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Abstract—In this paper we present a new robust camera 

pose estimation approach based on 3D lines tracking. We used 

an Extended Kalman Filter (EKF) to incrementally update the 

camera pose in real-time. The principal contributions of our 

method includes first, the expansion of the RANSAC scheme in 

order to achieve a robust matching algorithm that associates 

2D edges from the image with the 3D line segments from the 

input model. And second, a new framework for camera pose 

estimation using 2D-3D straight-lines within an EKF. 

Experimental results on real image sequences are presented to 

evaluate the performances and the feasibility of the proposed 

approach. 

I. INTRODUCTION 

amera pose tracking is one of most challenging problem

in computer vision. Several approaches based on natural 

features (corner points, planes, edges, silhouettes, etc.) in the 

scene have been developed last years. The main idea of 

these techniques is to find correspondences between 2D 

features extracted from the image and 3D features defined in 

the world frame. The problem is then solved using 2D-3D 

registration techniques. Numerical nonlinear optimization 

methods like the Newton-Raphson or Levenberg-Marquardt 

algorithm are generally used for the minimization. Wuest et 

al. [1] present a model-based line tracking approach that can 

handle partial occlusion and illumination changes. The 

camera pose is computed by minimizing the distances 

between the projection of the model lines and the most likely 

matches found in the image. Drummond and Cipolla [2] 

propose a novel framework for 3D model-based tracking. 

Objects are tracked by comparing projected model edges to 

edges detected in the current image. Their tracking system 

predicts the edge locations in order to rapidly perform the 

edge search. They have used a Lie group formalism in order 

to transform the motion problem into simple geometrics 

terms. Thus, tracking becomes a simple optimization 

problem solved by means of iterative reweighed least 

squares. Yoon et al. [21] present a model-based object 

tracking to compute the camera 3D pose. Their algorithm 

uses an Extended Kalman Filter (EKF) to provide an 

incremental pose-update scheme in a prediction-verification 

framework. In order to enhance the accuracy and the 

robustness of the tracking against occlusion, they take into 

account the measurement uncertainties associated with the 
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location of the extracted image straight-lines. Recently, 

Comport et al. [4] propose a real-time 3D model-based 

tracking algorithm. They have used a visual servoing 

approach to formulate the pose estimation problem. A local 

moving edges tracker based on tracking of points normal to 

the object contours is implemented. In order to make their 

algorithm robust, they have integrated a M-estimator into the 

visual control law. Other approaches have also been applied 

where different features have been combined to compute the 

camera pose. Ababsa and Mallem [5] propose to combine 

point and line features in order to handle partial occlusion. 

They integrated a M-estimator into the optimization process 

to increase the robustness against outliers. Koch and Teller 

[6] describe an egomotion estimation algorithm that takes as 

input a coarse 3D model of an environment . Their system 

uses a prior visibility analysis to speed initialization and 

accelerate image/model matching. Other approaches use 

Simultaneous Localization And Mapping (SLAM) to track 

the camera pose while building a 3D map of the unknown 

scene [7][8]. The main problem with most existing 

monocular SLAM techniques is a lack of robustness when 

rapid camera motions, occlusion and motion blur occur. 

In this paper we present an original robust camera pose 

tracking using only straight lines and which differs from 

existing work. We propose to combine an EKF with a 

RANSAC scheme in order to achieve a robust 2D-3D lines 

matching. This gives an efficient solution for outliers 

rejection. To our knowledge such solution has not been 

explored before. Furthermore, we have combined the 2D-3D 

lines correspondence constraints for object pose estimation, 

developed by Phong et al. [9], with an EKF in order to 

update recursively the camera pose. We have compared our 

results with classical approaches where pose estimation is 

solved using least square approaches [10][11][12]. Our 

method requires no training phase, no artificial landmarks, 

and uses only one camera. 

The rest of the paper is structured as fellows: In section II, 

we describe the camera pose estimation problem formulation 

when using straight lines, and we also give a complete 

implementation of the Extended Kalman Filter to update the 

camera pose recursively over the time using 2D and 3D lines 

features. In section III, we explain how we have expanded 

the RANSAC scheme [13] in order to achieve robust 2D-3D 

lines matching. In section IV, we show experimental results 

and evaluations, we discuss also the merits and the 

limitations of the proposed approach. Conclusion and future 

work are presented in section V. 
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II. CAMERA POSE ESTIMATION ALGORITHM

In any Kalman Filter implementation, the system state is 

stored as a vector. In our algorithm the state is represented 

by the position and the orientation of the camera with 

respect to the world coordinate system. For computational 

we use a unit quaternion to represent the rotation. Thus, the 

state vector is given by: 

[ ]zyxzyx tttqqqqX 0= (1)

where ( )12222
0 =+++ zyx qqqq . 

We denote the camera state at time t by the vector tX . 

The EKF is used to maintain an estimate of the camera state 

X in the form of a probability distribution ( )ttt ZXXP ,1− , 

where Zt is the measurement vector at time t. The Kalman 

filter models the probability distribution as Gaussian, 

allowing it to be represented by a covariance matrix Σ. In an

extended Kalman filter, the non linear measurements and 

motion models are linearised about the current state estimate 

as Jacobian matrices. 

Our algorithm follows the usual predict-refine cycle, 

whereby the state X is predicted at timestep t, and 

measurements are used to refine the prediction. 

A. Time update 

The time update model is employed in order to predict the 

camera pose at the following time step. In our case, the time 

update is simple because of the fact that we estimate the 

camera pose at each frame of the images sequence. 

Therefore the 3D camera pose between two successive 

frames changes very little. The time update equation is then 

given by : 

1−
− ⋅= tt XAX (2)

Where A is  7×7 identity matrix.

The time update step also produces estimates of the error 

covariance matrix Σ from the previous time step to the

current time step t. To perform this prediction we use the 

general update equation of the Kalman filter: 

1−
− +′⋅Σ⋅=Σ ttt QAA (3)

Where Qt represents the covariance matrix of the process 

noise. Σ reflects the variance of the state distribution.

B. Measurement model and estimate update 

The measurement update model relates the state vector to 

the measurement vector. Since our goal is to estimate the 

camera pose using only straight lines, we will first describe 

the constraint equation which relates the state vector to the 

3D model lines and their corresponding 2D image edges.  

We choose to base our technique on line features, rather 

than points, because this approach is relatively unexplored in 

the vision literature. We consider a pin-hole camera model 

and we assume that the intrinsic camera parameters are 

known. The world coordinate frame is a reference frame. All 

the 3D model lines are defined with respect to it. Let Li be a 

3D line. Li is represented with the Cartesian coordinates of 

its two end-points iP1  and iP2  (see figure 1). The points iP1

and iP2 in world coordinates can be expressed in the camera 

frame as well : 
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Where the 3×3 rotation matrix R and the translation vector

T describe the rigid body transformation from the world 

coordinate system to the camera coordinate system and are 

precisely the components of the camera state vector.  
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Fig. 1. Projection plane. The model line, its projection onto the image and 

the center of projection OC are coplanar. 

We can see that the points i
CP /1 , i

CP /2  and the center of 

projection OC are coplanar. iN
r

 is the unit vector normal to 

this plane. iN
r

 can be expressed in the camera coordinates 

frame as follows :  

i
CC

i
CC

i
CC

i
CC

i

POPO

POPO
N

/1/1

/1/1

×

×
=

r
(5)

Furthermore, a measurement input of the normal vector 

iN
r

 can be obtained from the image data. Indeed, image line 

matched with model line belongs also to the projection plane 

defined above. Let li be a 2D image line corresponding to 

the 3D line Li. In similar manner li is represented by its two 

extremities [ ]Tiii vum 211 =  and [ ]Tiii vum 222 = defined in
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the 2D image coordinates frame. The points im1  and im2  can 

be expressed in the camera coordinate frame as follows: 

[ ]
[ ]⎪⎩
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Where the matrix K contains camera calibration 

parameters, such as focal length, aspect ration and principal 

point coordinates. 

A measurement in
r

 of the unit vector iN
r

 normal to the 

projection plane is thus given by (see figure 1): 
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Combining equations (5) and (7), a measurement equation 

can be written, for each matching event Li  li :

( ) ttt vXhz +=  (8) 

Where  
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vt represent the noise term in the measurement input with 

covariance Rt. The noise is due to the uncertainty in the 

measured image position of the end points of the extracted 

2D lines. The non linear function h(X) in measurement 

equation (8) relates the state to the measurement input. 

Three 2D-3D line correspondences are sufficient in theory to 

recover 6-DOF camera pose [14] through in practice mores 

line may be required to increase accuracy.  

The state estimate and covariance are refined after each 

feature measurement zt using the standard equation of the 

EKF as follows: 
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Where Ht is the Jacobian matrix defined by: 

( )
−=∂

∂
=

tXX

t
X

Xh
H (11) 

The measurement update model is executed once a set of 

2D-3D matched lines become available. 

C. Iterated EKF 

The standard EKF method does not consider errors due to 

the linearization of the non linear function h(X) in the 

vicinity of −
tX . However, theses errors can lead to wrong 

estimates and/or divergence of the camera pose. Since the 

nonlinearity is only in measurement equation, the Iterated 

Extended Kalman Filter (IEKF) is the best technique to deal 

with it. The IEKF uses the same prediction equation as EKF, 

namely (2) and (3). The measurement update relations are 

replaced setting −= tt XX 0  and doing iteration on : 
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For iteration number 1,,1,0 −= Nk L . At the end of all

iterations, N
tt XX = . The covariance matrix is then updated

based on N
tX  according to : 

−− Σ⋅⋅−Σ=Σ t
N
t

N
ttt HK (13)

The iteration could be stopped when consecutive values 
k
tX  and 

1+k
tX  differ by less than a defined threshold. 

III. ROBUST 2D-3D LINES MATCHING ALGORITHM

In this section we explain the expansion of the RANSAC 

scheme that we have developed in order to achieve a robust 

matching algorithm that associates 2D edges from the image 

with the 3D line segments from the input model, and without 

using any verification algorithm. 

Let { } Nili ,...,1, =  be a set of 2D edges extracted from the

image and { } MjL j ,...,1, =  a set of 3D model lines. Our

robust lines matching algorithm is summarized as follows : 

1. Randomly sample subsets of four {li ↔ Lj} pairs of 2D

and 3D lines. In theory a minimum three pairs are of

lines are sufficient to compute an accurate rigid

transformation

2. For each sample, compute the camera pose Π(R,T) using

the IEKF algorithm described in section II.

3. Each candidate Π is tested against all the

correspondences ji Ll → by computing, in the camera

frame, the angle between the normal vector in
r

 (see 
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figure 1) associated with the image line il  and the 

transformed line jLR ⋅ . If this match is wrong with

respect the pose Π, then the co sinus of the angle should

be significantly larger than zero. 

4. We choose the pose Π which has the highest number of

inliers, i.e the Π for which all the pairs are within a fixed

angle threshold.

Hence, the obtained camera pose for the current image is 

robustly updated using only inliers of correspondences. 

IV. EXPERIMENTAL RESULTS

The proposed camera pose estimation algorithm have 

been tested in a real scene and the registration accuracy was 

analyzed. To do that, we have recorded an image sequence 

of an office building (Figure 2). The frame rate is 25 

frames/s and the resolution of the video images is 320×240

pixels. The 3D model of the office building is known, it is 

composed of 19 lines defined by the 3D coordinates of their 

end points within the world coordinates frame (Figure 3).   

Fig. 2. one frame from the recorded image sequence 
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Fig. 3. The 3D model of the office building used for experiments. 

In order to estimate the camera pose accuracy we defined, 

in the camera space, the registration error ξ. Given a set of

correspondences between image edges and model segments 

the error ξ corresponds to the normalized square sum of the

sinus of the angular disparities iα  for each correspondence 

between image edge and the re projected model segments 

(Figure 1): 

( ) ∑∑
==

×==
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ii

M

i

i Nn
MM

1

2

1

2 1
sin

1 rr
αξ  (14) 

Where M is the number of correspondences and αi the

angle between the two planes spanned by the camera center, 

the observed image edge li and the model segment Li (see 

figure 1).  

In our experiment we took M=10 correspondences. We 

have first considered that the data set has no outliers (100 % 

inliers or good matching) and we computed the registration 

error for several frames of the image sequence. The mean 

error is about 51001.4 −×=mξ which corresponds to the 

mean angular disparities °= 28.0mα . Figure (5) shows the 

projection of the office model using the camera pose 

estimated by our algorithm, and as can see it is quite 

skewed. All the lines are fairly well aligned. 

Fig. 5. Projection of the office model using the final camera pose estimate 

when the input data has no outliers  

In the second experiment, we have evaluated the capacity 

of our robust algorithm to reject outliers in observed data. In 

our case, an outlier corresponds to a wrong feature matching 

between a 2D and a 3D line. For that, we have contaminated 

the M=10 input data set with different percentage of outliers 

and have computed the corresponding registration error. The 

obtained results are summarized in table 1.  

TABLE I 

EXPERIMENTAL RESULTS OF THE ROBUST ALGORITHM 

Outliers (%) ξm αm(°) Number of trials 

10% 4.26×10-5 0.22 1

20% 4.61×10-5 0.31 2

30% 4.93×10-5 0.37 4

40% 6.95×10-5 0.39 12

50% 7.84×10-5 0.42 50

60% 8.18×10-5 0.44 240

As can be seen, our robust algorithm succeeded in all the 

cases to detect and delete the outliers. The camera pose is 

then estimated using the final data consensus which contains 

only the good 2D-3D lines correspondences. For example, in 

the worst case when 60% of the input data (i.e. 6 lines 
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correspondences among 10) are labeled as outliers, our 

algorithm was been able to identify the four inliers in the 

data. The camera pose returned using this inliers gives a 

registration error about 8.18×10-5. This result demonstrates

the robustness and the accuracy of the proposed approach. 

Furthermore, we note that the number of trials needed to get 

the best solution increase with number of outliers (for 

example 240 trials for 60% of outliers). This means more 

processing time and will decrease the real time performance 

of the algorithm. 50% of outliers (50 trials) represents a 

good compromise. Figure 6 shows the projection of the 

model using the pose estimated by our algorithm for 

different frames of the images sequence and when run with 

different percentage of outliers. We can see that all lines are 

well aligned. 

(a) Outliers = 20%          (b) Outliers = 30% 

(c) Outliers = 40%         (d) outliers = 50% 

Fig. 6. Camera pose estimation results 

Another advantage of our approach is its robustness to 

severe lines occlusion. Indeed, as the line constraint 

equation (see section II-B) for the camera pose parameters 

was developed in the case of “infinite image line”. Any 

image points on the 2D line can be used to construct the 

corresponding projection plane. So, when partial occlusion 

occurs, it is enough to detect only small parts of the image 

edges to estimate the camera pose. In figure 6 we can see 

that several image edges are partially occluded (table and 

door), in spite of that, the camera pose was successfully 

estimated. 

We analyzed the processing time needed for camera pose 

estimation on a Pentium IV with 3GHz. All computations 

were performed in Matlab. The pose estimation process 

using IEKF does not take much time. The processing time 

strongly depends on the number of outliers in the current 

field of view. For example, the average time is about 28 

millisecond per frame when having 40% of outliers in 10 

input data. 3 milliseconds are used to estimate the camera 

pose with the IEKF and 25 milliseconds are measured for 

the time needed to reject outliers. 

V. CONCLUSION 

In this paper, we proposed a new approach for 6-DOF 

camera localization based on matching between 2D image 

edges and 3D model segments. We performed a generic 

camera pose estimation framework based only on lines 

features using an Iterated Extended Kalman Filter. We also 

achieved significant improvements on robust 2D/3D lines 

matching scheme by adapting the well-know RANSAC 

algorithm to our application. Experiments show that our 

method works well for indoor application and it is robust 

against severe occlusion and outliers. We evaluated its 

performance and demonstrated the accuracy of the camera 

pose estimation. 
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