Robust extended Kalman filtering for camera pose tracking using 2D to 3D lines correspondences

Fakhr-Eddine Ababsa

- To cite this version:

Fakhr-Eddine Ababsa. Robust extended Kalman filtering for camera pose tracking using 2D to 3D lines correspondences. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2009), Jul 2009, Singapore, Singapore. pp.1834-1838, 10.1109/AIM.2009.5229789 . hal-00869649

HAL Id: hal-00869649

https://hal.science/hal-00869649

Submitted on 26 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Robust Extended Kalman Filtering For Camera Pose Tracking Using 2D to 3D Lines Correspondences

Fakhreddine Ababsa, Member, IEEE

Abstract

In this paper we present a new robust camera pose estimation approach based on 3D lines tracking. We used an Extended Kalman Filter (EKF) to incrementally update the camera pose in real-time. The principal contributions of our method includes first, the expansion of the RANSAC scheme in order to achieve a robust matching algorithm that associates 2D edges from the image with the 3D line segments from the input model. And second, a new framework for camera pose estimation using 2D-3D straight-lines within an EKF. Experimental results on real image sequences are presented to evaluate the performances and the feasibility of the proposed approach.

I. Introduction

Camera pose tracking is one of most challenging problem in computer vision. Several approaches based on natural features (corner points, planes, edges, silhouettes, etc.) in the scene have been developed last years. The main idea of these techniques is to find correspondences between 2D features extracted from the image and 3D features defined in the world frame. The problem is then solved using 2D-3D registration techniques. Numerical nonlinear optimization methods like the Newton-Raphson or Levenberg-Marquardt algorithm are generally used for the minimization. Wuest et al. [1] present a model-based line tracking approach that can handle partial occlusion and illumination changes. The camera pose is computed by minimizing the distances between the projection of the model lines and the most likely matches found in the image. Drummond and Cipolla [2] propose a novel framework for 3D model-based tracking. Objects are tracked by comparing projected model edges to edges detected in the current image. Their tracking system predicts the edge locations in order to rapidly perform the edge search. They have used a Lie group formalism in order to transform the motion problem into simple geometrics terms. Thus, tracking becomes a simple optimization problem solved by means of iterative reweighed least squares. Yoon et al. [21] present a model-based object tracking to compute the camera 3D pose. Their algorithm uses an Extended Kalman Filter (EKF) to provide an incremental pose-update scheme in a prediction-verification framework. In order to enhance the accuracy and the robustness of the tracking against occlusion, they take into account the measurement uncertainties associated with the

[^0]location of the extracted image straight-lines. Recently, Comport et al. [4] propose a real-time 3D model-based tracking algorithm. They have used a visual servoing approach to formulate the pose estimation problem. A local moving edges tracker based on tracking of points normal to the object contours is implemented. In order to make their algorithm robust, they have integrated a M-estimator into the visual control law. Other approaches have also been applied where different features have been combined to compute the camera pose. Ababsa and Mallem [5] propose to combine point and line features in order to handle partial occlusion. They integrated a M-estimator into the optimization process to increase the robustness against outliers. Koch and Teller [6] describe an egomotion estimation algorithm that takes as input a coarse 3D model of an environment. Their system uses a prior visibility analysis to speed initialization and accelerate image/model matching. Other approaches use Simultaneous Localization And Mapping (SLAM) to track the camera pose while building a 3D map of the unknown scene $[7][8]$. The main problem with most existing monocular SLAM techniques is a lack of robustness when rapid camera motions, occlusion and motion blur occur.
In this paper we present an original robust camera pose tracking using only straight lines and which differs from existing work. We propose to combine an EKF with a RANSAC scheme in order to achieve a robust 2D-3D lines matching. This gives an efficient solution for outliers rejection. To our knowledge such solution has not been explored before. Furthermore, we have combined the 2D-3D lines correspondence constraints for object pose estimation, developed by Phong et al. [9], with an EKF in order to update recursively the camera pose. We have compared our results with classical approaches where pose estimation is solved using least square approaches [10][11][12]. Our method requires no training phase, no artificial landmarks, and uses only one camera.
The rest of the paper is structured as fellows: In section II, we describe the camera pose estimation problem formulation when using straight lines, and we also give a complete implementation of the Extended Kalman Filter to update the camera pose recursively over the time using 2D and 3D lines features. In section III, we explain how we have expanded the RANSAC scheme [13] in order to achieve robust 2D-3D lines matching. In section IV, we show experimental results and evaluations, we discuss also the merits and the limitations of the proposed approach. Conclusion and future work are presented in section V .

II. Camera Pose Estimation Algorithm

In any Kalman Filter implementation, the system state is stored as a vector. In our algorithm the state is represented by the position and the orientation of the camera with respect to the world coordinate system. For computational we use a unit quaternion to represent the rotation. Thus, the state vector is given by:

$$
X=\left[\begin{array}{lllllll}
q_{0} & q_{x} & q_{y} & q_{z} & t_{x} & t_{y} & t_{z} \tag{1}
\end{array}\right]
$$

where $\left(q_{0}^{2}+q_{x}^{2}+q_{y}^{2}+q_{z}^{2}=1\right)$.
We denote the camera state at time t by the vector X_{t}. The EKF is used to maintain an estimate of the camera state X in the form of a probability distribution $P\left(X_{t} \mid X_{t-1}, Z_{t}\right)$, where Z_{t} is the measurement vector at time t. The Kalman filter models the probability distribution as Gaussian, allowing it to be represented by a covariance matrix Σ. In an extended Kalman filter, the non linear measurements and motion models are linearised about the current state estimate as Jacobian matrices.

Our algorithm follows the usual predict-refine cycle, whereby the state X is predicted at timestep t, and measurements are used to refine the prediction.

A. Time update

The time update model is employed in order to predict the camera pose at the following time step. In our case, the time update is simple because of the fact that we estimate the camera pose at each frame of the images sequence. Therefore the 3D camera pose between two successive frames changes very little. The time update equation is then given by :

$$
\begin{equation*}
X_{t}^{-}=A \cdot X_{t-1} \tag{2}
\end{equation*}
$$

Where A is 7×7 identity matrix.
The time update step also produces estimates of the error covariance matrix Σ from the previous time step to the current time step t. To perform this prediction we use the general update equation of the Kalman filter:

$$
\begin{equation*}
\Sigma_{t}^{-}=A \cdot \Sigma_{t} \cdot A^{\prime}+Q_{t-1} \tag{3}
\end{equation*}
$$

Where Q_{t} represents the covariance matrix of the process noise. Σ reflects the variance of the state distribution.

B. Measurement model and estimate update

The measurement update model relates the state vector to the measurement vector. Since our goal is to estimate the camera pose using only straight lines, we will first describe the constraint equation which relates the state vector to the 3D model lines and their corresponding 2D image edges.

We choose to base our technique on line features, rather than points, because this approach is relatively unexplored in
the vision literature. We consider a pin-hole camera model and we assume that the intrinsic camera parameters are known. The world coordinate frame is a reference frame. All the 3D model lines are defined with respect to it. Let L_{i} be a 3D line. L_{i} is represented with the Cartesian coordinates of its two end-points P_{1}^{i} and P_{2}^{i} (see figure 1). The points P_{1}^{i} and P_{2}^{i} in world coordinates can be expressed in the camera frame as well :

$$
\left\{\begin{array}{l}
P_{1 / C}^{i}=R \cdot P_{1 / W}^{i}+T \tag{4}\\
P_{2 / C}^{i}=R \cdot P_{2 / W}^{i}+T
\end{array}\right.
$$

Where the 3×3 rotation matrix R and the translation vector T describe the rigid body transformation from the world coordinate system to the camera coordinate system and are precisely the components of the camera state vector.

Fig. 1. Projection plane. The model line, its projection onto the image and the center of projection O_{C} are coplanar.

We can see that the points $P_{1 / C}^{i}, P_{2 / C}^{i}$ and the center of projection O_{C} are coplanar. \vec{N}_{i} is the unit vector normal to this plane. \vec{N}_{i} can be expressed in the camera coordinates frame as follows :

$$
\begin{equation*}
\vec{N}_{i}=\frac{\overrightarrow{O_{C} P_{1 / C}^{i}} \times \overrightarrow{O_{C} P_{1 / C}^{i}}}{\left\|\overrightarrow{O_{C} P_{1 / C}^{i}} \times \overline{O_{C} P_{1 / C}^{i}}\right\|} \tag{5}
\end{equation*}
$$

Furthermore, a measurement input of the normal vector \vec{N}_{i} can be obtained from the image data. Indeed, image line matched with model line belongs also to the projection plane defined above. Let l_{i} be a 2 D image line corresponding to the 3D line L_{i}. In similar manner l_{i} is represented by its two extremities $m_{1}^{i}=\left[\begin{array}{ll}u_{1}^{i} & v_{2}^{i}\end{array}\right]^{T}$ and $m_{2}^{i}=\left[\begin{array}{ll}u_{2}^{i} & v_{2}^{i}\end{array}\right]^{T}$ defined in
the 2D image coordinates frame. The points m_{1}^{i} and m_{2}^{i} can be expressed in the camera coordinate frame as follows:

$$
\left\{\begin{array}{l}
m_{1 / C}^{i}=K^{-1} \cdot\left[\begin{array}{lll}
u_{1}^{i} & v_{1}^{i} & 1
\end{array}\right]^{T} \tag{6}\\
m_{2 / C}^{i}=K^{-1} \cdot\left[\begin{array}{lll}
u_{2}^{i} & v_{2}^{i} & 1
\end{array}\right]^{T}
\end{array}\right.
$$

Where the matrix K contains camera calibration parameters, such as focal length, aspect ration and principal point coordinates.

A measurement \vec{n}_{i} of the unit vector \vec{N}_{i} normal to the projection plane is thus given by (see figure 1):

$$
\begin{equation*}
\vec{n}_{i}=\vec{n}_{1}^{i} \times \vec{n}_{2}^{i} \tag{7}
\end{equation*}
$$

Where

$$
\vec{n}_{1}^{i}=\frac{\overrightarrow{O_{C} m_{1 / C}^{i}}}{\left\|\overrightarrow{O_{C} m_{1 / C}^{i}}\right\|} \quad \text { et } \quad \vec{n}_{2}^{i}=\frac{\overrightarrow{O_{C} m_{2 / C}^{i}}}{\left\|\overrightarrow{O_{C} m_{2 / C}^{i}}\right\|}
$$

Combining equations (5) and (7), a measurement equation can be written, for each matching event $L_{i} \rightarrow l_{i}$:

$$
\begin{equation*}
z_{t}=h\left(X_{t}\right)+v_{t} \tag{8}
\end{equation*}
$$

Where

$$
\left\{\begin{array}{l}
z_{t}=\vec{n}_{i}=\left[\begin{array}{lll}
n_{x}^{i} & n_{y}^{i} & n_{z}^{i}
\end{array}\right]^{T} \tag{9}\\
h\left(X_{t}\right)=\vec{N}_{i}=\left[\begin{array}{lll}
N_{x}^{i} & N_{y}^{i} & N_{z}^{i}
\end{array}\right]^{T}
\end{array}\right.
$$

v_{t} represent the noise term in the measurement input with covariance R_{t}. The noise is due to the uncertainty in the measured image position of the end points of the extracted 2D lines. The non linear function $h(X)$ in measurement equation (8) relates the state to the measurement input. Three 2D-3D line correspondences are sufficient in theory to recover 6-DOF camera pose [14] through in practice mores line may be required to increase accuracy.

The state estimate and covariance are refined after each feature measurement z_{t} using the standard equation of the EKF as follows:

$$
\begin{align*}
& K_{t}=\Sigma_{t}^{-} \cdot H_{t}^{T} \cdot\left(H_{t} \cdot \Sigma_{t}^{-} \cdot H_{t}^{T}+R_{t}\right)^{-1} \\
& X_{t}=X_{t}^{-}+K_{t} \cdot\left(z_{t}-h\left(X_{t}^{-}\right)\right) \tag{10}\\
& \Sigma_{t}=\Sigma_{t}^{-}-K_{t} \cdot H_{t} \cdot \Sigma_{t}^{-}
\end{align*}
$$

Where H_{t} is the Jacobian matrix defined by:

$$
\begin{equation*}
H_{t}=\left.\frac{\partial h(X)}{\partial X}\right|_{X=X_{t}^{-}} \tag{11}
\end{equation*}
$$

The measurement update model is executed once a set of 2D-3D matched lines become available.

C. Iterated $E K F$

The standard EKF method does not consider errors due to the linearization of the non linear function $h(X)$ in the vicinity of X_{t}^{-}. However, theses errors can lead to wrong estimates and/or divergence of the camera pose. Since the nonlinearity is only in measurement equation, the Iterated Extended Kalman Filter (IEKF) is the best technique to deal with it. The IEKF uses the same prediction equation as EKF, namely (2) and (3). The measurement update relations are replaced setting $X_{t}^{0}=X_{t}^{-}$and doing iteration on :

$$
\begin{align*}
& H_{t}^{k}=\left.\frac{\partial h(X)}{\partial X}\right|_{X=X_{t}^{k}} \\
& K_{t}^{k}=\Sigma_{t}^{-} \cdot H_{t}^{k^{T}} \cdot\left(H_{t}^{k} \cdot \Sigma_{t}^{-} \cdot H_{t}^{k^{T}}+R_{t}\right)^{-1} \tag{12}\\
& X_{t}^{k+1}=X_{t}^{k}+K_{t}^{k} \cdot\left(z_{t}-h\left(X_{t}^{k}\right)\right)
\end{align*}
$$

For iteration number $k=0,1, \cdots, N-1$. At the end of all iterations, $X_{t}=X_{t}^{N}$. The covariance matrix is then updated based on X_{t}^{N} according to :

$$
\begin{equation*}
\Sigma_{t}=\Sigma_{t}^{-}-K_{t}^{N} \cdot H_{t}^{N} \cdot \Sigma_{t}^{-} \tag{13}
\end{equation*}
$$

The iteration could be stopped when consecutive values X_{t}^{k} and X_{t}^{k+1} differ by less than a defined threshold.

III. Robust 2D-3D Lines Matching Algorithm

In this section we explain the expansion of the RANSAC scheme that we have developed in order to achieve a robust matching algorithm that associates 2D edges from the image with the 3D line segments from the input model, and without using any verification algorithm.

Let $\left\{l_{i}\right\}, i=1, \ldots, N$ be a set of 2D edges extracted from the image and $\left\{L_{j}\right\}, j=1, \ldots, M$ a set of 3D model lines. Our robust lines matching algorithm is summarized as follows :

1. Randomly sample subsets of four $\{\mathrm{li} \leftrightarrow \mathrm{Lj}\}$ pairs of 2D and 3D lines. In theory a minimum three pairs are of lines are sufficient to compute an accurate rigid transformation
2. For each sample, compute the camera pose $\Pi(\mathrm{R}, \mathrm{T})$ using the IEKF algorithm described in section II.
3. Each candidate Π is tested against all the correspondences $l_{i} \rightarrow L_{j}$ by computing, in the camera frame, the angle between the normal vector \vec{n}_{i} (see
figure 1) associated with the image line l_{i} and the transformed line $R \cdot L_{j}$. If this match is wrong with respect the pose Π, then the co sinus of the angle should be significantly larger than zero.
4. We choose the pose Π which has the highest number of inliers, i.e the Π for which all the pairs are within a fixed angle threshold.
Hence, the obtained camera pose for the current image is robustly updated using only inliers of correspondences.

IV. Experimental Results

The proposed camera pose estimation algorithm have been tested in a real scene and the registration accuracy was analyzed. To do that, we have recorded an image sequence of an office building (Figure 2). The frame rate is 25 frames/s and the resolution of the video images is 320×240 pixels. The 3D model of the office building is known, it is composed of 19 lines defined by the 3D coordinates of their end points within the world coordinates frame (Figure 3).

Fig. 2. one frame from the recorded image sequence

Fig. 3. The 3D model of the office building used for experiments.
In order to estimate the camera pose accuracy we defined, in the camera space, the registration error ξ. Given a set of correspondences between image edges and model segments the error ξ corresponds to the normalized square sum of the sinus of the angular disparities α_{i} for each correspondence between image edge and the re projected model segments (Figure 1):

$$
\begin{equation*}
\xi=\frac{1}{M} \sum_{i=1}^{M} \sin \left(\alpha_{i}\right)^{2}=\frac{1}{M} \sum_{i=1}^{M}\left\|\vec{n}_{i} \times \vec{N}_{i}\right\|^{2} \tag{14}
\end{equation*}
$$

Where M is the number of correspondences and α_{i} the angle between the two planes spanned by the camera center, the observed image edge l_{i} and the model segment L_{i} (see figure 1).

In our experiment we took $\mathrm{M}=10$ correspondences. We have first considered that the data set has no outliers (100 \% inliers or good matching) and we computed the registration error for several frames of the image sequence. The mean error is about $\xi_{m}=4.01 \times 10^{-5}$ which corresponds to the mean angular disparities $\alpha_{m}=0.28^{\circ}$. Figure (5) shows the projection of the office model using the camera pose estimated by our algorithm, and as can see it is quite skewed. All the lines are fairly well aligned.

Fig. 5. Projection of the office model using the final camera pose estimate when the input data has no outliers

In the second experiment, we have evaluated the capacity of our robust algorithm to reject outliers in observed data. In our case, an outlier corresponds to a wrong feature matching between a 2D and a 3D line. For that, we have contaminated the $\mathrm{M}=10$ input data set with different percentage of outliers and have computed the corresponding registration error. The obtained results are summarized in table 1.

TABLE I
EXPERIMENTAL RESULTS OF THE ROBUST Algorithm

EXPERIMENTAL RESULTS OF THE ROBUST ALGORITHM			
Outliers (\%)	ξ_{m}	$\alpha_{\mathrm{m}}{ }^{\circ}$)	Number of trials
10%	4.26×10^{-5}	0.22	1
20%	4.61×10^{-5}	0.31	2
30%	4.93×10^{-5}	0.37	4
40%	6.95×10^{-5}	0.39	12
50%	7.84×10^{-5}	0.42	50
60%	8.18×10^{-5}	0.44	240

As can be seen, our robust algorithm succeeded in all the cases to detect and delete the outliers. The camera pose is then estimated using the final data consensus which contains only the good 2D-3D lines correspondences. For example, in the worst case when 60% of the input data (i.e. 6 lines
correspondences among 10) are labeled as outliers, our algorithm was been able to identify the four inliers in the data. The camera pose returned using this inliers gives a registration error about 8.18×10^{-5}. This result demonstrates the robustness and the accuracy of the proposed approach. Furthermore, we note that the number of trials needed to get the best solution increase with number of outliers (for example 240 trials for 60% of outliers). This means more processing time and will decrease the real time performance of the algorithm. 50% of outliers (50 trials) represents a good compromise. Figure 6 shows the projection of the model using the pose estimated by our algorithm for different frames of the images sequence and when run with different percentage of outliers. We can see that all lines are well aligned.

Fig. 6. Camera pose estimation results
Another advantage of our approach is its robustness to severe lines occlusion. Indeed, as the line constraint equation (see section II-B) for the camera pose parameters was developed in the case of "infinite image line". Any image points on the 2D line can be used to construct the corresponding projection plane. So, when partial occlusion occurs, it is enough to detect only small parts of the image edges to estimate the camera pose. In figure 6 we can see that several image edges are partially occluded (table and door), in spite of that, the camera pose was successfully estimated.

We analyzed the processing time needed for camera pose estimation on a Pentium IV with 3 GHz . All computations were performed in Matlab. The pose estimation process using IEKF does not take much time. The processing time strongly depends on the number of outliers in the current field of view. For example, the average time is about 28 millisecond per frame when having 40% of outliers in 10 input data. 3 milliseconds are used to estimate the camera pose with the IEKF and 25 milliseconds are measured for the time needed to reject outliers.

V. Conclusion

In this paper, we proposed a new approach for 6 -DOF camera localization based on matching between 2D image edges and 3D model segments. We performed a generic camera pose estimation framework based only on lines features using an Iterated Extended Kalman Filter. We also achieved significant improvements on robust 2D/3D lines matching scheme by adapting the well-know RANSAC algorithm to our application. Experiments show that our method works well for indoor application and it is robust against severe occlusion and outliers. We evaluated its performance and demonstrated the accuracy of the camera pose estimation.

References

[1] H. Wuest, F. Vial, and D. Stricker, "Adaptive Line Tracking with Multiple Hypotheses for Augmented Reality". In Proceedings of ACM/IEEE Int. Symp. on Mixed and Augmented Reality (ISMAR 2005), Vienna, Austria, 2005, pp. 62-69.
[2] T. Drummond and R. Cipolla, "Real-Time Visual Tracking of Complex Structures," IEEE Trans. Patt. Anal. and Mach. Intell, vol. 24, no. 7, pp. 932-946, July 2002.
[3] Y. Yoon, A. Kosaka, J. B. Park and A. C. Kak, "A New Approach to the Use of Edge Extremities for Model-based Object Tracking". In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA'05). Barcelonna, Spain, 2005, pp. 1883-1889.
[4] A.I. Comport, E. Marchand, M. Pressigout, and F. Chaumette, "Realtime markerless tracking for augmented reality: the virtual visual servoing framework". IEEE Trans. on Visualization and Computer Graphics, vol. 12, no. 6, pp. 615-628, July/August 2006.
[5] F. Ababsa and M. Mallem, "Robust camera pose estimation combining 2D/3D points and lines tracking". In Proceedings of the 2005 IEEE International Symposium on Industrial Electronics (ISIE'08). Cambridge, UK, 2008, pp. 774-779.
[6] O. Koch and S. Teller, "Wide-Area Egomotion Estimation from Known 3D Structure". In Proceedings of the 2007 IEEE International Conference on Vision and Pattern Recognition (CVPR'07), Minneapolis, USA, 2007, pp.1-8.
[7] A. J. Davison, I. D. Reid, N. D. Molton and O. Stasse, "MonoSLAM: Real-Time Single Camera SLAM", IEEE Trans. Patt. Anal. and Mach. Intell., vol. 2, no. 6, pp. 1052-1067, June 2007.
[8] B. Williams, P. Smith and I. Reid,"Automatic Relocalisation for a Single Camera Simultaneous Localisation and Mapping System". In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRÁ07). Roma, Italy, 2007, pp. 1883-1889.
[9] T. Q. Phong, R. Horaud, A. Yassine and P. D. Tao,"Object Pose from 2D to 3D Point and Line Correspondences". International Journal of Computer Vision, vol. 15, pp. 225-243, 1995.
[10] D.G. Lowe. "Fitting Parameterized Three-Dimensional Models to Images". IEEE Trans. Patt. Anal. and Mach. Intell, vol. 13, pp. 441450, 1991.
[11] R.M. Haralick, "Pose Estimation From Corresponding Point Data". IEEE Trans. Systems, Man, and Cybernetics, vol. 19, no. 6, pp. 14261446, 1989.
[12] C. P. Lu, G. Hager, and E. Mjolsness. "Fast and globally convergent pose estimation from video images". IEEE Trans. Patt. Anal. and Mach. Intell, vol. 22, no 6, pp. 610-622, June 2000.
[13] M. A. Fischler and R.C. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Application to Image Analysis and Automated Cartography," Comm. ACM, vol. 24, no. 6, pp. 381-395, June 1981
[14] M. Dhome, M. Richetin, and J-T. Lapreste, "Determination of the attitude of 3D objects from a single perspective view". IEEE Trans. Patt. Anal. and Mach. Intell, vol. 11, no. 12, pp. 1265-1278, 1989.

[^0]: F. Ababsa is with the IBISC Laboratory, CNRS FRE 3190, University of Evry. 40, rue du Pelvoux 91020 Evry FRANCE. (phone: +331 694775 22; fax: +331 69477599; e-mail: ababsa@iup.univ-evry.fr)..

