derivata” (Analysis of Derivatives) was printed in Pavia in the year 1802. It

is in this book that one can find one of the most sublime concepts which was ever conceived

by the human mind, that is the Principle of Derivation. Because of it all the different parts of

Mathematical Sciences are tied and interconnected and it is opened an endless view which allows

us to consider as possible their infinite development. Soon he conceived the challenging thought

which lead him to re-write the whole body of the doctrine of his science in many volumes, enriched

by every novel concept which had been formulated in the modern works. This endeavour may have
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frightened everybody except him: he was also pushed by the advice of that Sovereign Investigator

of the stars who, being in Milan, wrote to persuade him to start this oeuvre in the year 1800,

believing that he was the only one among the Italians who was capable to complete it successfully.

The oeuvre of the Course of Sublime Mathematics was printed in Florence in four volumes in

the years 1804, 1806, 1807, 1808. One would need a very long time to expound, as it should be

done, the merits of this book, but I will want to shortly describe here its contents.

The first volume contains the Calculus of Finite Differences. This Calculus, which was origi-

nated among the obscure calculations presented by Taylor, which was developed in many Memoirs

disseminated here and there in the Proceedings of many Academies, for the first time was given

scientific order and method by the Florentine Geometer. He wrote it finding in his ingenuous mind

all that which was lacking in order to form a perfect theoretical frame, and he infused in it all novels

results which he had obtained in his already mentioned works. It was his original contribution the

integration of linear equations of second order with variable coefficients, it was his contribution a

new formula for the integration of linear equation of all orders with constant coefficients; it was

his own the method to complete the integrals to be replaced to the one proposed by D’Alembert,

[method] which he successfully introduced also in the differential calculus; but the idea of the vari-

able probability and the solution of the related problems, with which he metaphorically could seize

the wheel of the fortune and advanced in the field where the genius of Lagragia had stopped, when

in the Proceedings of the Academy of Berlin (1775) he had given the solution of those problems

only in the case of constant probability. While citing the name of Lagrangia I will not neglect to

say that Brunacci was the first in Italy to see that admirable light which the Theory of Analytical

Functions can spread among the mysterious smog which was obscuring the Infinitesimal Analysis.

He immediately conceived the idea of introducing it also among us: but oh! how difficult was

that endeavour! The Lagrangian notation, completely new, produced a kind of revulsion: not

all minds were firm enough to be able to maintain -in the middle of a Revolution- their contact

with the spirit of the Calculus: He himself told me many times about the great obstacles which he

needed courageously to confront in pursuing his effort. He finally managed to reach his aim, by
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reconciling the Lagrangian ideas with the Leibnitz notation, together with the brackets introduced

by Fontaine.

In this way are written the other three volumes of the said Course, where, however, the author

did not neglect to introduce with great skill whenever possible the notation of the Geometer of

Turin in order to make it familiar to us.

We will only add that in the remaining part of his great oeuvre one can find the rich results of

Mathematical Analysis gathered from the most recent Memoirs of the most celebrated Geometers

and especially from the immense body of works of the great Euler which he called his delight and

from which he admitted to have learnt that lucid order which makes his own works so brilliant.

Oh! How many times I heard him talking about Euler with a great enthusiasm and to urge me,

and many of his other students, to study the work of the only author who is suitable to educate a

geometer! The great men, even when are quoting the results of other authors are able to give to

the subject their own mark. This statement is true for that book where Brunacci infused many of

his ideas, not only those which we mentioned but also many others which equally would merit to

be mentioned, and in particular in those various problems of every kind of applied mathematics

and in the calculus of variations which is reduced to the differential calculus and is there exposed

with a great detail, and finally in the mixed calculus, of which he was the first to give the true

principles and to expound in orderly way the doctrine.

However a triumph which Brunacci obtained in front of all his rivals. The Theory of the

hydraulic water hammer, which seemed to be rebellious to the lordship of Mathematical Analysis,

and which was demanded with a golden prize -without success- by the Academy of Berlin to the

greatest geometers of Europe in the year 1810 and then again in the year 1812 doubling the prize,

since 1810 was discovered by Brunacci who should have had received the promised reward if an

accident -which I do not want to recall here- had not defrauded him of the deserved glory; this

Theory was published in the Treatise of the hydraulic water hammer of which were printed two

editions; in this Treatise said Theory, reduced to formulas and problems, is expounded in the most

efficacious way.
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It is custom of the brave to prepare himself to the new victories and not to be proud of the past

ones. Therefore a new arena was chosen by our athlete where he managed to defeat strong rivals. If

he competes for discovering the nature in hydraulic problems, Brunacci is awarded by the Società

Italiana: if he needs to reach the highest abstraction in order to find the best metaphysics for the

Calculus, Brunacci is awarded by the Accademia di Padova. The Proceedings of the Illustrious

Società Italiana carry the name of Brunacci as author of many of the best Memoirs: too long would

be to cite all of them.

I will only mention that one on some particular solutions for the finite difference equations,

which our author treats in a way which is similar to the one used by Lagrangia for differential

equations, and where he discovered some very elegant theorems valid for finite difference equations

which are not true for differential equations and the other one on shock waves in fluids which

embellishes the last Volume printed by said Società, Memoir where the analytical spirit really is

triumphant.

Also the Istituto Nazionale Italiano was immediately honored in its first Volume with a Memoir

by Brunacci on the Theory of Maxima and High Minima; subject which was remarkably advanced

later in another Memoir. The Società Italiana and the Istituto oh! how greatly will grieve the loss

of a man who honored them with many and valuable works! Also the Academies of Berlin, Munich,

Turin and Lucca, and the others to which he belonged, will perceive the great emptiness which is

now left in them. I simply quickly cite the textbook on the Elements of Algebra and Geometry

written by our author for the high school in few days, of which one has to praise the order and the

distribution of subjects and which was published in many editions.

I will mention as meriting great praise the Compendium of Sublime Calculus which was issued

in two Volumes in the year 1811, where it is gathered everything which is sufficient to educate

thoroughly a young geometer. In writing it the author greatly improved and carefully modified

many parts of the complete course, and all added many new results and arguments.

It is not licit to neglect to indicate another subject in which -with honored efforts- our professor

distinguished himself. The Journal of Physical Chemistry of Pavia was illustrated in many of his
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pages by his erudite pen; I will content myself to indicate here three Memoirs where he examines

the doctrine of capillary attraction of Mister Laplace, comparing it with that of Pessutti and

where with his usual frankness, which is originated by his being persuaded of how well-founded

was his case, he proves with his firm reasonings, whatever it is said by the French geometers, some

propositions which are of great praise for the mentioned Italian geometer.

One could think that a man who wrote so much in his short life actually should have been

remained closed all the time alone in his office. On the contrary: he not only was a great theoretician

but also he was excellent in all practical hydrometric and geodetic operations. He was Professor

also in these disciplines and with great dedication he worked heavily along the banks of Ticino

river in order to educate the best engineers.

He was a really skilled experimentalist and he often investigated natural phenomena, getting

favorable answers. I know very well how much interest pushed him to these experimental activities,

as is proven by the Hydrometry Laboratory of the University which he founded and improved

(sometimes at his own expenses) with high quality instruments.

Also in these more practical activities his capabilities won him an universal esteem, so that

he was called everywhere sometimes on the river banks in order to monitor their construction or

for prevent their collapse or sometimes on the navigation canals, among which the famous one in

Pavia was started under his direction which was confided to him by the past government. The

same government nominated him inspector of waters and streets, inspector general of the public

instruction and knight.

His character was strong in his resolutions, [it was] constant and resolute in his sentiments,

vigorous in the spirit, ready to well reason and ponder, [it was] active and ready to engage in the

[needed] efforts but above all he was friendly and urbane: [his character] made him the center of

social life and the joy of friendship. Particularly with his students he was renouncing to all the

superiority of the ”maestro” and assumed the attitude of the father: I must avoid this memory,

woe is me!, because it too strongly makes tears to come to my eyes. Those who need the evidence

of my last statement has simply to see his how his students wanted to honor that great man and
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to manifest their sorrow: they carried on their shoulders his mortal remains, they decorated in an

extraordinary way his funeral parlour and now are praising the departed’s merits with their tears

and their silent grief which are more eloquent than all spoken lamentation.

Everybody who is now promising to contribute to exact sciences in Lombardy is a student of

Brunacci, and indeed among his disciples there are those who, as their mentor himself often said, is

now an eagle who can fly with his own wings. Such [an eagle] is the Professor in Bologna, author of

the essay on Poligonometry, such is the other one who is the author of the Treatise on the Contours

of the Shadows and whose noteworthy voice is entitled to succeed to that of his Maestro on the

banks of Ticino, such is a third disciple who has already shown that Italy can hope to have soon

a Geometer who will emulate the great genius who wrote the theory of celestial bodies.

What a great misfortune was to see the departure of a man in the age of his maturity who already

had greatly contributed to science and who was bound to contribute even more copiously to it! I

know very well, as I had many times the privilege of his confidences about the subject of his studies,

how many precious works can be found in his manuscripts. Among them, some excellent documents

which he wanted to gather to form a commentary to the Analytical Mechanics, many very beautiful

discourses read on occasion of the defense of theses, some sequels of Memoirs containing the

description and the calculation of many machines inspired by the Hydraulic Architecture authored

by Belidor, gathering which he intended to complete an oeuvre which would have been of great

utility.

May these last achievements of such an inventive and ingenious Geometer be delivered up to a

capable and educated scholar, who could enlighten them as they deserve, for the advancement of

SCIENCES, for the glory of the AUTHOR and for the prestige of ITALY

Milan, 18 June 1818

7.3 Appendix C. Peridynamics: A new/old model for deformable bodies

The celebrated and fundamental textbook by Lagrange [61] is, with few and biased exceptions,

generally regarded as a milestone in Mechanical Sciences and unanimously as novel in its content
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and style of presentation.

Indeed Lagrange himself, differently from what was done by his epigones, puts his work in

the correct perspective, by giving the due credit to all his predecessors. Indeed the Mécanique

Analytique starts with an interesting historical introduction, which can be considered the initiation

of the modern history of mechanics. Unfortunately also this aspect of the Lagrangian lesson is not

very often followed in modern science.

A very new Continuum Mechanical Theory has been recently announced and developed: Peri-

dynamics. Actually the ideas underlying Peridynamics are very interesting and most likely they

deserve the full attention of experts in continuum, fracture and damage mechanics.

Indeed starting from a balance law of the form (N3) for instance in [36], [37] and [120] (but

many other similar treatments are available in the literature) one finds a formulation of Continuum

Mechanics which relaxes the standard one transmitted by the apologists of the Cauchy format and

seems suitable (see the few comments below) to describe many and interesting phenomena e.g. in

crack formation and growth.

However even those scientists whose mother language is Italian actually seem unaware of the

contribution due to Gabrio Piola in this field: this loss of memory and this lack of credit to the

major sources of our knowledge, even in those cases in which their value is still topical, is very

dangerous, as proven in detail by the analysis developed in Russo [105], [106].

Unfortunately this tendency towards a mindless ”modernism” seems to become more and more

aggravated.

In [120] the analysis started by Piola is continued, seemingly as if the author, Silling, were one

of his closer pupils: arguments are very similar and also a variational formulation of the presented

theories is found and discussed. In [63] and in [122] it is stated in the abstracts that:

“The peridynamic model is a framework for continuum mechanics based on the idea that pairs

of particles exert forces on each other across a finite distance. The equation of motion in the

peridynamic model is an integro- differential equation. In this paper, a notion of a peridynamic

stress tensor derived from nonlocal interactions is defined.”
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“The peridynamic model of solid mechanics is a nonlocal theory containing a length scale.

It is based on direct interactions between points in a continuum separated from each other by

a finite distance. The maximum interaction distance provides a length scale for the material

model. This paper addresses the question of whether the peridynamic model for an elastic material

reproduces the classical local model as this length scale goes to zero. We show that if the motion,

constitutive model, and any nonhomogeneities are sufficiently smooth, then the peridynamic stress

tensor converges in this limit to a Piola-Kirchhoff stress tensor that is a function only of the local

deformation gradient tensor, as in the classical theory. This limiting Piola-Kirchhoff stress tensor

field is differentiable, and its divergence represents the force density due to internal forces.”

The reader is invited to compare these statements with those which can be found in the previous

Appendix A.

It is very interesting to see how fruitful can be the ideas formulated 167 years ago by Piola. It

is enough to read the abstract of [2]

“The paper presents an overview of peridynamics, a continuum theory that employs a nonlo-

cal model of force interaction. Specifically, the stress/strain relationship of classical elasticity is

replaced by an integral operator that sums internal forces separated by a finite distance. This

integral operator is not a function of the deformation gradient, allowing for a more general notion

of deformation than in classical elasticity that is well aligned with the kinematic assumptions of

molecular dynamics. Peridynamics’ effectiveness has been demonstrated in several applications,

including fracture and failure of composites, nanofiber networks, and polycrystal fracture. These

suggest that peridynamics is a viable multiscale material model for length scales ranging from

molecular dynamics to those of classical elasticity.”

Or also the abstract of the paper by Parks et al. [95].

“Peridynamics (PD) is a continuum theory that employs a nonlocal model to describe material

properties. In this context, nonlocal means that continuum points separated by a finite distance

may exert force upon each other. A meshless method results when PD is discretized with material

behavior approximated as a collection of interacting particles. This paper describes how PD
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can be implemented within a molecular dynamics (MD) framework, and provides details of an

efficient implementation. This adds a computational mechanics capability to an MD code enabling

simulations at mesoscopic or even macroscopic length and time scales ”

It is remarkable how strictly related are non-local continuum theories with the discrete theories

of particles bound to the nodes of a lattice. How deep was the insight of Piola can be understood

by looking at the literature about the subject which includes for instance [2], [35], [36], [37], [38],

[39], [63], [111], [120], [121], [122].

7.4 Appendix D. On an expression for ∇F deduced in Piola (1845-6) on

pages 158-159

In this appendix we deduce, by means of the Levi-Civita tensor calculus, the expression for the

second gradient of placement that is needed to transform eqn. (N4) into eqn. (N5) and that

is obtained by [Piola, 1845-6], see the Appendix A for the appropriate translation. The original

calculations are rather lengthy and cumbersome: it is however the opinion of the authors that

Piola had caught their ”tensorial” or at least their algebraic structure. Indeed the notation he

used made rather easy the identification of the tensorial objects involved.

We start from the following identification between modern and Piola’s notation

F iα �


dx
da

dy
da

dz
da

dx
db

dy
db

dz
db

dx
dc

dy
dc

dz
dc

 detF � H (detF )
(
F−1

)β
j
�


l1 m1 n1

l2 m2 n2

l3 m3 n3

 (N7)

so that we can state that equation (28) on page 26 of [Piola, 1845-6] is equivalent to the following

one

(detF )F−1F = (detF ) I

where I is the identity matrix. Moreover the equation (6) on page 57 is equivalent to the following
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one 
t1 t4 t5

t4 t2 t6

t5 t6 t3

� C = FTF Cαβ = F iαFiβ (N8)

The equation on pages 158-159 in [Piola, 1845-6] is written in tensorial form as follows:

∂2χi

∂Xα∂Xβ
:= Dαβη

(
F−1

)iη
, Fiη

∂2χi

∂Xα∂Xβ
=

∂F iα
∂Xβ

Fiη = Dαβη (N9)

Now by recalling that

∂Fiβ
∂Xγ

=
∂Fiγ
∂Xβ

we have the symmetry of D with respect to the first two indeces,

Dαβη = Dβαη (N10)

and, because of such expression, we can perform the following simple calculations (usual sym-

metrization, A(ab) = Aab+Aba, and skew-symmetrization, A[ab] = Aab−Aba, conventional symbols

are used)

∂Cαβ
∂Xγ

=
∂F iα
∂Xγ

Fiβ + F iα
∂Fiβ
∂Xγ

2
∂Cα[β

∂Xγ]
=
∂Cαβ
∂Xγ

− ∂Cαγ
∂Xβ

=

=
∂F iα
∂Xγ

Fiβ + F iα
∂Fiβ
∂Xγ

− ∂F iα
∂Xβ

Fiγ − F iα
∂Fiγ
∂Xβ

=

=
∂F iα
∂Xγ

Fiβ −
∂F iα
∂Xβ

Fiγ = Dαγβ −Dαβγ = 2Dα[γβ]
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∂Cαβ
∂Xγ

=
∂
(
F iαFiβ

)
∂Xγ

=
∂F iα
∂Xγ

Fiβ + F iα
∂Fiβ
∂Xγ

=

= Dγαβ +Dγβα = 2Dγ(αβ)

By decomposing D into its skew and symmetric parts (with respect to the second and third index,

see also (N10)) one gets

Dγαβ = Dγ(αβ) +Dγ[αβ] =
1

2

∂Cαβ
∂Xγ

+
∂Cγ[β

∂Xα]
=

1

2

(
∂Cαβ
∂Xγ

+
∂Cγβ
∂Xα

− ∂Cγα
∂Xβ

)
(N11)

The third order tensor Dγαβ which we have introduced allows us to reproduce in the compact

form (N9) the formula which occupies nearly two pages of Piola’s work. Moreover we have obtained

the formula N11 with an easy calculation process which is much less involved than the one first

conceived by Piola.

From (N11) we have

Fiβ
∂2χi

∂Xα∂Xγ
=

1

2

(
∂Cαβ
∂Xγ

+
∂Cγβ
∂Xα

− ∂Cγα
∂Xβ

)
(N12)

which is equivalent to

∂2χj

∂Xα∂Xγ
=

1

2

(
F−1

)jβ (∂Cαβ
∂Xγ

+
∂Cγβ
∂Xα

− ∂Cγα
∂Xβ

)
(N13)

To compare the two formalisms let us state the identification of the left-hand side of one line, i.e.

of the 11th one divided by 2H of the formula appearing on page 158 in [Piola, 1845-6], i.e.,

∂2χ2

∂X1∂X2
�

d2y

dadb
.

Thus, from (N11) with α = 1, j = γ = 2, by recalling the symmetry of the tensor C and the

identifications (N7) and (N8),
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∂2χ2

∂X1∂X2
=

1

2

(
F−1

)2β (∂C1β

∂X2
+
∂C2β

∂X1
− ∂C21

∂Xβ

)
=

=
1

2

(
F−1

)21
(
∂C11

∂X2
+
∂C21

∂X1
− ∂C21

∂X1

)
+

+
1

2

(
F−1

)22
(
∂C12

∂X2
+
∂C22

∂X1
− ∂C21

∂X2

)
+

+
1

2

(
F−1

)23
(
∂C13

∂X2
+
∂C23

∂X1
− ∂C21

∂X3

)
=

=
1

2

(
F−1

)21 ∂C11

∂X2
+

1

2

(
F−1

)22 ∂C22

∂X1
+

+
1

2

(
F−1

)23
(
∂C13

∂X2
+
∂C23

∂X1
− ∂C21

∂X3

)
�

�
l2

2H

dt1
db

+
m2

2H

dt2
da

+
n2

2H

(
dt5
db

+
dt6
da
− dt4

dc

)

which is, multiplying by 2H both members, the 11th equality on page 158 in [Piola, 1845-6]

2H
d2y

dadb
= l2

dt1
db

+m2
dt2
da

+ n2

(
dt5
db

+
dt6
da
− dt4

dc

)

Piola continued the calculations by considering the third order derivatives. However the ob-

tained expressions are too long for being reproduced in printed form. So he states:

“The trinomials with third order derivatives are of three kinds: there are those constituted by

derivatives of first and third order, and one can count 30 of them: there are those constituted by

derivatives of second and third order, and they are 60 in number: and there are those which contain

only third order derivatives and they are 55 in number. I am not writing them, as everybody who

is given the needed patience can easily calculate them by himself, as it can be also done for those

trinomials containing derivatives of higher order.”

As we can use Levi-Civita tensor calculus it is easier for us to find the needed patience, at least

for calculating the trinomials constituted by derivatives of first and third order. Indeed from

Fiγ
∂2χi

∂Xα∂Xβ
=

1

2

(
∂Cαγ
∂Xβ

+
∂Cβγ
∂Xα

− ∂Cβα
∂Xγ

)
(N14)
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by differentiating the (N14) we get

∂

∂Xη

(
Fiγ

∂2χi

∂Xα∂Xβ

)
=

∂

∂Xη

(
1

2

(
∂Cαγ
∂Xβ

+
∂Cβγ
∂Xα

− ∂Cβα
∂Xγ

))

and rearranging the terms,

Fiγ
∂3χi

∂Xα∂Xβ∂Xη
= − ∂2χi

∂Xγ∂Xη

∂2χi

∂Xα∂Xβ
+

1

2

(
∂2Cαγ
∂Xη∂Xβ

+
∂2Cβγ
∂Xη∂Xα

− ∂2Cβα
∂Xη∂Xγ

)
. (N15)

By replacing the following equality due to (N9)

∂2χi

∂Xα∂Xβ
=

1

2

(
F−1

)iδ (∂Cαδ
∂Xβ

+
∂Cβδ
∂Xα

− ∂Cβα
∂Xδ

)
(N16)

in the identity (N15) one gets

Fiγ
∂3χi

∂Xα∂Xβ∂Xη
= −1

2

(
F−1

)ν
i

(
∂Cγν
∂Xη

+
∂Cην
∂Xγ

− ∂Cηγ
∂Xν

)
1

2

(
F−1

)iδ (∂Cαδ
∂Xβ

+
∂Cβδ
∂Xα

− ∂Cβα
∂Xδ

)
+

1

2

(
∂2Cαγ
∂Xη∂Xβ

+
∂2Cβγ
∂Xη∂Xα

− ∂2Cβα
∂Xη∂Xγ

)

which can easily be rewritten in the form

Fiγ
∂3χi

∂Xα∂Xβ∂Xη
= −1

4

(
C−1

)νδ (∂Cγν
∂Xη

+
∂Cην
∂Xγ

− ∂Cηγ
∂Xν

)(
∂Cαδ
∂Xβ

+
∂Cβδ
∂Xα

− ∂Cβα
∂Xδ

)
+

1

2

(
∂2Cαγ
∂Xη∂Xβ

+
∂2Cβγ
∂Xη∂Xα

− ∂2Cβα
∂Xη∂Xγ

)

which has the structure sought after by Piola.

With easy calculation, from the last equation we get

1

2

∂3ρ2(X̄,X)

∂X̄α∂X̄β∂X̄γ
=

1

2

(
∂Cαγ
∂Xβ

+
∂Cβγ
∂Xα

+
∂Cβα
∂Xγ

)
+

(
3∑
i=1

(
χi(X̄)− χi(X)

) ∂3χi(X̄)

∂X̄α∂X̄β∂X̄γ

)
(N17)
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In the following appendix E an induction argument will be presented which allows us to prove the

conjecture put forward by Piola at the beginning of his num.74 pag.156.

7.5 Appendix E. ”After these calculations I abandoned myself to the

analogy”

We are not so enthusiastic about the work of Piola to the extent that we cannot see clearly the

limits of his mathematical proofs.

Indeed the important property which he discusses in the num.74 is obtained by means of a

proof ”by analogy” which is not considered acceptable nowadays. Although there are examples of

mathematical induction which are very ancient (see the discussion in [106] and references therein)

only after Boole and Dedekind it became a universally known and (nearly universally) accepted

method.

Actually Piola states here that, because of objectivity, the expression of Virtual Work must

depend only on deformation measure Cγβ and its derivatives. However, as we have already pointed

out, his proof is based, for higher derivatives, on an argument which the majority of contemporary

mathematicians would consider no more than a (maybe well-grounded) conjecture. Indeed at the

beginning of page 157 of [Piola, 1845-6] one reads

”after these calculations I abandoned myself to the analogy: and this will be sooner

or later unavoidable, because our series is infinite and it will be impossible to check

all its terms.”

We reproduce here an inductive argument which indeed follows the original spirit of Piola.

Let us start by proving that:

Lemma 3 Representation of placement higher order derivatives. For every n there exist

a family of (polynomial) functions Mγα1...αn of the tensor variables C,∇C, ..∇n−1C such that

(
∂χi(X̄)

∂X̄γ

∂nχi(X̄)

∂X̄α1 ...∂X̄αn

)
= Mγα1...αn

(
C, ..,∇n−1C

)
(N18)
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As in the Appendix D we have proven such a lemma for n = 2 that is,

Fiγ
∂2χi

∂Xα∂Xβ
=

1

2

(
∂Cαγ
∂Xβ

+
∂Cβγ
∂Xα

− ∂Cβα
∂Xγ

)
. (N19)

In order to prove (N18) for every n it is sufficient to prove that if it is valid for all N ≤ n then it

is valid also for N = n+ 1.

Let us start by remarking that (N18) implies that

∂nχi(X̄)

∂X̄α1 ...∂X̄αn
=
(
F−1

)iη
Mηα1...αn

(
C, ..,∇n−1C

)
(N20)

Let us then differentiate (N18) assumed valid for N = n to get

∂

∂X̄αn+1

(
∂χi(X̄)

∂X̄γ

∂nχi(X̄)

∂X̄α1 ...∂X̄αn

)
=

∂

∂X̄αn+1

(
Mγα1...αn

(
C, ..,∇n−1C

))
which implies

∂χi(X̄)

∂X̄γ

∂n+1χi(X̄)

∂X̄α1 ...∂X̄αn∂X̄αn+1
=

∂

∂X̄αn+1

(
Mγα1...αn

(
C, ..,∇n−1C

))
− ∂2χi(X̄)

∂X̄γ∂X̄αn+1

∂nχi(X̄)

∂X̄α1 ...∂X̄αn

Now by replacing equation (N20) two times (for n = 2 and for N = n) we get

∂χi(X̄)

∂X̄γ

∂n+1χi(X̄)

∂X̄α1 ...∂X̄αn∂X̄αn+1
=

∂

∂X̄αn+1

(
Mγα1...αn

(
C, ..,∇n−1C

))
−
((
F−1

)η
i
Mηαn+1

(
C, ..,∇n−1C

))((
F−1

)iβ
Mβα1...αn

(
C, ..,∇n−1C

))
=

= Mγα1...αnαn+1

(
C, ..,∇n−1C

)
,
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where we have introduced the definition

Mγα1...αnαn+1

(
C, ..,∇n−1C

)
:=

∂

∂X̄αn+1

(
Mγα1...αn

(
C, ..,∇n−1C

))
−
(
C−1

)βη
Mηαn+1

(
C, ..,∇n−1C

)
Mβα1...αn

(
C, ..,∇n−1C

)
The proof by induction of the lemma is thus complete. To prove that also the generic n − th

order derivative of ρ2 can be expressed, when X̄ = X , in terms of the (n− 2)−th order derivatives

of Cγβ we can use again a simple recursion argument based on the previous lemma.

Indeed the following other lemma is true:

Lemma 4 Representation of the derivatives of the distance function ρ. For every n there

exist a family of (polynomial) functions Lα1....αn of the variables C, ..,∇n−2C such that

∂nρ2(X̄,X)

∂X̄α1 ...∂X̄αn
= Lα1....αn

(
C, ..,∇n−2C

)
+

((
χi(X̄)− χi(X)

) ∂nχi(X̄)

∂X̄α1 ...∂X̄αn

)
(N21)

To prove the Lemma we assume by inductive hypothesis that it is true for N = n and prove

that it is true for N = n + 1. As we have proven formula (N17), that is the previous lemma for

n = 3, then the Lemma follows by the Mathematical Induction Principle.

Therefore by differentiating equation (N21) one gets

∂n+1ρ2(X̄,X)

∂X̄α1 ...∂X̄αn+1
=

∂

∂X̄αn+1

(
Lα1....αn

(
C, ..,∇n−2C

))
+

(
∂χi(X̄)

∂X̄αn+1

∂nχi(X̄)

∂X̄α1 ...∂X̄αn

)
+

(
3∑
i=1

(
χi(X̄)− χi(X)

) ∂n+1χi(X̄)

∂X̄α1 ...∂X̄αn∂X̄αn+1

)

which by replacing equation (N18) becomes

∂n+1ρ2(X̄,X)

∂X̄α1 ...∂X̄αn+1
=

∂

∂X̄αn+1

(
Lα1....αn

(
C, ..,∇n−2C

))
+Mαn+1α1...αn

(
C, ..,∇n−1C

)
+

(
3∑
i=1

(
χi(X̄)− χi(X)

) ∂n+1χi(X̄)

∂X̄α1 ...∂X̄αn∂X̄αn+1

)
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which proves the Lemma once one has introduced the following recursive definition

Lα1....αnαn+1

(
C, ..,∇n−2C

)
:=

∂

∂X̄αn+1

(
Lα1....αn

(
C, ..,∇n−2C

))
+Mαn+1α1...αn

(
C, ..,∇n−1C

)
.

7.6 Appendix F An Italian Mathematical Genealogy

In [105] it is discussed a most likely loss of knowledge occurred at the end of the Punic wars. More

generally all the processes of erasure and removal of previosly well-established scientific knowledge

are related to the simultaneous occurrence of two circumstances: the loss of continuity in the

chain between Maestro and student in the academic institutions and the loss of the awareness -in

the whole society- of the strict connection which exists between science (in all its most abstract

expressions, including mathematics) and technology (see also [106]).

The final result of the simultaneous occurrence of these two circumstances is that the societies

in which they occur do not invest resources in the storage and transmission of theoretical knowledge

and that, as a consequence, it is broken the contact between maestro and pupil, established when

a living scientist teaches to his students the content of the most difficult and important textbooks.

As a final result, in those societies, at first the theoretical knowledge, and subsequently after a

more or less long time period, also the technological capabilities are lost.

We want to underline in this appendix that there is a direct genealogy starting from Gabrio

Piola and leading to the founders of absolute tensor calculus. The Italian school of the XIX Century

was started under the momentum impressed by the Napoleonic reforms of the political organization

of the Italian Nation: in this context the reader should see the Eulogy in Appendix B where Piola,

talking about the textbook of Mathematical Analysis written by his Maestro Vincenzo Brunacci

writes

“was also pushed by the advice of that Sovereign who was an investigator of the stars who,

being in Milan, wrote to persuade him to start this oeuvre in the year 1800, believing that he was

the only one among the Italians who was capable to complete it successfully.”.

Gabrio Piola never accepted a university chair: however his pupil Francesco Brioschi was the
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founder of the Politecnico di Milano. Brioschi mentored Enrico Betti and Eugenio Beltrami. Ulisse

Dini was pupil of Enrico Betti, being also his successor as the chair of Mathematical Analysis and

Geometry at the Università di Pisa. Gregorio Ricci Curbastro was pupil of Ulisse Dini, Eugenio

Beltrami and Enrico Betti. Tullio Levi-Civita was pupil of Gregorio Ricci Curbastro.

The strength of the Italian School of Mathematical Physics, Mathematical Analysis and Differ-

ential Geometry has been weakened by two processes, one which it shares with all other National

Schools and in general with all groups of scientists, the second one which is more peculiar to the

Italian Nation.

1. It happens very often that some theories need to be rediscovered and reformulated several

times in different circles before becoming a universally recognized part of knowledge. For

instance, the basic ideas of functional analysis and its founding concept of functional (which

goes back to the calculus of variations and that can be defined with the sentence ”a function

whose argument is a function”) were already treated in the papers by Erik Ivar Fredholm

and in Hadamard’s 1910 textbook and had previously been introduced in 1887 by the Italian

mathematician and physicist Vito Volterra. The theory of nonlinear functionals was con-

tinued by students of Hadamard, in particular Fréchet and Lévy. Hadamard also founded

the modern school of linear functional analysis, further developed by Riesz and the group

of Polish mathematicians around Stefan Banach. However, Heisenberg and Dirac did need

to rediscover many parts of a theory already known and they developed such a theory until

the moment at which von Neumann could recognize that actually Quantum Mechanics had

been formulated in terms of what he called Hilbert Spaces. Simple laziness or the difficulty

of understanding the formalism introduced by other authors, lack of time or of economical

means. All of these may lead some very brilliant scientists to ignore results obtained by other

scientists, which are nevertheless relevant for their work. Many of the mathematicians listed

in the previous genealogy rediscovered many times the results which their predecessors had

already obtained because of the aforementioned first process. Such a process could be called

removal and/or ignorance of the results which appear not to be relevant. This first removal
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process is indeed observed very often in the history of science applied to the most various

groups, independently of their nationality4, and the case of the rediscovery of functional

analysis is a striking example of its occurrence.

2. Napoleon favoured the birth of an Italian mathematical school, and among many other

actions he pushed Vincenzo Brunacci to write the first Italian textbook in Mathematical

Analysis. However he could not enforce in the Italian School the habit, always followed by

the French School, which leads all French Scientists to recognize, to develop and to glorify the

contributions of their compatriots. Instead the Italian scientists always preferred to follow

the tradition of their predecessors, i.e. the scientists of Greek language who developped

the Hellenistic science (see [106]). Hellenic tradition is based on the intentional removal and

contempt of the contribution due to the compatriots and on the continuous preference for the

approval of foreign scientists. The described process leads the members of a national group

to consider the other national groups always stronger, more qualified and more productive,

while actively acting to impeach the cultural, political and academic growth of the compatriot

scientists.

The momentum given to the Italian School by Napoleon eventually lead to the birth of Tensor

Calculus, but was exhausted by the typical Italian negative attitude towards compatriots, which

was exemplified by the removal of Levi-Civita, due to Mussolini’s racial persecutions, from his chair

in Rome, that was immediately occupied by Signorini. Finally, however, it has to be recognized at

least that

i) the strict relationship between differential geometry and continuum mechanics has been

discovered and developed by the Italian School started by Piola and culminating in Levi-Civita

ii) the great advancement of Riemannian geometry produced by the recognition of the unicity

of the parallel transport compatible with a Riemannian metric (the so-called Levi-Civita Theorem)

has its deep roots already in Piola’s works (recall the well-known concept of Piola’s Transformation)

4The authors are indebted to Prof. Mario Pulvirenti for having attracted their attention to this first process and
also for having recalled to them the example concerning functional analysis.
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iii) Ulisse Dini’s Theorem clarifies mathematically the concept of constraint intensively used in

the works of Piola. Indeed the crucial concept of independent constraints (defined as those having

non-singular Jacobian) was clearified by Dini several decades after Piola had proven its importance

in continuum mechanics.
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