Abdelkrim K Oudjida
email: a_oudjida@cdta.dz

Mohamed L Berrandjia

Nicolas Chaillet
email: nicolas.chaillet@femto-st.fr

A new Low-Power recoding algorithm for multiplierless single/multiple constant multiplication

Keywords: Double Base Number System (DBNS), High-Speed and Low-Power Design, Multiplierless Single/Mutiple Constant Multiplication (SCM/MCM), Radix-2 r Booth recoding. I

Optimizing the number of additions in constant coefficient multiplication is conjectured to be a NP-hard problem. In this paper, we report a new heuristic requiring an average of 29.10% and 10.61% less additions than the standard canonical signed digit representation (CSD) and the double base number system (DBNS), respectively, for 64-bit coefficients. The maximum number of additions per coefficient is bounded by (N/4)+2, and the time-complexity of the recoding is linearly proportional to N, where N is the bit-size of the constant. These performances are achieved using a new redundant version of radix-2 8 recoding.

The central point of this work is the minimization of the total number of additions. Based on radix-2 r signed-digit number system [START_REF] Homayoon | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF] [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF], a new Redundant Radix-2 r Recoding (R3) is proposed as an alternative to existing heuristics. Applied to the particular case of radix-2 8 with N=64, a saving of 29.10% is achieved over CSD, which yields to much less power consumption and more speed. In addition, the new recoding shows high aptitude for common subexpression elimination, which makes it a good candidate for MCM.

The paper is organized as follows. Section I outlines the necessity of a linear runtime heuristic with a high compression ratio to handle large bit-size constants. Section II introduces the new R3 algorithm, while Section III compares the results to CSD and DBNS recodings. Finally, Section IV provides some concluding remarks and suggestions for future work. (

where In eq. (1), the two's complement representation of C constant is split into N/r two's complement slices (j Q), each of r+1 bit length. Each pair of two contiguous slices has one overlapping bit. To eq. (1), corresponds a digit-set ()

0 1 = - c and c-1 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 () () 7 1 0 2 1 0 c Z Z Q - × + = 8+1 bits 16 2 8 1 0 0 2 2 2 × + × + × = Q Q Q C () () 15 1 1 2 1 1 c Z Z Q - × + = : c-1= 0 C 24+1 bits Qj () 128 0 2 1 ≤ + ≤ j Z Z () () 23 1 2 2 1 2 c Z Z Q - × + = : c7 , c15 , c23 are sign bits
r D 2 such as () { } 1 1 1 1 2 1 2 1 0 1 1 2 2 2 - - - - - - + - - = ∈ r r r r r j D Q , , ... , , , , ,... , .
The sign of Q j term is given by c rj+r-1 bit, and

j k j m Q j × = 2 , with { } 1 2 1 0 - ∈ r k j , ... , , , and
() { } { } 0 1 2 5 3 1 2 1 ∪ - = ∈ - r
() () () rj r N j k j c j r rj m C 2 2 1 1 0 1 × × × - = ∑ - = - + / .
(2)

Equation (2) is not redundant since for each C constant corresponds a unique representation (m j). To make the solution space larger in order to select a less adder-consuming representation of C, the recoding must be redundant. To achieve such a goal, we announce the following theorem: Theorem 1. In radix-2 r , |Q j |=[A j ×2 p +(-1) e ×B j ×2 h], where:

() { }; ..., , , , , , / 1 2 5 3 1 0 1 2 - ∈ - r j j B A { } () { }; ,..., , , ; ,..., , , / 1 2 2 1 0 1 2 2 1 0 1 2 1 - ∈ - ∈ - - r r h p and { }. ,1 0 ∈ e
The proof of the above theorem is based on our Theorem (1) described in [START_REF] Oudjida | New High-Speed and Low-Power Radix-2 r Multiplication Algorithms[END_REF] [START_REF] Oudjida | A New Recursive Multibit Recoding Algorithm for High-Speed and Low-Power Multiplier[END_REF]. Note that different notations for |Q j | are possible. For instance: 37=1×2 5 +5×2 0 or 37=5×2 3 -3×2 0 . We illustrate the idea for r=8, where 0 ≤ |Qj| ≤ 128. Equation [START_REF] Avizienis | Signed-digit number representation for fast parallel arithmetic[END_REF] becomes:

() ()() j c) / N (j h j e p j j B A C 8 1 8 0 2 1 2 1 2 7 8 × - × × × - + × = + ∑ - = () () j c) / N (j j j Z Z 8 1 8 0 2 1 2 1 7 8 × - × + = + ∑ - = (3)
where

Z 1 =A j ×2 p ; Z 2 =(-1) e ×B j ×2 h ; { }; , , , , , 7 5 3 1 0 ∈ j j B A { }; ,..., , , 7 2 1 0 ∈ p { }; , , , 3 2 1 0 ∈ h and { }. ,1 0 ∈ e
Note that |Q j |=(Z 1 +Z 2) j . The partitioning of C constant according to eq. (3) is depicted in Fig. 1, while the recodings of odd and even |Q j | digits are separately denoted in Table II.

The product C×X becomes:

() () () [] () j c N j h j e p j j X B X A X C 8 1 8 0 2 1 2 1 2 7 8 × - × × × × - + × × = × + ∑ - =) / ((4)
Note that when

{ } 7 5 3 , , B , A j j ∈
, one extra adder is needed since for instance: 3×X=2×X+X . Our recoding is highly redundant, i.e., each |Q j | may have several notations in Z 1 and Z 2 digits. We fully exploited this property to minimize the number of adders using a C-program which exhaustively explores for each odd |Q j |, all possible notations and selects the least adder consumer combination according to the following priority order: (A j , B j)=(A j , 0); (A j , B j)=(1 , 1); (Z 1 , Z 2)=(1×2 7 , Z 2); and finally (Z 1 , Z 2)=(Z 1 ,1×2 0). These two latter couples allow the following simplification:

(Z1+ Z2)j Even|Qj| (Z1+ Z2)j 1 1 × 2 0 0 × 2 0 U 1 2 2 1 × U1 3 3 × 2 0 0 × 2 0 U 3 4 2 2 × U1 5 5 × 2 0 0 × 2 0 U 5 6 2 1 × U3 7 7 × 2 0 0 × 2 0 U 7 8 2 3 × U1 9 1 × 2 3 1 × 2 0 U 9 10 2 1 × U5 11 3 × 2 2 -1 × 2 0 U 11 12 2 2 × U3 13 3 × 2 2 1 × 2 0 U 13 14 2 1 × U7 15 1 × 2 4 -1 × 2 0 U 15 16 2 4 × U1 17 1 × 2 4 1 × 2 0 U 17 18 2 1 × U9 19 5 × 2 2 -1 × 2 0 U 19 20 2 2 × U5 21 5 × 2 2 1 × 2 0 U 21 22 2 1 × U11 23 3 × 2 3 -1 × 2 0 U 23 24 2 3 × U3 25 3 × 2 3 1 × 2 0 U 25 26 2 1 × U13 27 7 × 2 2 -1 × 2 0 U 27 28 2 2 × U7 29 7 × 2 2 1 × 2 0 U 29 30 2 1 × U15 31 1 × 2 5 -1 × 2 0 U 31 32 2 5 × U1 33 1 × 2 5 1 × 2 0 U 33 34 2 1 × U17 35 1 × 2 5 3 × 2 0 U 35 36 2 2 × U9 37 1 × 2 5 5 × 2 0 U 37 38 2 1 × U19 39 5 × 2 3 -1 × 2 0 U 39 40 2 3 × U5 41 5 × 2 3 1 × 2 0 U 41 42 2 1 × U21 43 5 × 2 3 3 × 2 0 U 43 44 2 2 × U11 45 3 × 2 4 -3 × 2 0 U 45 46 2 1 × U23 47 3 × 2 4 -1 × 2 0 U 47 48 2 4 × U3 49 3 × 2 4 1 × 2 0 U 49 50 2 1 × U25 51 3 × 2 4 3 × 2 0 U 51 52 2 2 × U13 53 3 × 2 4 5 × 2 0 U53 54 2 1 × U27 55 7 × 2 3 -1 × 2 0 U 55 56 2 3 × U7 57 7 × 2 3 1 × 2 0 U 57 58 2 1 × U29 59 1 × 2 6 -5 × 2 0 U 59 60 2 4 × U15 61 1 × 2 6 -3 × 2 0 U 61 62 2 1 × U31 63 1 × 2 6 -1 × 2 0 U 63 64 2 6 × U1 65 1 × 2 6 1 × 2 0 U 65 66 2 1 × U33 67 1 × 2 6 3 × 2 0 U67 68 2 2 × U17 69 1 × 2 6 5 × 2 0 U69 70 2 1 ×
() [] () [] [] [] ... Z Z Z Z ... j j j j + × + - × + = + × × - + × + × + + + 8 8 1 8 2 8 8 0 1 8 2 7 2 2 2 2 2 1 2 2 1
In case none of those cases is encountered, C-program pursues in the following priority order: (Aj , Bj)= [START_REF] Thong | An optimal and practical approach to single constant multiplication[END_REF][START_REF] Dimitrov | Multiplication by a Constant is Sublinear[END_REF] 7) or [START_REF] Dempster | Using Signed-Digit Representations to Design Single Integer Multipliers Using Subexpression Elimination[END_REF][START_REF] Boullis | Some Optimizations of Hardware Multiplication by Constant Matrices[END_REF]. This order maximizes the occurrences of 1, then of 3, and minimizes those of 5 and 7 in |Qj| digits, which will more likely reduce the number of adders in the whole C recoding. Furthermore, we perform common U k digit elimination as an ultimate optimization step. Only odd |Qj| digits are optimized. Optimized even digits are directly derived from odd ones using shift operations as indicated in Table II.

To illustrate the idea, the product P=23453×X is first computed in CSD and then in R3. It gives: 15 ×X -2 13 ×X -2 10 ×X -2 7 ×X + 2 5 ×X -2 2 ×X + X; P R3 = 2 8 ×(2 5 ×U 3 -2 2 ×U 1)-(25 ×U 3 + U 3) ; U 1 =X and U 3 =2×X +X. P CSD requires 6 operations, while P R3 needs only 4. Note that the naïve add-and-shift algorithm would have required 9 operations. We assume that addition and subtraction have the same area/speed cost, and that shift is costless since it can be realized without any gates using hard wiring. Note that in R3 there is no overflow risk since the shift span is fully controlled.

P CSD = 2

III. RESULT COMPARISON

In equation (4), there are N/8 iterations. Each iteration generates a maximum of 2 partial products (PP). Thus, the maximal number of PP is N/4. A maximum of 3 supplementary adders are necessary in case 3×X, 5×X, and 7×X are all invoked at the same time in the recoding. Therefore, the maximal number of additions per coefficient (Upb) is bounded by (N/4)+2. As for the average number of additions (Avg), it has been exhaustively calculated for C values varying from 0 to 2 N -1, for N=8, 16, 24, and 32. But for N=64, we calculated the average using 10 5 , 10 6 , 10 9 and 10 10 uniformly distributed random C values. While the difference between the four obtained results is insignificant (<10 -3), the average decreases as the number of C values increases, and converges to 14.4932 additions. Results are reported in Table III. For N=64, R3 uses 29.10% less additions than CSD. The saving seems to grow linearly for low values of N. It will asymptotically converge to an upper limit which is unknown for the time being.

Regarding computation-time complexity, it is linearly proportional to N as shown by eq. (4). As for the storage complexity, a look-up table with 128 entries is required, which is insignificant.

Concerning DBNS, Dimitrov [START_REF] Dimitrov | Multiplication by a Constant is Sublinear[END_REF] calculated average and upper-bound values from 10 5 uniformly distributed random constants, for 32 and 64 bits only (Table IV). Note that DBNS upper-bounds will be higher if the worst cases are not attained by the pattern of 10 5 constants.

Another performance indicator of the recoding is the smallest value that requires q additions, for q varying from 1 to the upper-bound of the recoding. Table V summarizes this information for 32-bit constant. Note that starting from q=7, higher values are provided by R3 algorithm.

Predictability in addition-number (Upb and Avg) and runtime/storage requirements informs on the heuristic capabilities and limitations. Upb denotes exactly the length of the critical-path formed by successive additions, while Avg gives an idea on the compression performance of the heuristic. On the other hand, runtime/storage complexity helps to decide whether the use of the heuristic is appropriate with regard to a constant bit-width (N). While this latter is known for all heuristics (Table I), addition complexity is unknown for most of them [START_REF] Thong | An optimal and practical approach to single constant multiplication[END_REF] [START_REF] Gustafsson | Lower Bounds for Constant Multiplication Problems[END_REF]. Pinch was the first to set an asymptotic complexity O(N/log(N)) for Upb [START_REF] Pinch | Asymptotic Upper Bound for Multiplier Design[END_REF]. Better, based on DBNS arithmetic [START_REF] Dimitrov | Theory and Applications of the Double-Base Number System[END_REF], Dimitrov [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] gave a rough evaluation of the hidden constant (α) in the big O-notation as being 1≤α≤2. Only CSD and R3 do have exact analytic expressions for addition complexity (only Upb for R3). For the all remaining heuristics, no addition complexity does exist. This is a real handicap as there is no visibility on how the heuristic evolves with respect to N, unless to exhaustively calculate Avg (Fig. 2) and Upb, but this is still limited to low values of (N≤32) as an excessive compute power is required. Though heuristics of Fig. 2 exhibits higher compression ratios than R3 for N>16, some values of Table VI are not only greater than the ones provided by R3, but also equal or even greater than Upb of R3. For N≥128, only Lefèvre algorithm remains practical O(N 3), because even when neglecting the hidden constant α in O(N 6), Hcub requires more than 4398 billions of iterations. Another serious drawback of non-recoding heuristics is the overflow risk because of uncontrolled shift spans [START_REF] Dimitrov | Multiplication by a Constant is Sublinear[END_REF]. Such a problem never occurs in digit-recoding heuristics: CSD, DBNS and R3.

It becomes now clear why despite the large number of existing heuristics; CSD is not only used in designing the vast majority of LTI systems [START_REF] Kastner | Arithmetic Optimization Techniques for Hardware and Software Design[END_REF], but incorporated in most of advanced synthesis tool as well, such as in Synopsys Design Compiler Ultra [10][21].

IV. CONCLUSION AND FUTURE WORK

An efficient alternative (R3) to the most commonly used heuristic (CSD) has been proposed. Instead CSD, the use of R3 in designing LTI systems leads to much less power consumption and more speed. A pending issue is to determine the analytic expression of the average number of additions (Avg) needed by R3 with regard to constant bit-width N.

 II. NEW REDUNDANT RADIX-2 r ALGORITHM (R3) FOR MULTIPLICATION BY A N-BIT CONSTANTA N-bit C constant is expressed in radix-2 r as follows:

Figure 1 .

 1 Figure 1. Partitioning of a 24-bit C constant using R3 algorithm.

 the required set of odd-multiples in radix-2 r

 or (3,1); (Aj , Bj)=(3 , 3); (Aj , Bj)= (1,5) or (5,1); (Aj , Bj)=(5, 5); (Aj , Bj)= (1, 7) or (7, 1); (Aj , Bj)=(7, 7); (Aj , Bj)= (3,5) or (5,3); (Aj , Bj)= (3,7) or (7,3); (Aj , Bj)= (5,

Figure 2 .

 2 Figure 2. Comparison of R3 with non-recoding heuristics based on average number of additions (Avg)

TABLE II :

 II ODD AND EVEN |QJ| DIGIT RECODING USING R3 ALGORITHM Odd |Qj| Z1=Aj × 2 p Z2=(-1) e ×Bj × 2 h

TABLE III :

 III R3 VERSUS CSD : AVERAGE NUMBER OF ADDITIONS (Avg) AND UPPER BOUND (Upb)

	Constant	CSD		R3		Saving
	Bit-width N	Avg	Upb	Avg	Upb	(Avg,%)
	8	1.7882	4	1.7254	3	3.5119
	16	4.4445	8	4.1050	6	7.6386
	24	7.1111	12	6.2846	8	11.6226
	32	9.7777	16	8.3194	10	14.9145
	64	20.4444	32	14.4932 *	18	29.1091

*: Obtained from 10 10 uniformly distributed random C values.

TABLE IV

 IV

	: R3 VERSUS DBNS : AVERAGE NUMBER OF ADDITIONS
	(Avg) AND UPPER BOUND (Upb)			
	Constant	DBNS [3]	R3		Saving
	Bit-width N	Avg	Upb	Avg	Upb	(Avg,%)
	32	≈9.05 +*	13 *	8.3194	10	8.0729
	64	16.2151 * 21 *	14.4932	18	10.6191
	+: Taken from Fig.1 in [3]; *: Obtained from 10 5 uniformly
	distributed random constants.			
	TABLE V: R3 VERSUS CSD : SMALLEST VALUES
	FOR 32-BIT CONSTANT			
	Number of Additions (q)	CSD	R3	
		1		3	3	
		2		11	11	
		3		43	43	
		4	171	139	
		5	683	651	
		6	2731	2699	
		7	10923	34971	
		8	43691	559259	
		9	174763	17336475	
		10	699051	143163547
		11	2796203	-	
		12	11184811	-	
		13	44739243	-	
		14	178956971	-	
		15	715827883	-	

TABLE VI :

 VI NUMBER OF ADDERS: SOME PECULIARITIES

			Hexadecimal Values	
	Algorithm	(84AB5)H	(595959)H	(64AB55)H	(5959595B)H
		N=20	N=24	N=24	N=32
	Bernstein [12]	8 G	7	7	8
	Hcub* [6]	6	8 E	9 G	-
	BHM* [13]	5	7	7	-
	Lefèvre [4]	4	8 E	6	11 G
	R3	4	5	6	8

*: Limited to 26 bits; x: Lowest number of additions ; N: Constant bit-size; E: Equal to Upb of R3; G: Greater than Upb of R3; Upb of R3= (N/4)+2

This work is supported by "Centre de