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Abstract

Support vector machines (SVM) and kernel methods have been
highly successful in many application areas. However, the requirement
that the kernel is symmetric positive semidefinite, Mercer’s condition,
is not always verified in practice. When it is not, the kernel is called
indefinite. Various heuristics and specialized methods have been pro-
posed to address indefinite kernels, from simple tricks such as removing
negative eigenvalues, to advanced methods that de-noise the kernel by
considering the negative part of the kernel as noise. Most approaches
aim at correcting an indefinite kernel in order to provide a positive
one.

We propose a new SVM approach that deals directly with indefinite
kernels. In contrast to previous approaches, we embrace the underlying
idea that the negative part of an indefinite kernel may contain valuable
information. To define such a method, the SVM formulation has to be
adapted to a non usual form: the stabilization. The hypothesis space,
usually a Hilbert space, becomes a Krĕın space. This work explores
this new formulation, and proposes two practical algorithms (ESVM
and KSVM) that outperform the approaches that modify the kernel.
Moreover, the solution depends on the original kernel and thus can be
used on any new point without loss of accuracy.
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1 Introduction

Kernel methods are now widely used, even in industrial applications. In
many applications fields, a major open question regards the design of a good
kernel, able to capture precisely the proximity of the data instances. This is
particularly true when data are represented by complex structures, such as
graphs. While many kernels exist, significant effort has to be spent to check
or prove the validity of any proposed kernel. Indeed, according to Mercer’s
theorem, to be valid, a kernel needs to be symmetric and positive definite.
It is not always easy to obtain a true Mercer kernel, and quite often in
practice, indefinite kernels are successfully used (Cortes et al., 2003; Collins
and Duffy, 2001; Haasdonk and Burkhardt, 2007)). Some authors also study
kernels that are positive definite with high probability (Boughorbel et al.,
2004).

This raises several questions: First, even though there are obvious bene-
fits in terms of optimization methods when kernels are positive (semi)definite,
what is the learning interpretation of such a constraint? Second, admitting
the assumption that an indefinite kernel is actually what is needed to learn
some specific data, how can it be performed correctly? And finally, admitting
it is possible to solve the learning problem with an indefinite kernel, with-
out removing or distorting its negative part, is it possible to evaluate the
added value of such kernels? These questions do not have straightforward
answers. Many authors provide algorithms with indefinite kernels (Hsuan-
Tien and Chih-Jen, 2003; Chen et al., 2009; Haasdonk and Pekalska, 2008;
Pekalska and Haasdonk, 2009; Gu and Guo, 2012), emphasizing on the need
for handling such kernels. Most of time, there are some limits on the indef-
initeness of the kernel (not too many or not too large negative eigenvalues
for instance).

In this paper, we focus on a Support Vector Machine (SVM) like algo-
rithm with indefinite kernels, although several parts could be applied to dif-
ferent kernel methods. The starting point is the definition of the SVM when
using an indefinite kernel. In this context, the set of hypotheses induced by
the kernel is not a RKHS (Reproducing Kernel Hilbert Space) but a RKKS
(Reproducing Kernel Krĕın Space) (Haasdonk, 2005; Ong et al., 2004; Has-
sibi et al., 1999). This difference has a great impact on the definition of the
system solved to obtain the SVM solution: from a standard quadratic mini-
mization system, the SVM problem becomes a highly non standard quadratic
stabilization system. This means that the objective function, usually seen as
a cost, should not be minimized but stabilized. Unfortunately, optimization
literature has focused on minimization or maximization, and there has been
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a dearth of approaches to solve stabilization problems.
For completeness, we review the mathematics behind optimizing SVMs

(Section 2). The presented work aims at understanding what this stabiliza-
tion problem is and linking it to known optimization forms. We propose an
SVM like stabilization problem for classification with indefinite kernels in
Section 3 and review the relevant literature for Reproducing Kernel Krĕın
Space. We propose two algorithms for solving the stabilization problem: an
exact solution using eigen-decomposition (Section 4) called ESVM and an ap-
proximate solution using an active set approach (Section 5) called KSVM. To
be able to evaluate the proposed algorithms, we compare them to existing ap-
proaches that deal with indefinite kernels: Relevance Vector Machines (Tip-
ping, 2001), that directly use in kernel matrix, and IndefiniteSVM (Luss and
d’Aspremont, 2009; Ying et al., 2009; Chen and Ye, 2008), that considers
the negative part as noise. Some well known heuristics are also taken into
account, like the modification of the spectrum of the kernel matrix: the neg-
ative eigenvalues are either cut to zero or set to their absolute values. It is
also possible to translate the whole spectrum until all eigenvalues are pos-
itive (Muñoz and de Diego, 2006). The experiments (Section 6) show that
keeping the information contained in the negative part of the kernel can im-
prove the learning ability of the SVM, which is in favor of the assumption
that an indefinite kernel is not necessarily a noisy kernel, and it is worth
exploiting it.

2 A Brief Mathematical Review of SVMs and Ker-
nels

The mathematical properties of SVMs with kernels lie at the intersection
of several useful results from various areas (Schölkopf and Smola, 2002).
In this section, we briefly review these properties with the aim of precisely
identifying the difficulty of generalizing SVMs to indefinite kernels.

2.1 Geometric Margin

The geometric basis of SVMs are derived by considering the distance between
points to the hyperplane. The distance between the closest point to the
hyperplane is called the margin, given by 1

‖w‖ , where w is the normal vector
to the hyperplane. Based on regularization theory, margin maximization
has been shown to have many learning theoretic benefits (Steinwart and
Christmann, 2008).
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2.2 Reproducing Kernel Hilbert Spaces

It turns out that for the purposes of learning from finite data, the inner prod-
ucts corresponding to general Hilbert spaces are not suitable. For example in
L2, two functions which differ on a finite set of points are indistinguishable
since the finite set of points has measure zero. One more restricted space
of inner products which has been successfully used in machine learning is
the Reproducing Kernel Hilbert Space (RKHS). There are two equivalent
definitions of RKHS, which provide different viewpoints of this highly useful
inner product space (see for instance Aronszajn, 1950).

The first definition of RKHS is based on the notion of reproducing kernel.
Let X be a nonempty index set, andH a Hilbert space of real valued functions
defined on X and endowed with its inner product 〈·, ·〉.

Definition 2.1 (Reproducing kernel) A function k : X × X → IR is
a reproducing kernel of H if it verifies the following properties:

1. ∀x ∈ X , k(x, x′) as a function of x′ belongs to H,

2. (the reproducing property) ∀x ∈ X , ∀f ∈ H, 〈f, k(x, ·)〉 = f(x).

Reproducing kernel Hilbert spaces are then defined as Hilbert spaces which
possesses a reproducing kernel. In this first definition, the notion of repro-
ducing kernel is defined by using the inner product of a Hilbert space and
thus appears to be dependent on this notion. But this is not the case. To
highlight the nature of RKHS and its associated kernel, another (equivalent)
definition is needed. For a given Hilbert space H, a necessary and sufficient
condition for the existence (and unicity) of an associated reproducing kernel
is that for every x of the index set, f(x) is a continuous functional of f run-
ning through H (using the Riesz representation theorem. See for instance
Akhiezer and Glazman, 1993, Section 16). This leads to a second definition
of a RKHS.

Definition 2.2 (Reproducing kernel Hilbert spaces) A reproducing ker-
nel Hilbert space is a Hilbert space H for which at each x ∈ X the evaluation
functional δx,

δx : H −→ IR
f 7−→ δx(f) = f(x)

is continous.

This definition is more general than the previous one in the sense that
the word "Hilbert" could have been replaced by "Krĕın". We will define the
analogous concept of reproducing kernel Krĕın spaces in Section 3.1.
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2.3 Representer Theorem

When performing optimization in a RKHS in the regularized empirical risk
setting, the optimal solution can be found as a linear combination of a finite
number of basis functions, regardless of the dimensionality of the space H.
This result is known as the representer theorem.

Theorem 2.1 (Theorem 4.2 in Schölkopf and Smola, 2002) Let Ω : [0,∞) −→
IR be a strictly monotonic increasing function, X a set, and `h : (X ×
IR2)` −→ IR ∪ {∞} a loss function. Then each minimizer f ∈ H of the
general regularized risk

`h((x1, y1, f(x1)), . . . , (x`, y`, f(x`))) + Ω(‖f‖H)

admits a representation of the form

f(x) =
∑̀
i=1

αik(xi, x),

where k is the reproducing kernel of H, and αi ∈ IR for all i = 1, . . . , `.

2.4 SVM as a projection

The success of SVMs in numerous application areas is partly due to the
availability of stable, efficient and accurate numerical algorithms. The reason
for this is that the problem of margin maximization in RKHS can be cast as a
quadratic program, which is a special case of convex optimization problems.
More precisely, the SVM problem can be formulated as follows. Let xi ∈
X d, i ∈ {1, . . . , `} be ` training points in d dimensions, along with their label
yi ∈ {−1, 1} representing the class each point belongs to in a classification
problem. For a given τ , SVM is the solution of the following quadratic
program (QP):{

min
f∈H,b∈IR

1
2‖f‖

2
H

s.t.
∑`

i=1 max
(
0, 1− yi(f(xi) + b)

)
≤ τ .

(1)

This QP can be seen as the problem of retrieving the orthogonal projection of
the null function inH onto the convex feasible set S =

{
f ∈ H|

∑`
i=1max

(
0, 1−

yi(f(xi) + b)
)
≤ τ

}
. Projection is a well known regularization mechanism

(see for instance Hofmann et al., 2007, and related references), allowing to
choose a unique and stable solution from the feasible set S. Convex opti-
mization problems have the desirable property that every local minimum is a
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global minimum. One of the often cited drawbacks of SVMs with indefinite
kernels is that is results in non-convex optimization problems (Haasdonk,
2005; Luss and d’Aspremont, 2009). However, as we will see in the following
section, this projection regularization principle can be defined when deal-
ing with undefined kernels, leading to a stationarization problem instead of
minimization.

3 A stabilization quadratic program to solve SVM
in Krĕın spaces

In this section, the Reproducing Kernel Krĕın Space (RKKS) is briefly in-
troduced and the stabilization system to be solved to train SVM in Krĕın
space is proposed. It was shown in Ong et al. (2004) that from the function
space point of view, positive semidefiniteness is not a requirement, and in
fact the representer theorem is also valid for RKKS.

3.1 Reproducing Kernel Krĕın Space

Krĕın spaces are indefinite inner product spaces endowed with a Hilbertian
topology. The key difference from Hilbert spaces is in the positiveness axiom
no longer required for Krĕın Space.

Definition 3.1 (Inner Product, Bognár 1974) Let K be a vector space
on the scalar field. An inner product 〈., .〉K on K is a bilinear form where
for all f, g, h ∈ K, α ∈ IR :

• 〈f, g〉K = 〈g, f〉K

• 〈αf + g, h〉K = α〈f, h〉K + 〈g, h〉K

• 〈f, g〉K = 0, ∀g ∈ K =⇒ f = 0

Definition 3.2 (Krĕın space, Azizov and Iokhvidov 1989) An inner prod-
uct space (K, 〈., .〉K) is a Krĕın space if there exists two Hilbert spaces H+,H−
spanning K such that

• ∀f ∈ K, f = f+ + f−, where f+ ∈ H+ and f− ∈ H−

• ∀f, g ∈ K, 〈f, g〉K = 〈f+, g+〉H+ − 〈f−, g−〉H−
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IfH+ andH− are RKHS,K is a reproducing kernel Krĕın spaces (RKKS).
Definition 2.2 can be adapted to define RKKS (replace Hilbert by Krĕın ). In
this case the uniqueness of the functional decomposition (the nature of the
RKHSs H+ and H−) is not guaranteed. In (Ong et al., 2004, Proposition
6), the reproducing property is shown: in a RKKS K, there is a unique
symmetric k(x, x′) with k(x, .) ∈ K such that the reproduction property
holds (for all f ∈ K, 〈f, k(x, .)〉K = f(x)) and k = k+− k− where k+ and k−
are the reproducing kernels of the RKHSs H+ and H−. Furthermore, to any
symmetric nonpositive kernel k that can be decomposed as the difference of
two positive kernels k+ and k−, it can be associated a RKKS.

3.2 SVM in RKKS

The definition of a proper SVM in RKKS requires adaptation from the
classical SVM in RKHS given by (1) since the norm ‖f‖ is not defined
in Krĕın spaces. However, as previously remarked, the minimization of a
norm can be seen as a projection. This interpretation in terms of projection
still hold in Krĕın spaces and can be used as a regularization mechanism.
This allows to define SVM in RKKS (as it can be in Hilbert spaces) as
the orthogonal projection of the null element onto the convex feasible set
S =

{
f ∈ H|

∑`
i=1 max

(
0, 1 − yi(f(xi) + b)

)
≤ τ

}
. As claimed in Hassibi

et al. (1999, section 2.4 p 40), in Hilbert space, projections extremize certain
quadratic forms while in Krĕın spaces we can in general only assert that pro-
jections stationarize such quadratic form. In our case, this quadratic form is
〈f, f〉K, leading to the following formulation of indefinite SVM in RKKS{

stat
f∈K

1
2 〈f, f〉K

s.t.
∑`

i=1 max
(
0, 1− yi(f(xi) + b)

)
≤ τ .

(2)

where stat means stationarize. This stationary point may be either a min-
imum, a maximum or a saddle point. We show in section 4.1 that it is
in fact a saddle point, which will allow us a rewrite the problem conve-
niently. Indeed, minimization is not the wanted here since in a RKKS
〈f, f〉K = 〈f+, f+〉H+−〈f−, f−〉H− so that f− can be chosen to make 〈f, f〉K
arbitrarily negative.

The literature on convex optimization (Boyd and Vandenberghe, 2004;
Rockafellar, 1996) has focused on the solution of minimization or maximiza-
tion problems. But the optimization problem required for indefinite SVMs
involves a stationary point condition, which has not received much study.
Interestingly, all three problems (minimization, maximization and stabiliza-
tion) has the same first order conditions of optimality. To characterize the
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solutions of indefinite SVM in RKKS given by (2), we find it useful to define
J(f) the following loss function:

J(f) = J1(f) + J2(f) with


J1(f) = 1

2〈f, f〉K

J2(f) = C
∑̀
i=1

max
(
0, 1− yi(f(xi) + b)

)
(3)

This function J(f) is non convex and non differentiable: J1(f) is differ-
entiable but non convex while J2(f) is convex but non differentiable. In this
case, if f∗ is a local stationary point (minimum, maximum or saddle point)
of the cost function J(f), then it verifies the inclusion

0 ∈ ∂cJ(f∗)

where ∂c is the Clarke subdifferential (Clarke, 1989). The Clarke subdiffer-
ential is the generalization of the subdifferential to non convex functions.
It is defined for locally Lipschitz functions h as the convex hull of some
generalized gradient and more precisely

∂ch(β) =
{
g ∈ IRp | g>d ≤ Dch(β, d) ∀d ∈ IRp

}
where Dch(β, d) denotes the Clarke directional derivative function of h at
point β in direction d defined by

Dch(β, d) = lim
ε→0+

sup
δ→β

h(δ + εd)− h(δ)

ε

Note that for J it coincides with the usual directional derivative. To calculate
∂cJ it is worth noticing that, for all f , function J can be split as the sum
of two terms J = J1 + J2 (eq. 3), J1 being strictly differentiable and J2
being convex. In this case (see Clarke, 1989, proposition 2.3.3 corollary 1)
the 0 ∈ ∂cJ(f∗) condition comes out as

f∗is a local stationary point⇒ −∇fJ1(f∗) ∈ ∂J2(f∗) (4)

where ∇fJ1(f∗) is the gradient of function J1 at point f∗ and ∂J2(f∗) is the
subdifferential of the convex function J2 at point f∗.

Let apply this:
∇fJ1(f∗) = f(.)

∂fJ2(f
∗) = −C

∑̀
i=1

βiyik(xi, .) with


βi = 0 if 1− yi

(
f(xi) + b

)
< 0

0 < βi < 1 if 1− yi
(
f(xi) + b

)
= 0

βi = 1 if 1− yi
(
f(xi) + b

)
> 0

(5)
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Equation 4 states that there exists a vector β∗ such that ∇fJ1(f∗) +
∂J2(f

∗) = 0, hence

f∗(.) = C
∑̀
i=1

β∗i yik(xi, .). (6)

The solution characterized by the vector β∗ may not be unique. Among
those solutions, to solve the SVM problem in the Krĕın space, we want the
one that stabilizes J1(f).

This framework is the proper way to interpret and write the previously
proposed system to solve SVM in a RKKS (Loosli and Canu, 2011):

stab
f,b,ξ

1

2
〈f, f〉K + C

∑̀
i=1

ξi

st yi(f(xi) + b) ≥ 1− ξi ∀i ∈ [1..`]
ξi ≥ 0 ∀i ∈ [1..`]

(7)

where stab means stabilize.

3.3 Stabilization versus minimization

The intuition behind the stabilization problem is not straight forward. It
requires to think about the meaning of the negative part of the space. A
very interesting viewpoint is introduced in Laub and Müller (2004), arguing
that (in the context of feature discovery), the negative eigenvalues can code
for relevant structure in the data. One of the striking examples is on the
MNIST database: the projection of digits onto the first 2 positive eigendi-
rections gathers them according to their shape (i.e. their labels), while the
projection onto the 2 last negative eigendirections gathers them according to
the stroke weight (which is not relevant for classification but is still relevant
information). This work clearly shows the interest of keeping the negative
subspace information. It also gives hints on the meaning of the stabilization:
when optimizing a standard SVM, one aims at minimizing the variance (the
cost function) brought by the kernel matrix (while performing correct sep-
aration). In the stabilization form of the SVM, it is the same idea, except
that part of this variance comes negatively through the negative subspace
of the Krĕın space. It makes sense then to maximize this negative variance
while minimizing the positive usual variance, which leads to a stabilization
problem.

Figure 1 illustrates the effect of trying to minimize function J(f) instead
of stabilizing it when the kernel lies in a Krĕın space. It shows on a very
simple problem (2 points) which solutions are found when stabilizing and
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Figure 1: The above figure illustrates the effects of trying to minimize func-
tion J(f) instead of stabilizing it when the kernel lies in a Krĕın space. On
the top figure, the quadratic function is represented (using the tanh kernel
for 2 training points). The pink circle shows the solution provided by a stan-
dard CSVM (LibSVM). The green one shows the solution using ESVM, i.e.
the stabilization SVM. The two figures below show the decision boundary
for each of the solution (the left one corresponds to ESVM, the green circle,
the right one to the CSVM, the pink circle).

minimizing. The stabilization solution is given by the ESVM algorithm
proposed in this paper. The minimization solution is produced by LibSVM
(Chang and Lin, 2011). For each solution, we represent its position on the
loss function and the decision boundary. We can observe that the solution
stabilizing the loss function gives a better decision function.

3.4 Generalization error bound

Since positive semidefiniteness is often considered by practitioners to be a
“theoretical” construct, it is often assumed that this requirement comes from
learning theory. However, this is not the case since a generalization error
bound can be proven for indefinite kernels. We briefly reiterate this result
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here to rectify this common misconception and show that positive semidefi-
niteness is not required to prove a generalization error bound.

This result is unsurprising since Krĕın spaces decompose into two Hilbert
spaces, and hence the corresponding Rademacher average, R`(F) for ` exam-
ples, can be computed for the function class F corresponding to an indefinite
kernel.

Proposition 3.1 (Ong, 2005, Proposition 29)
Let K̃ be the Gram matrix of the kernel k̃ = k+ + k− at points x1, . . . , x`. If
k̃ is in the L1 ball, then the Rademacher average is bounded, that is

R`(Bk) 6M
1
2

where
Bk = {f ∈ K : ‖f+‖2 + ‖f−‖2 = ‖f‖2 6 1}

and
M =

∫
X d

k̃(x, x)dµ(x).

The proof follows that of the Hilbertian case (Mendelson, 2003, Theorem
16) closely. Using this estimate of the complexity of the function class F ,
we can obtain a generalization error bound by using standard techniques
(Mendelson, 2003, Corollary 3).

4 The exact solution: using eigen-decomposition

To solve the stabilization problem of the Krĕın space, one need to decompose
f into f+ and f−. The idea is to identify the kernel’s positive and negative
components using spectral decomposition. Doing so, the stabilization formu-
lation can be separated into a minimization subproblem and a maximization
one. Some simple manipulations are then applied to obtain an equivalent
standard quadratic program. We show that solving eq.2 is equivalent to
solving a standard SVM with a modified kernel (i.e. the positive version of
the indefinite kernel, built from the absolute values of the spectrum).

We first state the resulting algorithm, that computes the solution to
the stabilization problem by solving the equivalent SVM dual minimization
problem. We denote G the kernel matrix such that G(i, j) = yiyjk(xi, xj).

This solver produces an exact solution for the stabilization problem. Its
main weakness is that it requires to pre-compute the whole kernel matrix and
to decompose it into eigenvectors/eigenvalues. The other point to mention
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Algorithm 1 SVM solver for indefinite kernels using Eigen-decomposition
(ESVM)
Require: x,y, C and G
[U,D] = EigenDecomposition(G)
G̃ = USDU> with S=sign(D)
[α̃,b] = SvmSolver(x,y,G̃,C)
α = USU>α̃
return α,b

is that the solution α is not sparse. It can be seen as a generalization of the
semi-definite case, in the sense that filling it with a positive definite kernel
will produce the standard SVM solution.

Its main advantage is its simplicity, it will work with any SVM solver,
and it can easily be extended to other kind of tasks or methods. Furthermore
to reduce computation time, we can use partial decomposition and take only
the largest eigenvalues (and associated eigenvectors) such that we keep more
than, for instance, 95% of the kernel information (Williams and Seeger, 2000;
Bach and Jordan, 2002; Bengio et al., 2004; Drineas and Mahoney, 2005).

In the rest of this section, we will show that the stabilization prob-
lem (Equation (2)) is indeed solved by Algorithm 1. There are four opti-
mization problems that we consider in this section:

1. Primal stabilization problem (Equation (2))

2. Primal minimization problem (Equation (14))

3. Dual maximization problem (Equation (15))

4. Dual stabilization problem (Equation (16))

4.1 Equivalence between Stabilization and Minimization

To show the validity of Algorithm 1, we prove that the dual SVM maxi-
mization problem with an appropriately converted kernel matrix is equiv-
alent to the primal stabilization problem. We obtain this by considering
the decomposition of Krĕın spaces into Hilbert spaces, resulting in a stan-
dard convex minimization. This standard problem allows us to use convex
duality to obtain the equivalent dual maximization problem. For complete-
ness, we derive the corresponding dual stabilization problem. We first write
eq.2 according to f+ and f−, admitting that we have fK = f+ + f− and
〈f, f〉K = 〈f+, f+〉H+ − 〈f−, f−〉H− .
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
min
f+

max
f−

1

2
〈f+, f+〉H+ − 1

2
〈f−, f−〉H−

min
f+,f−

C
∑̀
i=1

max
(
0, 1− yi(f+(xi) + f−(xi) + b)

) (8)

Note here that we replaced the stationary point search by a min-max search.
We justify this decomposition below.

Proposition 4.1 The stationary point is a saddle point.

Here we show that the stationary point we are looking for is a saddle point,
which means that we can write it as a min-max or as a max-min indifferently.

Proof 4.1.1 To show our point, we follow Hassibi et al. (1999), section
6.3.1. Let consider the quadratic cost function

J(a, b) =
[
a> b>

] [ A B
B> C

] [
a
b

]
(9)

where a and b are vectors and A,B,C are given matrices with A and C sym-
metric. If the middle matrix is indefinite, the solution of this quadratic form
is a stationary point. Let say that one want to minimize J(a, b) through
the choice of a and maximize if through the choice of b, then there are
two different strategies that can be applied: either the max-min problem
(maxb mina J(a, b)) or the min-max problem (mina maxb J(a, b)). As stated
in Hassibi et al. (1999) eq. 6.3.9, the condition that the min-max and max-
min solutions exist simultaneously is called the saddle point condition which
is A is definite positive et C is definite negative.

Now we show that our cost function J1(f+, f−) can be written such that
it is possible to identify A and C and deduce that the stationary point is a
saddle point.

J1(f+, f−) =
1

2
〈f+, f+〉H+ − 1

2
〈f−, f−〉H− (10)

From eq. 6 we have f(.) = f+(.) − f−(.) = C
∑

i βiyi(k+(xi, .) − k−(xi, .)),
it follows f+(.) = C

∑
i βiyik+(xi, .) and f−(.) = C

∑
i βiyik−(xi, .).

J1(β) =
C2

2
β>G+β −

C2

2
β>G−β (11)

with G+(i, j) = yiyjk+(xi, xj) and G−(i, j) = yiyjk−(xi, xj), so G = G+ −
G−. Let use the eigen-decomposition of the indefinite kernel matrix G =
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UDU> where U is the orthonormal column eigenvector matrix and D the
diagonal eigenvalue matrix. Since G is indefinite, D contains both positive
and negative eigenvalues. Let note D+ (resp. D−) the diagonal submatrix of
D such that it contains all and only positive (resp. negative) eigenvalues, and
U+ and U− the submatrices of U consisting of the corresponding eigenvectors.
Then G+ = U+D+U

>
+ and G− = U−D−U

>
− . Moreover, we denote a =

U>β = [b+; b−] = [U>−β;U>+β].

J1(β) =
C2

2
β>U+D+U

>
+β −

C2

2
β>U−D−U

>
−β

J1(b+, b−) =
C2

2
b>+D+b+ −

C2

2
b>−D−b−

J1(b+, b−) =
[
b>+ b>−

] [ D+ 0
0 D−

] [
b+
b−

] (12)

From this we can identify with eq.9 and easily see A = D+ is definite positive
and C = D− is definite negative. This shows that the stationary point of our
problem is a saddle point and we can write it either as a min-max or a
max-min system. This justifies eq.8.

The equivalent minimization system From eq.8, is it possible to change
the maximization part into a minimization, and then to gather everything
as follows:

min
f+,f−

1

2
〈f+, f+〉H+ +

1

2
〈f−, f−〉H− +C

∑̀
i=1

max
(
0, 1−yi(f+(xi)+f−(xi)+ b)

)
(13)

To establish the final minimization system, one need to note that from
f+ and f−, we can build a positive Hilbert space, noted K̃ such as

f̃ = f+ + f− and 〈f̃ , f̃〉K̃ = 〈f+, f+〉H+ + 〈f−, f−〉H−

It follows

min
f̃

1

2
〈f̃ , f̃〉K̃ + C

∑̀
i=1

max
(
0, 1− yi(f̃(xi) + b)

)
(14)

which is a standard SVM formulation.
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4.2 Dual Optimization Problem

By using standard methods of Lagrange duality, the dual optimization prob-
lem corresponding to Equation (14) is given by

max
α̃

−1

2
α̃>G̃α̃+ α̃>1

subject to α̃>y = 0
and 0 ≤ α̃i ≤ C ∀i ∈ [1..`]

(15)

where G̃ = G+ +G−.

4.3 An equivalent stabilization problem in its dual form

The claim here is that the following stabilization system is equivalent to the
primal stabilization system and is its dual form. It is shown then that the
optimality conditions are the same.

The basic underlying idea is that the solution combines a positive and a
negative influence. Hence the multipliers α are defined as the sum of those
two components.

stab
α

−1

2
α>Gα+ α>1

subject to α>+y = α>−y
and 0 ≤ α+i ≤ Cp ∀i ∈ [1..`]
and −Cp ≤ α−i ≤ 0 ∀i ∈ [1..`]

(16)

with α = α+ + α−

Definition 4.1 (Fundamental decomposition of K) (Definition 2.2.1, re-
marks Hassibi et al., 1999)

We define two projection operators P+ and P− such that

P+K = K+ and P−K = K−

So for every x ∈ K we can write

x = x+ + x−, where x+ = P+x ∈ K+ and x− = P−x ∈ K−.

Proposition 4.2 Matrices P+ and P− are given by the eigen-decomposition
of the matrix G.
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Proof 4.2.1 Using the same eigen-decomposition as for eq.12, G = UDU>,
we can write

G = U+D+U
>
+ + U−D−U

>
− = G+ −G−

G+ = U+D+U
>
+ = UD̃+U

> with D̃+ =

[
D+ 0
0 0

]
G+ = US+DU

> with S+ =

[
I 0
0 0

]
G+ = US+U

>UDU> = US+U
>G = U+U

>
+G = P+G

The same reasoning holds for G− and P− = −U−U>− and G = P+G+P−G.

Then the corresponding kernel in the RKHS is written as G̃ = (P+ −
P−)G. We note P the projection matrix such that P = P+ − P− = USU>

with S =

[
I 0
0 −I

]
.

Projection matrix between α and α̃ Let decompose α according to P+

and P− and deduce the decomposition of α̃:

α = P+α+ P−α = α+ + α−
α̃ = P+α− P−α = α+ − α−

= Pα

Note that U being orthogonal, we also have α = Pα̃.

From dual maximization to dual stabilization We now use the rela-
tion between α and α̃ in problem 3, eq.15.

max
α

−1

2
α>PG̃Pα+ α>P1

subject to α>Py = 0
and 0 ≤ (Pα)i ≤ C ∀i ∈ [1..`]

(17)

It is easy to check that PG̃P = G̃. Moreover, we decompose α and note that
P+P = P+ and P−P = P−. We also use P+GP+ = G+ and P−GP− = G−:


max
α+,α−

−1

2
α>+G+α+ −

1

2
α>−G−α− + α>+1− α>−1

subject to (α+ − α−)>y = 0
and 0 ≤ (α+ − α−)i ≤ C ∀i ∈ [1..`]

(18)
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The next step consists in changing the system such that we maximize
according to α+ and minimize according to α−:


max
α+

min
α−

−1

2
α>+G+α+ +

1

2
α>−G−α− + α>+1 + α>−1

subject to α>+y = α>−y
and 0 ≤ α+i ≤ C/2 ∀i ∈ [1..`]
and −C/2 ≤ α−i ≤ 0 ∀i ∈ [1..`]

(19)

As previously, one can show that the stationary point is a saddle point, so
we finally write the system as a stabilization:

stab
α

−1

2
α>Gα+ α1

subject to α>+y = α>−y
and 0 ≤ α+i ≤ C/2 ∀i ∈ [1..`]
and −C/2 ≤ α−i ≤ 0 ∀i ∈ [1..`]

(20)

The three previous subsections have shown that the four considered prob-
lems are equivalent and hence Algorithm 1 solves the proposed SVM like
stabilization algorithm (Equation (2)).

5 Approximate solutions: avoiding the spectral de-
composition

For large scale problems, the computation cost of the eigendecomposition
proposed in the previous section may be prohibitive. In this section, the
idea is to find an approximate solution to the non positive SVM that will not
require the storage of the full kernel matrix and lead to a sparse solution.
Instead of modifying the kernel matrix, we directly adapt the quadratic
program.

5.1 Interpretation of Karush Kuhn Tucker conditions

We begin from the SVM dual quadratic problem (Vapnik, 1995), which is
obtained from the margin maximization formulation. A positive Lagrange
multiplier αi is associated to each training example.

min
α

1
2α
>Gα− α>1

st α>y = 0
0 ≤ αi ≤ C ∀i ∈ [1..n]

(21)
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where G(i, j) = yiyjK(i, j). The full Karush Kuhn Tucker (KKT) conditions
for the classical SVM dual system (21) are as follows:

Stationarity α>G− 1> + λy> − µ> + η> = 0
Primal admissibility α>y = 0 0 ≤ αi ≤ C ∀i ∈ [1..`]
Dual admissibility ηi ≥ 0 µi ≥ 0 ∀i ∈ [1..`]
Complementarity λα>y = 0 µiαi = 0 ηi(αi − C) = 0

(22)
Any solution respecting each of these conditions is a solution of the prob-

lem 21. In the case the kernel matrix is definite positive, the dual SVM
problem has a unique solution which is a global minimum. When the kernel
matrix is indefinite, we directly consider the KKT conditions, which has three
possible interpretations which will be discussed in the following sections.

5.1.1 Point of view 1: the variational approach of quadratic pro-
gramming

In the case the kernel matrix is indefinite, the dual SVM problem is not well
defined and the solution is not unique. Following Brezinski (1997) and the
variational approach of quadratic programming, the problem can actually
be solved using normal residuals (ie. solving Ax = b via A>Ax = A>b).
Note that normal equations could also be an option (ie. solving Ax = b via
AA>x′ = b with x = A>x′). Applying these variational approaches to the
stationarity condition results in:

α>G = 1− λy> + µ> − η>
α>GG> = (1− λy> + µ> − η>)G>

(23)

with all the other KKT conditions remaining identical. This approach can
be interpreted as solving the linear equation with a least squares method.

5.1.2 Point of view 2: a stabilization problem

Optimization techniques provide minima and not saddle points. To that
purpose, a simple trick is proposed, known as magnitude of the gradient,
consisting in changing the problem such that any critical point becomes a
local minimum. This is done by computing the sum of the squares of the
partial derivatives of the function to be stabilized. We apply this to the
following unconstrained function:

J =
1

2
α>Gα− α>1 (24)

18



Stabilizing J is equivalent to minimizingM:

M(α) =
〈
α>G− 1>, α>G− 1>

〉
(25)

This provides the following system:
min
α

〈
α>G− 1>, α>G− 1>

〉
st α>y = 0

0 ≤ αi ≤ C ∀i ∈ [1..n]

(26)

The KKT conditions of optimality for system (26) gives following stationarity
condition:

(α>G− 1> + λy> − µ> + η>)G> = 0 (27)

The other conditions remain identical to (22).

5.1.3 Point of view 3: The projection

As already mentioned, the unconstrained problem has a unique solution.
The objective is to project it onto the feasible set. However, this projection
is not obvious, namely what is the closest point of the feasible set to the
unconstrained optimum in the sense of the stabilization? We propose to
define it as the most stable point, i.e. the admissible point minimizing the
gradient of the cost function (which is α>G−1>). Solving this minimization
with the least squares directly gives the same system (26).

5.2 Approximate solver for stabilization

The proposed algorithm is derived from active set approach for SVM, similar
to Vishwanathan et al. (2003). The sets of points are defined according to the
complementarity conditions (see Table 1). We initialize all training points
are in the non support vector set I0 except for a couple with opposite labels
which is in Iw. Any other initial situation based on warm-start or a priori
does not change the algorithm.

Table 1: Definition of groups for active set depending on the dual variable
values

Group α η µ

I0 0 0 > 0

IC C > 0 0

Iw 0 < α < C 0 0
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Solving linear system in Iw The linear system is solved from the sta-
tionarity condition (eq. 27) only for unconstrained points, those of Iw. This
leads to the following equation:

α>(w)G(w,:)G(:,w) = (1(:) − λy>(:) − C1
>
(C)G(C,:))G(:,w) (28)

This can be solved using QR decomposition of G, for which one can maintain
a rank one update at each step of the algorithm. Computing λ can be easily
done substituting α>(w) in α

>
(w)y(w) = −C1>(C)y(C).

Activating constraints in Iw If any α(w)(i) does not lie in [0 C], the
current solution is projected on the admissible set such that all α(w)(i) satisfy
the primal admissibility and the violating point is transferred towards I0 or
IC according to the violating value.

Relaxing constraints in I0 or IC If the current solution is admissible,
the stationarity conditions for I0 and IC (using eq. 27) is checked. The most
violating point is transferred from its group to Iw.
For any point j ∈ I0, µj > 0 and ηj = 0. From eq. 27 :

(α>[w,C]G([w,C],:) − 1> + λy>)G:,j > 0 (29)

For any point k ∈ IC , µk = 0 and ηk > 0. From eq. 27 :

(α>[w,C]G([w,C],:) − 1> + λy>)G:,k < 0 (30)

The notion of margin is distorted. Indeed, when using the same active
set solver in the positive definite case, the margin clearly appears in the
constraint relaxation (for j ∈ I0, the condition would be α>[w,C]G([w,C],j) +

λyj > 1). This means that in the feature space, the solution will not have the
same properties as the usual SVM, especially concerning the interpretation
of support vectors relative to the decision boundary.

Note that the proposed algorithm converges after a finite number of steps
since it can be seen as an active set procedure applied to a convex QP and
thus convergence proof in this case applies (Nocedal and Wright, 2006).

Complexity The proposed algorithm (Algorithm 2) is slightly more com-
putationally intensive than the positive semidefinite algorithm. By assuming
that the original kernel matrix is stored in memory, we have the following
additional operations
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Algorithm 2 Krĕın space SVM solver (KSVM)
Initialize (one random point for each class in Iw, all others in I0)
while solution is not optimal do
solve linear system (28).
if primal admissibility is not satisfied then
project solution in the admissible domain:
remove a support vector from Iw (to I0 or IC).

else if stationarity condition is not satisfied then
add new support vector to Iw (from I0 (29) or IC (30)).

end if
end while

• 2 matrix by matrix multiplications (O(n|Iw|2) and O(n2|Iw|)) to solve
Equation (28).

• Activating the constraints is identical to the positive semidefinite case.

• 1 matrix by matrix multiplication (O(n2(|I0|+ |IC |))) in Equation (29)
and (30).

These can be reduced by various strategies, such as caching, rank-one up-
dates, and iterative search for violating examples Vishwanathan et al. (2003).

6 Empirical comparison

We perform empirical comparisons of our three proposed approaches to previ-
ous methods for indefinite kernels. All experiments are realized using Matlab
code available at
http://gaelle.loosli.fr/npsvm.html.

6.1 Overview of related work

In addition to the three approaches proposed in this paper, Algorithm 1
(ESVM) with full and partial eigenvalue decomposition, and Algorithm 2
(KSVM) there are several recent approaches for learning with indefinite ker-
nels.

6.1.1 Transforming the kernel matrix

There are several common ways of converting indefinite kernel matrices
to positive semidefinite ones by changing the eigenspectrum (Muñoz and
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de Diego, 2006).

Absolute values: In this method, the kernel matrix is decomposed in eigen-
vectors and eigenvalues and recomposed using the absolute values of
the eigenvalues. Hence large negative components become large posi-
tive components.

Truncating values: In this method, the kernel matrix is decomposed in
eigenvectors and eigenvalues and recomposed using only the positive
eigenvalues, the negative part is set to zero. Hence all negative com-
ponents are removed.

Shifting values: In this method, the kernel matrix is decomposed in eigen-
vectors and eigenvalues and recomposed using a translated spectrum:
the largest negative eigenvalue is subtracted to all the others. Hence
large negative components become the smallest positive components.

6.1.2 Direct computation with indefinite kernels

We also compared with two other methods that perform classification with
indefinite kernels:

IndefiniteSVM: The proposed method can be seen as a penalized kernel
learning problem where indefinite kernel matrices are treated as noisy
observations of a true Mercer kernel. The IndefiniteSVM is success-
fully compared to other de-noising approaches (Luss and d’Aspremont,
2009). The Matlab implementation used for the experiments can be
found on the author’s webpage 1.

Relevance Vector Machine (RVM): This technique uses Bayesian infer-
ence to obtain parsimonious solutions that have an identical functional
form to the SVM, but provides probabilistic classification. Moreover
it handles indefinite kernels directly, so RVM is a good challenger for
ESVM and KSVM (Tipping (2001)). The implementation used for the
experiments is the SB2 release200 2.

LP SVM: Linear Programming SVM, following Mangasarian et al. (1999),
in which the formulation does not require the kernel to be positive.
The implementation is based on the Matlab’s linprog.

1http://www.eecs.berkeley.edu/~rluss/
2http://www.vectoranomaly.com/downloads/downloads.htm
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6.1.3 Computing the kernel on the test set

Algorithm 1 shows that ESVM and ESVM-L use a usual SVM solver, after
applying the absolute values trick explained in section 6.1.1. It is important
to underline the practical difference of this trick with the proposed approach:
the classical solver provides a solution that lies in a RKHS space for which
the kernel formulation is unknown: only the transformed kernel for training
points is available. This implies that testing a new point, using the known
kernel of the RKKS space may produce unwanted results (and this explains
the very poor results obtained by the heuristics in the experimental part
since all performance rates are given using the original kernel). The most
common approach to deal with this obvious drawback is to transform the
kernel including the test data. More elegantly, Gu and Guo (2012) propose
a method jointly compute the SVM solution and the transformation of the
matrix such that it can be applied to the mixed kernel matrix between sup-
port vectors and test data. On the contrary, ESVM and ESVM-L transform
the RKHS solution into a RKKS solution via those simple operations:

[U,D] = eig(G); % G is the Krein space kernel
S = sign(D); % S identifies the negative eigenvalues
K = U*S*D*U’; % K is the Hilbert space kernel
[alphat,b] = SvmSolver(x,y,K,C); % solution in the RKHS
alpha = U*S*U’*alphat; % solution in the RKKS

Doing that, the final solutions of ESVM and ESVM-L can be tested for any
new point since it is based on the true kernel. KSVM do not transform the
kernel so the solution naturally uses the true kernel.

6.2 Checkerboard datasets

We illustrate the difference between the different approaches on a synthetic
2D dataset where the datapoints are labelled in a checkerboard pattern.

6.2.1 ESVM with partial decomposition

As a sanity check, Figure 2 illustrates that performing a partial eigen-
decomposition of the kernel matrix does not harm the classification accu-
racy of ESVM. This is not surprising since most of the kernel information is
captured by the eigenvectors corresponding to the first largest eigenvalues.
Moreover, keeping only the largest eigenvalues/eigenvectors often cleans the
data and provide better results than the exact decomposition.

23



Figure 2: The top graph shows the training and generalization error
on a noisy checkerboard problem, depending on the number of eigenvec-
tors/eigenvalues kept for decomposition. The middle and bottom graphs
represent respectively the eigenvalues (sorted by absolute value) and their
cumulated sum (represented as the proportion of total sum of eigenvalues).
We can observe that the error rates are stable once all the meaningful eigen-
values are taken into account for the kernel decomposition.

6.2.2 Comparison to other methods

We compare the algorithms discussed in Section 6.1 on the synthetic data to
show its behavior and scalability.

Quick illustration of each method On Figures 3 and 4, the results of
each method are shown, on a separable checkerboard dataset, trained on 500
and 180 points respectively. Results on Figure 3 illustrates the danger of
forcing the kernel to be positive semidefinite. The methods in the second
row show poor estimation of the classification boundaries due to the loss of
information in the negative eigenspectrum. For this experiment, the sigmoid
kernel is used, its largest negative eigenvalue is −231.77.

Results on Figure 4 illustrate that our proposed methods (ESVM, ESVM-
L and KSVM) are more reliable than RVM when fewer training points are
available. For this experiment, the sigmoid kernel is used, its largest negative
eigenvalue is −187.46.

Computational time In order to evaluate the computational complex-
ity of the different methods for non positive SVM, the following experiment
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has been carried out: the training time of each method is computed for in-
creasing training sizes of the binary checkerboard with 10% of overlapping
classes at boundaries. The experiment is run 10 times and the curves of
Figure 5 are the average training time. We observe that KSVM and RVM
have a similar experimental complexity, while ESVM suffers from the com-
plete eigen-decomposition. ESVM-L is the most competitive method as far
as training time is concerned, due to the partial eigen-decomposition. Indef-
initeSVM and LP SVM are the most complex methods to train. All software
are fully in Matlab, RVM and IndefiniteSVM are provided by their respective
authors.
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Figure 3: This set of experiments show the results on a checkerboard dataset
for several algorithms dealing with non positive kernel matrices. On the first
row are shown ESVM, ESVM-L, KSVM . On the second row are RVM, LP
SVM and IndefiniteSVM (with projected gradient). On the third row are C-
SVM with 3 different tricks to transform the matrix into a definite-positive
matrix: taking the absolute values of the eigenvalues, cutting all eigenvalues
below zero, or translating the all spectrum into the positive space. This
experiment is trained on 500 points. The methods that force positive semi-
definiteness show poor estimation of the classification boundary, except for
absolute values.
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Figure 4: Training with 180 examples. The proposed methods (ESVM,
SVM-L and KSVM) are more reliable than RVM when fewer training points
are available. See Figure 3 for the description of the subfigures.

Figure 5: This set of experiments shows the relative training time for different
methods, for a increasing size problem (a binary checkerboard, with 10 % of
overlapping classes). Those curves are obtained on average, for 10 runs.
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Table 2: Results on various UCI datasets, for different settings of the sig-
moid kernel. Each line gives the 5-fold CV performance (%) of each learning
method, and the standard deviation on 10 runs in brackets. The least eigen-
value of the training kernels is given after the dataset name. ESVM-L is
computed keeping 90% of the eigenvalues information. The best performance
is shown in bold. For all experiments, the best performance is consistently
given either by one the proposed method of the paper, LP SVM or RVM.

Problem ESVM ESVM-L KSVM RVM Indefinite LP Abs Trunc Shift
(min eig) SVM SVM eigs eigs eigs

Sonar 71.42 71.42 69.60 70.20 50.51 73.17 53.87 46.12 51.84
(-184.13) (1.46) (1.46) (3.56) (3.79) (0.46) (2.35) (1.25) (4.75) (3.08)

Heart 82.74 82.74 70.14 80.96 61.11 81.92 22.96 55.55 20.22
(-148.25) (2.67) ( 2.67) (5.66) (1.72) (1.07) (0.71) (1.11) (0.37) (0.42)

Breast cancer 97.29 97.29 96.66 95.52 66.14 91.51 87.15 30.33 78.59
(-548.24) (0.15) (0.15) (0.23) (0.62) (2.99) (11.44) (0.10) (2.60) (3.76)
Diabetes 75.10 75.10 72.03 76.66 36.19 76.25 29.60 27.19 64.74
(-235.64) (1.93) (1.93) (2.45) (0.62) (0.56) (0.42) (3.64) (2.37) (0.13)

Adult (a1a) 80.66 80.66 79.25 79.66 75.38 80.70 50.92 35.17 74.65
(-1452.8) (0.62) (0.62) (0.60) (0.63) (0) (0.48) (1.14) (0.64) (0.53)

6.3 Comparisons on benchmark datasets

6.3.1 UCI Machine Learning Repository

This experiment is done on datasets from UCI (A. Asuncion, 2007). Several
indefinite sigmoid kernels are built and used with each method. Some results,
based on 5-fold cross validation are provided in Table 2. The goal here
is not to find the best kernel for this dataset, but rather to visualize the
general behavior of each approach. Figures 6 and 7 in the appendix show the
complete results for Heart and Sonar datasets, for all methods, depending
on the least eigenvalue of the training kernel matrix. On each figure, the
same general behavior can be observed: ESVM, LP-SVM and RVM are
almost always not only better than the others but also good in accuracy.
IndefiniteSVM is regularly better than the heuristics (but not necessarily
accurate). The heuristics perform badly most often, except when the least
eigenvalue is quite small in absolute value.

6.3.2 Dissimilarity dataset

In this part, experiments on dissimilarity dataset are shown. Here, we use a
linear kernel and train the SVM on the dissimilarity measures. Datasets are
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provided by the Pattern Recognition Lab of Delft University of Technology 3.
We used 8 of the proposed dataset: Balls3D (200 points, 2 classes), GaussM1
(2000 points, 2 classes), GaussM02 (2000 points, 2 classes), CatCortex (65
points, 4 classes), Protein (213 points, 3 classes), CoilYork (288 points,
4 classes), Newgroups (600 points, 4 classes), PolyDisH57 (4000 points, 2
classes). For multiclass problems, we arbitrarily transform them into binary
problems. Note that as previously, the performance is computed using the
original kernel and not the modified one, to simulate what would happen if
new data were presented.

Whereas for some datasets in UCI, some heuristics can do as well as the
native non positive methods, we can see from Table 3 that this does not
happen with these datasets. Our proposed methods perform best in all the
datasets except for GaussM02 where we are a close second.

7 Conclusion

This paper aims at providing computational methods for solving a binary
classification problem with an indefinite kernel. More generally, the un-
derlying claim is that the negative part of an indefinite kernel cannot be
systematically considered as noise. Indeed, the negative part of an indefinite
kernel can carry some important information. This point of view discards
all methods that tend to correct an indefinite kernel, and a striking example
is provided in the experimental part: a simple problem (checkerboard) with
a simple kernel (sigmoid) exhibits the loss of information induced by any
correction of the kernel (section 6.2.2).

When dealing with an indefinite kernel, one has to solve the learning
problem in an RKKS. This implies the resolution of a stabilization system
under constraints. This setting lacks theoretical tools to be tackled. In
this paper, the equivalence between a primal stabilization problem and a
dual stabilization problem is shown, based on the optimality conditions. To
achieve this, the primal stabilization system is written under a minimization
system, using the fact that the kernel of a Krĕın space is the difference of two
kernels lying in some Hilbert spaces. Taking the dual of the minimization
system is a well known task. The equivalence between the proposed dual
stabilization system and the dual maximization system is shown. This last
part of the reasoning directly provides a direct algorithm based on the eigen-
decomposition of the kernel matrix. As shown in the experimental part,
ESVM outperforms RVM, which also deals with indefinite kernels and it

3http://prtools.org/disdatasets/
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Table 3: Results on various DDPR datasets, for linear kernels. Each line
gives the 5-fold CV performance (%) of each learning method, and the vari-
ance on 10 runs. The least eigenvalue of the training kernels is given under
the dataset name. The best performance is shown in bold. The C value is
found by cross validation. ESVM-L is computed keeping 90% of the eigen-
values information. For all experiments, the best performance is consistently
given either by one the proposed method of the paper, LP-SVM or RVM.
Missing results are due to a lack of convergence or prohibitive training time.

Problem ESVM ESVM-L KSVM RVM Indefinite LP Abs Trunc Shift
(min eig) SVM SVM eigs eigs eigs
Balls3D 53.90 53.90 53.98 47.40 49.99 53.30 45.89 45.10 44.41

(-2.8894e+03) (2.47) (2.47) (1.58) (0.82) (0.01) (3.86) (2.40) (1.54) (2.07)
GaussM1 81.94 81.94 83.95 82.40 - - 17.67 16.54 16.89

linear (-1.8739e+03) (0.43) (0.43) (0.09) (0.37) (-) (-) (0.42) (0.92) (0.21)
GaussM02 73.98 73.98 78.75 79.54 - - 23.42 38.31 16.24

(-2.1096e+08) (0.70) (0.70) (0.84) (0.51) (-) (-) (0.78) (0.76) (0.29)
CatCortex,2vs1 95.71 95.71 63.59 90.47 55.46 81.31 8.31 26.13 10.12

(-24.61) (2.30) (2.30) (5.27) (2.96) (0.10) (8.12) (1.07) (8.71) (2.53)
Protein,2vs2 99.91 99.91 48.54 98.21 52.11 98.59 0.09 7.98 1.87

(-322.34) (0.21) (0.21) (1.43) (0.39) (0.00) (1.10) (0.21) (6.23) (0.66)
CoilYork,2vs2 75.83 75.83 65.00 74.16 - 70.55 24.44 30.06 31.04
(-9.4559e+03) (1.87) (1.87) (2.22) (3.40) (-) (6.19) (4.38) (1.58) (0.67)

NewsGroups,2vs2 87.80 87.80 71.16 84.40 50.83 65.36 12.06 17.93 14.06
(-16.39) (0.32) (0.32) (0.97) (1.32) (0.12) (3.48) (0.71) (4.79) (0.84)

PolyDisH57 99.75 99.75 63.21 98.90 - - 8.72 15.67 18.77
(-535.96) (0.08) (0.08) (0.38) (0.18) (-) (-) (0.40) (0.77) (0.26)

is even more visible when the number of training data is relatively small
(figure 4). LP-SVM can be as accurate as the proposed method, however it
comes with a lot of support vectors and a higher complexity (figures 3 and
5). While ESVM requires to decompose the kernel, which can be expansive,
ESVM-L works with only a partial decomposition and it turns out that most
of times, it is as accurate as ESVM. If the kernel cannot be precomputed,
an other approach is proposed, based on the interpretation of the meaning
of the stabilization. This leads to the KSVM algorithm. This method is
less accurate than ESVM which is not surprising since it is an approximate
version. As long as it is possible to handle the eigen-decomposition of the
kernel matrix, ESVM (or ESVM-L) is a better choice.

The interest of dealing with non modified indefinite kernels is clearly
shown in this paper. This opens a wide range of future work, including the
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development of theoretical tools to deal with the stabilization setting or the
extension to other kernel methods and tasks.
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A Detailed UCI results

Figure 6: Results for the Heart dataset. The top figure shows the accuracy
on the test set, the bottom one shows the accuracy on the training set,
computed using the original kernel, even for heuristics. ESVM and RVM are
comparable and perform well. KSVM has an inconstant performance. The
3 heuristics perform poorly when the kernel matrix has very large negative
eigenvalues and perform quite well when negative eigenvalues are quite small.
IndefiniteSVM lies in between.
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Figure 7: Results on Sonar dataset. This experiment shows roughly the
behavior as the previous one, but it also illustrates that among the heuristics,
the weakest one is Trunc, ie. the one that simply ignores the negative part.
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