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An alternative to the traveling-wave approach for
use In two-port descriptions of acoustic bores

Eric Ducasse

Ecole Nationale Supérieure d’Arts et Métiers, C.E.R. de Bordeaux-Talence, 33405 Talence cedex, France
eric.ducasse@ensam.eu

(Abbreviated title: Two-port description of acoustic bores)

ABSTRACT

For more than a decade, the digital waveguide model for musical instruments has been improved
through the simulation of cylindrical and conical bores. But several difficulties remain, such as
instabilities due to growing exponentials which appear when two conical bores are connected
with decreasing taper. In this paper, an alternative overcoming these difficulties is proposed
and can be extended to shapes other than cylinders, cones, and hyperbolic horns. A two-port
model with more general state variables than usual traveling waves works efficiently for any
shape without discontinuities in cross-section. The equations for connecting separate elements
at discontinuities make this two-port model appropriate for use in time domain simulation of
the physical behavior of the wind instrument and its interactions with the player. The potential
of this new approach is illustrated by several detailed examples.

PACS numbers: 43.75.Ef, 43.60.Gk

1 Introduction

Two decades ago, sound synthesis by physical modeling of musical instruments, was at an embryonic stage®?,
though already raising high expectations. Since the end of the eighties®*, this method of sound synthesis has
improved steadily, computers have become faster and faster, and nowadays, commercial products based on this
technology are available. In 1996, Smith® summed up the situation in this domain of research and pointed out
several difficulties. To create a physical model of a wind instrument, a suitable model of a bore with varying
cross section needs to be implemented. In this context, previous descriptions of wind instruments are briefly
reviewed, separated into two groups.

The first approach considers a wind instrument to be composed of a non-linear excitation mechanism - the
mouthpiece - and of a resonator - the body - which is a linear element. The resonator is completely characterized
by either its reflection function or its input impedanceS='2. This lumped approach, which gives precise results
and a good match between experiments and theory for a given note, has a disadvantage: the properties of the
resonator are fixed. Thus, simulations close to real playing situations, including realistic transients between
several notes, are difficult to obtain. For instance, the dynamic closing of tone-holes by fingers or keys, or the
motion of a trombone slide, are not simulated.

For sound synthesis, the relationship between the player and the instrument needs to be taken into account®3-17,
including the actions of lips, tongue, blown air, and fingers. A distributed approach is generally used. Because
modularity is a key to this second approach —a wind instrument is composed of a mouthpiece, tubes, tone-holes,
a slide, a bell, ...etc —, a tube has to be modeled as an element which can be connected at both ends to other
elements. In this approach, piecewise element modeling techniques are generally employed for acoustic bores
with varying cross-section. Each element is a two-port which can be seen as a waveguide provided it is either
a cylinder, a truncated cone, or a hyperbolic horn. It has been shown that in a cylindrical bore, the acoustical
pressure wave is the sum of two traveling plane waves which propagate in opposite directions; the same holds
for a conical bore with two traveling spherical waves®®. Further, previous works show!® that in cylindrical and
hyperbolic bores, “flow waves propagate without dispersion”. Thus, “A convenient model of a waveguide [can
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also be built] using piecewise hyperbolic elements”®. In the context of a step by step calculation in discrete time
domain, this approach gives the digital waveguide* model which is used by almost all the authors®'3=23 . This
method is efficient due to its very low computational load.

The digital waveguide model was first conceived for a cylindrical bore without losses*. It has been pro-
gressively improved by the addition of fractional delays?4?32>  visco-thermal losses, and conical bores!?=23,
Nevertheless, difficulties are encountered as soon as the bore is non-cylindrical®. The connecting equations with
separate elements are indeed rather complicated, showing integral terms that may generate growing exponen-
tials, for instance in the case of two conical bores connected with “a decreasing taper”'®. From another point
of view!®, these instability phenomena correspond to the existence of “trapped modes” in addition to normal
“traveling modes”.

In this paper, Section II summarizes the traveling-wave approach and points out the sources of instabilities
in models using piecewise element techniques for waveguides. Section III presents a new stable two-port which
is usable not only for cylinders, truncated cones, and hyperbolic horns but also for tubes of arbitrarily varying
cross-section. Finally, detailed examples illustrating the potential of this model are given in Section IV.

2 Instabilities in waveguide modeling

2.1 Traveling signals in lossless bores
2.1.1 Pressure waves in cylindrical and conical bores

In a bore with varying cross-section, a commonly used model for lossless propagation is based on the following
equation, usually named the “Horn Equation”?=30:

Pp 10  =S'(x)dp

or2 2ot S(x) Ox

(1)

where p is the mean acoustic pressure in a cross-section S of the bore, depending on abscissa z and time £,
and ¢ the sound speed (usually 340 m - s7!). It is assumed that the wave fronts are planar and that the bore is
relatively wide.

After the transformation p(z,t) = [S(z)] ™2 ¥(z,t), Eq. (1) becomes:

Py 1% 1 PV

0x2 202 \/S(x) Oa’

When the second term of Eq. (2) is zero, mainly in the case of either a cylinder or a truncated cone, Eq. (2)
becomes the standard wave equation, the solution of which is the sum of two traveling waves, giving:

¥ (2)

vtz —ct) N Y (x + ct)
VS(z) V/S(z)

Using a common approximation for the Euler equation, where « is the acoustic volume velocity through
cross-section S(z), and pg the air mean density (usually 1.21kg - m™):

(3)

p(l‘,t) =

ou op
/JOEWLS(?U)%—O (4)

Equations (3) and (4) now give the volume velocity u:

_ S(@) (vt —ct) =Y (z+ct)  cS'(z) [*
u(x,t) = s 50 + QS(x)/_ p(x,0) da] (5)

[e.9]
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2.1.2 Volume velocity waves in cylindrical and hyperbolic bores

Similarly, a “Horn Equation for volume velocity” can be given!® Fa.(3.126) .

Pu  10%°u  S'(zx)ou

0r2 oz S(x) o (6)
After the transformation u(z,t) = \/S(z) ¢(x,t) (6) becomes!8: a-(3-137).
¢ 1% & [S(x)~17]
" @om VW T e ¢ )

In the case of either a cylinder or a hyperbolic horn, the solution of Eq. (7) is the sum of two traveling waves

which gives:
= /S(x) ¢t (x — ct) + /S(z) ¢ (x + ct) (8)

dp ou

ot T ¢ Poa =0 (9)

The mass conservation law being:

S(x) =

The acoustic pressure can be deduced:

pla,t) = 5&3 (\/S(x) (67 (x —ct) — ¢~ (z +ct)) — ;?9((;6)) /_ u(z, o) da) (10)

A numerical model using digital waveguides in conjunction with a decomposition into a pair of traveling

waves is deduced from Egs. (3) and (5) when the air column is cylindrical or conical, or from Egs. (8) and (10)
when the air column is hyperbolic.

2.2 Description of the waveguide model
Consider both ends (z = 0 and 2 = L) of a conical bore. Substituting ¢*(x,¢) and ¢~ (z, t) for [S(z)™/?] YT (z—
ct) and [S(z)"V?] ¥~ (z + ct), respectively, Egs. (3) and (5) become:

0,t—
¢ (Lt) = C ¢ (0.t =)
~(0,8) =Cq (Lt =)
0,£) = ¢"(0,£) +¢7(0,t)
0,2)

_ 30 {q“L(O,t) _ g 0.+ 20 /t (0, 0) da} (11)

(
w00 = 250) J
p(L,t) :q+<L7t>+q_(L7t) .
u(L,t) = % [q+(L,t) —q (L, t) + 0215;((5)) /Oo p(L,0) da}

where L is the length of the tube, 7 = L/c the propagation delay between the extremities, and ( =
[S(L)/S(0)]"/? the radii ratio.

The first two equations of System (11) define a waveguide filter including a double delay line and ra-
dius correctors®. These equations constitute the uniform transmission-line and transformer components of
Fig. 1. Visco-thermal losses can be lumped in additional filters. The transfer function of these filters is
G(s) = exp (=B L+/s/r) for cylindrical tubes®?3? where s is the complex variable of the Laplace trans-
formation, r = /S/7 the radius, 8 = [/I, + (v — 1)v/] /+/c (usually 1.6 x 107°s'/?) a constant represent-
ing the visco-thermal effects, v the ratio of specific heats, [, and [; the characteristic lengths of the viscous
and thermal effects®9 734353311 Tt can be extended to truncated cones by taking r as an equivalent radius
(e.9. r = (rp —ro) [log(ry/ro)]”" where ro and r;, are the radii at the two ends).

The integral terms®*®!* in System (11) explain the instabilities encountered in the case of conical bores, as
detailed in the following section.

Similarly, a waveguide model of a hyperbolic bore can be defined by substituting ¢*(z,t) and ¢ (z,t)
respectively for \/S(x) ¢*(z — ct) and \/S(x) ¢~ (x + ct). Integral terms appear in this case also.
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Waveguide model
of acone

Py (s) Q5 (s) e =

Figure 1: Block-diagram of a conical bore where both the usual waveguide state variables g™, ¢~ and the new state
variables p*, p~ can be observed.

2.3 Instabilities in a junction of two conical tubes

The instability phenomena associated with conical bores have been demonstrated through various approaches®!9:251

In the case of two conical tubes connected with a continuous radius (¢f. Fig. 2), continuity of mean pressure,
conservation of volume velocity, and System (11) give after a Laplace transform:

Qltft(‘s) + Qﬁft(*‘s) = ;rlight(s) + Q;ight@) = Pj(s)

_ CTleft _ Cr;i ht
Qltft(‘s) - Qleft<8) + ,',,J;t P(S> = jight(s> - Qright<8) + TL]Z PJ<8)

(12)

where p;(t) is the mean pressure at the junction, 7’ the taper (derivative of r with respect to z), and the
following convention is adopted: if w is a signal or a vector of signals, W = L(w) is its Laplace transform
defined for all s by W(s) = fj;o w(t) e st dt. The other quantities are defined in Fig. 2.

/

T

-i211(,135> . Qibuls) Signa(5)
qltft(t> . qright(t) "
Hr
A TV
< VS AN
ql_eft(t) : qr_ight(t)

N Qresels)  Qa(s)

Figure 2: A junction of two conical tubes with radius continuity and its block-diagram.
’ ’ -1
D(s) = {1 +2rys/ {c (rright - Tleft)}} is the transmittance of a first-order filter which is unstable provided

’ ’

Tm'ght < rleft'
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If the taper is not continuous, Eq. (12) becomes:

- 1-1

2
Quepe(8) = Qrigna(s) = |14 ———T——s|  [Q1u(5) + Qrigna(s)]
L ¢ (Tright Tleft) ] (13)
- J-1
2 _
Qrzght( s) = Qleft( s) — _1 + c (r;’ight,ri Tgeft) 5_ [Qltft(s) + Qright(s)]

This equation (13) can be translated into the block-diagram of Fig. 2, containing a first-order filter?'. This
filter is stable for increasing taper (r;ight > r;eﬁ) and unstable for decreasing taper (r;ight < r;eﬁ), as shown in
previous work!®. Even if visco-thermal losses are introduced, instabilities remain.

The next section presents an alternative to the usual traveling-waves approach. This approach suppresses
instabilities.

3 A two-port with physically obtainable traveling waves as inputs
and outputs

In this approach, traveling waves are not formulated inside the modeled bore. Instead they are formulated
outside it, in cylinders which are connected to it so that the cross section is continuous (see Fig. 3a). This
lumped approach has already been used in the “reflection function” characterization of a resonator given by
Schumacher!: when a cylinder with an anechoic termination at one end is connected to the input of the resonator
with continuity of cross-section, the reflection function corresponds to a reflected traveling wave which is the
response of the resonator to an incoming impulse wave. This approach differs from the usual piecewise element
modeling techniques. It has been already mentioned in Scavone? (pp. 119-123 and Fig. 3.25) to solve an example
problem of instability. Since incoming and outgoing waves are physically obtainable in cylinders, with anechoic
terminations at unconnected ends in this case, the modeled bore is necessary seen as a passive two-port (see
Fig. 3b) without any stability problem. It should be noticed that, in the “traveling and trapped modes” approach
(Berners!8, Section 3.1.3), trapped modes disappear as soon as the bore has cylindrical terminations at both
ends.

3.1 Hypotheses

The following hypotheses are made!!: the bore section is quasi-circular; its area S(x) which is not too small3?

(o = Bc/(2V/SV/f) < 1, where f is the frequency) or too large, is a continuous function with moderate variations
(S'(x) is defined almost everywhere and bounded). The tube is also quasi-rectilinear or has only very smooth
bends. Subject to these conditions we can adopt the plane wave approximation: the acoustic pressure p and
velocity v are considered uniform over the section S(x) as well as functions of abscissa « and time ¢. This is in
fact the mean over the bore, (¢f. Fig. 3a) obtained by integration over the boundary layer.

3.2 Equations

The following system is adopted in accordance with Polack'®>®a(*D: the first equation is the mass conservation
law where p is the acoustic density, the second one is an extended approximation of the Euler equation and the
last one is the equation of state for the air.

0 ou
S >8§+po —0

82u p (14)
P08t+2po v S 5 % )8x 0

Two state variables are chosen to determine a numerical solution in the discrete time-domain. These state
variables may differ from the ones used in traveling-wave approaches.
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(a)

Varying cross-section S (x) Boundary layer

(0, f) N (L, f)
T Lhe(f) ML >
hoo(f) hro(f)
PR Y s
(0, f) p(L.])

Figure 3: (a) A bore with varying cross section. Both extremities of this bore are connected to cylinders without
cross-section discontinuities. Each cylinder has an anechoic termination at its unconnected end. pz{ » Do s pJLr and p,
are traveling waves. The typical boundary layer in the air column is shown with the acoustic velocity distribution.
(b) Block-diagram of a two-port modeling the air column inside the main bore, with the inputs p*(0,¢) = p (t) and
p~(L,t) = p; (t), and the outputs p~(0,t) = py (t) and p* (L, t) = p} (t).

3.3 Choosing the suitable state variables

The choice of state variables, including input and output signals, is fundamental to a convenient description of
a physical phenomenon. The following example shows how the effect of such a choice can explain phenomena
like non-causality or growing exponentials, as pointed out in previous studies®'®3738  Suitable state variables
are then given for a bore with varying cross-section.

3.3.1 Preliminary
Let a physical system be described by the following differential equation:

dw(t) _do(?)
T 500 w(t) = o + 1500 v(t)

forallt <0, v(t) =0, w(t) =0

(15)

Its input and output can a priori supposedly be chosen freely.
If v and w are respectively selected as input and output, the system is unstable because its impulse response

hy contains a growing exponential:
hi(t) = 6(t) + 2000 €(t) e (16)

where § is the Dirac impulse pseudo-function® and e the Heaviside step function.
On the contrary, if w is the input and v the output, the system is stable because its impulse response is:

ho(t) = 6(t) — 2000 e(t) e~ 170" (17)
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It is also possible to take the input as s;, = w + v and the output as s,,; = w — v. Equation (15) becomes:

d Sout(t
STt() -+ 500 30ut<t) = 1000 Sln(t)

forallt <0, s;,(t) =0, Seue(t) =0

(18)

In this third case, the physical phenomenon is modeled as a stable first-order system and its impulse response
contains neither growing exponentials nor pseudo-functions. It can be noticed that in any case for a given input
ein and a given output s; and for any number a, the output modification sy(t) = s1(t) + a €;,,(t) changes neither
the stability nor the characteristic time of the model.

This example emphasizes that stability is not intrinsic to a given physical phenomenon but notably depends
on the choice of the input, which has to be physically obtainable. Pseudo-functions can generally be eliminated
in the impulse response by modifying the output.

3.3.2 From the reflection function to a two-port model

The reflection function® h, of a woodwind resonator verifies p, = h, xpj where pj and p, are traveling pressure
waves in a lossless cylinder connected to the entrance of the resonator, with continuity of cross-section (cf. the
left half of Fig. 3a), and the operator x is the convolution (for all t, (h, xpg)(t) = ["27 h,(t — &) pJ (€) d€ ). The

reflection function is necessarily stable for physical reasons (the resonator is a passive system and the input is
physically obtainable) and can be considered as causal if the following hypothesis is laid down: we can neglect
the thickness e of the air slice between x = —e and x = 0 (in the cylinder, just before the entrance of the
resonator) which is directly influenced by the resonator shape.

Following this idea, the state vector P :(ﬁf) is chosen to describe the acoustic state of the air column, the

signals p* and p~ being defined as follows:

P = 5 oo+ G5 ulo )] »
19

p (o) = 5 [plot) = S5 u(enn)]

p(ZL‘,t) = p+(IL‘,t) +p (:L‘,t) 50

u(x,t) = w [ t(x,t) —p’(az,t)} (20)

PoC

These signals are traveling waves only in the model of a cylindrical bore without losses, i.e. p*™(x,t) can be
written pT(x — ct) and p~(x,t), p~(z + ct). In any other case, p™ and p~ are not traveling on the whole air
column but can be qualified as “locally-traveling” (in a slice of air of area S and infinitesimal thickness). The
connecting equations of the bore with any other element of the instrument remain elementary (continuity of
mean pressure and flow conservation) because of Eq. (20), similar to the last four equations of System (11) but
without any integral term. Above all, the main advantage is that any piece of bore with a varying cross section
can be modeled as a single two-port (¢f. Fig. 3b), which is necessarily stable and causal for reasons similar to
the reflection function case (cf. Fig. 3a).

After a Fourier transform, Systems (14) and (20) give the following non-linear differential system:

8%13@, f) = A[S(z), 5'(@), f] Pz, ) (21)

where ﬁ(x, f) is the Fourier transform of the state vector P at the frequency f:

+o00 N sinft
Bl f) = [p:(x, f)] _ /f’oop (z,t)e dt -
p(z, f) / p (e, t) eIt d
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and

—2irf (+iBnVf S (1+i)ﬂﬁ\/7+i/
l _ & \/§ 25 \/§ 25
A(S, 5, f) = —(1+9)Br/f 9 2i7rf+(1+i)ﬁ7r\/7_i’ (23)
VS +ﬁ c VS 25
T11 T12:| of

Systems like Eq. (21) are generally solved by numerical techniques. The transfer matrix 7'(f) = [Tm T

the locally-traveling waves, from the end at = = 0 to that at x = L, verifies ]3(L, H=T) ]3(0, f) and can be
deduced from Egs. (21) to (23).

PH0.f)

(L

The scattering matrix H(f) verifying [ (O’f)] = H(f) L, (L.f)

g(L I } is then deduced from the transfer matrix:

1
T

—T 1

(24)
T11T22 - T12T21 T12

mﬁ:[hwﬁ hio(f)

Ror(f) Trr(f)

where hjj; is the impulse response from the end at © = j to the end at x = k, /ﬁjk its Fourier transform, and
Hjy, its Laplace transform.
In the scattering matrix, reciprocity implies the existence of a single transfer function hr(f):

~

hﬂﬁ:c%ﬂﬂzéamﬁ (25)

Figure 4: (a) A bore built with a truncated cone and a cylinder (from Agull6 et al.®, Fig. 10, p.1611) and (b) its
block-diagram including the bell radiation.

It has to be noticed that, in all simulated cases (cf. e.g. Fig. 5), the four transmittances in the scattering
matrix correspond to causal stable filters with fast-decreasing impulse responses, contrary to other methods®3738,
Accordingly, the present method is promising for time-domain simulations, all the more so as usual techniques
of transfer matrix calculation” can be used for complex resonators including discontinuities, side-holes or higher
modes.

In the case of a conical bore, it can be observed in the next section that these new state variables suppress
the instabilities pointed out above.
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Figure 5: Continuous-time impulse responses (the calculation is made in Section 3.4, Eq. (30)) for the conical part of
the bore which is given in Fig. 4. 7 ~ 0.88ms and ¢ = 6.

3.4 How instabilities vanish in the waveguide model of a conical bore

The block-diagram of a conical tube in the waveguide approach is only the middle element of the block-diagram
drawn on Fig. 1. In the present approach, the whole block-diagram includes junctions with virtual external
cylinders at both ends. On the left side r; = 7o, rj.;, = 0, 77,,, = ((=1) 7o/ L, and D(s) = [1 +275/(( — D]

On the right side 7; = rp, 1}, = (( = 1) 7/(CL) , 700 = 0, and D(s) = [1 —2(7s/(¢ — D
The scattering matrix of the conical tube is deduced from Fig. 1:

(C—1)[¢—1—-2C1s+ (215 — (+ 1)G(s)*e72™]

Hoo(s) = (2C7s—C+1) (27(_; +)g 5<1))+(Tg —1)2G(s)2e 275
Hrs) = s Cr D rs + ¢ D) 1 (- PG e (%)
Hyp(s) = S D) Rrs + (= 1= (27 + (~ DG(s) er]

(2(Ts = C+1) (215 + ¢ = 1) + (¢ — 1)*G(s)? e~
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If losses are ignored (i.e. G(s) = 1), Hy, Hy, and Hpy are functions continuous at s = 0: Ho(0)
(1—=¢*)/(1+¢%), Hr(0) = 2¢/(1+¢?), and Hrr(0) = (¢* —1)/(1 + ¢?). Each pole (a+ib)/7 (a # 0 or b # 0)

of Hyy, Hr, or Hp verifies:

(2Ca—C+1+i2Cb) (2a+ ¢ — 1 +132b) 4 (¢ — 1)2e2atib) — (27)
which implies:
n(2b . 4al
S’LT;(b ) — 2 [1 + (C_al)2:| (28)

Consequently a < 0 and thus Hyg, Hr, and Hyj, are transmittances of stable filters. System (26) can be written:

B C— 1 +o00 (C o 1)2n—1 onrs
B T P VT e TS
Hr(s) = —4¢ (7‘3);53 (- 1™ e (Bt (29)
! B n=0 (C -1+ 27—5)n+1(§ —1-2 Ts)n+1
1— g ) 2-i-oo (C o 1)2n71 .

Hpp(s) = m —4¢%(7s) ;(C —1+427s)"(s — 1 — 2g 7s) 1 €

=1

The initial parts of the three causal impulse responses are deduced from Eq. (29) as follows:

hoo(t) = 5 exp[1 <t] ,0<t<2r
= 467‘ 1+C {2 [ + C + <2) - 6(1 + C)2] - €<<C2 - 1)5} exp [%t]

e1-0/¢(¢-1) -1
WQXP[%—Tt ,27’<t<47’

.. etc.

hi(t) —6(t—71) =0,0<t <7

e 9 exp [1=54]
2T 1
e(l—(<C>7<2)<;)(< 1 1 o (30)
We |:2<—Tt],7\t<37

...ete.
hrr(t) = % exp [%t] ,0<t <27

= mhir 12 [ ) = oL O (¢~ D fexp |5

‘(1+
71219 1
+W exp [2—15} 2r <t <4r

.. ete.

A numerical example is given below.

4 Examples

Three cases are chosen to show the potential of this improved two-port model: the first one, taken from
Agull6 et al.”, produces some instability effects using the traveling-wave approach® and includes cylindrical and
conical tubes; the textbook case of the exponential horn follows; and finally, a complex profile of a trumpet bore
taken from van Walstijn and Smith!7 is treated.

For a non-cylindrical bore, the numerical determination of the transfer matrix at frequencies lying between
0 and f,/2 (fs is the sampling frequency), is made by the Fourth-Order Runge-Kutta Algorithm with an auto-
adaptive step?® applied to Eqgs. (21) and (23). This numerical method is computationally rather expensive but
calculation has to be performed only once for a given bore. Exact and numerical calculations of the scattering
matrix are compared below for both a conical bore and an exponential horn.
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Digital filter design methods are numerous and generally pay great attention to the frequency response
magnitude but do not take into account the phase which is very important in acoustic looped systems. As
written in van Walstijn and Smith!”, “there is a need for more effective digital filter techniques in this context”.
Thus, basic weighted least-squares (WLS) design for Finite Impulse Response (FIR) digital filters® =46 is used
in these examples to obtain time domain responses. It is obvious that other efficient methods!” of digital filter
design can be used.

Reflection function calculation is performed entirely in the discrete time-domain, using the Levine and
Schwinger formulae!” to design an FIR digital filter for bell radiation'* (cf. Fig. 4b).

2|

0 A ~ N AN P W NN .
T
n
-2
—
X
=
=4
=

_6,

0 2 4 6 8 10 12

t/T

Figure 6: h,., the reflection function of the bore (¢f. Fig. 4) at its small end, with a reflection, at the other end, which
is calculated by using the Levine and Schwinger formulae*3. This function is completely calculated in the discrete
time-domain with causal digital finite impulse response filters which model the conical part of the bore, the cylindrical
one and the radiation. The propagation delay between both ends is 7 ~ 2.94 ms.

4.1 Discrete time calculation of the reflection function of a cone-cylinder combi-
nation

As mentioned in the introduction and shown above in Section 2.3, when several bores are connected with
“decreasing widening rate”™ as in Fig. 4 taken from Agullo et al.? (Fig. 10), stability problems with growing
exponentials appear in the usual models. With the improved two-port model, these stability artifacts vanish.
The impulse responses hgg, hr, and hrp (¢f. Eq. (30)) of the conical part of the bore are drawn in Fig. 5. The
reflection function of the bore at its small end is drawn in Fig. 6.

Several observations can be made on Fig. 5 about the conical part. For a non-cylindrical bore, it is qual-
itatively possible to consider, in an air slice of infinitesimal thickness dz, that every traveling wave has an
infinitesimal reflection which is proportional to —dS/S. At the smaller end, the beginning of the impulse
response hgo (reflection) is negative and increasing with ¢ because —dS/S is negative and increasing with x.
For similar reasons, at the larger end, hy; is positive and increasing between Oms and 27. Concerning the
transmission impulse response after the 7-delayed perfect impulse 6, which is obtained in waveguide models
without losses, an additional effect of the taper can be observed after 7. In frequency domain, a good agreement
appears on Fig. 7 between the waveguide and numerical techniques. Nevertheless, it seems that the equivalent
radius technique'* in the waveguide approach of conical bores overestimates the visco-thermal losses in both
transmission and reflection at the larger end.
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4.2 The exponential horn

HLL(S) = —HO()(S) =

Let an exponential horn be defined by the radius formulae r(z) = rqexp(Az/L) where A = log(().
classical case, Eqgs. (21) and (23) admit exact solutions, provided losses terms are neglected, and give the
following transmittances in the scattering matrix:

Figure 7: Moduli of transmittance for the conical part of the bore shown in Fig. 4, according to the waveguide approach
(cf. Section 3.4, Eq. (26), dashed line) and the numerically calculated one from Eqgs. (21) and (23) (unbroken line).

In this

A [1 2 (73)2+A2]

(T8)2 + A2 |:1 4+ e 2V (75)2+A2:| + 75 |:1 —e2 (Ts)2+A2]

2/(15)2 4+ A2eV (Ts)2+A2

(31)

HT(S) =

(TS)2 + A2 [1 + e 2V (TS)QJFAQ} + 75 [1 _ 672\/(Ts)2+A2}

A comparison between numerical calculation with losses and Eq. (31) is made in Fig. 8 for a horn of 68 cm
length, 3mm and 3 cm radii (¢ = 10 and 7 = 2ms), with a good agreement. The observed cut-off frequency

Eric Ducasse
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Figure 8: Transmittance modulus of an exponential horn of 68 cm length, 3 mm and 3 cm radii (¢ = 10 and 7 = 2ms).
Comparison between exact (without losses, dashed line) and numerical (unbroken line) calculations.

agrees with the expected value f. = A/(2r7) ~ 183.2Hz. In the time-domain, the impulse responses can
be given using the following property: the function defined for all s by [(\/ s+ A% — 3)//\}” is the Laplace
transform of the signal K,, defined for all ¢ by IC,,(t) = (n/t) J,(At) €(t) provided n is a positive integer, where
J,, is the Bessel function of the first kind*®.

After the substitution of:

f (_1>n [ \ (T8)2 + A% — s e—Qn[\/m—ﬂs] 6—2117-3 (32)
A2n+2

n=0

]2n+1

-1
for { (75)% + A2 [1 42 (Ts)2+/\2:| +7s [1 — 6—2\/(75)2“‘2}} , Eq. (31) becomes:

—+00

1
Hyp(s) = —Ho(s) = K(w/(m)2 +AZ—75)+2) (—1)" By e
n=1
+oo
HT(S) -9 Z(_l)n BQn-H 67(2n+1)7—s
n=0

where

B, = Aiﬂf(_:;)k {A2 [\/m - 7'3] e TS [\/m — 7'3] m+k} (34)
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After an inverse Laplace transform, Eqs. (33) and (34) give with the convention Ky = 0:

+00
hn(t) = —hoolt) = %/cl (;) + % S (=) bou(t = 207)
— e (35)
hr(t) = 6(t =) + = > (1) b1 [t — (20 + 1)7]
where .
bm@) = Z% |:Icm+k1 (;) - %]Cranrk: (;)] (36)

k=0
The continuous-time impulse responses are drawn in Fig. 9. They are similar to discrete-time ones which
are numerically obtained by inverse discrete Fourier transform.

(a)

Figure 9: Continuous-time impulse responses of an exponential horn of 68 cm length, 3mm and 3 cm radii (¢ = 10
and 7 = 2ms).
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4.3 A complex bore profile

radius 7 (mm)
w h~h 00O N 0 ©

0 1 2 3 4 5
t/7'14

Figure 10: (a) Profile of a trumpet bore (from Fig. 3 in van Walstijn and Smith'7). The resonator is divided into three
parts, from left to right: the “mouthpipe” (from @ to @) is a conical bore of 165 mm length, 4.54 mm and 5.65 mm
radii; the “main bore” (from @) to @) is a cylindrical bore, of 415 mm length and 5.65 mm radius; the third part (from
@ to @) is the beginning, which radius is less than 10 mm, of the “flared bell”; the length of this truncated flared bell
is 510 mm. (b) Reflection impulse response hgg of the flared bell at its small end @) (734 = 1.5ms). (c) Reflection
function of the whole trumpet bore at the entrance of the mouthpipe @ (714 =~ 3.2 ms).
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The two-port model can also be used for an arbitrarily varying bore: the profile of a truncated trumpet
bore, taken from van Walstijn and Smith!? (Fig. 3), is given in Fig. 10a. The impulse response hq (reflection)
of the truncated flared bell at its small end (mark (3)), is given in Fig. 10b. Because “trajectories” with a single
reflection are predominant, the profile of the bore can almost be followed on the curve of hgg, by converting
length into time (coefficient 2/c). The propagation delay between both ends is 734 = 1.5ms. It can be observed
that each small profile irregularity produces a significant effect on the hgy curve.

The reflection function of the whole truncated trumpet bore at the entrance of the mouthpipe (mark D) is
drawn on Fig. 10c. The total propagation delay between both ends is 714 =~ 3.21 ms. Between 0 and 0.3 74, the
negative reflection inside the mouthpipe (divergent cone) is perceptible. Between 0.3 714 and 1.06 74, reflections
are negligible (cylindrical part). Between 1.06 714 and about 274, the reflection impulse response hgg of the
truncated flared bell is recognizable. The negative peak, which appears at 2 714 and reaches a magnitude of about
1.5 x 10*s71, results from the reflection at the opening end (mark (@)). After about 274, multiple reflections
inside the tube are superimposed, the effects of the three parts of the bore are more difficult to differentiate,
even if a kind of (274, 0)-centered symmetry can be observed and qualitatively explained by the predominance
of trajectories containing three reflections.

5 Concluding remarks

This new two-port model is promising for accurate time-domain simulation of musical wind instruments with an
arbitrary bore shape. The present approach based on locally-traveling plane waves may be seen as an alternative
to waveguide filter approaches which include piecewise element modeling.

This approach improves time-domain modeling of bores with varying cross section but it is only an element
of a complete physical model. This global model could lead to an implementation of a tool for instrument
makers, which may enable them to listen to an instrument before it is manufactured. However, improvements
are still necessary in the physical modeling of other elements of wind instruments, including their interactions
with the player.
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