
HAL Id: hal-00869538
https://hal.science/hal-00869538v1

Submitted on 2 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Automated Tool Selection Method based on Model
Transformation: OPNET and NS-3 Case Study

Iyas Alloush, Yvon Kermarrec, Siegfried Rouvrais

To cite this version:
Iyas Alloush, Yvon Kermarrec, Siegfried Rouvrais. An Automated Tool Selection Method based on
Model Transformation: OPNET and NS-3 Case Study. SPECTS 2013 : the 16th International Sym-
posium on Performance Evaluation of Computer and Telecommunication Systems, Jul 2013, Toronto,
Canada. pp.10 - 17. �hal-00869538�

https://hal.science/hal-00869538v1
https://hal.archives-ouvertes.fr

An Automated Tool Selection Method based on
Model Transformation: OPNET and NS-3 Case

Study
Iyas Alloush

Telecom Bretagne
Institut Mines-Telecom

Université européenne de Bretagne
UMR CNRS 6285 Lab-STICC

iyas.alloush@telecom-bretagne.eu

Yvon Kermarrec
Telecom Bretagne

Institut Mines-Telecom
Université européenne de Bretagne

UMR CNRS 6285 Lab-STICC
yvon.kermarrec@telecom-bretagne.eu

Siegfried Rouvrais
Telecom Bretagne

Institut Mines-Telecom
Université européenne de Bretagne

IRISA
siegfried.rouvrais@telecom-bretagne.eu

Abstract—Errors in telecom service (TS) design may be ex-
pensive to correct by telecommunication enterprises, especially if
they are discovered late and after the equipments and software
are deployed. Verifying complex architectures of TS designs is
a daunting task and subject to human errors. Thus, we aim
to provide supportive tools that helps during the TS creation
activity. Network simulators play an important role in detecting
design errors and predicting performance quality violations
in the TS domain due to the measurements that they can
produce. The metrics associated with performance requirements
are numerous, and it is difficult to find a unique tool that can
handle the prediction of their values. In this paper, we tackle the
tool selection challenge for non domain-expert designers taking
into consideration the differences between tools and the large
number of metrics that they can measure. Thus, by applying
model transformation techniques, we propose a method to select
the proper tool(s) to obtain the measurements needed during
verification activity. Therefore, we present our contributions on
the modeling language level, and the tool selection algorithm
with its implementation. Reusability, complexity, and customized
measurements are taken into account. We illustrate our approach
with a video conference and customized measurement example
using OPNET and NS-3 simulators.

I. INTRODUCTION

In the large telecommunication markets, with the far dis-
tances and increasing numbers of users, the telecommunica-
tions economy is growing rapidly. This market is extending,
due to the large number of customers and to the increasing
need to customized services.

These telecom services (TS) should serve the customers
who acquire services with high performance requirements.
An enterprise need to launch TSs with good quality rapidly
before the other competitors. The TSs have specificities that
make them different from other services or software. Thus, a
specific life-cycle was introduced in the 90’s [1], [2]. A TS
is characterized by its functional (FR) [3] and non-functional
requirements (NFR) [3]. The design activity plays a funda-
mental role in the TS life-cycle, as it is the activity where the
service requirements are translated into specifications. Errors
in TS design may be expensive to correct, especially if they
are discovered late and after the equipments and software are

installed. Therefore, the TS should be verified earlier at the
design phase to check if these requirements are satisfied or
not, so to improve the qualities and to correct the detected
errors as early as possible. Verification [4]: ”In design and
development, verification concerns the process of examining
the result of a given activity to determine conformity with the
stated requirement for that activity”.

A recent PhD [5] proposed a process of TS construction,
while giving the opportunity to improve the QoS and to involve
the customer in that process. In this dissertation, the author
has shown that a design complexity can be reduced by the
distribution of roles between the different stakeholders, so
they share the design responsibilities each due to his domain
experience thanks to the Enterprise Architecture (EA) and
model driven engineering (MDE) principles [6]. The approach
in [5] defines the requirements that the TS verification activity
after the design phase should respect:

• Domain Specificity through the re-use of existing
telecom-dedicated network simulators;

• Rapid prototyping as the verification activity is right after
modeling activity and before implementation [1];

• Early verification [7], [8];
• More easy evolution of services as the transformation

from Domain Specific Modeling Languages and the net-
work simulator is automatic.

The proposal of this paper is a continuation of that dissertation
in the design phase [5], so we propose our new activities in
the same scope but as another activity in the service life-cycle:
the verification one. In our research, we aim to provide the
different stakeholders with supportive tools that helps them
during the design activity of a TS.

A TS may use several applications that interact with each
other to perform the service functions. These applications are
different themselves in the resources they reserve. Some appli-
cations are sensitive to a specific group of metrics that differs
from other applications. For instance, jitter measurement is
needed when the service contains a video application, while it

is not important for an FTP application. Besides, the types of
measurements are different in their natures and domains (e.g.
performance, security, etc). To detect errors and performance
quality violations in the telecommunication domain, network
simulators plays an important role in the telecommunications
domain. They can provide the verifier with the different
measurements that makes it possible to estimate the TS
performance. The metrics associated with performance non-
functional requirements are numerous. Therefore, one tool
(e.g. OPNET or NS-3) may not be able to cover all of the
measurements needed in the verification activities for all kinds
of services and requirements. The challenge that we face in
this paper is: How to tackle the tool selection challenge for
non domain expert designers taking into consideration the
differences between tools and the large number of metrics
that they can measure?

Our objective in this paper is to propose a method for tool
selection, that is based on the MDE principles. The selected
tool(s) will form a tool-chain that integrates results together
so to have a wide range of measurements in a specific domain
(e.g. Network Domain). Tools differ from each other due to
different properties such as their domains, capabilities such
as measurements, and certification level. In this paper, we
consider the measurement capability only, while one may
model other specifications such as certification level of the
tool.

Our approach is based on MDE principles that offers
automation using model transformation techniques and deals
with models to exchange data between the different activities.
Model transformations help on the first hand in handling the
large number of measurements that are required, and in helping
the designer to find the proper tool(s) without the need to
domain experience on the other hand.

In this paper, we present two contributions that are done
to answer our research challenge. The first contribution is to
define the modeling language entities, rules, and constraints
using Eclipse Modeling Framework (EMF) tools that are avail-
able in the Eclipse IDE, this contribution serves the purpose
of this paper and other activities in our general approach. Our
second contribution is in the algorithm of the tool selection
method where we implement it using a model transformation
language XPAND [9]. The key reason behind using model
transformation is to mix the modeling and automation concepts
together.

Earlier, we used only one tool (simulator) to validate the TS
design described in [5], where we depended on measurements
obtained from OPNET simulator [10], [11]. Recently, we have
implemented another model transformation to link the high
abstract models to simulation level (NS-3). Thus, we have a
tool-chain that contains different simulators (OPNET [10], and
NS-3). This forms a case study for our proposal in this paper.

Our method is applied using Eclipse Modeling Framework
(EMF), where it depends on models and transformation. The
meta-model provides the types and constraints that are needed
in the transformation and the measurement modeling. The
reusability of this method comes from the possibility of chang-

ing the meta-model due to the domain specifications, while the
algorithm stays unchanged. Implementing the algorithm using
XPAND language makes the tool selection activity homoge-
neous with the other model adaptation activities (Fig.3).

On the other side, modeling the measurements and tool
specifications is an action that needs domain, modeling, and
tool specification experience.

In section 2, we present related work and highlight the
criteria that distinguish our work. Section 3 presents notions
of FRs and NFRs with a simplified example from the telecom-
munications domain. In section 4, we present the EA standard
and how it is applied in our approach. Section 5 presents our
approach activities and highlights the model adaptation one
that includes tool selection method. We explain in section 6
our proposed method for the tool selection. In section 7 we
present our contributions to achieve the tool selection method,
describing its mechanism. Section 8 illustrates our proposal
by an example from the video conference instance that we
have implemented in a previous work. Finally, we conclude
and present our future work.

II. RELATED WORK

In the scope of verification of system architectures from the
design models, we present related work taking into account
the following aspects:

1) Reusability of method in the same domain;
2) Are there Intermediate Models between design and anal-

ysis activities?;
3) Selecting automatically between tools due to measure-

ment capability;
4) High level of abstraction for modeling;
5) Linking Measurements with Design Level for verification

purposes.
• In [12], the authors present a way to verify the perfor-

mance properties of coordination models, by extending
the Reo coordination model with stochastic properties
”Stochastic Reo”. They use an intermediate model trans-
formation to get the QIA models which are extensions
of Constraint Automata. With the Stochastic Reo they
can specify the behaviors of connectors, and the behavior
of the environment. Their method shows reusability in
the domain of Embedded Systems. Many models are
needed to generate the configuration of the verification
tool (PRISM). Their tool-chain enables the designer to
stay on a high level of abstraction during the design
activity, but it can’t generate measurements in relation to
the non-functional requirements. The measurements that
it produce are built in the verification tool and there is
no ability to define a customized measurements;

• The authors in [13] worked on analyzing the behavioral
models of Embedded Systems using tool-chain for the
REMES modeling language. The REMES editor gives
a high level of abstraction for modeling behaviors. A
direct automated transformation from REMES to Priced
(Timed Automata) is done to perform the formal analysis.
The analysis were done in relation to the functional

and non-functional requirements. Their approach is able
to make simulations and obtain statistics to perform
formal analysis on the system’s model against the various
requirements. Their method shows no automated tool
selection techniques. Intermediate model transformations
were needed to bridge the system design to the tool-chain.
This method does not show a feature of customizing
measurements;

• In [7], the authors proposed the Model Driven Analysis
approach, where an Intermediate Constructive Model
(ICM) is generated from the design model to link between
the design and analysis activities. Their approach pro-
vides the capability of high abstract modeling, and gives
the ability to analyze the design due to the functional
and non-functional requirements through different tools
and using intermediate model transformations. In this
approach there is no mention about how to select the
proper tool(s) for verification purpose;

• The authors in [14] use the FIACRE language as a pivot
language in their model checking approach in the domain
of Embedded Systems. Their objective is to perform
behavioral verification of the Embedded System models
designed using AADL. This method depends on interme-
diate model transformations to move from tool to another,
so many languages and interpretations are used for this
purpose. They can make behavioral verification using
the AADL, FIACRE, and Tina tool-chain, depending on
Timed Transition Systems (TTS) which is an extension
of Time Petri-nets that handles the data and priorities.
The model transformations that are used in their approach
enable them to use different tools, but no method to
choose between the tools directly from the statistics that
they can provide;

• In [15], the authors present an approach to link between
the design and analysis technical spaces. They propose
using AADL as a pivot language, so to provide a link
between Stood design tool and Cheddar for the real-time
analysis. Their method offers the capability of making
feasibility tests on the system design represented using
hardware and software entities. Cheddar can provide
the evaluator with the capability to make performance
analysis. This approach provides the designer with a high
level of abstraction to design the system, while it does not
select the tool(s) directly from the measurement needs or
other tool specifications.

Not far from this related work and in the scope of early
verification of TSs through their design, we propose a method
that selects the proper set of tools, thus to select the right
template of the code generation that is needed to generate
automatically the simulation configuration script. This leads
to link between the design and verification activities. In this
paper, we will present our proposal to select the proper tool(s)
according to the measurement capability.

III. FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

Functional Requirements (FR) [3]: They are the software
requirements that defines the behavior of the system. For
instance, the behaviors that were defined in the different
layers of the TS architecture in [16] present the functional
requirements of the Video Conference service.

Non-Functional Requirement (NFR) [17]: is an attribute of
or a constraint on a system. Non-functional requirements can
be described using Softgoal Independent Graphs (SIG). The
term (soft) comes from the nature of these goals. Softgoals
are usually associated with labels that identify the degree of
their achievement.

An evaluation process is needed to determine whether the
softgoals are achieved or not, by setting or modifying their
labels through labeling algorithm. The relationship which
links between the softgoals and the functions is called the
contribution. We give an example of a performance NFR for
a TS: ”The service of Video Conference should be delivered to
1000 users maximum simultaneously at the quality level A”.
In this example, one can notice that there is a clear relationship
between the TS and the quality of service. In our approach,
we take quality of service (QoS) into consideration during the
verification process.

IV. ENTERPRISE ARCHITECTURE AND MODELING OF TSS

A. Enterprise Architecture

In our approach, we apply the EA standard into the TS
architecture [6]. EA framework provides a telecom enterprise
with a way to decompose a complex architecture of a TS into
aspects and layers. The aspects dimension provides an aspect
conceptualization of an enterprise. While the layer dimension
separates the TS architecture into 3 different layers due to the
abstraction level.

We apply Archimate [18] which is an EA modeling lan-
guage. This language takes three design aspects into considera-
tion: Information, Behavior, Structure. Thus, the entities in our
models are classified according to these aspects. It decomposes
the design abstraction into 3 layers: Business, Application,
Technology (Fig.1). This answers to the criteria (4) that is

Fig. 1. Enterprise Architecture and Archimate [19]

mentioned in section II. The architecture is divided between

different levels of abstraction in a way that makes it possible
to share the views of different stakeholders of an Enterprise.
The proposed Domain Specific Modeling Language (DSML)
in [5], [20] applies the mentioned EA standard and MDE
approach, this makes it possible to hide complexity from the
TS designer. We use the same language by extending the Meta-
Model (MM) that was defined, and adding new verification
entities and relationships. The new extended MM defines an
extended language that has the same characteristics in relation
with criteria (4) in section II.

V. MODEL ADAPTATION ACTIVITY

In our approach, we divide our verification activity into 4
main sub-activities (Fig.2):

• Linking activity: to link the softgoals that are defined
in the requirements phase to the design models that are
produced in the design phase.

• Model Adaptation activity: to select the right tool and
then to transform accordingly the design models into a
configuration script(s) that will configure the tool(s).

• Measurement Analysis activity: to analyze the measure-
ments that are obtained from the tool-chain relying on
an analytical theory (e.g. Queuing Theory), so to verify
whether the TS design satisfies the functional and non-
functional requirements (e.g. Performance) or not.

• Feedback activity: to benefit from the verification results
and correct the design flaws, errors, and quality viola-
tions.

Fig. 2. Verification Activities in our approach

The model adaptation activities (Fig.3) are related to the
linking activity in our approach, as there are different types of
models and meta-model views that are designed in the linking
activity. The tool selection has to decide which tool or set of
tools are needed to obtain the measurements that correspond
to specific requirements.

VI. TOOL SELECTION METHOD

A. Model Transformations

Model transformation is one of the key concepts in MDE,
and in our approach. There are different types of model
transformations and they are categorized due to different views
[21] such as: model-to-model, text-to-model, model-to-text,
and text-to-text. We use a model-to-text transformation in our
work to generate codes for simulators. We choose the same
transformation language that is used to generate the simulation
code to implement our method. This keeps the homogeneity
between the different activities in our approach.

Starting Tool Adaptation Activities

Prepare Tool Specification Model(s) [1..N tool]

Select Tool [1..N] and iterate Y times

Select MT for tool configuration [Tool X] Select the MT for Measurement Investigation

Tool X in the Set [1..N tool]

Configuration Model Transformation for the tool X Investigation Model Transformation for tool X

X==N?

End Tool Adaptation Activities

<<Output>>
Tool Configuration Repository [1..N tool]

<<Output>>
Measurement Investigator Repository [1..N tool]

NO

YESScenario Configuration Script for tool X in [1..N tool]

Measurement Investigator Script for Tool X in [1..N tool]

Measurement Models [1..Y measurement] (*)Tool Specification Model(s) [1..N tool] (*)

Specification Model for the tool X (*)

Fig. 3. Adaptation activities (UML activity diagram)

B. XPAND Model Transformation language

XPAND [9] is a model to text transformation language.
It was originally developed as part of openArchitectureWare
(oAW) project before it became a component under eclipse.
XPAND includes an editor which provides features like syntax
coloring, error highlighting, navigation, refactoring and code
completion. XPAND functions has the capability of querying
the information from the input model and generating text files
that include the processed data (Fig.4).

Fig. 4. XPAND Work-flow

C. General Method

The tool selection activity is one of the Model Adaptation
activities, where the decision of which tool to generate the
simulation code for, is needed. The selection of the proper
tool implies to the selection of the code-generation template
accordingly (Fig.4).

We apply MDE approach, so every data representation is
model-based. Thus, the inputs of our proposed method are all
models. These models are: Tool Specification models, Mea-
surement models, and the Design-Verification Meta-Model.
The designer can add another Tool Specification such as Cer-
tification Level, and so he needs to represent the Certification
Level as a model.

This means that a specification in the Tool model at the
tool modeling dimension turns to a model or class at the
dimension of the specification modeling, and the selection
algorithm is going to check the tools according to the
model of the required specification (Fig.5) 1. The filtration
(tool selection) method is implemented using iterations of a
model transformation language (e.g. XPAND). This makes this
activity homogeneous with the other activities of code gener-
ation to configure the simulators directly and using one model
transformation, as shown in [10]. The mentioned method
answers the criteria (1, 2, 4, 5) in section II. Additionally, our
proposed method can be applied to other domains, by using
other meta-models and models of different entities’ nature.

Fig. 5. Tool-Selection method based on MDE

VII. CONTRIBUTIONS

In this section, we present our contributions in order to
achieve our method shown in (Fig.5).

A. Linking Verification and Design Activities on the level of
design language

In order to verify the TS earlier and at the design time,
we have extended the syntax of the design language (DSML)
defined in the Meta-Model (MM). The new extended MM
includes the same entities that where defined for the design
purpose [5], and it includes new verification entities (e.g.
Measurement, Tool Specification) (Fig.6) that are connected to

1We refer to the description activity of tool specifications using models by
tool modeling, and the tool-specification description activity using models by
specification modeling.

Measurement Function

Measure

Access

1

1

<<InfrastructureInterface(Archimate)>>

Node
Associated with

1

0..*

Probe
Measurement Model
+Name: String

1

1..*

Object

Attribute

1

1..*

<<Tool>>

Simulator
+Measurements: List
+isCustomizedApplication: Boolean
+ConfigurationLanguage: List
+Probes: List

+DES()
+AnalysisPanel(): Display

1

0..*

Composition relationship

x Artifact

Legend

Class or Model

Aggregation relationship

<<InfraStructure Service (Archimate)>>

TechnologyFunction

Associated with

1

0..*

1

1..*

1

1..*

Tool

Artifact

Fig. 6. Measurement & Tool View from the Extended Meta-Model

Fig. 7. Extending the Design MM to include new Verification Entities

each other and to the design entities to provide a new syntax
that can be used for an extended DSML. This extended DSML
includes entities for the design and verification activities
(Fig.7). The merge and linking between both design and tool
oriented entities makes it possible to select the right tool for
the required measurement. The need to the measurement is
linked to the requirements that are represented in the softgoals
(section III).

The probe entity in (Fig.6) plays a central role in the tool
selection algorithm, as it is connected to both measurement
and tool/simulator entities by an aggregation relationship [18].
This makes it possible to model the probe in two models:
the tool specification that is related to the tool, and the
measurement specification that is related to the standards and
definitions of the measurements. We use the name of the probe
entity from the OPNET simulator. In OPNET simulator [22],
it is possible to generate output data during simulations. This

data can be statistics, automatic animation, and customized
animations. Our general approach takes the customization of
measurements into consideration, this makes it coherent with
network simulators. In NS-3 simulator, we consider the trace
entity as equivalent concept to the probe in our meta-model.
We have been succeeded recently in generating simulation
code associated with measurement configuration using the
trace and log concepts [23], where we have mapped the probe
concept in the proposed meta-model to the trace one in the
NS-3 simulator.

B. Tool Selection Algorithm

The tool selection is done by a model transformation, we
choose XPAND language [9] that is specific to generate plain-
text files from models. Figure.8 presents the algorithm of the
tool selection method, where the input of the algorithm is the
required measurement. This measurement is identified in a
previous activity where we select the needed measurements
from the predefined softgoals.

We present the algorithm as : for a specific measurement
i ∈ Y (Y is the size of a set of measurements) , we iterate
N times (N is the size of a set of tools), so to register which
are the tools that have the probes needed (capability) for the
specified measurement. The result is a set of tools that are
selected by the algorithm, these tools form with other types
of tools a tool-chain later in our approach.

We highlight the advantages when using our method:
1) The reusability of the model transformation, as its input

can be of different types (e.g. Measurements and Certifi-
cation level) (Fig.7), and rules of the transformation are
defined with no hard coding (cf. Figure9). This should
answer the criteria 1 in section II;

2) Our method distributes the complexity of tool selection
method between two activities: Modeling, and model
transformation;

3) The measurement may be previously implemented in
tools, or they can be customized and then use different
types of probes. Our approach takes this point into
consideration and offers the ability of designing cus-
tomized measurements. Our tool selection method takes
this aspect into consideration. Thus, the tool is selected
when it contains all of the probes that are needed by a
measurement;

4) There is one loop for the measurement selection (Y times)
and 3 other nested loops that are used in the model
transformation template (Fig.9) and the complexity of the
algorithm is computable due to its simplicity.

We compute the complexity of the proposed algorithm
taking into consideration the worst case, as the number of
probes is different from one tool to another and it is also
different between measurements.
Complexity = θ(Y +N ∗max(PM) ∗max(PT));
θ: is the asymptotic estimation of the complexity, where

the accurate result may differ due to the efficiency of the
implementation of the algorithm. PM is number of probes
defined for Measurements, PT is the number of probes for

Collect list of measurements form Y measurement models

i < Y

i=0

End

Start

No

measurement[i].name == MEAS.name

initiate temporary list for internal usage; variable is : List

Yes

Yes

No

i = i+1

MEAS entity (required measurement)

Collect list of Probes that are aggregated to each measurement entity; variable is PR; iterator is j

Collect list of Probes that are aggregated to each tool entity; variable is TPR; iterator is k

j=0

PR[j].name==TPR[k].name

List.add(TPR[k].name)

k = k+1

k=0,j=0

No

Yes

k<(TPR list size)
Yes

j=j+1

No

k=0

j<(PR list size)
Yes

Collect a list for all available tools (N tools); variable is : tool; iterator is t

t=0

t < N

List.size = MEAS.probes.size

No

SelectedTools.add(tool[t].name)

Yes

t = t+1

No

Yes NoList.clear

Initialize SelectedTools of type List

Fig. 8. The algorithm of the Tool Selection method

tools (simulators), N number of tools (simulators), and Y is
the number of the measurements.

VIII. VIDEO CONFERENCE EXAMPLE

A. Video Conferencing Requirements

One TS may contain several tasks, and each task may trigger
different types of applications. There is always a connection
between the available resources of a system and the application

Fig. 9. XPAND template using Eclipse Software

QoS requirements. The System resource management makes
trade offs when deciding the dedicated resources for each
session of a TS. This is related to the QoS profile of the user.

In order to early estimate the performance of the TS, we
link the functional and non-functional requirements to the
measurements that are modeled. These measurement models
are responsible to generate the measurement configuration that
a tool should run. They are connected with the design entities
(structural and behavioral).

The QoS of video conferencing TS are presented in [24].
The authors presents a multi-dimensional approach to analyze
and manage the system resources due to the QoS requirements.
These requirements are categorized in: Data Delivery Reliabil-
ity, Video Related Quality, Audio Related Quality. We choose
some of the parameters for our case study such as end-to-end
delays and Packet Rate [10].

Such measurements are not available in all network sim-
ulators, although they can be implemented. In our approach,
we intend to use tools not to develop them. Thus, we have
implemented the tool selection method, so to select the proper
tool due to the requirements that are specified previously in
the requirements’ phase (section III).

B. Measurement Modeling and Tool Specification

In this subsection, we present a customized measurement
model which target is to measure the session period (Fig.10)
as an example of measurements that are not already built in
network simulators.

This answers the criteria 1 and 5 in (section II). This means
that we add the ability of designing measurements with reuse
ability. The rest of the widely-used measurements that are
needed for the verification of Video Conference TS are already
implemented in some network simulators (e.g. OPNET, NS-3).

C. OPNET and NS-3 case study

The measurement models are fed to the model transfor-
mation (Fig.11) that is implemented using XPAND (Fig.9),

Session Period Measure

Measurement Model

End Session

Subtract times
Access

Access

Start Session

Session Period

Access

Probe

Probe

Measurement Function

Measure

SCSCF: NodeAsscociated with

From the design model

TechnologyFunction: Send Session Progress from S-CSCF to P-CSCF

Technology Function: Send Session Termination from S-CSCF to P-CSCF
Associated with

Associated with

Fig. 10. SessionPeriod Measurement model

Selection Mechanism

OPNET NS-3 ... Tool N

Set of Selected tools (Tool Chain)

Set of Tools

Jitter

SessionPeriod

Measurement Y

Measurements

Fig. 11. Example of Tool-Selection instance as applied in the network
simulation domain

and uses the extended Meta-Model (Fig.6) as a type-definition
source. The relation between the tool model and the measure-
ment model is obvious in (Fig.6).

We add the instance model of the customized measurement
(Session Period) to the NS-3 simulator properties to enforce
the tool selector to choose NS-3. NS-3 accepts C++ or Python
languages to configure simulation scenarios. This enables us
to implement the measurement functions in a flexible way
and using code generation, especially when they have math-
ematical operations (subtraction in the case of SessionPeriod
measurement). This case study aims to illustrate our method,
and the result is a list of the selected tool(s) due to the probe
availability.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a method for a tool selector
as generalized for different types of properties that a tool
may include. This method is implemented as an activity in
our general approach for detecting the errors and predicting
quality violations in a telecom service design earlier before
the implementation activity. Applying MDE makes it possible
to find model-based solutions for the different activities and
challenges in our approach. We link between the models to
produce other models or codes that are inputs for another

stage or can be themselves results. The choice of tool-chains
provides a solution to the variety of measurements. Our tool
selection method is based on model transformation that accepts
measurement and tool models as inputs and produce a list of
the proper tools, where another model transformation will han-
dle the code generation to obtain the configuration script that
is needed to configure every simulator. Additionally, we have
presented the model transformation rules as they guide the tool
selection algorithm using iterative methods. Our method takes
into account customized measurements that may rely on dif-
ferent types of probes. Our tool selection method decomposes
the complexity of the tool selector between modeling and rule
implementation activities. This reduces the complexity of the
transformation rules. The reusability of our method is achieved
thanks to the meta-model extension that we have proposed,
and the transformation rules that are clear from hard-coding.
Using XPAND model transformation makes it possible for
us to integrate the results of the tool-selection with other
activities in our approach. On the other side, the measurement
and tool-specification modeling needs domain and modeling
experience. Although models are reusable, but measurement
and tool specification modeling is a task that needs high
accuracy and experience, and consumes a considerable time.

For the future, we are investigating using requirements
to select the set of measurements needed in the verification
activity is an important part of our near future research. We
are going to investigate on the model checkers to be able to
check the behavioral view of the TS design. Additionally, we
are investigating the integration between the different tools
that forms the tool-chain. This integration should result in a
set of measurements that are going to be analyzed to obtain
the feedbacks that corrects the design or the requirements.

ACKNOWLEDGMENT

The authors acknowledge the support of OPNET community
in providing their academic edition, which made it possible
for them to use and integrate the simulation tools in their
transformation chain.

REFERENCES

[1] H. Berndt, G. Peter, and W. Masaki, “Service specification concepts
in tina-c,” in Proceedings of the 2nd Intl. Conf. on Intelligence in
Broadband Services and Networks: Towards a Pan-European Telecom-
munication Service Infrastructure. London, UK: ACM, 1994, pp. 355–
366.

[2] P. Combes and B. Renard, “Service validation,” Computer Networks,
vol. 31, no. 17, pp. 1817 – 1834, 1999.

[3] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering, V. R. Basili, Ed. Kluwer
Academic Publishers, 1999.

[4] P. M. Azuma, ISO/IEC CD 25000.2 - Software and Systems Engineering
– Software product quality requirements and evaluation (SQuaRE) -
Guide to SQuaRE, Joint Technical Committee ISO/IEC JTC 1, infor-
mation technology, Software and System Engineering, ISO Std., April
2003.

[5] V. Chiprianov, “Collaborative construction of telecommunications ser-
vices. An enterprise architecture and model driven engineering method,”
Ph.D. dissertation, Telecom Bretagne, France, 2012.

[6] J. Simonin, Y. Le Traon, and J. M. Jezequel, “An enterprise architecture
alignment measure for telecom service development,” 11th IEEE Inter-
national Enterprise Distributed Object Computing Conference, Proceed-
ings, pp. 476–483, 2007.

[7] G. A. Moreno and P. Merson, “Model-driven performance analysis,” in
Conference on the Quality of Software Architectures (QoSA 2008), ser.
LNCS, F. P. S. Becker and R. Reussner, Eds. Karlsruhe, Germany:
Springer, October 14-17 2008, pp. 135–151.

[8] A. Achilleos, K. Yang, N. Georgalas, and M. Azmoodech, “Pervasive
service creation using a model driven petri net based approach,” in
Wireless Communications and Mobile Computing Conference. IWCMC
’08., Aug. 2008, pp. 309 –314.

[9] Eclipse modeling. Eclipse. http://www.eclipse.org/modeling ; Last vis-
ited on 15-February-2013.

[10] I. Alloush, V. Chiprianov, Y. Kermarrec, and S. Rouvrais, “Linking
telecom service high-level abstract models to simulators based on model
transformations: The IMS case study,” in Information and Communi-
cation Technologies (EUNICE 2012), ser. Lecture Notes in Computer
Science, R. Szabó and A. Vidócs, Eds. Springer Berlin Heidelberg,
August 2012, vol. 7479, pp. 100–111.

[11] V. Chiprianov, I. Alloush, Y. Kermarrec, and S. Rouvrais, “Telecommu-
nications service creation: Towards extensions for enterprise architecture
modeling languages,” in 6th Intl. Conf. on Software and Data Technolo-
gies (ICSOFT), Seville, Spain, 2011, pp. 23–29.

[12] F. Arbab, S. Meng, and Y.-J. Moon, “Reo2mc: a tool chain for perfor-
mance analysis of coordination models,” in ESEC/FSE ’09 Proceedings
of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations
of software engineering, vol. I, Amsterdam, The Netherlands, August
24–28 2009, pp. 287–288.

[13] D. Ivanov, M. Orlić, C. Seceleanu, and A. Vulgarakis, “A set of
integrated tools for behavioral modeling and analysis of embedded
systems,” in ASE ’10 the proceedings of the IEEE/ACM international
conference on Automated software engineering, 2010.

[14] B. Berthomieu, J.-P. Bodeveix, S. D. Zilio, P.Dissaux, M. Filali, P. Gau-
fillet, S. Heim, and F. Vernadat, “Formal verification of AADL models
with FIACRE and TINA,” in Embedded Real Time Software and Systems
(ERTS) 2010. CNRS and Airbus, 2010.

[15] P. Dissaux and F. Singhoff, “Stood and cheddar: AADL as a pivot
language for analysing performances of real time architectures,” in
Proceedings of the European Real Time System conference. Toulouse,
France, 2008.

[16] V. Chiprianov, Y. Kermarrec, and S. Rouvrais, “Extending enterprise
architecture modeling languages: Application to telecommunications ser-
vice creation,” in the 27th Symposium On Applied Computing. Trento:
ACM, 2012, pp. 21–24.

[17] L. Chung and J. do Prado Leite, “On non-functional requirements
in software engineering,” in Conceptual Modeling: Foundations and
Applications, ser. Lecture Notes in Computer Science, A. Borgida,
V. Chaudhri, P. Giorgini, and E. Yu, Eds. Springer Berlin / Heidelberg,
2009, vol. 5600, pp. 363–379.

[18] The Open Group, ArchiMate 1.0 Specification, The Open Group Std.,
2009.

[19] D. Quartel, W. Engelsmanb, H. Jonkersb, and M. van Sinderenc, “A goal-
oriented requirements modelling language for enterprise architecture,” in
Enterprise Distributed Object Computing Conference, 2009. EDOC ’09.
IEEE International, University of Twente. IEEE, 2009, pp. 3 – 13.

[20] V. Chiprianov, Y. Kermarrec, and S. Rouvrais, “Meta-tools for Software
Language Engineering: A Flexible Collaborative Modeling Language
for Efficient Telecommunications Service Design,” in ICSE Workshop
on Flexible Modeling Tools, 2010.

[21] M. van Amstel, “The right tool for the right job: Assessing model trans-
formation quality,” in Computer Software and Applications Conference
Workshops (COMPSACW), 2010 IEEE 34th Annual, july 2010, pp. 69
–74.

[22] X. Chang, “Network simulations with OPNET,” in Winter Simulation
Conference Proceedings, vol. 1, 1999, pp. 307 –314 vol.1.

[23] ns-3 Manual-Release ns-3-dev, November 30 2012. [Online]. Available:
www.nsnam.org/docs/manual/ns-3-manual.pdf

[24] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen, “A
scalable solution to the multi-resource qos problem,” in Real-Time
Systems Symposium, 1999. Proceedings. The 20th IEEE, 1999, pp. 315
–326.

