On the angular momentum of a system of quantum particles

Keywords: 03.65.Ta angular momentum, magnetic moment, spin crisis

The properties of angular momentum and its connection to magnetic moment are explored, based on a reconsideration of the Stern-Gerlach experiment and gauge invariance. The separation of angular momentum of a quantum system of particles into orbital angular momentum plus intrinsic angular momentum is reconsidered, within the limits of the Schrödinger theory. A proof is given that, for systems of more than two particles, unless all of them have the same mass, the possibility of having eigenvalues of the form (n + 1/2)h is not excluded for the operators of angular momentum of the centre of mass and the internal angular momentum.

Introduction

We have no means to study the states of angular momentum of quantum systems but through their interaction with external electromagnetic fields. The simplest experimental arrangement is that of Stern-Gerlach (1922), were a collimated beam of silver atoms was passed through a region where there was a strong non-homogeneous magnetic field. The force acting on the magnetic moment of individual atoms produced the famous two state separation which, about three years later, will be taken as strong direct evidence in support of the 1 theory of electronic spin [1]. In this paper we get back in time to make a critical analysis of the Stern-Gerlach Experiment.

It is our opinion that there have been been some misconceptions, involving the relation between angular momentum and magnetic moment. As an example, consider [2, eq. 1.27 p. 11] giving the Lorentz force as predicted by Dirac's equation and our prediction in [3, eqs. 20-22] for the same force in the non relativistic limit.

In our first section, we prove that, in the presence of an electromagnetic field, it is not the case that μi ∝ Ĵi , where μi are the components of the magnetic moment of a quantum system and Ĵi are some operators such that [ Ĵi , Ĵj ] ∝ iǫ ijk Ĵk .

We find in this fact the possibility of explaining observed anomalies in the magnetic moment of protons and neutrons as well as the so called proton spin crisis [START_REF] Ashman | A measurement of the spin asymmetry and determination of the structure function g1 in deep inelastic muon-proton scattering[END_REF][START_REF] Londergan | Nucleon resonances and quark structure[END_REF].

In our third section we prove that, within the limits of Schrödinger theory, and for isolated systems of three or more particles, it is not the case that the projection of the orbital angular momentum and the internal angular momentum-along a given direction in space-have to be, in general, integer multiples of the h constant.

Angular momentum and magnetic moment

Let's start with a refresher of the way angular momentum gets to play a role in electrodynamics. This is standard textbook content, but we include it here because we have some remarks on it. Most problems in physics cannot be solved but making some approximations. When we apply the results so obtained to solve other problems, we need to have in mind the conditions under which those approximations were derived. Otherwise, we run the risk of getting results that, though they appear mathematically correct, do not correspond to reality and, most important: if the terms used to describe those approximations are used later in the formulation of a fundamental theory, logical inconsistencies can be introduced.

Consider a system of particles restricted to move, for whatever reason, inside a bounded region Ω of space, where there is an external magnetic field. The force on the i th particle is

f i = q i v i ∧ B(r i ).
Let r be a fixed point inside Ω, then, using Taylor's theorem we can approximate

f i = q i v i (t) ∧ B(r) + ∂B ∂r • (r i (t) -r)
Thus the instantaneous net force is made of two terms:

F = n i=1 q i v i (t) ∧ B(r) - ∂B ∂r • r + q i v i (t) ∧ ∂B ∂r • r i (t)
.

The average of the first term in a period of time τ that's long enough to minimize statistical fluctuations, must be zero, because the vector

B(r) - ∂B ∂r • r
remains constant and the the average of v i (t) is zero; otherwise the system will move outside Ω. In this way, we are left with an average force:

F = 1 τ z=t+ τ 2 z=t-τ 2 n i=1 q i v i (z) ∧ ∂B ∂r • r i (z) dz = 1 2τ z=t+ τ 2 z=t-τ 2 n i=1 (q i r i ∧ v i ) dz • ∂B ∂r
(For the steps omitted see [START_REF] Jackson | Classical Electrodynamics[END_REF].) If all the particles have the same charge/mass rate q/m, then

F = q 2mτ z=t+ τ 2 z=t-τ 2 n i=1 (m i r i ∧ v i ) dz • ∂B ∂r = q 2m L • ∂B ∂r (1) 
Where L is the average kinetic angular momentum.

If there are particles with different charge/mass rates, then

F = k i=1 q i 2m i L i • ∂B ∂r , ( 2 
)
where k is the number of kinds of particles and L i is the average angular momentum of particles of the i th type. Remarks:

1. To establish the connection between magnetic moment and kinetic angular momentum, the system of electric charges is supposed to be restricted to move inside a fixed region Ω where there is an external constant magnetic field. It is not supposed to move accross Ω.

2. The magnetic moment is related to the kinetic momentum, which is not necessarily the same as the canonical angular momentum, as is precisely the case in the presence of an external magnetic field [START_REF] Chavoya | Remarks on the theory of angular momentum[END_REF] [2, 1.4 p. 10].

3. The averaged instantaneous force in a period of time which is long enough to minimize statistical fluctuations is considered. That's the reason that the force is obtained as the gradient of a potential, despite the fact that it is impossible for the magnetic force to do any work at all.

4. Even for a strictly classical system of particles, it is not the case-if the charge/mass rate is not the same for all particles, as is the case for atoms-that the magnetic moment is proportional to the total kinetic angular momentum, as proved by eq. ( 2).

5. The quantization rules refer to physical magnitudes not to statistical averages of them.

In our view, it is precisely for those reasons that attempts to portrait Schrödinger's theory as failing to explain the result of the Stern-Gerlach experiment as in [START_REF] Bohm | Quantum Theory[END_REF][START_REF] Messiah | Quantum Mechanics[END_REF][START_REF] Sakurai | Modern Quantum Mechanics[END_REF] are not entirely justified: because the atoms in the Stern-Gerlach experiment are in motion; there is an external magnetic field-which cannot be considered constant in the system of reference of the centre of mass-hence, the operator of kinetic angular momentum is not -ihr ∧ ∇; and the average kinetic angular momentum is not the same as the instantaneous kinetic angular momentum. In addition, as we have shown in [START_REF] Chavoya-Aceves | An Explanation of spin based on classical mechanics and electrodynamics[END_REF], in the classical limit: the trajectory of the center of mass of a neutral system of electrical charges can be deflected by an inhomogeneous magnetic field, even if its internal angular momentum is zero.

We have presented the consequences of our second remark before in [START_REF] Chavoya | Remarks on the theory of angular momentum[END_REF], based on a remark by Weyl [START_REF] Weyl | The Theory of Groups and Quantum Mechanics[END_REF]:

Let's consider the Schrödinger's equation for an elementary particle with mass m and charge e in the presence of an external electromagnetic field:

ih ∂Ψ ∂t = (-ih ∇ -eA) 2 2m Ψ + eV Ψ, (3) 
where V and A are the electrodynamic potentials. As it's well known from electrodynamics, the configuration of the electromagnetic field will not change in the gauge transformation

(V, A) → V ′ = V + ∂λ ∂t , A ′ = A + ∇λ It is not difficult to prove that if Ψ is a solution of (3) then Ψe -i eλ h is a solution of ih ∂Ψ ′ ∂t = (-ih ∇ -eA ′ ) 2 2m Ψ ′ + eV ′ Ψ ′ ,
corresponding to the same physical state, because the corresponding density and current of probability are the same. However:

-ih Ψ ′⋆ r ∧ ∂ ∂r Ψ ′ = -ih Ψ ⋆ r ∧ ∂ ∂r Ψ -e Ψ * Ψ r ∧ ∂λ ∂r .
In other words: the expected value of the operator -ihr ∧ ∇ depends on the calibration of the electrodynamic potentials and, as a consequence, it cannot be the operator of an observable physical magnitude. Equation [START_REF] Chavoya | Remarks on the theory of angular momentum[END_REF] gives us the clue to get around this problem. The operator of kinetic momentum p = mv must be -ih ∇ -eA and, as a consequence, the operator of kinetic angular momentum must be L = -r ∧ (ih ∇ + eA).

(4)

We come to the same conclussion if we use Ehrenfest theorem, because

mv = i h Ĥ, r = -ih ∇ -eA
As we have shown before [START_REF] Chavoya | Remarks on the theory of angular momentum[END_REF] this substitution resolves the mathematical difficulties but, at the same time, it disrupts our understanding of magnetic moment, which is based on the commutation relations of the components of the canonical angular momentum operator

[ Li , Lj ] ∝ iǫ ijk Lk . It is simply not true that [μ i , μj ] ∝ iǫ ijk μk
for the components of magnetic moment ˆ µ in the presence of an electromagnetic field: The configuration of the electromagnetic field determines the eigenvalues of the kinetic angular momentum-as it is clear from (4)-and, correspondingly, it determines also the eigenvalues of the magnetic moment, that plays a central role in atomic and nuclear physics, and in our understanding of the magnetic properties of condensed matter as well. The problem is that we will always have an electromagnetic field where there is a magnetic moment. In general, it is not true that

ˆ µ ∝ Ĵ, where [ Ĵi , Ĵj ] ∝ iǫ ijk Ĵk ,
for some operators J i .

As an example, most of the rest mass of a proton or a neutron is supposed to come from the kinetic energy of the corresponding quarks; this suggests high speeds and high intensities of the electromagnetic field inside those particles and, as a consequence, the term eA might very well be the most important in (4) for protons and neutrons, which might be the cause of the anomalies observed in their magnetic moment [2, p. 241].

Intrinsic angular momentum

To motivate the discussion that follows, let's consider a system of classical particles with masses m i and charges q i . (Again, part of this is standard texbook material and it is included here because it is important to clarify our exposition later.) We will use the symbols r i and v i for the position and the velocity of the i th particle, respectively; for the corresponding variables associated to the center of mass-the system as a whole-we will use M , Q, r and v:

M = m i , Q = q i , r = m i • r i M , and v = m i • v i M .
The total angular momentum of the system L = l (i) is:

L = i m i r i ∧ v i = M r ∧ v + i m i r i ∧ v i ,
where r i = r i -r and v i = v i -v are the position vectors and velocities of the particles, in the system of reference where the center of mass is at rest. The term

L o = M r ∧ v (5) 
is the orbital angular momentum and

L s = i m i r i ∧ v i (6) 
is the internal angular momentum.

For a system made of two particles it is common to introduce the auxiliary vector

ρ = r 2 -r 1 = r 2 -r 1 . (7) 
Considering that

m 1 • r 1 + m 2 • r 2 = 0 we have r 1 = - m 2 m 1 • r 2
which, by virtue of (Eq. 7), implies that

r 2 = m 1 M • ρ,
and, in a similar fashion

r 1 = - m 2 M • ρ.
From those equations we can prove that

L s = µ • ρ × ˙ ρ, (8) 
where µ = m 1 •m 2 M , which is a well known result in classical mechanics, where the solution of a two-body problem (if the potential energy depends only on the distance between the two particles) is reduced to the solution of a single body problem in a central field-whilst the center of mass moves like a free particle-by means of the transformation

r = m 1 • r 1 + m 2 • r 2 M , ρ = r 2 -r 1 .
The use of those coordinates has a similar effect in quantum mechanics, where a Schrödinger equation of the form

ih ∂Ψ ∂t = - h2 2m 1 ∆ r 1 Ψ - h2 2m 2 ∆ r 2 Ψ + V (|r 2 -r 1 |) (9) 
is transformed into the separable equation

ih ∂Ψ ∂t = - h2 2M ∆ r Ψ - h2 2µ ∆ ρ Ψ + V ( ρ)Ψ.
The hamiltonian takes this form in correspondence with the classical decomposition of the kinetic energy:

K = P r 2 2M + P ρ 2µ .
The corresponding terms in the hamiltonian are

- h2 2M ∆ r and - h2 2µ ∆ ρ .
There is an analogous decomposition of the total angular momentum:

ˆ L = -ihr ∧ ∂ ∂r -ih ρ ∧ ∂ ∂ ρ . (10) 
Based on the principle of correspondence, we assume that the first term is the operator of the orbital angular momentum and the second is the operator of internal, or intrinsic, angular momentum of the system, considered as a whole. We can do a little better and prove that the last operator actually corresponds to the total angular momentum:

-ihr 1 ∧ ∂ ∂r 1 -ihr 2 ∧ ∂ ∂r 2
We show how to do this, though it might be obvious, because the existence of a mathematical proof is relevant for the work to come.

To start we have

r 1 = r - m 2 M ρ and r 2 = r + m 1 M ρ
In consequence

-ihr ∧ ∂ ∂r -ih ρ ∧ ∂ ∂ ρ = -ih m 1 r 1 + m 2 r 2 M ∧ ∂ ∂r 1 + ∂ ∂r 2 -ih (r 2 -r 1 )∧ - m 2 M ∂ ∂r 1 + m 1 M ∂ ∂r 2 = -ihr 1 ∧ ∂ ∂r 1 -ihr 2 ∧ ∂ ∂r 2
.

Two sets of spherical coordinates can be used to represent the components of r and ρ. Therefore, in this case of a system of two particles, because of [START_REF] Weyl | The Theory of Groups and Quantum Mechanics[END_REF], the allowed values of the projection of either, orbital or internal angular momentum, along any direction in space, are integer multiples of h, and the same is true for the total angular momentum.

Let's consider, in general, a system of n particles, introducing the new variables

ρ i = n i=1 α ij r j ,
where

r i = n i=1 β ij ρ j .
In other words, we suppose the matrix (α ij ) n×n to be invertible and, furthermore:

(α ij ) -1 n×n = (β ij ) n×n in such manner that: n k=1 α ik β kj = n k=1 β ik α kj = δ ij . (11) 
As a consequence, we have

∂ ∂r i = n k=1 ∂ ∂ ρ k ∂ ρ k ∂r i = n k=1 α ki ∂ ∂ ρ k and -ih n i=1 r i ∧ ∂ ∂r i = -ih n i=1 n j=1 n k=1 α ki β ij ρ j ∧ ∂ ∂ ρ k = -ih n j=1 n k=1 δ jk ρ j ∧ ∂ ∂ ρ k (12) = -ih n j=1 ρ j ∧ ∂ ∂ ρ j
This is interesting for us, because it rises the question if it is possible to write n linear combinations of the position vectors r i :

ρ i = n j=1 α ij r j ,
in such manner that the first of them is the position vector of the center of mass:

ρ 1 = n j=1 m j r j M
the Schrödinger's equation in the new variables takes the form (See eq. 9)

ih ∂Ψ ∂t = - h2 2M ∆ ρ 1 Ψ + Ĥ ρ 2 , ..., ρ n , ∂ ∂ ρ 2 , • • • , ∂ ∂ ρ n Ψ (13) 
and

  Ĥ, -ih n j=2 ρ j ∧ ∂ ∂ ρ j   = ˆ 0.
If we can prove that this problem has a solution, we will be justified in our assumption that Schrödinger's theory predicts that the allowed values of the projection of the internal angular momentum along an arbitrary spatial direction are integer multiples of the h constant. Though this can be true for the total angular momentum it is not necessarily true for its components: the orbital angular momentum and the intrinsic angular momentum.

The Case of Three Particles

To simplify our discussion we consider a system made of three particles. Then

M ρ 1 = m 1 r 1 + m 2 r 2 + m 3 r 3 (14) 
ρ 2 = α 21 r 1 + α 22 r 2 + α 23 r 3 ρ 3 = α 31 r 1 + α 32 r 2 + α 33 r 3
The inverse of this relation, as follows from a trivial application of Cramer's rule, is given by:

r 1 = M (α 22 α 33 -α 23 α 32 ) ρ 1 + (m 3 α 32 -m 2 α 33 ) ρ 2 + (m 2 α 23 -m 3 α 22 ) ρ 3 m 1 (α 22 α 33 -α 23 α 32 ) + m 2 (α 23 α 31 -α 21 α 33 ) + m 3 (α 21 α 32 -α 22 α 31 ) r 2 = M (α 23 α 31 -α 21 α 33 ) ρ 1 + (m 1 α 33 -m 3 α 31 ) ρ 2 + (m 3 α 21 -m 1 α 23 ) ρ 3 m 1 (α 22 α 33 -α 23 α 32 ) + m 2 (α 23 α 31 -α 21 α 33 ) + m 3 (α 21 α 32 -α 22 α 31 ) r 3 = M (α 21 α 32 -α 22 α 31 ) ρ 1 + (m 2 α 31 -m 1 α 32 ) ρ 2 + (m 1 α 22 -m 2 α 21 ) ρ 3 m 1 (α 22 α 33 -α 23 α 32 ) + m 2 (α 23 α 31 -α 21 α 33 ) + m 3 (α 21 α 32 -α 22 α 31 )
The transformation [START_REF] Hegerfeldt | Theoretical challenges in atom optics: Atomic and molecular diffraction by transmission gratings[END_REF] has to be invertible; in consequence we require:

m 1 m 2 m 3 α 21 α 22 α 23 α 31 α 34 α 33 = M (15) 
(The value of this determinant can be fixed at will, with the only condition that it is not zero.) For an isolated system, the forces can only depend on the differences r ir j , and not on the position of the center of mass, therefore, we must have that α 22 α 33 -α 23 α 32 = α 23 α 31 -α 21 α 33 = α 21 α 32 -α 22 α 31 = 0, [START_REF] Martens | On the possibility of measuring the electron spin in an inhomogeneous magnetic field[END_REF] as follows from imposing the condition that r 1r 2 , r 2r 3 , r 1r 3 are independent on ρ 1 and the fact that ( 14) is invertible.

Let's consider now the operator of kinetic energy:

K = - h2 2M ∂ ∂r 1 2 + ∂ ∂r 2 
2

+ ∂ ∂r 3 
2

From equations ( 14) we get

∂ ∂r i = m i M ∂ ∂ ρ 1 + α 2i ∂ ∂ ρ 2 + α 3i ∂ ∂ ρ 3
Therefore, to achieve the separation (13) we must have:

3 i=1 m i α 2i = 3 i=1 m i α 3i = 0,
because in this way the operators

∂ ∂ ρ 1 • ∂ ∂ ρ 2 and ∂ ∂ ρ 1 • ∂ ∂ ρ 3
whill not appear in the hamiltonian, as required by eq. ( 13). This means that the formal vector α 1 = (m 1 , m 2 , m 3 ) must be orthogonal to the formal vectors α 2 = (α 21 , α 22 , α 23 ) and α 3 = (α 31 , α 32 , α 33 ) and, therefore, it must be parallel, or anti-parallel to α 2 ∧ α 3 . However, according to [START_REF] Martens | On the possibility of measuring the electron spin in an inhomogeneous magnetic field[END_REF] the components of α 2 ∧ α 3 are identical and, as a consequence, the Schrödinger equation will be separable in the form [START_REF] Durr | Lattice QCD at the physical point: light quark masses[END_REF], by a linear transformation of the form [START_REF] Hegerfeldt | Theoretical challenges in atom optics: Atomic and molecular diffraction by transmission gratings[END_REF] if and only if the masses are identical, in this case of three particles.

Notice that the quantities in ( 16) are the minor determinants D 11 , D 12 , and D 13 of the matrix: and that a similar condition will be necessary for an arbitrary number of particles, as well as the orthogonality conditions: the Schrödinger equation will be separable in the form [START_REF] Durr | Lattice QCD at the physical point: light quark masses[END_REF], by a linear transformation of the form ( 14) if and only if the masses are identical. This is a very strong condition which is not even true for protons and neutrons, if we consider the experimental facts in support of the theory that they are made of up and down quarks [START_REF] Bloom | High-Energy Inelastic ep Scattering at 6 and 10[END_REF][START_REF] Breidenbach | Observed Behavior of Highly Inelastic Electron-Proton Scattering[END_REF], with possibly different masses [START_REF] Durr | Lattice QCD at the physical point: light quark masses[END_REF]. ( Disregarding the fact that, apparently, most of the rest mass of nucleons comes from the kinetic energy of the corresponding quarks and the energy of the gluon field.)

The fact that we cannot separate Schrödinger's equation in the form (13) doesn't mean that we cannot decompose the total angular momentum as the sum of an orbital angular momentum (of the center of mass) and an intrinsic angular momentum. We can do that:

Lorbital = -ih n i=1 m i r i M ∧ n i=1 ∂ ∂r i
and Lintrinsic = -ih

n i=1 r i ∧ ∂ ∂r i
-Lorbital .

We can prove that each of those operators satisfies the well known commutation relations. What we cannot guarantee is that the eigenvalues of the projection of the orbital angular momentum or the intrinsic angular momentum along an arbitrary spatial direction will be multiples of h: they can be multiples of h/2, as follows from the commutation relations. Additional complications appear when we consider charged particles as we have mentioned before [START_REF] Chavoya | Remarks on the theory of angular momentum[END_REF].

Concluding remarks

A silver atom is a many body quantum system and difraction of atoms has recently been observed [START_REF] Hegerfeldt | Theoretical challenges in atom optics: Atomic and molecular diffraction by transmission gratings[END_REF]. The possibility of obtaining an exact general solution of Schrödinger's equation for such a complex system is nonexistent and the model where a nucleus of an atom of silver is considered as a classical particle surrounded by electrons is only an approximation. We know we cannot get an exact solution for helium, let's not say for silver. However: we have proved that, within the limits of Schrödinger theory, i. e. without introducing the concept of a spining electron, it is possible to observe an intrinsic angular momentum h/2 for systems of particles that are more complex than hydrogen. Moreover, as we have shown in [START_REF] Chavoya-Aceves | An Explanation of spin based on classical mechanics and electrodynamics[END_REF], in the classical limit: the path of the center of mass of a neutral system of electrical charges can be deflected by an inhomogeneous magnetic field, even if its internal angular momentum is zero. This is predicted by classical mechanics and therefore it must be predicted by Schrödinger equation, because quantum mechanics leads to the same results as classical mechanics when the mass grows. This raises a question: If an electron is an elementary particle, as it seems to be, why does it have a spin?

From the very beginning, both, Bohr and Pauli, argued against the possibility of measuring the spin of a free electron. Though counter arguments have been given [16, e. g. ], in those arguments the fact is ignored that in the presence of a magnetic field the operator of kinetic angular momentum, and its eigenvalues, depend on the configuration of the electromagnetic field. More recent experimental studies, using Penning traps, that rely on a strong axial magnetic field to confine particles radially and a quadrupole electric field to confine them axially, like [17, eq. 1], disregard the same fact. Besides, an electron in a Penning trap is not a free electron.
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