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REVERSIBILITY AND OSCILLATIONS IN ZERO-SUM DISCOUNTED STOCHASTIC GAMES

We show that by coupling two well-behaved exit-time problems one can construct two-person zero-sum stochastic games with finite state space having oscillating discounted values. This unifies and generalizes recent examples due to Vigeral (2013) and Ziliotto (2013).

We construct a family of zero-sum games in discrete time where the purpose is to control the law of a stopping time of exit. For each evaluation of the stream of outcomes (defined by a probability distribution on the positive integers n = 1, 2, ...), value and optimal strategies are well defined. In particular for a given discount factor λ ∈]0, 1] optimal stationary strategies define an inertia rate Q λ . When two such configurations (1 and 2) are coupled this induces a stochastic game where the state will move from one to the other in a way depending on the previous rates Q i λ , i = 1, 2. The main observation is that the discounted value is a function of the ratio

Q 1 λ Q 2 λ
that can oscillate as λ goes to 0, when both inertia rates converge to 0.

2) This construction reveals a common structure in two recent "counter-examples" by Vigeral [START_REF] Vigeral | A zero-sum stochastic game with compact action sets and no asymptotic value[END_REF] and Ziliotto [START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin=lim vn[END_REF] dealing with two-person zero-sum stochastic games with finite state space: compact action spaces and standard signalling in the first case, finite action spaces and signals on the state space in the second. In both cases it was proved that the family of discounted values does not converge.

A basic model

A configuration P is defined by a general two-person repeated game in discrete time (see [START_REF] Mertens | Repeated Games[END_REF]) on a state space Ω with a specific starting state ω and a subset Ω satisfying ω ∈ Ω ⊂ Ω. Let S be the stopping time of exit of Ω:

S = min{n ∈ IN; ω n / ∈ Ω}
where ω n is the state at stage n.

Each couple of strategies (σ, τ ) of the players specifies, with the parameters of the game (initial state, transition function on states and signals), the law of S. For each evaluation θ = {θ n } on the set of positive integers IN * = 1, 2, ..., let d θ (σ, τ ) be the expected (normalized) duration spent in Ω:

d θ (σ, τ ) = E σ,τ [ S-1 n=1 θ n ].
For each real parameters α < β, consider the game with payoff α at any state in Ω and with absorbing payoff β in its complement Ω \ Ω.

Then for any evaluation θ, Player 1 (the maximizer) minimizes d θ (σ, τ ) since the payoff γ θ (σ, τ ) is given by:

γ θ (σ, τ ) = αd θ (σ, τ ) + β(1 -d θ (σ, τ )).
Lemma 2.1. In particular if the game has a value v θ then

v θ = αQ θ + β(1 -Q θ ) with Q θ = sup τ inf σ g θ (σ, τ ) = inf σ sup τ g θ (σ, τ ), called the inertia rate.
Here are 3 examples corresponding to a Markov Chain (0 player), a Dynamic Programming Problem (1 player) and a Stochastic Game (2 players).

In all cases Ω = {ω, ω + , ω -} and Ω = {ω, ω -}, hence S is the first time where the exit state ω + is reached. Moreover ω -is an absorbing state. a '*" stands for an absorbing payoff.

1 player.

The action set is X = [0, 1] and the impact of an action x is on the transitions, given by a(x) from ω to ω + and b(x) from ω to ω -, where a and b are two continuous function from

[0, 1] to [0, 1] with a + b ∈ [0, 1]. FIGURE 2 β * α α * a(x) b(x) ω ω - ω + 2.3. 2 players.
In state ω the players have two actions and the transitions are given by:

Stay Quit Stay ω ω + Quit ω + ω -
Let x (resp. y) be the probability on Stay and a(x, y) = x(1 -y) +y(1 -x), b(x, y) = xy. The mixed extension gives the configuration:

FIGURE 3 β * α α * a(x, y) b(x, y) ω ω - ω +
Of course one can define such a configuration for any maps a and b from [0, 1] 2 to [0, 1].

Consider the λ-discounted case P λ . Let r λ (x, y) be the induced expected payoff. Lemma 2.2.

r λ (x, y) = (λ + (1 -λ)b(x, y)) × α + (1 -λ)a(x, y) × β λ + (1 -λ)(a(x, y) + b(x, y)) .
Proof.

By stationarity:

r λ (x, y) = λ × α + (1 -λ)[a(x, y) × β + b(x, y) × α + (1 -a(x, y) -b(x, y)) × r λ (x, y)]
In particular letting:

(1)

q λ (x, y) = (λ + (1 -λ)b(x, y)) λ + (1 -λ)(a(x, y) + b(x, y)) one has: (2) r λ (x, y) = q λ (x, y) × α + (1 -q λ (x, y)) × β.
In the normalized game of length one, q λ (x, y) is the expected duration spent with payoff α before reaching the absorbing state ω with payoff β.

Lemma 2.3. Q λ = min x max y q λ (x, y) = max y min x q λ (x, y) and the value v λ of P λ satisfies:

(3) v λ = Q λ × α + (1 -Q λ ) × β.
Note that the value exists either in the one player case or when a and b are bilinear (and hence q λ is quasi concave/convex).

Reversibility

Consider now a two person zero-sum stochastic game G generated by two dual configurations P 1 and P 2 of the previous type, with α 1 = -1 and α 2 = 1, which are coupled in the following sense: the exit domain from P 1 (Ω 1 \ Ω 1 ) is the starting state ω 2 in P 2 and reciprocally. In addition we assume that the exit events are known by both players and that both configurations have a value.

3.1.

Two examples.

Two configurations with one player in each.

There are four states Ω = {ω 1 , ω 2 , ω -, ω + }.

Both ω + and ω -are absorbing states with constant payoff +1 and -1, respectively. The payoff in state ω i is also constant and equals to -1 for i = 1 and to +1 for i = 2. The action set for player 1 is X 1 = [0, 1] and the impact of an action x 1 on the transitions is given by a 1 (x 1 ) from ω 1 to ω 2 and b 1 (x 1 ) from ω 1 to ω -, where a 1 and b 1 are two continuous function from

[0, 1] to [0, 1].
Similarly the action set for player 2 is X 2 = [0, 1] and a 2 (x 2 ) is the transition probability from

ω 2 to ω 1 and b 2 (x 2 ) from ω 2 to ω + . FIGURE 4 1 -1 -1 * 1 * a 2 (x 2 ) a 1 (x 1 ) b 1 (x 1 ) b 2 (x 2 ) ω 1 ω - ω 2 ω + 3.1.2

. Two configurations with 2 players.

There are two absorbing states with payoff 1 and -1. In the two other states (ω 1 and ω 2 ) the payoff is constant and the transitions are given by the following matrices (compare to Bewley and Kohlberg [START_REF] Bewley | On stochastic games with stationary optimal strategies[END_REF]):

ω 2 Stay Quit Stay 1 1 - → Quit 1 - → 1 * ω 1 Stay Quit Stay -1 -1 ← - Quit -1 ← - -1 *
where an arrow means a transition to the other state.

The discounted framework.

For each λ ∈]0, 1] the coupling between the two configurations defines a discounted game G λ with value v λ satisfying:

v λ (ω 1 ) = v 1 λ ∈ [-1, 1[, v λ (ω 2 ) = v 2 λ ∈] -1, 1].
In particular, starting from state ω 1 the model is equivalent to the one with an exit state ω 2 with absorbing payoff v λ (ω 2 ) (by stationarity of the evaluation), which thus corresponds to the payoff β 1 > α 1 in the configuration P of the previous section 2. Hence one obtains, using Lemma 2.1, that {v i λ } is a solution of the next system of equations: Proposition 3.1.

v 1 λ = Q 1 λ × (-1) + (1 -Q 1 λ ) × v 2 λ v 2 λ = Q 2 λ × (+1) + (1 -Q 2 λ ) × v 1 λ . It follows that: Corollary 3.1. v 1 λ = Q 2 λ -Q 1 λ -Q 1 λ Q 2 λ Q 1 λ + Q 2 λ -Q 1 λ Q 2 λ v 2 λ = Q 2 λ -Q 1 λ + Q 1 λ Q 2 λ Q 1 λ + Q 2 λ -Q 1 λ Q 2 λ
Comments: 1) As λ goes to 0, Q λ converges to 0 in the model of section 2.2, as soon as lim sup a(x) b(x) = +∞, as x goes to 0.

2) In the current framework, assuming that both Q i λ go to 0, the asymptotic behavior of v 1 λ depends upon the evolution of the ratio

Q 1 λ Q 2 λ .
In fact one has:

v 1 λ ∼ v 2 λ ∼ 1 - Q 1 λ Q 2 λ 1 + Q 1 λ Q 2 λ .
3) In particular one obtains:

Theorem 3.1. Assume that both Q i λ go to 0 as λ goes to 0 and that

Q 1 λ Q 2 λ
has more than one accumulation point, then v i λ does not converge.

More precisely it is enough that Q i λ ∼ λ r f i (λ) for some r > 0, with 0 < A ≤ f i ≤ B and that one of the f i (λ) does not converge as λ goes to 0, to obtain the result.

The next section 4 will describe several models generating such probabilities Q i λ , with f i converging or not. We will use the terminology regular or oscillating configurations.

The above result implies that by coupling any two of these configurations (of the same order of magnitude r) where one is oscillating, one can generate a stochastic game for which the family of discounted values does not converge, see Section 6. In the next two sections we give examples of, respectively, regular or oscillating configurations of order 1 2 .

4. Some regular configurations of order 1 2

We give here three examples of regular configurations of order 1 2 . Let us remark right now that these configurations are in a certain sense minimal ones. Any configuration with one player, with finitely many states and actions and full observation is, by Blackwell optimality, asymptotically equivalent to a finite Markov chain. And in any such chain,

• either with positive probability there is no exit, and Q λ is of order 0.

• or at each stage, given no prior exit there is exit in the next m stages with probability at least p, where m and p > 0 are fixed. This implies that Q λ is of order 1.

4.1.

A regular configuration with 0 players and countable state space.

Consider a random walk on N ∪ {-1} and exit state -1. In any other state m ∈ N the transition is 1 2 δ m-1 + 1 2 δ m+1 . The starting state is 0. Denote by s n the probability that exit happens at stage n ; it is well known (theorem 5b p 164 in [START_REF] Grimmett | Probability and Random Processes[END_REF]) that the generating function of S is given by F

(z) = 1- √ 1-z 2 z
. Hence,

Q λ = +∞ n=1 s n n t=1 λ(1 -λ) i-1 = +∞ n=1 s n (1 -(1 -λ) n ) = F (1) -F (1 -λ) = √ 2λ -λ 2 -λ 1 -λ ∼ √ 2λ.

4.2.

A regular configuration with one player, finitely many states, compact action space and continuous transition.

Consider example 2.2. Take a(x) = x and b(x) = x 2 . Then Q λ = min x { λ+(1-λ)x 2 λ+(1-λ)x 2 +(1-λ)x } and a first order condition gives x λ = λ 1-λ hence Q λ ∼ 2 √ λ.

4.3.

A regular configuration with two players and finitely many states and actions.

Consider example 2.3. It is straightforward [START_REF] Vigeral | A zero-sum stochastic game with compact action sets and no asymptotic value[END_REF] to compute that in Γ λ the optimal strategy for each player is

x λ = y λ = √ λ 1+ √
λ . Hence:

Q λ = λ + (1 -λ)x λ y λ λ + (1 -λ)(x λ + y λ -x λ y λ ) ∼ √ λ.
5. Some oscillating configurations of order 1 2

Example 4.2. perturbed.

Recall that the choice of a(x) = x and b(x) = x 2 leads to Q λ ∼ 2 √ λ. To get oscillations one can choose b = x 2 and a(x) = xf (x) with f (x) bounded away from 0, oscillating and such that f (x) = o(1/x). For example, f (x) = 2 + sin(ln(-lnx)).

Proposition 5.1. For this choice of transition functions one has:

Q λ ∼ 2 √ λ f ( √ λ) .
Proof.

In fact recall by (1) that x λ minimizes q λ (x) iff it minimizes ρ λ (x) = λ+(1-λ)b(x) a(x)

and then Q λ ∼ ρ λ (x λ ) as soon as they both tend to 0. The first order condition gives:

λ 1 -λ = x 2 (f (x) -xf (x)) f (x) + xf (x)
which leads to:

x λ ∼ √ λ.
By the mean value theorem and since

f (x) = o(1/x), f (x λ ) -f ( √ λ) x λ - √ λ = o 1 √ λ hence f (x λ ) ∼ f ( √ λ) and: Q λ ∼ 2 √ λ f ( √ λ) .
In particular Q λ √ λ has not limit. 

(x, y) = ( √ x + √ y)(1 - √ x + s(x))(1 - √ y + s(y) 2(1 -x)(1 -y)(1 -f 2 (x, y)) b(x, y) = √ xy (1 - √ x)(1 - √ y) + f 1 (x, y) - √ xyf 2 (x, y) (1 -x)(1 -y)(1 -f 2 (x, y)) .
where

f 1 (x, y) = √ xs(x)- √ ys(y) √ x- √ y if x = y 2xs (x) + s(x) if x = y and f 2 (x, y) = √ ys(x)- √ xs(y) √ x- √ y if x = y 2xs (x) -s(x) if x = y
Then a and b are continous (Lemma 12 and Lemma 10 in [START_REF] Vigeral | A zero-sum stochastic game with compact action sets and no asymptotic value[END_REF]) and x λ = y λ = λ are optimal in the game with payoff q λ [START_REF] Vigeral | A zero-sum stochastic game with compact action sets and no asymptotic value[END_REF]. Hence:

Q λ = λ 1-λ + b(λ, λ) λ 1-λ + b(λ, λ) + a(λ, λ) ∼ λ + λ(1+s(λ)+2λs (λ)) 1+s(λ)-2λs (λ) 2 √ λ(1+s(λ)) 2 2(1+s(λ)-2λs (λ)) ∼ 2 √ λ 1 + s(λ) ∼ λ(1 + s(λ) -2λs (λ) + 1 + s(λ) + 2λs (λ)) √ λ(1 + s(λ)) 2
The configuration is thus oscillating for s(x) = sin ln x 16 for example.

Next we recall 4 models that appears in Ziliotto [START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin=lim vn[END_REF] (in which the divergence of v λ was proven) and we compute the corresponding Q λ .

Countable action space.

Consider again the example 2.2 but assume now that the action space X is IN * and no longer [0, 1]. The transition are given by (

a n , b n ) = ( 1 2 n , 1 4 n ). Proposition 5.2. For this configuration Q λ / √ λ oscillates on a sequence {λ m } of discount factors like λ m = 1 2 m . Proof. Note first that the choice n inducing x = 1 2 n is asymptotically optimal for a(x) = x, b(x) = x 2 , like in example 4.2, at λ = 1 4 n and Q λ ∼ 2 √ λ. For λ 2 = 1 4 n 1 4 n+1 one obtains: ρ λ ( 1 2 n ) ∼ ( 1 2 × 1 4 n + 1 4 n )2 n ∼ 3 √ 2 2 √ λ
and similarly:

ρ λ ( 1 2 n+1 ) ∼ ( 1 2 × 1 4 n + 1 4 n+1 )2 n+1 ∼ 3 √ 2 2 √ λ.
Finally one checks that

ρ λ ( 1 2 n+m ) ≥ 3 √ 2 2

√

λ for m = -n, ..., -1 and m ≥ 2.

Thus for this specific λ, ρ λ (x) is bounded below by a quantity of the order 3

√ 2 2 √ λ.
It follows that Q λ / √ λ oscillates between 2 and 3 √ 2

2 on a sequence {λ m } of discount factors like λ m = 1 2 m . Note that this result is conceptually similar to example 5.1.

Countable state space.

We consider here a configuration which is the dual of the previous one with now finite action space and countably many states. The state space is a countable family of probabilities y = (y A , y B ) on two positions A and B with 

y n = ( 1 2 n , 1 -1 2 n ), n = 0,
q λ (n) = 1 - (1 -λ 2 ) 1 -1 2 n 1 + 2 n+1 λ(1 -λ) -n -λ
Proof. Lemma 2.5 in Ziliotto [START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin=lim vn[END_REF] gives

E[(1 -λ) Tn ] = 1 -λ 2 1 + 2 n+1 λ(1 -λ) -n -λ and q λ (n) = 1 + ( 1 2 n -1)E[(1 -λ) Tn ].
Proposition 5.4. The configuration is irregular : Q λ √ λ oscillates between two positive values. Proof. With our notations, Ziliotto's Lemma 2.8 [START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin=lim vn[END_REF] states that

q λ - ln λ + ln 2 + 2 ln c 2 ln 2 ∼ (c + c -1 ) √ 2λ.
Hence asymptotically, Combining these two configurations yields a stochastic game with finite action space for player 2 and no asymptotic value. Here also the transition functions can be taken as smooth as one wants.

Q λ √ 2λ = min c + c -1 | - ln λ + ln 2 + 2 ln c 2 ln 2 ∈ N When -ln λ+ln 2
6.4. Example 5.2 + 5.2. By coupling Example 5.2 with a similar configuration controlled by the other Player, one recovers exactly the family of counterexamples in [START_REF] Vigeral | A zero-sum stochastic game with compact action sets and no asymptotic value[END_REF]. Note than in this case both configurations are oscillating, but with a different phase so the ratio does not converge. with a similar configuration. In those cases both configurations are oscillating of order 1 2 but one is oscillating twice as fast as the other hence the oscillations of v λ in the combined game. 6.6. Example 4.1 + 5.4. This gives a MDP with a countable number of states (and only 2 actions) in which v λ does not converge. Observe that one can compactify the state space in such a way that both the payoff and transition functions are continuous.

Comparison and conclusion

7.1. Irreversibility. The above analysis shows that oscillations in the inertia rate and reversibility allows for non convergence of the discounted values. These two properties seem to be also necessary. In fact, Sorin and Vigeral [START_REF] Sorin | Existence of the limit value of two person zero-sum discounted repeated games via comparison theorems[END_REF] prove the existence of the limit of the discounted values for stochastic games with finite state space, continuous action space and continuous payoffs and transitions for absorbing games see also [START_REF] Laraki | Explicit formulas for repeated games with absorbing states[END_REF][START_REF] Mertens | Absorbing games with compact action spaces[END_REF][START_REF] Rosenberg | An operator approach to zero-sum repeated games[END_REF] and recursive games see also [START_REF] Sorin | The operator approach to zero-sum stochastic games[END_REF] . These two classes corresponds to the "irreversible" case where once one leaves a state, it cannot be reached again.

7.2.

Remark that any oscillating configuration of Section 5 leads, under optimal play, to an almost immediate exit. Hence, by itself, any such configuration leads to a regular asymptotic behavior. It is only the "resonance" between two configurations that yields asymptotic issues.

Semi-algebraic.

In the case of stochastic games with finitely many states and full monitoring, in all the examples of the previous section there is a lack of semi-algebraicity, either because transition functions oscillate infinitely often or because a set of actions has infinitely many connected components. While the existence of an asymptotic value with semi-algebraic parameters in the case of either perfect information or finitely many actions on one side holds [START_REF] Bolte | Definable zero-sum stochastic games[END_REF], it is not known in full generality. In particular, an interesting question is to determine wether there exists a configuration with semi-algebraic parameters such that Q λ is not semi-algebraic.

Related issues.

The stationarity of the model is crucial here. However it is possible to construct similar examples in which lim v n does not exist. The idea grounds on a lemma of Neyman [START_REF] Neyman | Stochastic games and nonexpansive maps[END_REF] giving sufficient conditions, for the two sequences v n and v λn for λ n = 1 n , to have the same asymptotic behavior as n tends to infinity. See [START_REF] Vigeral | A zero-sum stochastic game with compact action sets and no asymptotic value[END_REF] for specific details in the framework of sections 5.1 and 5.2 and [START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin=lim vn[END_REF] in the framework of section 5.3-5.6.
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 1 0 player. a resp. b is the probability to go from ω to ω + (resp. to ω -) with a, b, a + b ∈ [0, 1].

  FIGURE 1
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 2263 is an integer, one can take c = 1 which givesQ λ ∼ 2 √ 2λ. Whereas when ln λ+ln 22 ln 2 is an integer plus one half, the best choice is c = √ 2, leading to Q λ ∼ 3 √ λ Example 4.3 + Example 5.1.
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 5 Example 5.4 + 5.4, 5.5 + 5.5 and 5.6 + 5.6. Two examples of Ziliotto ([13], sections 2.1 2.2 and 4.1) are combinaisons of either 5.5, 5.6 or 5.7
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  5.2. Example 4.3. perturbed. Let s ∈ C 1 (]0, 1 16 ], R) such that s and x → xs (x) are both bounded by 1 16 . Consider a configuration as in FIGURE 3 but for perturbed functions a and b:
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  1, ..., and two absorbing states A * and B * . The player has two actions: Stay or Quit. Consider state y n . Under Quit an absorbing state is reached: A * with probability y A n and B * with probability y B n . Under Stay the state evolves from y n to y n+1 with probability 1/2 and to y 0 = (1, 0) with probability 1/2. The player is informed upon the state, a the starting state is y 0 and the exit state is B * . A strategy of the player can be identified with a stopping time corresponding to the first state y n when he chooses Quit. Let T n be the random time corresponding to the first occurrence of y n (under Stay) and µ n the associated strategy: Quit (for the first time) at y n . Under µ n the λ-discounted normalized duration before B * is

	Proposition 5.3.
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A MDP with signals.

The next configuration corresponds to a Markov decision process with 2 states: A and B, 2 absorbing states A * and B * and with signals on the state. The player has 2 actions: Stay or Quit. The transition are as follows:

Hence the transition is random: with probability 1/2 of type and probability 1/2 of type r. The player is not informed upon the state reached but only on the signal or r. The natural "auxiliary state" space is then the beliefs of the player on (A, B) and one can check [START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin=lim vn[END_REF] that the model is equivalent to the previous one, starting from A and where the exit state is B * . In fact under Stay, occurs with probability 1/2 and the new parameter is y 0 = (1, 0). On the other hand, after r the belief evolves from y n to y n+1 . Again this configuration generates an oscillating Q λ of the order of √ λ.

A game in the dark.

A next transformation is to introduce two players and to generate the random variable 1 2 ( )+ 1 2 (r) in the above model by a process induced by the moves of the players. This leads to the original framework of the game defined by Ziliotto [START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin=lim vn[END_REF]: action and state spaces are finite and the only information of the players is the initial state and the sequence of moves along the play. Player 1 has three moves: Stay1, Stay2 and Quit, and player 2 has 2 moves: Left and Right. The payoff is -1 and the transition are as follows:

By playing (1/2, 1/2, 0) (resp. (1/2, 1/2)) player 1 (resp. player 2) can mimick the previous distribution on ( , r) where corresponds to the event "the moves are on the main diagonal". It follows that this behavior is consistent with optimal strategies hence the induced distribution on plays is like in the previous example 5.5.

Combinatorics

In order to obtain oscillations for the discounted values of a stochastic game, it is enough to consider the coupled dynamics generated by a regular and an oscillating configuration, both of order 1 2 .

6 [START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin=lim vn[END_REF]) which is also a stochastic game with perfect information and no asymptotic value. The main difference is that in that case the action space of Player 1 is countable instead of being an interval.