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(Abbreviated title: Two-port des
ription of a
ousti
 bores)

ABSTRACT

For more than a de
ade, the digital waveguide model for musi
al instruments has been improved

through the simulation of 
ylindri
al and 
oni
al bores. But several di�
ulties remain, su
h as

instabilities due to growing exponentials whi
h appear when two 
oni
al bores are 
onne
ted

with de
reasing taper. In this paper, an alternative over
oming these di�
ulties is proposed

and 
an be extended to shapes other than 
ylinders, 
ones, and hyperboli
 horns. A two-port

model with more general state variables than usual traveling waves works e�
iently for any

shape without dis
ontinuities in 
ross-se
tion. The equations for 
onne
ting separate elements

at dis
ontinuities make this two-port model appropriate for use in time domain simulation of

the physi
al behavior of the wind instrument and its intera
tions with the player. The potential

of this new approa
h is illustrated by several detailed examples.

PACS numbers: 43.75.Ef, 43.60.Gk

1 Introdu
tion

Two de
ades ago, sound synthesis by physi
al modeling of musi
al instruments, was at an embryoni
 stage

1,2
,

though already raising high expe
tations. Sin
e the end of the eighties

3,4
, this method of sound synthesis has

improved steadily, 
omputers have be
ome faster and faster, and nowadays, 
ommer
ial produ
ts based on this

te
hnology are available. In 1996, Smith

5
summed up the situation in this domain of resear
h and pointed out

several di�
ulties. To 
reate a physi
al model of a wind instrument, a suitable model of a bore with varying


ross se
tion needs to be implemented. In this 
ontext, previous des
riptions of wind instruments are brie�y

reviewed, separated into two groups.

The �rst approa
h 
onsiders a wind instrument to be 
omposed of a non-linear ex
itation me
hanism - the

mouthpie
e - and of a resonator - the body - whi
h is a linear element. The resonator is 
ompletely 
hara
terized

by either its re�e
tion fun
tion or its input impedan
e

6−12
. This lumped approa
h, whi
h gives pre
ise results

and a good mat
h between experiments and theory for a given note, has a disadvantage: the properties of the

resonator are �xed. Thus, simulations 
lose to real playing situations, in
luding realisti
 transients between

several notes, are di�
ult to obtain. For instan
e, the dynami
 
losing of tone-holes by �ngers or keys, or the

motion of a trombone slide, are not simulated.

For sound synthesis, the relationship between the player and the instrument needs to be taken into a

ount

4,13−17
,

in
luding the a
tions of lips, tongue, blown air, and �ngers. A distributed approa
h is generally used. Be
ause

modularity is a key to this se
ond approa
h � a wind instrument is 
omposed of a mouthpie
e, tubes, tone-holes,

a slide, a bell, ...et
 �, a tube has to be modeled as an element whi
h 
an be 
onne
ted at both ends to other

elements. In this approa
h, pie
ewise element modeling te
hniques are generally employed for a
ousti
 bores

with varying 
ross-se
tion. Ea
h element is a two-port whi
h 
an be seen as a waveguide provided it is either

a 
ylinder, a trun
ated 
one, or a hyperboli
 horn. It has been shown that in a 
ylindri
al bore, the a
ousti
al

pressure wave is the sum of two traveling plane waves whi
h propagate in opposite dire
tions; the same holds

for a 
oni
al bore with two traveling spheri
al waves

6,8
. Further, previous works show

18
that in 
ylindri
al and

hyperboli
 bores, ��ow waves propagate without dispersion�. Thus, �A 
onvenient model of a waveguide [
an
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also be built℄ using pie
ewise hyperboli
 elements�

18
. In the 
ontext of a step by step 
al
ulation in dis
rete time

domain, this approa
h gives the digital waveguide

4
model whi
h is used by almost all the authors

4,13−23
. This

method is e�
ient due to its very low 
omputational load.

The digital waveguide model was �rst 
on
eived for a 
ylindri
al bore without losses

4
. It has been pro-

gressively improved by the addition of fra
tional delays

24,23,25
, vis
o-thermal losses, and 
oni
al bores

13−23
.

Nevertheless, di�
ulties are en
ountered as soon as the bore is non-
ylindri
al

9
. The 
onne
ting equations with

separate elements are indeed rather 
ompli
ated, showing integral terms that may generate growing exponen-

tials, for instan
e in the 
ase of two 
oni
al bores 
onne
ted with �a de
reasing taper �

10
. From another point

of view

18
, these instability phenomena 
orrespond to the existen
e of �trapped modes� in addition to normal

�traveling modes�.

In this paper, Se
tion II summarizes the traveling-wave approa
h and points out the sour
es of instabilities

in models using pie
ewise element te
hniques for waveguides. Se
tion III presents a new stable two-port whi
h

is usable not only for 
ylinders, trun
ated 
ones, and hyperboli
 horns but also for tubes of arbitrarily varying


ross-se
tion. Finally, detailed examples illustrating the potential of this model are given in Se
tion IV.

2 Instabilities in waveguide modeling

2.1 Traveling signals in lossless bores

2.1.1 Pressure waves in 
ylindri
al and 
oni
al bores

In a bore with varying 
ross-se
tion, a 
ommonly used model for lossless propagation is based on the following

equation, usually named the �Horn Equation�

26−30
:

∂2p

∂x2
− 1

c2
∂2p

∂t2
=

−S ′(x)

S(x)

∂p

∂x
(1)

where p is the mean a
ousti
 pressure in a 
ross-se
tion S of the bore, depending on abs
issa x and time t,

and 
 the sound speed (usually 340m · s−1
). It is assumed that the wave fronts are planar and that the bore is

relatively wide.

After the transformation p(x, t) = [S(x)]−1/2 ψ(x, t), Eq. (1) be
omes:

∂2ψ

∂x2
− 1

c2
∂2ψ

∂t2
=

1√
S(x)

∂2
√
S(x)

∂x2
ψ (2)

When the se
ond term of Eq. (2) is zero, mainly in the 
ase of either a 
ylinder or a trun
ated 
one, Eq. (2)

be
omes the standard wave equation, the solution of whi
h is the sum of two traveling waves, giving:

p(x, t) =
ψ+(x− c t)√

S(x)
+
ψ−(x+ c t)√

S(x)
(3)

Using a 
ommon approximation for the Euler equation, where u is the a
ousti
 volume velo
ity through


ross-se
tion S(x), and ρ0 the air mean density (usually 1.21 kg ·m−3
):

ρ0
∂u

∂t
+ S(x)

∂p

∂x
= 0 (4)

Equations (3) and (4) now give the volume velo
ity u:

u(x, t) =
S(x)

ρ0 c

[
ψ+(x− c t)− ψ−(x+ c t)√

S(x)
+
c S ′(x)

2S(x)

∫ t

−∞
p(x, σ) dσ

]
(5)
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2.1.2 Volume velo
ity waves in 
ylindri
al and hyperboli
 bores

Similarly, a �Horn Equation for volume velo
ity� 
an be given

18,Eq.(3.126)
:

∂2u

∂x2
− 1

c2
∂2u

∂t2
=
S ′(x)

S(x)

∂u

∂x
(6)

After the transformation u(x, t) =
√
S(x)φ(x, t) , Eq. (6) be
omes

18,Eq.(3.137)
:

∂2φ

∂x2
− 1

c2
∂2φ

∂t2
=

√
S(x)

∂2
[
S(x)−1/2

]

∂x2
φ (7)

In the 
ase of either a 
ylinder or a hyperboli
 horn, the solution of Eq. (7) is the sum of two traveling waves

whi
h gives:

u(x, t) =
√
S(x)φ+(x− c t) +

√
S(x)φ−(x+ c t) (8)

The mass 
onservation law being:

S(x)
∂p

∂t
+ c2ρ0

∂u

∂x
= 0 (9)

The a
ousti
 pressure 
an be dedu
ed:

p(x, t) =
ρ0 c

S(x)

(√
S(x) (φ+(x− c t)− φ−(x+ c t))− c S ′(x)

2S(x)

∫ t

−∞
u(x, σ) dσ

)
(10)

A numeri
al model using digital waveguides in 
onjun
tion with a de
omposition into a pair of traveling

waves is dedu
ed from Eqs. (3) and (5) when the air 
olumn is 
ylindri
al or 
oni
al, or from Eqs. (8) and (10)

when the air 
olumn is hyperboli
.

2.2 Des
ription of the waveguide model

Consider both ends (x = 0 and x = L) of a 
oni
al bore. Substituting q+(x, t) and q−(x, t) for
[
S(x)−1/2

]
ψ+(x−

c t) and
[
S(x)−1/2

]
ψ−(x+ c t), respe
tively, Eqs. (3) and (5) be
ome:

q+(L, t) =
1

ζ
q+(0, t− τ)

q−(0, t) = ζ q−(L, t− τ)

p(0, t) = q+(0, t) + q−(0, t)

u(0, t) =
S(0)

ρ0 c

[
q+(0, t)− q−(0, t) +

c S ′(0)

2S(0)

∫ t

−∞
p(0, σ) dσ

]

p(L, t) = q+(L, t) + q−(L, t)

u(L, t) =
S(L)

ρ0 c

[
q+(L, t)− q−(L, t) +

c S ′(L)

2S(L)

∫ t

−∞
p(L, σ) dσ

]

(11)

where L is the length of the tube, τ = L/c the propagation delay between the extremities, and ζ =

[S(L)/S(0)]1/2 the radii ratio.
The �rst two equations of System (11) de�ne a waveguide �lter in
luding a double delay line and ra-

dius 
orre
tors

31
. These equations 
onstitute the uniform transmission-line and transformer 
omponents of

Fig. 1. Vis
o-thermal losses 
an be lumped in additional �lters. The transfer fun
tion of these �lters is

G(s) = exp (−β L√
s/r) for 
ylindri
al tubes

32,33,20
, where s is the 
omplex variable of the Lapla
e trans-

formation, r =
√
S/π the radius, β =

[√
lv + (γ − 1)

√
lt
]
/
√
c (usually 1.6 × 10−5 s1/2) a 
onstant represent-

ing the vis
o-thermal e�e
ts, γ the ratio of spe
i�
 heats, lv and lt the 
hara
teristi
 lengths of the vis
ous

and thermal e�e
ts

e.g. 7,34,35,33,11
. It 
an be extended to trun
ated 
ones by taking r as an equivalent radius

(e.g.

14 r = (rL − r0) [log(rL/r0)]
−1

where r0 and rL are the radii at the two ends).

The integral terms

36,14
in System (11) explain the instabilities en
ountered in the 
ase of 
oni
al bores, as

detailed in the following se
tion.

Similarly, a waveguide model of a hyperboli
 bore 
an be de�ned by substituting q+(x, t) and q−(x, t)
respe
tively for

√
S(x)φ+(x− c t) and

√
S(x)φ−(x+ c t). Integral terms appear in this 
ase also.
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Waveguide model
of a cone

PSfrag repla
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0 (s)
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0 (s)
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0 (s)
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L (s)

P−
L (s)

Q+
L(s)

Q−
L(s)

e−τ s

e−τ s 1
ζ

ζe−
β L
r

√
s

e−
β L
r

√
s

1
1+ 2 τ

ζ−1
s

1

1− 2 ζ τ
ζ−1

s

Figure 1: Blo
k-diagram of a 
oni
al bore where both the usual waveguide state variables q+, q− and the new state

variables p+, p− 
an be observed.

2.3 Instabilities in a jun
tion of two 
oni
al tubes

The instability phenomena asso
iated with 
oni
al bores have been demonstrated through various approa
hes

5,10,21,18
.

In the 
ase of two 
oni
al tubes 
onne
ted with a 
ontinuous radius (
f. Fig. 2), 
ontinuity of mean pressure,


onservation of volume velo
ity, and System (11) give after a Lapla
e transform:

Q+
left(s) +Q−

left(s) = Q+
right(s) +Q−

right(s) = PJ(s)

Q+
left(s)−Q−

left(s) +
c r

′

left

rJ s
P (s) = Q+

right(s)−Q−
right(s) +

c r
′

right

rJ s
PJ(s)

(12)

where pJ(t) is the mean pressure at the jun
tion, r′ the taper (derivative of r with respe
t to x ), and the

following 
onvention is adopted: if w is a signal or a ve
tor of signals, W = L(w) is its Lapla
e transform

de�ned for all s by W (s) =
∫ +∞
−∞ w(t) e−s t dt. The other quantities are de�ned in Fig. 2.

PSfrag repla
ements

rJ
x

q+left(t)

q−left(t)

q+right(t)

q−right(t)

D(s)

r
′

left

r
′

right

⇔

Q+
left(s)

Q−
left(s)

Q+
right(s)

Q−
right(s)

Figure 2: A jun
tion of two 
oni
al tubes with radius 
ontinuity and its blo
k-diagram.

D(s) =
{
1 + 2 rJ s/

[
c
(
r
′

right − r
′

left

)]}
−1

is the transmittan
e of a �rst-order �lter whi
h is unstable provided

r
′

right < r
′

left.
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If the taper is not 
ontinuous, Eq. (12) be
omes:

Q−
left(s) = Q−

right(s)−
[
1 +

2 rJ
c (r

′

right − r
′

left)
s

]−1 [
Q+

left(s) +Q−
right(s)

]

Q+
right(s) = Q+

left(s)−
[
1 +

2 rJ
c (r

′

right − r
′

left)
s

]−1 [
Q+

left(s) +Q−
right(s)

]
(13)

This equation (13) 
an be translated into the blo
k-diagram of Fig. 2, 
ontaining a �rst-order �lter

21
. This

�lter is stable for in
reasing taper (r
′

right > r
′

left) and unstable for de
reasing taper (r
′

right < r
′

left), as shown in

previous work

10
. Even if vis
o-thermal losses are introdu
ed, instabilities remain.

The next se
tion presents an alternative to the usual traveling-waves approa
h. This approa
h suppresses

instabilities.

3 A two-port with physi
ally obtainable traveling waves as inputs

and outputs

In this approa
h, traveling waves are not formulated inside the modeled bore. Instead they are formulated

outside it, in 
ylinders whi
h are 
onne
ted to it so that the 
ross se
tion is 
ontinuous (see Fig. 3a). This

lumped approa
h has already been used in the �re�e
tion fun
tion� 
hara
terization of a resonator given by

S
huma
her

1
: when a 
ylinder with an ane
hoi
 termination at one end is 
onne
ted to the input of the resonator

with 
ontinuity of 
ross-se
tion, the re�e
tion fun
tion 
orresponds to a re�e
ted traveling wave whi
h is the

response of the resonator to an in
oming impulse wave. This approa
h di�ers from the usual pie
ewise element

modeling te
hniques. It has been already mentioned in S
avone

23
(pp. 119-123 and Fig. 3.25) to solve an example

problem of instability. Sin
e in
oming and outgoing waves are physi
ally obtainable in 
ylinders, with ane
hoi


terminations at un
onne
ted ends in this 
ase, the modeled bore is ne
essary seen as a passive two-port (see

Fig. 3b) without any stability problem. It should be noti
ed that, in the �traveling and trapped modes� approa
h

(Berners

18
, Se
tion 3.1.3), trapped modes disappear as soon as the bore has 
ylindri
al terminations at both

ends.

3.1 Hypotheses

The following hypotheses are made

11
: the bore se
tion is quasi-
ir
ular; its area S(x) whi
h is not too small

33

(α = β c/(2
√
S
√
f) ≪ 1, where f is the frequen
y) or too large, is a 
ontinuous fun
tion with moderate variations

(S ′(x) is de�ned almost everywhere and bounded). The tube is also quasi-re
tilinear or has only very smooth

bends. Subje
t to these 
onditions we 
an adopt the plane wave approximation: the a
ousti
 pressure p and

velo
ity v are 
onsidered uniform over the se
tion S(x) as well as fun
tions of abs
issa x and time t. This is in
fa
t the mean over the bore, (
f. Fig. 3a) obtained by integration over the boundary layer.

3.2 Equations

The following system is adopted in a

ordan
e with Pola
k

11,Eq.(41)
: the �rst equation is the mass 
onservation

law where ρ is the a
ousti
 density, the se
ond one is an extended approximation of the Euler equation and the

last one is the equation of state for the air.

S(x)
∂ρ

∂t
+ ρ0

∂u

∂x
= 0

ρ0
∂u

∂t
+ 2 ρ0 c

√
π

S(x)
β
∂

1
2u

∂t
1
2

+ S(x)
∂p

∂x
= 0

p = c2ρ

(14)

Two state variables are 
hosen to determine a numeri
al solution in the dis
rete time-domain. These state

variables may di�er from the ones used in traveling-wave approa
hes.
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(a)

PSfrag repla
ements

Varying 
ross-se
tion S(x)
Boundary layer

A
ousti
 velo
ities

bore with varying 
ross-se
tion 
ylinder
ylinder

x = 0 x = L

S(0)

x

S(L)

p+0 (t− x
c
)

p−0 (t +
x
c
)

p+L(t− x−L
c
)

p−L(t +
x−L
c
)

(b)

PSfrag repla
ements p̂+(0, f)
1
ζ
ĥT (f)

p̂+(L, f)

ĥ00(f) ĥLL(f)

p̂−(0, f)

ζ ĥT (f)

p̂−(L, f)

Figure 3: (a) A bore with varying 
ross se
tion. Both extremities of this bore are 
onne
ted to 
ylinders without


ross-se
tion dis
ontinuities. Ea
h 
ylinder has an ane
hoi
 termination at its un
onne
ted end. p+0 , p
−

0 , p
+

L and p−L
are traveling waves. The typi
al boundary layer in the air 
olumn is shown with the a
ousti
 velo
ity distribution.

(b) Blo
k-diagram of a two-port modeling the air 
olumn inside the main bore, with the inputs p+(0, t) = p+0 (t) and
p−(L, t) = p−L (t), and the outputs p−(0, t) = p−0 (t) and p+(L, t) = p+L(t).

3.3 Choosing the suitable state variables

The 
hoi
e of state variables, in
luding input and output signals, is fundamental to a 
onvenient des
ription of

a physi
al phenomenon. The following example shows how the e�e
t of su
h a 
hoi
e 
an explain phenomena

like non-
ausality or growing exponentials, as pointed out in previous studies

9,18,37,38
. Suitable state variables

are then given for a bore with varying 
ross-se
tion.

3.3.1 Preliminary

Let a physi
al system be des
ribed by the following di�erential equation:

dw(t)

dt
− 500w(t) =

d v(t)

dt
+ 1500 v(t)

for all t < 0, v(t) = 0, w(t) = 0
(15)

Its input and output 
an a priori supposedly be 
hosen freely.

If v and w are respe
tively sele
ted as input and output, the system is unstable be
ause its impulse response

h1 
ontains a growing exponential:

h1(t) = δ(t) + 2000 ǫ(t) e+500t
(16)

where δ is the Dira
 impulse pseudo-fun
tion

39
and ǫ the Heaviside step fun
tion.

On the 
ontrary, if w is the input and v the output, the system is stable be
ause its impulse response is:

h2(t) = δ(t)− 2000 ǫ(t) e−1500t
(17)
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It is also possible to take the input as sin = w + v and the output as sout = w − v. Equation (15) be
omes:

d sout(t)

dt
+ 500 sout(t) = 1000 sin(t)

for all t < 0, sin(t) = 0, sout(t) = 0
(18)

In this third 
ase, the physi
al phenomenon is modeled as a stable �rst-order system and its impulse response


ontains neither growing exponentials nor pseudo-fun
tions. It 
an be noti
ed that in any 
ase for a given input

ein and a given output s1 and for any number a, the output modi�
ation s2(t) = s1(t)+ a ein(t) 
hanges neither
the stability nor the 
hara
teristi
 time of the model.

This example emphasizes that stability is not intrinsi
 to a given physi
al phenomenon but notably depends

on the 
hoi
e of the input, whi
h has to be physi
ally obtainable. Pseudo-fun
tions 
an generally be eliminated

in the impulse response by modifying the output.

3.3.2 From the re�e
tion fun
tion to a two-port model

The re�e
tion fun
tion

1 hr of a woodwind resonator veri�es p−0 = hr ⋆p
+
0 where p+0 and p−0 are traveling pressure

waves in a lossless 
ylinder 
onne
ted to the entran
e of the resonator, with 
ontinuity of 
ross-se
tion (
f. the

left half of Fig. 3a), and the operator ⋆ is the 
onvolution (for all t, (hr ⋆ p
+
0 )(t) =

∫ +∞
−∞ hr(t− ξ) p+0 (ξ) dξ ). The

re�e
tion fun
tion is ne
essarily stable for physi
al reasons (the resonator is a passive system and the input is

physi
ally obtainable) and 
an be 
onsidered as 
ausal if the following hypothesis is laid down: we 
an negle
t

the thi
kness ε of the air sli
e between x = −ε and x = 0 (in the 
ylinder, just before the entran
e of the

resonator) whi
h is dire
tly in�uen
ed by the resonator shape.

Following this idea, the state ve
tor P =
(
p+

p−

)
is 
hosen to des
ribe the a
ousti
 state of the air 
olumn, the

signals p+ and p− being de�ned as follows:

p+(x, t) =
1

2

[
p(x, t) +

ρ0c

S(x)
u(x, t)

]

p−(x, t) =
1

2

[
p(x, t)− ρ0c

S(x)
u(x, t)

]
(19)

p(x, t) = p+(x, t) + p−(x, t)

u(x, t) =
S(x)

ρ0c

[
p+(x, t)− p−(x, t)

] (20)

These signals are traveling waves only in the model of a 
ylindri
al bore without losses, i.e. p+(x, t) 
an be

written p+(x− c t) and p−(x, t), p−(x+ c t). In any other 
ase, p+ and p− are not traveling on the whole air


olumn but 
an be quali�ed as � lo
ally-traveling� (in a sli
e of air of area S and in�nitesimal thi
kness). The


onne
ting equations of the bore with any other element of the instrument remain elementary (
ontinuity of

mean pressure and �ow 
onservation) be
ause of Eq. (20), similar to the last four equations of System (11) but

without any integral term. Above all, the main advantage is that any pie
e of bore with a varying 
ross se
tion


an be modeled as a single two-port (
f. Fig. 3b), whi
h is ne
essarily stable and 
ausal for reasons similar to

the re�e
tion fun
tion 
ase (
f. Fig. 3a).

After a Fourier transform, Systems (14) and (20) give the following non-linear di�erential system:

∂

∂x
P̂ (x, f) = A [S(x), S ′(x), f ] P̂ (x, f) (21)

where P̂ (x, f) is the Fourier transform of the state ve
tor P at the frequen
y f :

P̂ (x, f) =

[
p̂+(x, f)

p̂−(x, f)

]
=




∫ +∞

−∞
p+(x, t) e−2 i π f t dt

∫ +∞

−∞
p−(x, t) e−2 i π f t dt


 (22)
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and

A(S, S ′, f) =




−2 i π f

c
− (1 + i) β π

√
f√

S
− S ′

2S

(1 + i) β π
√
f√

S
+
S ′

2S
−(1 + i) β π

√
f√

S
+
S ′

2S

2 i π f

c
+

(1 + i) β π
√
f√

S
− S ′

2S


 (23)

Systems like Eq. (21) are generally solved by numeri
al te
hniques. The transfer matrix T (f) =
[
T11

T21

T12

T22

]
of

the lo
ally-traveling waves, from the end at x = 0 to that at x = L, veri�es P̂ (L, f) = T (f) P̂ (0, f) and 
an be

dedu
ed from Eqs. (21) to (23).

The s
attering matrix H(f) verifying

[
p̂−(0,f)

p̂+(L,f)

]
= H(f)

[
p̂+(0,f)

p̂−(L,f)

]
is then dedu
ed from the transfer matrix:

H(f) =

[
ĥ00(f) ĥL0(f)

ĥ0L(f) ĥLL(f)

]
=

1

T22

[
−T21 1

T11T22 − T12T21 T12

]
(24)

where hjk is the impulse response from the end at x = j to the end at x = k, ĥjk its Fourier transform, and

Hjk its Lapla
e transform.

In the s
attering matrix, re
ipro
ity implies the existen
e of a single transfer fun
tion ĥT (f):

ĥT (f) = ζ ĥ0L(f) =
1

ζ
ĥL0(f) (25)

(a)

PSfrag repla
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x = 0 x = 0.3m x = 1m

x

(b)

PSfrag repla
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0 (s)

1
1+σ1s

1
1−σ2s

1
6
G1(s)e

−τ1s

6G1(s)e
−τ1s G2(s)e

−τ2s

G2(s)e
−τ2s

R(s)

T (s)
Ur(s)

Figure 4: (a) A bore built with a trun
ated 
one and a 
ylinder (from Agulló et al.

9
, Fig. 10, p.1611) and (b) its

blo
k-diagram in
luding the bell radiation.

It has to be noti
ed that, in all simulated 
ases (
f. e.g. Fig. 5), the four transmittan
es in the s
attering

matrix 
orrespond to 
ausal stable �lters with fast-de
reasing impulse responses, 
ontrary to other methods

9,37,38
.

A

ordingly, the present method is promising for time-domain simulations, all the more so as usual te
hniques

of transfer matrix 
al
ulation

7

an be used for 
omplex resonators in
luding dis
ontinuities, side-holes or higher

modes.

In the 
ase of a 
oni
al bore, it 
an be observed in the next se
tion that these new state variables suppress

the instabilities pointed out above.
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Figure 5: Continuous-time impulse responses (the 
al
ulation is made in Se
tion 3.4, Eq. (30)) for the 
oni
al part of

the bore whi
h is given in Fig. 4. τ ≈ 0.88ms and ζ = 6.

3.4 How instabilities vanish in the waveguide model of a 
oni
al bore

The blo
k-diagram of a 
oni
al tube in the waveguide approa
h is only the middle element of the blo
k-diagram

drawn on Fig. 1. In the present approa
h, the whole blo
k-diagram in
ludes jun
tions with virtual external


ylinders at both ends. On the left side rJ = r0, r
′
left = 0, r′right = (ζ−1) r0/L, and D(s) = [1 + 2 τ s/(ζ − 1)]−1

.

On the right side rJ = rL, r
′
left = (ζ − 1) rL/(ζ L) , r

′
right = 0, and D(s) = [1− 2 ζ τ s/(ζ − 1)]−1

.

The s
attering matrix of the 
oni
al tube is dedu
ed from Fig. 1:

H00(s) =
(ζ − 1) [ζ − 1− 2ζ τs+ (2τs− ζ + 1)G(s)2 e−2τs]

(2ζ τs− ζ + 1) (2τs+ ζ − 1) + (ζ − 1)2G(s)2 e−2τs

HT (s) =
ζ (2τs)2G(s) e−τs

(2ζ τs− ζ + 1) (2τs+ ζ − 1) + (ζ − 1)2G(s)2 e−2τs

HLL(s) =
(ζ − 1) [2τs+ ζ − 1− (2ζ τs + ζ − 1)G(s)2 e−2τs]

(2ζ τs− ζ + 1) (2τs+ ζ − 1) + (ζ − 1)2G(s)2 e−2τs

(26)
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If losses are ignored (i.e. G(s) = 1), H00, HT , and HLL are fun
tions 
ontinuous at s = 0: H00(0) =
(1− ζ2)/(1 + ζ2), HT (0) = 2ζ/(1 + ζ2), and HLL(0) = (ζ2 − 1)/(1 + ζ2). Ea
h pole (a+ i b)/τ (a 6= 0 or b 6= 0)
of H00, HT , or HLL veri�es:

(2ζa− ζ + 1 + i 2ζb) (2a+ ζ − 1 + i 2b) + (ζ − 1)2 e−2(a+i b) = 0 (27)

whi
h implies:

sin(2b)

2b
= e2a

[
1 +

4aζ

(ζ − 1)2

]
(28)

Consequently a < 0 and thus H00, HT , and HLL are transmittan
es of stable �lters. System (26) 
an be written:

H00(s) =
ζ − 1

1− ζ − 2τs
− 4(τs)2

+∞∑

n=1

(ζ − 1)2n−1

(ζ − 1 + 2τs)n+1(ς − 1− 2ς τs)n
e−2n τs

HT (s) = −4ζ (τs)2
+∞∑

n=0

(ζ − 1)2n

(ζ − 1 + 2τs)n+1(ς − 1− 2ς τs)n+1
e−(2n+1) τs

HLL(s) =
1− ζ

ζ − 1− 2ζ τs
− 4ζ2(τs)2

+∞∑

n=1

(ζ − 1)2n−1

(ζ − 1 + 2τs)n(ς − 1− 2ς τs)n+1
e−2n τs

(29)

The initial parts of the three 
ausal impulse responses are dedu
ed from Eq. (29) as follows:

h00(t) = 1−ζ
2τ

exp
[
1−ζ
2τ
t
]
, 0 6 t < 2τ

= ζ−1
4e τ(1+ζ)2

{
2
[
eζ(1 + ζ + ζ2)− e(1 + ζ)2

]
− eζ(ζ2 − 1) t

τ

}
exp

[
1−ζ
2τ
t
]

+ e(1−ζ)/ζ(ζ−1)
2τζ(1+ζ)2

exp
[
ζ−1
2ζτ

t
]
, 2τ 6 t < 4τ

. . . etc.

hT (t)− δ(t− τ) = 0 , 0 6 t < τ

= e(ζ−1)/2ζ (1−ζ)
2τ (ζ+1)

exp
[
1−ζ
2τ
t
]

+ e(1−ζ)/(2ζ)(ζ−1)
2τ ζ (ζ+1)

exp
[
ζ−1
2ζτ

t
]
, τ 6 t < 3τ

. . . etc.

hLL(t) = ζ−1
2ζτ

exp
[
ζ−1
2ζτ

t
]
, 0 6 t < 2τ

= 1−ζ
4e ζ τ(1+ζ)2

{
2
[
e1/ζ(1 + ζ + ζ2)− e(1 + ζ)2

]
+ e1/ζ(ζ2 − 1) t

τ

}
exp

[
ζ−1
2ζτ

t
]

+ eζ−1ζ2(1−ζ)
2τ(1+ζ)2

exp
[
1−ζ
2τ
t
]
, 2τ 6 t < 4τ

. . . etc.

(30)

A numeri
al example is given below.

4 Examples

Three 
ases are 
hosen to show the potential of this improved two-port model: the �rst one, taken from

Agulló et al.

9
, produ
es some instability e�e
ts using the traveling-wave approa
h

5
and in
ludes 
ylindri
al and


oni
al tubes; the textbook 
ase of the exponential horn follows; and �nally, a 
omplex pro�le of a trumpet bore

taken from van Walstijn and Smith

17
is treated.

For a non-
ylindri
al bore, the numeri
al determination of the transfer matrix at frequen
ies lying between

0 and fs/2 (fs is the sampling frequen
y), is made by the Fourth-Order Runge-Kutta Algorithm with an auto-

adaptive step

40
applied to Eqs. (21) and (23). This numeri
al method is 
omputationally rather expensive but


al
ulation has to be performed only on
e for a given bore. Exa
t and numeri
al 
al
ulations of the s
attering

matrix are 
ompared below for both a 
oni
al bore and an exponential horn.
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Digital �lter design methods are numerous and generally pay great attention to the frequen
y response

magnitude but do not take into a

ount the phase whi
h is very important in a
ousti
 looped systems. As

written in van Walstijn and Smith

17
, �there is a need for more e�e
tive digital �lter te
hniques in this 
ontext�.

Thus, basi
 weighted least-squares (WLS) design for Finite Impulse Response (FIR) digital �lters

41−46
is used

in these examples to obtain time domain responses. It is obvious that other e�
ient methods

17
of digital �lter

design 
an be used.

Re�e
tion fun
tion 
al
ulation is performed entirely in the dis
rete time-domain, using the Levine and

S
hwinger formulae

47
to design an FIR digital �lter for bell radiation

14
(
f. Fig. 4b).

0 2 4 6 8 10 12

-6

-4

-2

0

2

PSfrag repla
ements

t/τ

h
r
(t
)
(×

10
3
s−

1
)

Figure 6: hr, the re�e
tion fun
tion of the bore (
f. Fig. 4) at its small end, with a re�e
tion, at the other end, whi
h

is 
al
ulated by using the Levine and S
hwinger formulae

43
. This fun
tion is 
ompletely 
al
ulated in the dis
rete

time-domain with 
ausal digital �nite impulse response �lters whi
h model the 
oni
al part of the bore, the 
ylindri
al

one and the radiation. The propagation delay between both ends is τ ≈ 2.94ms.

4.1 Dis
rete time 
al
ulation of the re�e
tion fun
tion of a 
one-
ylinder 
ombi-

nation

As mentioned in the introdu
tion and shown above in Se
tion 2.3, when several bores are 
onne
ted with

�de
reasing widening rate�

9
as in Fig. 4 taken from Agulló et al.

9
(Fig. 10), stability problems with growing

exponentials appear in the usual models. With the improved two-port model, these stability artifa
ts vanish.

The impulse responses h00, hT , and hLL (
f. Eq. (30)) of the 
oni
al part of the bore are drawn in Fig. 5. The

re�e
tion fun
tion of the bore at its small end is drawn in Fig. 6.

Several observations 
an be made on Fig. 5 about the 
oni
al part. For a non-
ylindri
al bore, it is qual-

itatively possible to 
onsider, in an air sli
e of in�nitesimal thi
kness dx, that every traveling wave has an

in�nitesimal re�e
tion whi
h is proportional to −dS/S. At the smaller end, the beginning of the impulse

response h00 (re�e
tion) is negative and in
reasing with t be
ause −dS/S is negative and in
reasing with x.
For similar reasons, at the larger end, hLL is positive and in
reasing between 0ms and 2τ . Con
erning the

transmission impulse response after the τ -delayed perfe
t impulse δ, whi
h is obtained in waveguide models

without losses, an additional e�e
t of the taper 
an be observed after τ . In frequen
y domain, a good agreement

appears on Fig. 7 between the waveguide and numeri
al te
hniques. Nevertheless, it seems that the equivalent

radius te
hnique

14
in the waveguide approa
h of 
oni
al bores overestimates the vis
o-thermal losses in both

transmission and re�e
tion at the larger end.
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Figure 7: Moduli of transmittan
e for the 
oni
al part of the bore shown in Fig. 4, a

ording to the waveguide approa
h

(
f. Se
tion 3.4, Eq. (26), dashed line) and the numeri
ally 
al
ulated one from Eqs. (21) and (23) (unbroken line).

4.2 The exponential horn

Let an exponential horn be de�ned by the radius formulae r(x) = r0 exp(Λx/L) where Λ = log(ζ). In this


lassi
al 
ase, Eqs. (21) and (23) admit exa
t solutions, provided losses terms are negle
ted, and give the

following transmittan
es in the s
attering matrix:

HLL(s) = −H00(s) =
Λ

[
1− e−2

√
(τs)2+Λ2

]

√
(τs)2 + Λ2

[
1 + e−2

√
(τs)2+Λ2

]
+ τs

[
1− e−2

√
(τs)2+Λ2

]

HT (s) =
2
√
(τs)2 + Λ2 e−

√
(τs)2+Λ2

√
(τs)2 + Λ2

[
1 + e−2

√
(τs)2+Λ2

]
+ τs

[
1− e−2

√
(τs)2+Λ2

]
(31)

A 
omparison between numeri
al 
al
ulation with losses and Eq. (31) is made in Fig. 8 for a horn of 68 cm
length, 3mm and 3 cm radii (ζ = 10 and τ = 2ms), with a good agreement. The observed 
ut-o� frequen
y
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Figure 8: Transmittan
e modulus of an exponential horn of 68 cm length, 3mm and 3 cm radii (ζ = 10 and τ = 2ms).
Comparison between exa
t (without losses, dashed line) and numeri
al (unbroken line) 
al
ulations.

agrees with the expe
ted value fc = Λ/(2π τ) ≈ 183.2Hz. In the time-domain, the impulse responses 
an

be given using the following property: the fun
tion de�ned for all s by

[
(
√
s2 + Λ2 − s)/Λ

]n
is the Lapla
e

transform of the signal Kn de�ned for all t by Kn(t) = (n/t) Jn(Λt) ǫ(t) provided n is a positive integer, where

Jn is the Bessel fun
tion of the �rst kind

48
.

After the substitution of:

+∞∑

n=0

(−1)n
[√

(τs)2 + Λ2 − τs
]2n+1

Λ2n+2
e
−2n

[√
(τs)2+Λ2−τs

]

e−2nτs
(32)

for

{√
(τs)2 + Λ2

[
1 + e−2

√
(τs)2+Λ2

]
+ τs

[
1− e−2

√
(τs)2+Λ2

]}−1

, Eq. (31) be
omes:

HLL(s) = −H00(s) =
1

Λ
(
√

(τs)2 + Λ2 − τs) + 2
+∞∑

n=1

(−1)n B2n e
−2nτs

HT (s) = 2

+∞∑

n=0

(−1)n B2n+1 e
−(2n+1)τs

(33)

where

Bm =
1

Λm+1

+∞∑

k=0

(−m)k

k !

{
Λ2

[√
(τs)2 + Λ2 − τs

]m+k−1

− τs
[√

(τs)2 + Λ2 − τs
]m+k

}
(34)
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After an inverse Lapla
e transform, Eqs. (33) and (34) give with the 
onvention K0 = 0:

hLL(t) = −h00(t) =
1

τ
K1

(
t

τ

)
+

2

τ

+∞∑

n=1

(−1)n b2n(t− 2n τ)

hT (t) = δ(t− τ) +
2

τ

+∞∑

n=0

(−1)n b2n+1 [t− (2n+ 1)τ ]

(35)

where

bm(t) =
+∞∑

k=0

(−mΛ)k

k !

[
Km+k−1

(
t

τ

)
− 1

Λ
K ′

m+k

(
t

τ

)]
(36)

The 
ontinuous-time impulse responses are drawn in Fig. 9. They are similar to dis
rete-time ones whi
h

are numeri
ally obtained by inverse dis
rete Fourier transform.
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Figure 9: Continuous-time impulse responses of an exponential horn of 68 cm length, 3mm and 3 cm radii (ζ = 10
and τ = 2ms).
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4.3 A 
omplex bore pro�le
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Figure 10: (a) Pro�le of a trumpet bore (from Fig. 3 in van Walstijn and Smith

17
). The resonator is divided into three

parts, from left to right: the �mouthpipe� (from

1© to

2©) is a 
oni
al bore of 165mm length, 4.54mm and 5.65mm
radii; the �main bore� (from

2© to

3©) is a 
ylindri
al bore, of 415mm length and 5.65mm radius; the third part (from

3© to

4©) is the beginning, whi
h radius is less than 10mm, of the ��ared bell �; the length of this trun
ated �ared bell

is 510mm. (b) Re�e
tion impulse response h00 of the �ared bell at its small end

3© (τ34 = 1.5ms). (
) Re�e
tion

fun
tion of the whole trumpet bore at the entran
e of the mouthpipe

1© (τ14 ≈ 3.2ms).
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The two-port model 
an also be used for an arbitrarily varying bore: the pro�le of a trun
ated trumpet

bore, taken from van Walstijn and Smith

17
(Fig. 3), is given in Fig. 10a. The impulse response h00 (re�e
tion)

of the trun
ated �ared bell at its small end (mark

3©), is given in Fig. 10b. Be
ause �traje
tories� with a single

re�e
tion are predominant, the pro�le of the bore 
an almost be followed on the 
urve of h00, by 
onverting

length into time (
oe�
ient 2/c). The propagation delay between both ends is τ34 = 1.5ms. It 
an be observed

that ea
h small pro�le irregularity produ
es a signi�
ant e�e
t on the h00 
urve.
The re�e
tion fun
tion of the whole trun
ated trumpet bore at the entran
e of the mouthpipe (mark

1©) is

drawn on Fig. 10
. The total propagation delay between both ends is τ14 ≈ 3.21ms. Between 0 and 0.3 τ14, the
negative re�e
tion inside the mouthpipe (divergent 
one) is per
eptible. Between 0.3 τ14 and 1.06 τ14, re�e
tions
are negligible (
ylindri
al part). Between 1.06 τ14 and about 2 τ14, the re�e
tion impulse response h00 of the

trun
ated �ared bell is re
ognizable. The negative peak, whi
h appears at 2 τ14 and rea
hes a magnitude of about

1.5 × 104 s−1
, results from the re�e
tion at the opening end (mark

4©). After about 2 τ14, multiple re�e
tions

inside the tube are superimposed, the e�e
ts of the three parts of the bore are more di�
ult to di�erentiate,

even if a kind of (2 τ14, 0)-
entered symmetry 
an be observed and qualitatively explained by the predominan
e

of traje
tories 
ontaining three re�e
tions.

5 Con
luding remarks

This new two-port model is promising for a

urate time-domain simulation of musi
al wind instruments with an

arbitrary bore shape. The present approa
h based on lo
ally-traveling plane waves may be seen as an alternative

to waveguide �lter approa
hes whi
h in
lude pie
ewise element modeling.

This approa
h improves time-domain modeling of bores with varying 
ross se
tion but it is only an element

of a 
omplete physi
al model. This global model 
ould lead to an implementation of a tool for instrument

makers, whi
h may enable them to listen to an instrument before it is manufa
tured. However, improvements

are still ne
essary in the physi
al modeling of other elements of wind instruments, in
luding their intera
tions

with the player.
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