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REVERSIBILITY AND OSCILLATIONS IN ZERO-SUM DISCOUNTED

STOCHASTIC GAMES

SYLVAIN SORIN AND GUILLAUME VIGERAL

Abstract. We show that by coupling two well-behaved exit-time problems one can construct
two-person zero-sum stochastic games with finite state space having oscillating discounted values.
This unifies and generalizes recent examples due to Vigeral (2013) and Ziliotto (2013).
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1. Introduction

1) We construct a family of zero-sum games in discrete time where the purpose is to control
the law of a stopping time of exit. For each evaluation of the stream of outcomes (defined by
a probability distribution on the positive integers n = 1, 2, ...), value and optimal strategies are
well defined.
In particular for a given discount factor λ ∈]0, 1] optimal stationary strategies define an inertia
rate Qλ.
When two such configurations (1 and 2) are coupled this induces a stochastic game where the
state will move from one to the other in a way depending on the previous rates Qiλ, i = 1, 2.

The main observation is that the discounted value is a function of the ratio
Q1
λ

Q2
λ

that can oscillate

as λ goes to 0, when both inertia rates converge to 0.
2) This construction reveals a common structure in two recent “counter-examples” by Vigeral

[12] and Ziliotto [13] dealing with two-person zero-sum stochastic games with finite state space:
compact action spaces and standard signalling in the first case, finite action spaces and signals
on the state space in the second. In both cases it was proved that the family of discounted values
does not converge.

2. A basic model

A configuration P is defined by a general two-person repeated game in discrete time (see [7])
on a state space Ω with a specific starting state ω and a subset Ω satisfying ω ∈ Ω ⊂ Ω.
Let S be the stopping time of exit of Ω:

S = min{n ∈ IN;ωn /∈ Ω}
where ωn is the state at stage n.
Each couple of strategies (σ, τ) of the players specifies, with the parameters of the game (initial
state, transition function on states and signals), the law of S. For each evaluation θ = {θn} on the
set of positive integers IN∗ = 1, 2, ..., let dθ(σ, τ) be the expected (normalized) duration spent in Ω:

dθ(σ, τ) = Eσ,τ [
S−1∑
n=1

θn].

For each real parameters α < β, consider the game with payoff α at any state in Ω and with
absorbing payoff β in its complement Ω \ Ω.
Then for any evaluation θ, Player 1 (the maximizer) minimizes dθ(σ, τ) since the payoff γθ(σ, τ)
is given by:

γθ(σ, τ) = αdθ(σ, τ) + β(1− dθ(σ, τ)).

Lemma 2.1. In particular if the game has a value vθ then

vθ = αQθ + β(1−Qθ)
with Qθ = supτ infσ gθ(σ, τ) = infσ supτ gθ(σ, τ), called the inertia rate.

Here are 3 examples corresponding to a Markov Chain (0 player), a Dynamic Programming
Problem (1 player) and a Stochastic Game (2 players).

In all cases Ω = {ω, ω+, ω−} and Ω = {ω, ω−}, hence S is the first time where the exit state
ω+ is reached. Moreover ω− is an absorbing state.

2.1. 0 player.

a resp. b is the probability to go from ω to ω+ (resp. to ω−) with a, b, a+ b ∈ [0, 1].
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FIGURE 1
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a ‘*” stands for an absorbing payoff.

2.2. 1 player.
The action set is X = [0, 1] and the impact of an action x is on the transitions, given by a(x)
from ω to ω+ and b(x) from ω to ω−, where a and b are two continuous function from [0, 1] to
[0, 1] with a+ b ∈ [0, 1].

FIGURE 2
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2.3. 2 players.
In state ω the players have two actions and the transitions are given by:

Stay Quit
Stay ω ω+

Quit ω+ ω−

Let x (resp. y) be the probability on Stay and a(x, y) = x(1 − y) +y(1 − x), b(x, y) = xy. The
mixed extension gives the configuration:

FIGURE 3
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Of course one can define such a configuration for any maps a and b from [0, 1]2 to [0, 1].

Consider the λ-discounted case Pλ. Let rλ(x, y) be the induced expected payoff.

Lemma 2.2.

rλ(x, y) =
(λ+ (1− λ)b(x, y))× α+ (1− λ)a(x, y)× β

λ+ (1− λ)(a(x, y) + b(x, y))
.

Proof.
By stationarity:

rλ(x, y) = λ× α+ (1− λ)[a(x, y)× β + b(x, y)× α+ (1− a(x, y)− b(x, y))× rλ(x, y)]

�

In particular letting:

(1) qλ(x, y) =
(λ+ (1− λ)b(x, y))

λ+ (1− λ)(a(x, y) + b(x, y))

one has:

(2) rλ(x, y) = qλ(x, y)× α+ (1− qλ(x, y))× β.
In the normalized game of length one, qλ(x, y) is the expected duration spent with payoff α before
reaching the absorbing state ω̄ with payoff β.

Lemma 2.3.
Qλ = minx maxy qλ(x, y) = maxy minx qλ(x, y) and the value vλ of Pλ satisfies:

(3) vλ = Qλ × α+ (1−Qλ)× β.

Note that the value exists either in the one player case or when a and b are bilinear (and hence
qλ is quasi concave/convex).

3. Reversibility

Consider now a two person zero-sum stochastic game G generated by two dual configurations
P 1 and P 2 of the previous type, with α1 = −1 and α2 = 1, which are coupled in the following

sense: the exit domain from P 1 (Ω1 \ Ω
1
) is the starting state ω2 in P 2 and reciprocally. In

addition we assume that the exit events are known by both players and that both configurations
have a value.

3.1. Two examples.

3.1.1. Two configurations with one player in each.
There are four states Ω = {ω1, ω2, ω−, ω+}.
Both ω+ and ω− are absorbing states with constant payoff +1 and −1, respectively.
The payoff in state ωi is also constant and equals to −1 for i = 1 and to +1 for i = 2. The action
set for player 1 is X1 = [0, 1] and the impact of an action x1 on the transitions is given by a1(x1)
from ω1 to ω2 and b1(x1) from ω1 to ω−, where a1 and b1 are two continuous function from [0, 1]
to [0, 1].
Similarly the action set for player 2 is X2 = [0, 1] and a2(x2) is the transition probability from
ω2 to ω1 and b2(x2) from ω2 to ω+.
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FIGURE 4
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3.1.2. Two configurations with 2 players.
There are two absorbing states with payoff 1 and −1. In the two other states (ω1 and ω2) the
payoff is constant and the transitions are given by the following matrices (compare to Bewley
and Kohlberg [1]):

ω2 Stay Quit
Stay 1 1−→
Quit 1−→ 1∗

ω1 Stay Quit
Stay −1 −1←−
Quit −1←− −1∗

where an arrow means a transition to the other state.

3.2. The discounted framework.
For each λ ∈]0, 1] the coupling between the two configurations defines a discounted game Gλ with
value vλ satisfying:

vλ(ω1) = v1λ ∈ [−1, 1[, vλ(ω2) = v2λ ∈]− 1, 1].

In particular, starting from state ω1 the model is equivalent to the one with an exit state ω2 with
absorbing payoff vλ(ω2) (by stationarity of the evaluation), which thus corresponds to the payoff
β1 > α1 in the configuration P of the previous section 2.
Hence one obtains, using Lemma 2.1, that {viλ} is a solution of the next system of equations:

Proposition 3.1.

v1λ = Q1
λ × (−1) + (1−Q1

λ)× v2λ
v2λ = Q2

λ × (+1) + (1−Q2
λ)× v1λ.

It follows that:

Corollary 3.1.

v1λ =
Q2
λ −Q1

λ −Q1
λQ

2
λ

Q1
λ +Q2

λ −Q1
λQ

2
λ

v2λ =
Q2
λ −Q1

λ +Q1
λQ

2
λ

Q1
λ +Q2

λ −Q1
λQ

2
λ

Comments:
1) As λ goes to 0, Qλ converges to 0 in the model of section 2.2, as soon as lim sup a(x)

b(x) = +∞,

as x goes to 0.
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2) In the current framework, assuming that both Qiλ go to 0, the asymptotic behavior of v1λ

depends upon the evolution of the ratio
Q1
λ

Q2
λ

. In fact one has:

v1λ ∼ v2λ ∼
1− Q1

λ

Q2
λ

1 +
Q1
λ

Q2
λ

.

3) In particular one obtains:

Theorem 3.1. Assume that both Qiλ go to 0 as λ goes to 0 and that
Q1
λ

Q2
λ

has more than one

accumulation point, then viλ does not converge.

More precisely it is enough that Qiλ ∼ λrf i(λ) for some r > 0, with 0 < A ≤ f i ≤ B and that
one of the f i(λ) does not converge as λ goes to 0, to obtain the result.

The next section 4 will describe several models generating such probabilities Qiλ, with f i con-
verging or not.
We will use the terminology regular or oscillating configurations.

The above result implies that by coupling any two of these configurations (of the same order
of magnitude r) where one is oscillating, one can generate a stochastic game for which the family
of discounted values does not converge, see Section 6. In the next two sections we give examples
of, respectively, regular or oscillating configurations of order 1

2 .

4. Some regular configurations of order 1
2

We give here three examples of regular configurations of order 1
2 . Let us remark right now that

these configurations are in a certain sense minimal ones. Any configuration with one player, with
finitely many states and actions and full observation is, by Blackwell optimality, asymptotically
equivalent to a finite Markov chain. And in any such chain,

• either with positive probability there is no exit, and Qλ is of order 0.
• or at each stage, given no prior exit there is exit in the next m stages with probability at

least p, where m and p > 0 are fixed. This implies that Qλ is of order 1.

4.1. A regular configuration with 0 players and countable state space.

Consider a random walk on N ∪ {−1} and exit state −1. In any other state m ∈ N the
transition is 1

2δm−1 + 1
2δm+1. The starting state is 0. Denote by sn the probability that exit

happens at stage n ; it is well known (theorem 5b p 164 in [3]) that the generating function of S

is given by F (z) = 1−
√
1−z2
z . Hence,

Qλ =
+∞∑
n=1

sn

n∑
t=1

λ(1− λ)i−1

=

+∞∑
n=1

sn(1− (1− λ)n)

= F (1)− F (1− λ)

=

√
2λ− λ2 − λ

1− λ
∼
√

2λ.
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4.2. A regular configuration with one player, finitely many states, compact action
space and continuous transition.

Consider example 2.2.

Take a(x) = x and b(x) = x2 . Then Qλ = minx{ λ+(1−λ)x2
λ+(1−λ)x2+(1−λ)x} and a first order condition

gives xλ =
√

λ
1−λ hence Qλ ∼ 2

√
λ.

4.3. A regular configuration with two players and finitely many states and actions.

Consider example 2.3.
It is straightforward [12] to compute that in Γλ the optimal strategy for each player is xλ = yλ =√

λ
1+
√
λ

. Hence:

Qλ =
λ+ (1− λ)xλyλ

λ+ (1− λ)(xλ + yλ − xλyλ)

∼
√
λ.

5. Some oscillating configurations of order 1
2

5.1. Example 4.2. perturbed.
Recall that the choice of a(x) = x and b(x) = x2 leads to Qλ ∼ 2

√
λ.

To get oscillations one can choose b = x2 and a(x) = xf(x) with f(x) bounded away from 0,
oscillating and such that f ′(x) = o(1/x). For example, f(x) = 2 + sin(ln(−lnx)).

Proposition 5.1. For this choice of transition functions one has:

Qλ ∼
2
√
λ

f(
√
λ)
.

Proof.

In fact recall by (1) that xλ minimizes qλ(x) iff it minimizes ρλ(x) = λ+(1−λ)b(x)
a(x) and then

Qλ ∼ ρλ(xλ) as soon as they both tend to 0.
The first order condition gives:

λ

1− λ
=
x2(f(x)− xf ′(x))

f(x) + xf ′(x)

which leads to:

xλ ∼
√
λ.

By the mean value theorem and since f ′(x) = o(1/x),

‖f(xλ)− f(
√
λ)‖

‖xλ −
√
λ‖

= o

(
1√
λ

)
hence f(xλ) ∼ f(

√
λ) and:

Qλ ∼
2
√
λ

f(
√
λ)
.

In particular Qλ√
λ

has not limit. �
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5.2. Example 4.3. perturbed.
Let s ∈ C1(]0, 1

16 ],R) such that s and x→ xs′(x) are both bounded by 1
16 . Consider a configura-

tion as in FIGURE 3 but for perturbed functions a and b:

a(x, y) =
(
√
x+
√
y)(1−

√
x+ s(x))(1−√y + s(y)

2(1− x)(1− y)(1− f2(x, y))

b(x, y) =

√
xy
[
(1−

√
x)(1−√y) + f1(x, y)−√xyf2(x, y)

]
(1− x)(1− y)(1− f2(x, y))

.

where

f1(x, y) =

{√
xs(x)−√ys(y)√

x−√y if x 6= y

2xs′(x) + s(x) if x = y

and

f2(x, y) =

{√
ys(x)−

√
xs(y)√

x−√y if x 6= y

2xs′(x)− s(x) if x = y

Then a and b are continous (Lemma 12 and Lemma 10 in [12]) and xλ = yλ = λ are optimal in
the game with payoff qλ [12]. Hence:

Qλ =
λ

1−λ + b(λ, λ)
λ

1−λ + b(λ, λ) + a(λ, λ)

∼
λ+ λ(1+s(λ)+2λs′(λ))

1+s(λ)−2λs′(λ)
2
√
λ(1+s(λ))2

2(1+s(λ)−2λs′(λ))

∼ 2
√
λ

1 + s(λ)

∼ λ(1 + s(λ)− 2λs′(λ) + 1 + s(λ) + 2λs′(λ))√
λ(1 + s(λ))2

The configuration is thus oscillating for s(x) = sin lnx
16 for example.

Next we recall 4 models that appears in Ziliotto [13] (in which the divergence of vλ was proven)
and we compute the corresponding Qλ.

5.3. Countable action space.
Consider again the example 2.2 but assume now that the action space X is IN∗ and no longer
[0, 1]. The transition are given by (an, bn) = ( 1

2n ,
1
4n ).

Proposition 5.2.
For this configuration Qλ/

√
λ oscillates on a sequence {λm} of discount factors like λm = 1

2m .

Proof.
Note first that the choice n inducing x = 1

2n is asymptotically optimal for a(x) = x, b(x) = x2,

like in example 4.2, at λ = 1
4n and Qλ ∼ 2

√
λ.

For λ2 = 1
4n

1
4n+1 one obtains:

ρλ(
1

2n
) ∼ (

1

2
× 1

4n
+

1

4n
)2n

∼ 3
√

2

2

√
λ
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and similarly:

ρλ(
1

2n+1
) ∼ (

1

2
× 1

4n
+

1

4n+1
)2n+1

∼ 3
√

2

2

√
λ.

Finally one checks that ρλ( 1
2n+m

) ≥ 3
√
2

2

√
λ for m = −n, ...,−1 and m ≥ 2.

Thus for this specific λ, ρλ(x) is bounded below by a quantity of the order 3
√
2

2

√
λ.

It follows that Qλ/
√
λ oscillates between 2 and 3

√
2

2 on a sequence {λm} of discount factors like

λm = 1
2m . �

Note that this result is conceptually similar to example 5.1.

5.4. Countable state space.
We consider here a configuration which is the dual of the previous one with now finite action
space and countably many states.
The state space is a countable family of probabilities y = (yA, yB) on two positions A and B with
yn = ( 1

2n , 1−
1
2n ), n = 0, 1, ..., and two absorbing states A∗ and B∗.

The player has two actions: Stay or Quit. Consider state yn. Under Quit an absorbing state is
reached: A∗ with probability yAn and B∗ with probability yBn . Under Stay the state evolves from
yn to yn+1 with probability 1/2 and to y0 = (1, 0) with probability 1/2.
The player is informed upon the state, a the starting state is y0 and the exit state is B∗ .
A strategy of the player can be identified with a stopping time corresponding to the first state
yn when he chooses Quit.
Let Tn be the random time corresponding to the first occurrence of yn (under Stay) and µn the
associated strategy: Quit (for the first time) at yn.

Proposition 5.3.
Under µn the λ-discounted normalized duration before B∗ is

qλ(n) = 1−
(1− λ2)

(
1− 1

2n

)
1 + 2n+1λ(1− λ)−n − λ

Proof.
Lemma 2.5 in Ziliotto [13] gives

E[(1− λ)Tn ] =
1− λ2

1 + 2n+1λ(1− λ)−n − λ
and

qλ(n) = 1 + (
1

2n
− 1)E[(1− λ)Tn ].

�

Proposition 5.4. The configuration is irregular : Qλ√
λ

oscillates between two positive values.

Proof.
With our notations, Ziliotto’s Lemma 2.8 [13] states that

qλ

(
− lnλ+ ln 2 + 2 ln c

2 ln 2

)
∼ (c+ c−1)

√
2λ.

Hence asymptotically,

Qλ√
2λ

= min

{
c+ c−1| − lnλ+ ln 2 + 2 ln c

2 ln 2
∈ N

}
When − lnλ+ln 2

2 ln 2 is an integer, one can take c = 1 which gives Qλ ∼ 2
√

2λ. Whereas when

− lnλ+ln 2
2 ln 2 is an integer plus one half, the best choice is c =

√
2, leading to Qλ ∼ 3

√
λ �
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5.5. A MDP with signals.
The next configuration corresponds to a Markov decision process with 2 states: A and B, 2
absorbing states A∗ and B∗ and with signals on the state. The player has 2 actions: Stay or
Quit. The transition are as follows:

A 1
2 ; ` 1

2 ; r

Stay A (12A+ 1
2B)

Quit A∗ A∗

B 1
2 ; ` 1

2 ; r
Stay A B
Quit B∗ B∗

Hence the transition is random: with probability 1/2 of type ` and probability 1/2 of type r. The
player is not informed upon the state reached but only on the signal ` or r.
The natural “auxiliary state” space is then the beliefs of the player on (A,B) and one can check[13]
that the model is equivalent to the previous one, starting from A and where the exit state is B∗.
In fact under Stay, ` occurs with probability 1/2 and the new parameter is y0 = (1, 0). On the
other hand, after r the belief evolves from yn to yn+1.
Again this configuration generates an oscillating Qλ of the order of

√
λ.

5.6. A game in the dark.
A next transformation is to introduce two players and to generate the random variable 1

2(`)+ 1
2(r)

in the above model by a process induced by the moves of the players.
This leads to the original framework of the game defined by Ziliotto [13]: action and state spaces
are finite and the only information of the players is the initial state and the sequence of moves
along the play.
Player 1 has three moves: Stay1, Stay2 and Quit, and player 2 has 2 moves: Left and Right. The
payoff is -1 and the transition are as follows:

A Left Right

Stay1 A (12A+ 1
2B)

Stay2 (12A+ 1
2B) A

Quit A∗ A∗

B Left Right
Stay1 A B
Stay2 B A
Quit B∗ B∗

By playing (1/2, 1/2, 0) (resp. (1/2, 1/2)) player 1 (resp. player 2) can mimick the previous
distribution on (`, r) where ` corresponds to the event “the moves are on the main diagonal”. It
follows that this behavior is consistent with optimal strategies hence the induced distribution on
plays is like in the previous example 5.5.

6. Combinatorics

In order to obtain oscillations for the discounted values of a stochastic game, it is enough to
consider the coupled dynamics generated by a regular and an oscillating configuration, both of
order 1

2 .

6.1. Example 4.2 + Example 5.1.
Combining these two configurations yields a coupling of two one-person decision problems, hence
a compact stochastic game with perfect information and no asymptotic value. Remark that the
transition functions can be taken as smooth as one wants.

6.2. Examples 4.2 + Example 5.3. With this combination one recovers exactly an example
of Ziliotto (see section 4.2 in [13]) which is also a stochastic game with perfect information and
no asymptotic value. The main difference is that in that case the action space of Player 1 is
countable instead of being an interval.
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6.3. Example 4.3 + Example 5.1.
Combining these two configurations yields a stochastic game with finite action space for player 2
and no asymptotic value. Here also the transition functions can be taken as smooth as one wants.

6.4. Example 5.2 + 5.2.
By coupling Example 5.2 with a similar configuration controlled by the other Player, one recovers
exactly the family of counterexamples in [12]. Note than in this case both configurations are
oscillating, but with a different phase so the ratio does not converge.

6.5. Example 5.4 + 5.4, 5.5 + 5.5 and 5.6 + 5.6.
Two examples of Ziliotto ([13], sections 2.1 2.2 and 4.1) are combinaisons of either 5.5, 5.6 or 5.7
with a similar configuration. In those cases both configurations are oscillating of order 1

2 but one
is oscillating twice as fast as the other hence the oscillations of vλ in the combined game.

6.6. Example 4.1 + 5.4.
This gives a MDP with a countable number of states (and only 2 actions) in which vλ does not
converge. Observe that one can compactify the state space in such a way that both the payoff
and transition functions are continuous.

7. Comparison and conclusion

7.1. Irreversibility.
The above analysis shows that oscillations in the inertia rate and reversibility allows for non
convergence of the discounted values.
These two properties seem to be also necessary. In fact, Sorin and Vigeral [11] prove the existence
of the limit of the discounted values for stochastic games with finite state space, continuous action
space and continuous payoffs and transitions for absorbing games see also [5, 6, 9] and recursive
games see also [10] . These two classes corresponds to the “irreversible” case where once one
leaves a state, it cannot be reached again.

7.2. Remark that any oscillating configuration of Section 5 leads, under optimal play, to an
almost immediate exit. Hence, by itself, any such configuration leads to a regular asymptotic
behavior. It is only the ”resonance” between two configurations that yields asymptotic issues.

7.3. Semi-algebraic.
In the case of stochastic games with finitely many states and full monitoring, in all the examples
of the previous section there is a lack of semi-algebraicity, either because transition functions
oscillate infinitely often or because a set of actions has infinitely many connected components.
While the existence of an asymptotic value with semi-algebraic parameters in the case of either
perfect information or finitely many actions on one side holds [2], it is not known in full generality.
In particular, an interesting question is to determine wether there exists a configuration with
semi-algebraic parameters such that Qλ is not semi-algebraic.

7.4. Related issues.
The stationarity of the model is crucial here. However it is possible to construct similar examples
in which lim vn does not exist. The idea grounds on a lemma of Neyman [8] giving sufficient
conditions, for the two sequences vn and vλn for λn = 1

n , to have the same asymptotic behavior
as n tends to infinity. See [12] for specific details in the framework of sections 5.1 and 5.2 and
[13] in the framework of section 5.3-5.6.
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