
HAL Id: hal-00869469
https://hal.science/hal-00869469v2

Preprint submitted on 28 May 2014 (v2), last revised 29 Sep 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full abstraction for fair testing in CCS (expanded
version)

Tom Hirschowitz

To cite this version:

Tom Hirschowitz. Full abstraction for fair testing in CCS (expanded version). 2013. �hal-00869469v2�

https://hal.science/hal-00869469v2
https://hal.archives-ouvertes.fr

FULL ABSTRACTION FOR FAIR TESTING IN CCS

(EXPANDED VERSION)

TOM HIRSCHOWITZ

CNRS, Université de Savoie

Abstract. In previous work with Pous, we defined a semantics for CCS which may both
be viewed as an innocent form of presheaf semantics and as a concurrent form of game
semantics. We define a semantic analogue of fair testing equivalence, which we prove fully
abstract w.r.t. standard fair testing equivalence.

The proof relies on a new algebraic notion called playground, which represents the
‘rule of the game’. From any playground, we derive two languages equipped with labelled
transition systems, as well as a strong, functional bisimulation between them.

Key words and phrases: Programming languages; categorical semantics; presheaf semantics; game seman-
tics; concurrency; process algebra.

An extended abstract of this paper has appeared in CALCO ’13.
Partially funded by the French ANR projets blancs PiCoq ANR-10-BLAN-0305 and Récré ANR-11-BS02-

0010.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© T. Hirschowitz
Creative Commons

1

2 T. HIRSCHOWITZ

Contents

1. Introduction 3
1.1. Overview of the approach 3
1.2. Main result: which behavioural equivalence? 5
1.3. Plan and overview 5
1.4. Related work 8
2. Prerequisites and preliminaries 9
2.1. Sets, categories, presheaves 9
2.2. Transition systems 11
2.3. CCS 14
3. Summary of previous work 16
3.1. Diagrams 16
3.2. From diagrams to moves 18
3.3. From moves to plays 20
3.4. Behaviours and strategies 21
3.5. Semantic fair testing 24
4. Playgrounds: from behaviours to strategies 24
4.1. Motivation: a pseudo double category 24
4.2. Behaviours 25
4.3. More axioms 27
4.4. Views 29
4.5. From behaviours to strategies 34
5. Playgrounds: transition systems 37
5.1. A syntax for strategies 37
5.2. The labelled transition system for strategies 40
5.3. Process terms 43
5.4. The labelled transition system for process terms 44
5.5. Translation and a first correctness result 46
6. Graphs and fair morphisms 47
6.1. Graphs with complementarity 47
6.2. Modular graphs and fair testing equivalence 50
6.3. Adequacy 53
6.4. Trees 56
6.5. Main result 58
7. CCS as a playground 61
7.1. A pseudo double category 62
7.2. Correctness 63
7.3. CCS as a pre-playground 66
7.4. Towards CCS as a playground 71
7.5. CCS as a playground 73
8. Conclusion and perspectives 76
8.1. Conclusion 76
8.2. Perspectives 76
References 77

FULL ABSTRACTION FOR FAIR TESTING IN CCS 3

1. Introduction

Games Concurrency
position configuration
player agent
move action
play trace

This paper is about game semantics for CCS [46]. Game se-
mantics is originally a very successful approach to sequential
denotational semantics [48, 29, 2]. Its basic idea is to interpret
programs as strategies for a player in a game, and the computa-
tional environment as an opponent. Composition of programs
is handled by letting the corresponding strategies interact. We
mostly use game semantical terminology in this paper, but the above dictionary may help
the intuition of concurrency theorists.

Denotational models of CCS are extremely diverse, and treat various behavioural equiv-
alences, as surveyed by Winskel and Nielsen [58]. The closest game semantical work seems
to be Laird’s model [36], which achieves full abstraction w.r.t. trace (a.k.a. may testing)
equivalence for a fragment of π. The goal of the present paper is to design the first game
semantics for a finer equivalence than trace equivalence, in the simpler setting of CCS (we
plan to address the full π-calculus in future work). The reason Laird is limited to trace
equivalence is that the standard notion of strategy is a set of plays (with well-formedness
conditions). Hence, e.g., the famous coffee machines, a.b ` a.c and a.pb ` cq, are identi-
fied. Following two recent, yet independent lines of work [52, 27], we generalise strategies
by allowing them to accept plays in several ways, thus reconciling game semantics with
presheaf models [33]. Winskel et al.’s approach is only starting to be applied to concrete
languages, see for example the work in progress on an affine, concurrent variant of Idealised
Algol [9]. The approach of [27, 28] was used to give a game semantics for CCS, and define
a semantic analogue of fair testing equivalence, but no adequacy result was proved. We
here prove full abstraction of semantic fair testing equivalence w.r.t. standard fair testing
equivalence. Our model is compositional, since (1) all syntactic constructs of CCS have
natural interpretations, and (2) global dynamics may be inferred from local dynamics, as
in any game semantics (see the paragraph on innocence below and Sections 3.4 and 3.4.3).

1.1. Overview of the approach.

Truly concurrent plays. First of all, as in [52], our notion of play is truly concurrent. Indeed,
it does not keep track of the order in which (atomic) moves occur. Instead, it only retains
causal dependencies between them (see Section 3.3). Furthermore, our plays form a proper
category, which enables a smooth treatment bound variables. Briefly, plays that differ only
up to a permutation of channels are isomorphic, and by construction strategies handle them
correctly.

Branching behaviour. Second, we deal with branching behaviour. Standardly, and ignoring
momentarily the previous paragraph, a strategy is essentially a prefix-closed set of ‘accepted’
plays. This is equivalent to functors Eop Ñ 2, where E is the poset of plays ordered by prefix
inclusion, and 2 is the poset 0 ď 1 (E stands for ‘extension’). A play u is ‘accepted’ by such
a functor F when F puq “ 1, and if u1 ď u, then functoriality imposes that F puq ď F pu1q,
hence F pu1q “ 1: this is prefix-closedness. In order to allow plays to be accepted in several
ways, we follow presheaf models [33] and move to functors Eop Ñ set, where set is the

4 T. HIRSCHOWITZ

category of finite ordinals and all functions between them1. Thus, to each play u P E, a
strategy associates a set of ways to accept it, empty if u is rejected. E.g., in the simplistic
setting where E denotes the poset of words over actions, ordered by prefix inclusion, The
coffee machine a.b ` a.c is encoded as the presheaf S defined on the left and pictured on
the right:

‚ Spεq “ t‹u,
‚ Spaq “ tx, x1u,
‚ Spabq “ tyu,
‚ Spacq “ ty1u,

‚ S empty otherwise,
‚ Spε ãÑ aq “ tx ÞÑ ‹, x1 ÞÑ ‹u,
‚ Spa ãÑ abq “ ty ÞÑ xu,
‚ Spa ãÑ acq “ ty1 ÞÑ x1u,

‹

x x1

y y1.

a a

b c

This illustrates what is meant by ‘accepting a play in several ways’: the play a is here
accepted in two ways, x and x1. The other coffee machine is of course obtained by identifying
x and x1. In our setting, plays form a proper category, and furthermore, they are viewed as
going from some initial position to some final one. Strategies are thus considered relative
to some initial position X, hence are presheaves Eop

X Ñ set on the category of plays over X.

Innocence. Finally, defining strategies as presheaves on plays is too naive, which leads us
to reincorporate the game semantical idea of innocence. Example 3.14 below exhibits such
a presheaf in which two players synchronise on a public channel a, without letting others
interfere. In CCS, this would amount to a process like a.P | a.Q | a.R in which, say, the first
two processes could arrange for ruling out the third. Considering such presheaves as valid
strategies would break our main result.

In the Hyland-Ong approach, innocent strategies may be defined as prefix-closed sets of
views, where views are special plays representing the information that a player may ‘access’
during a global play. The global strategy S associated to an innocent strategy S is then
recovered by decreeing that S accepts all plays whose views are accepted by S. This leads
us to consider a subcategory EV of the category E of plays, whose objects are called views.
We thus have for each position X two categories of strategies: the naive one, the category
rEop
X , sets of behaviours on X, consists of presheaves on plays; the more relevant one, the

category rpEV
Xq

op , sets of strategies on X, consists of presheaves on views.
How, then, do we recover the global behaviour associated to a strategy, which is crucial

for defining our semantic fair testing equivalence? The right answer is given by a standard
categorical construction called right Kan extension (see Section 3.4.2). Roughly, for the
behaviour BS associated to a strategy S, a way to accept some play u P EX is a compatible
family of ways for S to accept all views of u. In the boolean, setting (considering functors
Eop
X Ñ 2), this reduces to BS accepting u iff all its views are accepted by S. Our definition

thus generalises Hyland and Ong’s.
Finally, game semantical parallel composition (different from standard parallel composi-

tion, though inspired from it) intuitively lets strategies interact together. We account for it
as follows. If we partition the players of a play X into two teams, we obtain two subpositions

pEV
X1
qop pEV

Xq
op pEV

X2
qop

set
S1 S2

rS1,S2s

X1 ãÑ X Ðâ X2, each player of X belonging to X1 or
X2 according to its team. We have that the category
EV
X of views on X is isomorphic to the coproduct cat-

egory EV
X1
`EV

X2
. The parallel composition of any two

strategies S1 and S2 on X1 resp. X2 is simply obtained by universal property of coproduct,
as above.

1The author learnt this point of view from a talk by Sam Staton.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 5

1.2. Main result: which behavioural equivalence? With our game in place, we easily
define a translation of CCS processes into strategies. It then remains to demonstrate the
adequacy of this translation. Our strategies are actually rather intensional, so we cannot
hope for adequacy w.r.t. equality of strategies. Instead, we exploit the rich structure enjoyed
by our model to define both an lts and an analogue of fair testing equivalence on the
semantic side, i.e., for strategies. We then provide two results. The most important, in
the author’s view, is full abstraction w.r.t. standard fair testing semantics (Corollary 6.47).
But the second result might be considered more convincing by many: it establishes that
our semantics is fully abstract w.r.t. weak bisimilarity (Corollary 6.46). A reason why the
latter result is here considered less important originates in the tension between lts semantics
and reduction semantics [50]. Briefly, reduction semantics is simple and intuitive, but it
operates on equivalence classes of terms (under so-called structural congruence). On the
other hand, designing ltss is a subtle task, rewarded by easier, more structural reasoning
over reductions. We perceive lts semantics as less intrinsic than reduction semantics. E.g.,
for more sophisticated calculi than CCS, several ltss exist, which yield significantly different
notions of bisimilarity.

‚ ‚ ‚ ‚

‚ ‚ ‚

τ

τ

τ

a

τ

b

Beyond lts-based equivalences, we see essentially two options:
barbed congruence [55] or some testing equivalence [10]. Barbed con-
gruence equates processes P and Q, roughly, when for all contexts C,
CrP s and CrQs are weakly bisimilar w.r.t. reduction (i.e., only τ -actions are allowed), and
furthermore they have the same interaction capabilities at all stages. Barbed congruence is
sometimes perceived as too discriminating w.r.t. guarded choice. Consider, e.g., the CCS
process P1 pictured above, and let P2 be the same with a and b swapped. Both processes
may disable both actions a and b, the only difference being that P1 disables a before dis-
abling b. Barbed congruence distinguishes P1 from P2 (take C “ ˝ | a), which some view as
a deficiency.

Another possibility would be must testing equivalence [10]. Recall that P must pass
a test process R iff all maximal executions of P | R perform, at some point, a fixed ‘tick’
action [21], here denoted by ♥. Then, P and Q are must testing equivalent iff they must
pass the same tests. Must testing equivalence is sometimes perceived as too discriminating
w.r.t. divergence. E.g., consider Q1 “ !τ | a and Q2 “ a. Perhaps surprisingly, Q1 and Q2

are not must testing equivalent. Indeed, Q2 must pass the test a.♥, but Q1 does not, due
to infinite, silent reduction sequences.

We eventually go for fair testing equivalence, which was originally introduced (for CCS-
like calculi) to rectify both the deficiency of barbed congruence w.r.t. choice and that of
must testing equivalence w.r.t. divergence. The idea is, as in most testing semantics, that
two processes are equivalent when they should pass the same tests. A process P should
pass the test T iff their parallel composition P | T never loses the ability of performing the
special ‘tick’ action, after any tick-free reduction sequence. Fair testing equivalence thus
equates P1 and P2 above, as well as Q1 and Q2. Cacciagrano et al. [8] provide an excellent
survey.

1.3. Plan and overview. We now give a bit more detail on the contents. In Section 2, we
introduce our notations and some preliminaries. Section 3 summarises from HP the game
for CCS, the notions of strategy and behaviour, the translation L´M of CCS processes into
strategies, and semantic fair testing equivalence. The rest is devoted to proving that L´M,

6 T. HIRSCHOWITZ

here decomposed as J´K ˝ θ (see below), is such that P „f,s Q iff JθpP qK „f JθpQqK, where
„f,s is standard fair testing equivalence (Corollary 6.47).

1.3.1. Playgrounds. Our proof of this result takes a long detour to introduce a new algebraic
gadget called playground, which we now motivate. Our first attempts at proving the full
abstraction result were obscured by a tight interleaving of

‚ results stating common properties of moves in the game, or of plays, and
‚ results and constructions on strategies derived from those (e.g., the lts for strate-

gies).

On the other hand, the reasons our constructions work are intuitively simple. Namely,
innocent strategies essentially amount to describing syntax trees by selecting their branches
amongst a set of all possible branches. This enlarges the universe of terms slightly, but in
game semantics, one studies properties of terms which also make sense for such generalised
terms. Compositionality and the definition of our semantic fair testing equivalence are
examples where using strategies instead of terms tends to simplify the constructions. E.g.,
associated behaviours are recovered from innocent strategies through Kan extension, thanks
to an expressive notion of morphism between plays. Our results essentially follow from the
fact that this correspondence between terms and strategies actually works.

Example 1.1. To illustrate what we mean by generalised terms, consider standard, un-
labelled binary trees as a stripped down example of a term language. Such trees admit a
description as prefix-closed sets of words over t0, 1u (their sets of occurrences). In order to
get exactly trees, such sets should be constrained a bit. E.g., the empty set of words, or
the set tpq, p0qu do not describe any tree.

Playgrounds are a first attempt at a general framework describing this correspondence
between terms and strategies. We develop their theory in Sections 4 and 5, whose main
result is a strong bisimulation between both presentations (i.e., terms vs. strategies). This
is then expoited in the next sections to derive the main results.

The basis for playgrounds are pseudo double categories [22, 23, 38, 19], a weakening
of Ehresmann’s double categories [12, 13]. Playgrounds are thus pseudo double categories
with additional structure. The objects of a playground represent positions in the game.
There are two kinds of morphisms: vertical morphisms represent plays, while horizontal
ones represent embeddings of positions. E.g., there are special objects representing ‘typical’
players; and a player of a position X is a horizontal morphism dÑ X from such a typical
player, in a Yoneda-like way. There are then axioms to model atomicity (plays may be
decomposed into atomic moves) and locality (plays over a large position may be restricted
to any subposition; each player only sees part of the play). There are finally a few more
technical axioms.

In Section 4, we give the definition and derive a few basic results and constructions.
In particular, we define a naive notion of strategy, behaviours, and a less naive notion,
strategies. Finally, we relate the two by exhibiting a functor from behaviours to strategies.
In Section 5, we prove that strategies are in bijective correspondence with infinite terms in
a certain language. We then derive from this an lts SD for strategies. Furthermore, we
define a second language, which is closer to usual process calculi. And indeed, instantiating
this general language to our game for CCS yields essentially CCS, the only difference being
that channel creation is treated on an equal footing with input and output. We further
equip this language of process terms with an lts TD. Finally, we define a translation from

FULL ABSTRACTION FOR FAIR TESTING IN CCS 7

process terms to strategies J´K : TD Ñ SD, which is proved to be a strong bisimulation
(Theorem 5.35).

At this point, it remains

(1) to show that the pseudo double category DCCS formed by our game does satisfy the
axioms for playgrounds, and

(2) to use the strong bisimulation J´K to derive our main results.

1.3.2. Graphs with complementarity. We start with (2), because we feel doing otherwise
would disrupt the flow of the paper. Indeed, it should not be surprising at all that DCCS

forms a playground; and furthermore the methods employed to show this are in sharp
contrast with the rest of the paper. The plan for (2), carried out in Section 6, is as follows.

First, we reduce semantic fair testing equivalence to fair testing equivalence in the lts
SDCCS , thus bridging the gap between the game semantical world and ltss. But this is
not as simple as it looks. Indeed, Hennessy and De Nicola’s original setting for testing
equivalences [10] is not quite expressive enough for our purposes, which leads us to define a
slightly more general one, called modular graph with complementarity. First, our setting is
‘typed’, in the sense that not all tests may be applied to a process P , only tests of a type
‘compatible’ with P . Furthermore, in modular graphs with complementarity, fair testing
equivalence relies on a notion of complementarity saying when two transitions may be glued
together to form a closed-world transition. Thus, fair testing equivalence is ‘intrinsic’, i.e.,
does not depend on any alphabet. So we have a mere lts SDCCS over an ad hoc alphabet
Q derived from DCCS , and we need promote it into a modular graph with complementarity.
This goes by refining the original alphabet Q with ‘interfaces’. We then define a morphism
χ : IQÑ Q, and pull back SDCCS along χ, thus obtaining our modular graph with comple-

mentarity S
IQ
DCCS (which is thus also an lts over IQ). In passing, we do the same for TDCCS ,

which yields T
IQ
DCCS : this will be useful later. We finally prove that fair testing equivalence

in S
IQ
DCCS coincides with semantic fair testing equivalence (Lemma 6.24). Similarly, we con-

struct a modular graph with complementarity CCS for CCS, and show that fair testing
equivalence therein coincides with standard fair testing equivalence (Proposition 6.19). We

are thus reduced to proving that some composite CCS
θ
ÝÑ T

IQ
DCCS

J´K
ÝÝÑ S

IQ
DCCS is fair, i.e.,

preserves and reflects fair testing equivalence.
Our second step is to establish a sufficient condition for a relation R : G H to be

fair and to apply this to the graph of our translation CCS Ñ S
IQ
DCCS . The idea is to define

what an adequate alphabet A should be in our setting, and to prove that, essentially, if we
can find an adequate alphabet A for G and H, such that R is a relation over A, then R is
fair as soon as

‚ R is included in weak bisimilarity over A, and
‚ both graphs have enough A-trees, in a sense inspired by the notion of failure [51].

In order to apply this, we transform S
IQ
DCCS and T

IQ
DCCS into modular graphs with comple-

mentarity over the same alphabet A (i.e., set of labels) as CCS . We proceed by ‘relabeling’

along some morphism of graphs IQ ξ
ÝÑ A. We still have our translation T

IQ
DCCS

J´K
ÝÝÑ S

IQ
DCCS ,

which is a strong, functional bisimulation over A. It thus remains to check that (a) the map

CCS
θ
ÝÑ T

IQ
DCCS is included in weak bisimilarity, and (b) both CCS and S

IQ
DCCS have enough

A-trees. Roughly, G has enough A-trees when, for any t in a certain class of tree-like ltss

8 T. HIRSCHOWITZ

over A called A-trees, there exists xt P G weakly bisimilar to t. For (b), all three ltss under
consideration clearly have enough A-trees. For (a), our proof is brute force.

1.3.3. CCS as a playground. We finally deal in Section 7 with the last missing bit of our
proof: we show that DCCS forms a playground. This rests upon the following two main
ingredients.

First, we design a correctess criterion for plays, in a sense close to correctness criteria in
linear logic. Namely, plays from some position X to position Y are represented as particular

cospans Y
s
ÝÑ U

t
ÐÝ X in some category. Specifically, they are obtained by closing a given

set of cospans named moves under identities and composition. We design a combinatorial
criterion for deciding when an arbitrary cospan is indeed a play.

The second main ingredient is a construction of the restriction of a play U from some
position X to a subposition X 1 ãÑ X. Briefly, this means computing the part of U which is
relevant to players in X 1. This construction is almost easy: most of U may be ‘projected’
back onto the initial position X, and then a mere pullback

U|X 1 U

X 1 X

of sets gives the needed restriction. The glitch is that in general some parts of U may not
canonically be projected back onto X. The principle for this projection is as simple as:
project, e.g., input moves to the inputting player. The problem arises for synchronisations.
Projecting them to the channel over which the synchronisation occurs does not yield the
desired result, and similarly projecting to either of the involved players fails. Our solution
is to ignore synchronisations at first, and later reintroduce them automatically using a
technique from algebraic topology: factorisation systems [31].

With both of these ingredients in place, the proof is relatively straightforward.
Section 8 concludes and provides some perspectives for future work.

1.4. Related work. Other general frameworks aiming at an effective, general theory of
programming languages include mathematical operational semantics [56], Kleene coalge-
bra [6, 5], the Tile model [18, 7], relative monads [3], and cartesian closed 2-categories [26].
To the author’s knowledge, all these frameworks except Kleene coalgebra attempt to or-
ganise the traditional techniques of syntax with variable binding and reduction / SOS rules
into some categorical structure. In Kleene coalgebra, the main idea is that both the syntax
and the semantics of various kinds of automata should be derived from more basic data
describing, roughly, the ‘rule of the game’. Formally, starting from a well-behaved (polyno-
mial) endofunctor on sets, one constructs both (1) an equational theory and (2) a sound and
complete coalgebraic semantics. This framework has been applied in traditional automata
theory, as well as in quantitative settings. Nevertheless, its applicability to programming
language theory is yet to be established. E.g., the derived languages do not feature paral-
lel composition. Our playgrounds may be seen as a first attempt to convey such ideas to
the area of programming language theory. Technically, our framework is rather different
though, in that we replace the equational theory by a transition system, and the coalgebraic
semantics by a game semantics. To summarise, our approach is close in spirit to Kleene

FULL ABSTRACTION FOR FAIR TESTING IN CCS 9

coalgebra, albeit without quantitative aspects. Conversely, Kleene coalgebra resembles our
approach without innocence.

Beyond general frameworks, building upon previous work [1, 43, 45] on asynchronous
games, a series of papers by Winskel and collaborators (see, e.g., Rideau and Winskel [52],
Winskel [57]) attempt to define a notion of concurrent strategy encompassing both innocent
game semantics and presheaf models. Ongoing work evoked above [9] shows that the model
does contain innocent game semantics, but presheaf models are yet to be investigated.
(Their notion of innocence, borrowed from Faggian and Piccolo [14], is not intended to be
related to that of Hyland and Ong.) In their framework, a game is an event structure, whose
events are thought of as moves, equipped with a notion of polarity. In one of the most recent
papers in the series [57], Winskel establishes a strong relationship between his concurrent
strategies and presheaves. For a given event structure with polarity A, he considers the so-
called Scott order on the set CpAq configurations of A. For two configurations c and d, we
have c ĎA d iff d may be obtained from c by removing some negative moves and then adding
some positive ones, in a valid way. Strategies are then shown to coincide with presheaves
on pCpAq,ĎAq. This is close in spirit to our use of presheaves, but let us mention a few
differences. First, our games do not directly deal with polarity. Furthermore, in our setting,
for any morphism p Ñ q of plays, q is intuitively bigger than p in some way, unlike what
happens with the Scott ordering. Finally, an important point in our use of (pre)sheaves is
that, unlike configuration posets, our plays form proper categories, i.e., homsets may contain
more than one element (intuitively, the same view may have several occurrences in a given
play). Thus, potential links between both approaches remain to be further investigated.

To conclude this paragraph, let us mention a few, more remotely related lines of work.
Melliès [44], although in a deterministic and linear setting, incorporates some ‘concurrency’
into plays by presenting them as string diagrams. Our notion of innocent strategy shares
with Harmer et al.’s [25] presentation of innocence based on a distributive law the goal of
better understanding the original notion of innocence. Finally, others have studied game
semantics in non-deterministic [24] or concurrent [20, 36] settings, using coarser, trace-based
behavioural equivalences.

2. Prerequisites and preliminaries

In this section, we recall some needed material and introduce our notations. We attempt to
provide intuitive, yet concise explanations, but these may not suffice to get the non-specialist
reader up to speed, so we also provide references when possible.

For the reader’s convenience, we finally provide in Figure 6 (end of paper) a summary
of notations, beyond those introduced here.

2.1. Sets, categories, presheaves. We make intensive use of category theory, of which we
assume prior knowledge of categories, functors, natural transformations, limits and colimits,
adjoint functors, presheaves, bicategories, Kan extensions, and pseudo double categories.
All of this except pseudo double categories is entirely covered in Mac Lane’s standard text-
book [41] and the beginning of Mac Lane and Moerdijk [42]. For a more leisurely introduc-
tion, one may consult Lawvere and Schanuel [37], or the forthcoming book by Leinster [39],
which covers everything up to presheaves. The needed material on Kan extensions roughly
amounts to their expression as ends, which is recalled when used (Section 3.4.2). The last
bit, namely the notion of pseudo double category is briefly recalled below, after fixing some

10 T. HIRSCHOWITZ

notation. Finally, there is one very local use of adhesive category theory [35] in the proof
of Lemma 7.35.

Throughout the paper, any finite ordinal n is seen as t1, . . . , nu (rather than t0, . . . , n´
1u). In any category, for any object C and set X, let X ¨ C denote the |X|-fold coproduct
of C with itself, i.e., C ` ¨ ¨ ¨ ` C, |X| times.

Set is the category of sets; set is a skeleton of the category of finite sets, e.g., the
category of finite ordinals and arbitrary maps between them; ford is the category of finite

ordinals and monotone maps between them. For any category C, pC “ rCop ,Sets denotes the
category of presheaves on C, while C “ rCop , sets and uC “ rCop , fords respectively denote
the categories of presheaves of finite sets and of finite ordinals. One should distinguish, e.g.,
‘presheaf of finite sets’ Cop Ñ set from ‘finite presheaf of sets’ F : Cop Ñ Set. The category
pCf of finite presheaves is the full subcategory of pC spanning presheaves F such that the
disjoint union

ř

cPobpCq F pcq is finite2. For all presheaves F of any such kind, x P F pdq, and

f : cÑ d, let x ¨ f denote F pfqpxq.

Remark 2.1. This conflicts with the notationX ¨C above, but context should disambiguate,
as in X ¨C a set X acts on an object C, whereas in x ¨ f , a morphism f acts on an object x.

We denote the Yoneda embedding by y : CÑ pC, and often abbreviate ypcq to just c.
For any functor F : C Ñ D and object D P D, let FD denote the comma category on

the left below, and F pDq denote the pullback category on the right:

FD 1

C D
F

xDy

F pDq 1

C D.
F

xDy (2.1)

When F is clear from context, we simply write CD, resp. CpDq. Also, as usual, when F is
the identity, we use the standard slice notation D{D.

Finally, we briefly recall pseudo double categories. They are a weakening of Ehresmann’s
double categories [12, 13], notably studied by Grandis and Paré [22, 23], Leinster [38], and
Garner [19]. The weakening lies in the fact that one dimension is strict and the other weak
(i.e., bicategory-like). We need to consider proper pseudo double categories, notably we use
cospans in examples, but we often handle pseudoness a bit sloppily. Indeed, the proofs of
Section 4 quickly become unreadable when accounting for pseudoness.

A pseudo double category D consists of a set obpDq of objects, shared by a ‘horizontal’
category Dh and a ‘vertical’ bicategory Dv. Following Paré [49], Dh, being a mere cate-
gory, has standard notation (normal arrows, ˝ for composition, id for identities), while the
bicategory Dv earns fancier notation (arrows, ‚ for composition, id‚ for identities). D
is furthermore equipped with a set of double cells α, which have vertical, resp. horizontal,
domain and codomain, denoted by domv pαq, codv pαq, domhpαq, and codhpαq.

X X 1 X2

Y Y 1 Y 2

Z Z 1 Z2

h

u

h1
u1

k

k1
u2

v

h2
v1

k2
v2

α α1

β β1

We picture this as, e.g., α on the right, where u “ domhpαq,
u1 “ codhpαq, h “ domv pαq, and h1 “ codv pαq. Finally, there
are operations for composing double cells: horizontal composi-
tion ˝ composes them along a common vertical morphism, verti-
cal composition ‚ composes along horizontal morphisms. Both
vertical compositions (of morphisms and of double cells) may

2This coincides in our case with the standard notion of finitely presentable presheaf, thus justifying the
terminology.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 11

be associative only up to coherent isomorphism. The full axiomatisation is given by Gar-
ner [19], and we here only mention the interchange law, which says that the two ways of
parsing the above diagram coincide: pβ1 ˝ βq ‚ pα1 ˝ αq “ pβ1 ‚ α1q ˝ pβ ‚ αq.

For any (pseudo) double category D, we denote by DH the category with vertical mor-
phisms as objects and double cells as morphisms, and by DV the bicategory with horizontal
morphisms as objects and double cells as morphisms. Domain and codomain maps arrange
into functors domv, codv : DH Ñ Dh and domh, codh : DV Ñ Dv.

We introduce a bit more notation.

Definition 2.2. A double cell is special when its vertical domain and codomain are (hori-
zontal) identities.

For any object X P obpDq, DHpXq denotes the category with

‚ objects all vertical morphisms to X, and

‚ morphisms uÑ v all double cells
Y Y 1

X X

h

u v

k

α with codv pαq “ k “ idX .

This complies with noting CpDq for the pullback category (2.1), taking codv for F and X
for D.

2.2. Transition systems. Beyond category theory, this paper also makes heavy use of
the theory of ltss and associated techniques, especially bisimulation and other behavioural
equivalences. The notion of lts that we’ll use here is a little more general than usual.
Indeed, usually, the transitions of an lts are labelled with letters in a given set called the
alphabet, or the set of actions. Here, we consider the case where the vertices of an lts may
be typed, and actions may change the type. Extending the usual theory to this setting is
straightforward, so we only provide a brief overview. For more on the usual theory, modern
references are Sangiorgi [53] and Sangiorgi and Rutten [54]. Our setting is essentially a
baby version of Fiore’s [15] (see the references therein for precursors).

Let Gph be the category of reflexive graphs, which has as objects diagrams s, t : E Ñ V
in Set, equipped with a further arrow e : V Ñ E such that s ˝ e “ t ˝ e “ idV . We will
as usual denote epvq by idv. Morphisms are those morphisms between underlying graphs
which preserve identity arrows. Gph is thus the category of presheaves over the category

‹ r1se

s

t

with e ˝ s “ id‹ and e ˝ t “ id‹.

Definition 2.3. For any A P Gph, let the category of ltss over A be just the slice category
Gph{A.

2.2.1. Basic notation. A is called the alphabet, which goes slightly beyond the usual notion
of an alphabet. The latter would here come in the form of the graph with one vertex, an
identity edge, plus an edge for each letter. By convention, and mainly to ease graphical
intuitions in Sections 4 and 5, for any lts p : GÑ A, we understand an edge e : x1 Ñ x in
G as a transition from x to x1. Of course, to recover a more standard notation, one may

12 T. HIRSCHOWITZ

replace all graphs with their opposites. When e does not matter, but ppeq does, we denote

such a transition by x A
ppeq
ÐÝÝ x1, omitting the subscript A when clear from context.

For any reflexive graph A, we denote by A‹ the graph with the same vertices and
arbitrary paths as edges. A‹ is reflexive, with identity edges given by empty paths. Similarly,
f‹ : A‹ Ñ B‹ is the morphism induced by f : A Ñ B. This defines a functor Gph Ñ Cat,
which is not left adjoint to the forgetful functor U : Cat Ñ Gph. There is a left adjoint,
though, which we denote by fc. It is given by a quotient of A‹, essentially equating pidq
and pq, i.e., the singleton, identity path and the empty one.

Definition 2.4. Let fcpAq denote the graph with the same vertices as A, whose edges
xÑ x1 are paths xÑ‹ x1 in A, considered equivalent modulo removal of identity edges.

Any path ρ has a normal form, obtained by removing all identity edges and denoted

by rρ. We will deem such normal form identity-free. We denote by x A
a
ðù x1 any path

ρ : x1 Ñ‹ x in G, such that Ćp‹pρq “ Ăpaq. Concretely, if a is an identity, then p‹pρq only
consists of identity edges; otherwise, p‹pρq consists of a, possibly surrounded by identity
edges. In the former case, we further abbreviate the notation to x ðù x1 (observe that ρ

may well be empty). Similarly, for any path r in A‹, x A
r
ðù x1 denotes any path ρ : x1 Ñ‹ x

in G such that Ćp‹pρq “ rr.

2.2.2. Bisimulation and change of base. In this section, we revisit the usual notion of (strong
and weak) bisimulation in our graph-based setting, and provide a few stability results under
base change and cobase change. Let us start with strong bisimulations.

Definition 2.5. For any G,G1 P Gph, a morphism f : GÑ G1 is a graph fibration iff for all
x P G, y P G1, and e1 P G1py, fpxqq, there exist x1 P G and e P Gpx1, xq such that fpeq “ e1.

Consider morphisms p : GÑ A and p1 : G1 Ñ A. A relation over A is a subgraph of the
pullback

GˆA G
1 G1

G A.p

p1

In particular, if two edges pe, e1q are related by some R Ď GˆAG
1, then so are their sources,

resp. targets. We denote such relations by R : G G1.
We will most often deal with full relations, i.e., such that Rpe, e1q iff both sources and

targets are related. Of course, such relations need only to be defined on vertices.

Definition 2.6. A simulation G G1 is a relation R over A such that for all e P Gpx1, xq,
if Rpx, yq then there exist y1 and e1 P G1py1, yq such that Rpe, e1q. A bisimulation is a
simulation whose converse also is a simulation.

When R is full, R is a simulation iff for all e P Gpx1, xq, if Rpx, yq then there exists y1

and e1 P G1py1, yq such that Rpx1, y1q and e and e1 are mapped to the same edge in A.

Proposition 2.7. R is a simulation iff its first projection R ãÑ GˆA G
1 Ñ G is a graph

fibration. Accordingly, R is a bisimulation iff both projections are graph fibrations.

Proof. Straightforward.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 13

Remark 2.8. The characterisation of simulations in terms of graph fibrations may be
attributed to Joyal et al. [33], who first observed that a morphism f : GÑ G1 in Gph{A is
a functional bisimulation iff for any commuting square as the exterior of

yp‹q G

yr1s G1,

yptq f

there exists a dashed arrow making both triangles commute. Here, yptq : yp‹q Ñ yr1s maps
the reflexive graph with a single vertex (and its identity edge) to the one with two vertices
and just one non-identity edge e between them, by picking out the target of e. This precisely
says that f is a graph fibration.

A peculiar aspect of this characterisation is that it may seem independent from A.
Actually, R is a relation over GˆA G

1, and f is a morphism over A.

As usual, fixing G and G1 over A, we have:

Proposition 2.9. Bisimulations are closed under union, and the union of all bisimulations,
called bisimilarity, is again a bisimulation, the maximum one.

Considering endorelations G G, we talk about bisimilarity in G.

Notation 2.10. Bisimilarity in G over A is denoted by „A. It may, upon a slight abuse of
notation, be understood as an equivalence relation over all vertices of any two graphs over
A. Namely, if G and G1 are graphs over A, we may write x „A y when x P G and y P G1 to
mean bisimilarity in G`G1.

Before treating weak bisimulations, we consider a first stability result, which is all we
need about strong bisimulations.

Any morphism f : AÑ B induces by pullback a change-of-base functor ∆f : Gph{B Ñ
Gph{A, which has a left adjoint Σf given by composition with f .

Proposition 2.11. For any morphism of graphs f : A Ñ B, both functors ∆f : Gph{B Ñ
Gph{A and Σf : Gph{AÑ Gph{B, i.e., pullback along and post-composition with f , preserve
functional bisimulations.

Proof. We use Remark 2.8. The case of Σf is actually trivial.
For ∆f , by the pullback lemma, the square on the right below is a pullback. We check

that ∆f pGq Ñ ∆f pG
1q is again a bisimulation. Indeed, consider any square as on the left

below.

yp‹q ∆f pGq G

yr1s ∆f pG
1q G1.

yptq

Because G Ñ G1 is a bisimulation, we obtain the dashed arrow making both triangles
commute. But then by universal property of pullback, we obtain the dotted arrow, making
the corresponding bottom triangle commute. Finally, the top triangle commutes upon
postcomposition with ∆f pGq Ñ G, and after composition with ∆f pGq Ñ ∆f pG

1q, hence
commutes by uniqueness in the universal property of pullback.

14 T. HIRSCHOWITZ

Remark 2.12. This is an instance of the fact that right maps are stable under pullback in
any weak factorisation system [31], here with the factorisation system cofibrantly generated
by the sole map yptq.

Let us now treat weak bisimulations. We start with the functional case.

Definition 2.13. A morphism f : G Ñ G1 in Gph{A is a functional, weak bisimulation iff
fcpfq : fcpGq Ñ fcpG1q is a graph fibration.

Concretely, for any edge e : y1 Ñ fpxq in G1, there exists x1 in G and a path r : x1 Ñ‹ x

such that Ćf‹prq “ Ăpeq. If e is an identity, then taking the empty path for r will do, so the
condition really says something about non-identity edges e.

Remark 2.14. Remark 2.8 adapts to weak, functional bisimulations, using fcpfq instead
of f .

Let us now handle the relational case. In the strong case, a relation between graphs
G and G1 over A was defined to be a subobject of the pullback G ˆA G

1, and simulation
properties were related to the projections being graph fibrations. In order to follow this
pattern here, we need to consider fcpAq instead of A. However, in general, fcpGqˆfcpAq fcpG

1q

differs from fcpGˆA G
1q. We consider the former:

Definition 2.15. A weak simulation G G1 is a relation R Ď fcpGq ˆfcpAq fcpG
1q whose

first projection R ãÑ fcpGq ˆfcpAq fcpG
1q Ñ fcpGq is a graph fibration.

R is a weak bisimulation iff both projections are graph fibrations.

Explicitly, consider p : G Ñ A and p1 : G1 Ñ A, and R as above a weak simulation.
For any edge r : x Ð x1 in fcpGq, i.e., identity-free path r : x ÐÝ‹ x1, and y P G1 such that
Rpx, yq, there should be an identity-free path r1 : y ÐÝ‹ y1 in G1 such that pr, r1q P R. If R
is full, this is equivalent to the existence, for each edge e : x Ð x1 in G and y P G1 such

that Rpx, yq, of an identity-free path r1 : y ÐÝ‹ y1 such that Rpx1, y1q and Čpppeqq “ Čpp1q‹pr1q.
We will only consider full relations in this paper, hence only the last characterisation will
matter to us.

As in the strong case, we have for any fixed G and G1 over A:

Proposition 2.16. Weak bisimulations are closed under union, and the union of all weak
bisimulations, called weak bisimilarity, is again a weak bisimulation, the maximum one.

Notation 2.17. Weak bisimilarity over A is denoted by »A. As for strong bisimilarity, we
will abuse notation and consider »A as a relation between the vertices of any two graphs
over A.

2.3. CCS. The main subject of this paper is CCS [47], and fair testing equivalence over it.
We work with a standard version, except in two respects. First, we work with infinite

terms, which spares us the need for replication, recursion, or other possible mechanisms
for describing infinite processes in a finite way. Second, we work with a de Bruijn-like
presentation: terms carry their (finite) sets of known channels, in the form of a finite
number. I.e., the number n indicates that the considered process knows channels 1, . . . , n
(which complies with our notation for finite ordinals, introduced in Section 2.1).

FULL ABSTRACTION FOR FAIR TESTING IN CCS 15

pΓ $
ÿ

iPn

αi.Piq
αi
ÐÝ pΓ $ Piq

pΓ $ P1q
α
ÐÝ pΓ $ P 11q

pΓ $ P1 | P2q
α
ÐÝ pΓ $ P 11 | P2q

pΓ $ P2q
α
ÐÝ pΓ $ P 12q

pΓ $ P1 | P2q
α
ÐÝ pΓ $ P1 | P

1
2q

pΓ, a $ P q
α
ÐÝ pΓ, a $ P 1q

pΓ $ νa.P q
α
ÐÝ pΓ $ νa.P 1q

pα R ta, auq

pΓ $ P1q
α
ÐÝ pΓ $ P 11q pΓ $ P2q

α
ÐÝ pΓ $ P 12q

pΓ $ P1 | P2q
id
ÐÝ pΓ $ P1 | P

1
2q

Figure 1: CCS transitions

Remark 2.18. While the de Bruijn-like presentation clearly is a matter of convenience,
working with infinite terms does have an impact on our results. Restricting ourselves to
recursive processes (e.g., by introducing some recursion construct), we would still have that
LP M „f LQM implies P „f,s Q. The converse is less obvious and may be stated in very
simple terms: suppose you have two recursive CCS processes P and Q and a test process T ,
possibly non-recursive, distinguishing P from Q; is there any recursive T 1 also distinguishing
P from Q? We leave this question open.

Our (infinite) CCS terms are coinductively generated by the typed grammar

Γ $ P Γ $ Q

Γ $ P |Q

Γ, a $ P

Γ $ νa.P

. . . Γ $ Pi . . .

Γ $
ÿ

iPn

αi.Pi
pn P Nq .

Here, as announced, Γ ranges over N, i.e., the free names of a process always are 1 . . . n
for some n. Accordingly, Γ, a denotes just n` 1 (and then a “ n` 1). Furthermore, αi is
either a, a, or ♥ (for a P Γ). The latter is a ‘tick’ move used in the definition of fair testing
equivalence.

Definition 2.19. Let A be the reflexive graph with vertices given by finite ordinals, edges
Γ Ñ Γ1 given by ∅ if Γ ‰ Γ1, and by Γ`Γ`tid ,♥u otherwise, id : Γ Ñ Γ being the identity
edge on Γ. Elements of the first summand are denoted by a P Γ, while elements of the
second summand are denoted by a.

We view terms as a graph CCS over A with the usual transition rules, as recalled in
Figure 1 (which is an inductive definition). There, we let α denote a when α “ a, or a when
α “ a.

Remark 2.20. The graph A only has ‘endo’-edges, hence only relates terms with the same
set of free channels. Some ltss below do use more general graphs.

Let us finally recall the definition of fair testing equivalence. Let K denote the set of

processes P such that for all paths P Aðù P 1, there exists a path P 1 A
♥
ðù P 2.

Definition 2.21. A test for Γ $ P is any process Γ $ Q. A test Q is passed by P when
pΓ $ P | Qq P K. Two processes Γ $ P and Γ1 $ P 1 are fair testing equivalent, notation
pΓ $ P q „f,s pΓ

1 $ P 1q, iff Γ “ Γ1 and P and P 1 pass exactly the same tests.

16 T. HIRSCHOWITZ

3. Summary of previous work

In this section, we recall some material from HP. Apart from the admittedly numerous
prerequisites mentioned in the previous section, the paper should be self-contained, although
the material in this section would usefully be complemented by reading HP.

As sketched in the introduction, our playground will model a multi-player game, con-
sisting of positions and plays between them. Positions are certain graph-like objects, where
vertices represent players and channels. But what might be surprising is that moves are
not just a binary relation between positions, because we not only want to say when there
is a move from one position to another, but also how one moves from one to the other.

This will be implemented by viewing moves from X to Y as cospans Y
s
ÝÑ M

t
ÐÝ X in a

certain category pCf of higher-dimensional graph-like objects, or ‘string diagrams’, where X
and Y respectively are the initial and final positions, and M describes how one goes from
X to Y . By composing such moves (by pushout), we get a bicategory DCCS

v of positions
and plays. This is described in Sections 3.1–3.3. In Section 4, we will equip this bicategory
with more structure, namely that of a pseudo double category, where one direction models
dynamics, and the other models space, e.g., the inclusion of a position into another. Sec-
tion 3.4 further recalls our two notions of strategies derived from the game (behaviours and
innocent strategies, respectively), and Section 3.5 recalls our semantic variant of fair testing
equivalence.

3.1. Diagrams. In preparation for the definition of our base category C, recall that (di-
rected, multi) graphs may be seen as presheaves over the category freely generated by the
graph with two objects ‹ and r1s, and two edges s, t : ‹ Ñ r1s. Any presheaf G represents the
graph with vertices in Gp‹q and edges in Gr1s, the source and target of any e P Gr1s being
respectively e ¨s and e ¨t. A way to visualise how such presheaves represent graphs is to com-
pute their categories of elements [42]. Recall that the category of elements

ş

G for a presheaf
G over C has as objects pairs pc, xq with c P C and x P Gpcq, and as morphisms pc, xq Ñ pd, yq
all morphisms f : cÑ d in C such that y ¨ f “ x. This category admits a canonical functor

πG to C, and G is the colimit of the composite
ş

G
πG
ÝÝÑ C y

ÝÑ pC with the Yoneda embedding.

E.g., the category of elements for yr1s is the poset p‹, sq
s
ÝÑ pr1s, id r1sq

t
ÐÝ p‹, tq, which could

be pictured as , where dots represent vertices, the triangle represents the edge,

and links materialise the graph of Gpsq and Gptq, the convention being that t goes from the
apex of the triangle. We thus recover some graphical intuition.

Our string diagrams will also be defined as (finite) presheaves over some base category
C. Let us give the formal definition of C for reference. We advise to skip it on first reading:
we then attempt to provide some graphical intuition.

Definition 3.1. Let GC be the graph with, for all n, m, with a P n and c P m:

‚ vertices ‹, rns, πln, πrn, πn, νn, ♥n, ιn,a, on,a, and τn,a,m,c;
‚ edges s1, ..., sn : ‹ Ñ rns;
‚ for all v P tπln, π

r
n,♥n, ιn,a, on,au, edges s, t : rns Ñ v;

‚ edges rns
t
ÝÑ νn

s
ÐÝ rn` 1s;

‚ edges πln
l
ÝÑ πn

r
ÐÝ πrn;

‚ edges ιn,a
ρ
ÝÑ τn,a,m,c

ε
ÐÝ om,c.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 17

v

rns rn1s

‹
si si

t s

(@n P N, i P n, v P YaPntπln,
πrn,♥n, ιn,a, on,a, νnu)

πn

πln πrn

rns
t t

l r

(@ n)

rms om,c

‹ τn,a,m,c

rns ιn,a

sc

sa

t

t

ε

ρ

(@ n P N, a P n, and c P m)

Figure 2: Equations for C

Let C be the free category on GC, modulo the equations in Figure 2, where, in the
left-hand one, n1 is n` 1 when v “ νn, and n otherwise.

Our category of string diagrams will be the category pCf of finite presheaves on C.

p‹, s1q p‹, s2q p‹, s3q

pr3s, id r3sq

To explain this seemingly arbitrary definition, let us com-
pute a few categories of elements. Let us start with an easy
one, that of r3s P C (we implicitly identify any c P C with
yc). An easy computation shows that it is the poset pictured
in the top part on the right. We will think of it as a position
with one player pr3s, id r3sq connected to three channels, and
draw it as in the bottom part on the right, where the bul-
let represents the player, and circles represent channels. The
positions of our game are finite presheaves empty except perhaps on ‹ and rns’s. Other
objects will represent moves. The graphical representation is slightly ambiguous, because
the ordering of channels known to players is implicit. We will disambiguate in the text when
necessary. A morphism of positions is an injective morphism of presheaves. The intuition
for a morphism X Ñ Y between positions is thus that X embeds into Y .

Definition 3.2. Positions and morphisms between them form a category DCCS
h .

A more difficult category of elements is that of π2. It is the poset generated by the
graph on the left (omitting base objects for conciseness):

ls rs

lss1 l idπ2 r lss2

lt “ rt

.

We think of it as a binary player (lt) forking into two players (ls and rs), and draw it as
on the right. The graphical convention is that a black triangle stands for the presence of
idπ2 , l, and r. Below, we represent just l as a white triangle with only a left-hand branch,
and symmetrically for r. Furthermore, in all our pictures, time flows ‘upwards’.

Another category of elements, characteristic of CCS, is the one for synchronisation
τn,a,m,c. The case pn, a,m, cq “ p2, 1, 3, 2q is the poset generated by the graph on the left
of Figure 3, which we will draw as on the right. The left-hand ternary player x outputs on
its 2nd channel, here α. The right-hand unary player y receives on its 1st channel, again
α. Both players have two occurrences, one before and one after the move, respectively

18 T. HIRSCHOWITZ

εs ρs

εts1 ε idτn,a,m,c ρ ρts2

εts3 εts2

εt ρt

α

x1

x

y1

y

Figure 3: Category of elements for τ2,1,3,2 and graphical representation

♥

rns

πln

rns

rns

πrn

rns

rms

om,c

rms

rns

ιn,a

rns

rns

♥n

rns

rn` 1s

νn

rns

Figure 4: String diagrams and corresponding cospans for πln, πrn, om,c, ιn,a, ♥n, and νn

marked as x{x1 and y{y1. Both x and x1 have arity 3 here, and both y and y1 have arity
1. There are actually three moves, in the sense that there are three higher-dimensional
objects in the corresponding category of elements. The first is the output move from x
to x1, graphically represented as the source of the left-hand (intended to evoke the
‘ping’ sent by x entering channel α). The second move is the input move from y to y1,
graphically represented as the target of the right-hand (intended to evoke a ‘ping’
exiting channel α). The third and final move is the synchronisation itself, which ‘glues’ the
other two together, as represented by the squiggly line.

We leave the computation of other categories of elements as an exercise to the reader.
The remaining diagrams are depicted in the top row of Figure 4, for pn, a,m, cq “ p2, 1, 3, 2q.
The first two are views, in the game semantical sense, of the fork move π2 explained above.
The next two, om,c (for ‘output’) and ιn,a (for ‘input’), respectively represent what the
sender and receiver can see of the above synchronisation move. The last two diagrams are
a ‘tick’ move, used for defining fair testing equivalence, and a channel creation move.

3.2. From diagrams to moves. In the previous section, we have defined our category

of diagrams as pCf , and provided some graphical intuition on its objects. The next goal
is to construct a bicategory whose objects are positions (recall: presheaves empty except
perhaps on ‹ and rns’s), and whose morphisms represent plays in our game. We start in

this section by defining moves as cospans in pCf , and continue in the next one by explaining

FULL ABSTRACTION FOR FAIR TESTING IN CCS 19

how to compose moves to form plays. Moves are defined in two stages: seeds, first, give the
local form for moves; moves are then defined by embedding seeds into bigger positions.

To start with, until now, our diagrams contain no information about the ‘flow of time’
(although it was mentioned informally for pedagogical purposes). To add this information,
for each diagram M representing a move, we define its initial and final positions, say X and

Y , and view the whole move as a cospan Y
s
ÝÑ M

t
ÐÝ X. We have taken care, in drawing

our diagrams before, of placing initial positions at the bottom, and final positions at the
top. We leave it to the reader to define, based on the above pictures, the cospans

rns | rns

πn

rns

rms c |a rns

τn,a,m,c

rms c |a rns

for forking and synchronisation, plus the ones specified in the bottom row of Figure 4. In
these cospans, initial positions are on the bottom row, and we denote by rmsc1,...,cp |a1,...,ap rns
the position consisting of an m-ary player x and an n-ary player y, quotiented by the
equations x ¨ sck “ y ¨ sak for all k P p. When both lists are empty, by convention, m “ n
and the players share all channels in order.

Definition 3.3. These cospans are called seeds.

Remark 3.4. Such cospans will be used below as the morphisms of a bicategory DCCS
v ,

using their lower object as their target. Thus, we often denote the corresponding leg by t
and the other by s. The reason for this convention is that it emphasises below that the
fibration axiom (P1) is very close to a universal property of pullback [30].

Remark 3.5. Both legs of each seed are monic, as will be below both legs of each move,
and then of each play (because monics are stable under pushout in presheaf categories).

As announced, the moves of our game are obtained by embedding seeds into bigger
positions. This means, e.g., allowing a fork move to occur in a position with more than one
player. We proceed as follows.

Definition 3.6. Let the interface of a seed Y
s
ÝÑ M

t
ÐÝ X be IX “ Xp‹q ¨ ‹, i.e., the

position consisting only of the channels of the initial position of the seed. More generally,
an interface is a position consisting only of channels.

IX

Y M X

Since channels present in the initial position remain in the final
one, we have for each seed a commuting diagram as on the right. By
gluing any position Z to the seed along its interface, we obtain a new
cospan, say Y 1 Ñ M 1 Ð X 1. I.e., for any injective morphism IX Ñ Z, we push IX Ñ X,
IX ÑM , and IX Ñ Y along IX Ñ Z and use the universal property of pushout, as in:

Y Y 1

M M 1

IX Z

X X 1.

(3.1)

20 T. HIRSCHOWITZ

Definition 3.7. Let moves be all cospans obtained in this way.

Recall that colimits in presheaf categories are pointwise. So, e.g., taking pushouts along
injective maps graphically corresponds to gluing diagrams together.

Example 3.8. The cospan r2s | r2s
rls,rss
ÝÝÝÝÑ π2

lt
ÐÝ r2s has as canonical interface the presheaf

Ir2s “ 2 ¨ ‹, consisting of two channels, say a and b. Consider the position r2s ` ‹ consisting

of a player y with two channels b1 and c, plus an additional channel a1. Further consider
the map h : Ir2s Ñ r2s ` ‹ defined by a ÞÑ a1 and b ÞÑ b1. The pushout

Ir2s r2s ` ‹

π2 M 1

is .

x1 x2

x

y ca“a1 b“b1

We conclude with a useful classification of moves.

Definition 3.9. A move is full iff it is neither a left nor a right fork. We call F the

identity-on-objects subgraph of CospanppCf q spanning full moves.

Intuitively, a move is full when its final position contains all possible avatars of involved
players.

U

X Y

V

3.3. From moves to plays. Having defined moves, we now de-
fine their composition to construct our bicategory DCCS

v of positions

and plays. DCCS
v will be a sub-bicategory of CospanppCf q, the bicat-

egory which has as objects all finite presheaves on C, as morphisms
X Ñ Y all cospans X Ñ U Ð Y , and as 2-cells U Ñ V all com-
muting diagrams as on the right. Composition is given by pushout, and hence not strictly
associative.

Definition 3.10. Let DCCS
v denote the locally full subbicategory of CospanppCf q with po-

sitions as objects, whose morphisms, plays, are either equivalences or isomorphic to some
composite of moves.

We denote morphisms in CospanppCf q with special arrows X Y ; composition and
identities are denoted with ‚ and id‚ (recalling the notation for vertical morphisms in a
pseudo double category in Section 2.1).

Again, composition by pushout glues diagrams on top of each other.

Example 3.11. Composition features some concurrency. Composing the move of Exam-
ple 3.8 with a forking move by y yields

.

x1 x2 y1 y2

x y

ca“a1 b“b1

FULL ABSTRACTION FOR FAIR TESTING IN CCS 21

Example 3.12. Composition retains causal dependencies between moves. To see this,
consider the following diagram. In the initial position, there are channels a and b, plus
three players xpbq, ypa, bq, and zpaq (we indicate the channels known to each player in
parentheses). In a first move, x outputs on b, while y inputs. In a second move, z outputs
on a, while (the avatar y1 of) y inputs. The fact that y first inputs on b then on a is encoded
in the corresponding diagram, which looks like the following:

.
b a

x y z

y1

3.4. Behaviours and strategies.

3.4.1. Behaviours. Recall from HP the category E
‚ whose objects are maps U Ð X in pCf , such that there exists a

play Y Ñ U Ð X, i.e., objects are plays, where we forget the
final position;

‚ and whose morphisms pU Ð Xq Ñ pU 1 Ð X 1q are commuting
diagrams as on the right with all arrows monic.

U U 1

X X 1

Morphisms pU Ð Xq Ñ pU 1 Ð X 1q in E represent extensions of U , both spatially (i.e.,
embedding into a larger position) and dynamically (i.e., adding more moves).

We may relativise this category E to a particular position X, yielding a category EpXq
of plays on X as follows. Consider the functor cod: E Ñ DCCS

h mapping any play U Ð X
to its initial position X, and consider the pullback category EpXq as defined in Section 2.1.
The objects of EpXq are just plays pU Ð Xq on X, and morphisms are morphisms of plays
whose lower border is idX . This yields the definition of a category of ‘naive’ strategies,
called behaviours.

Definition 3.13. The category BX of behaviours on X is the category EpXq of presheaves
of finite sets on EpXq.

Behaviours suffer from the deficiency of allowing unwanted cooperation between players.

Example 3.14. Consider the configuration X with three agents x, y, z sharing a channel
a, and the following traces on it: in ux,y, x sends on a, and y receives; in ux,z, x sends on a,
and z receives it; in iz, z inputs on a. One may define a behaviour S mapping ux,y and iz to
a singleton, and ux,z to ∅. Because ux,y is accepted, x accepts to send on a; and because iz
is accepted, z accepts to input on a. The problem is that S rejecting ux,z roughly amounts
to x refusing to synchronise with z, or conversely.

22 T. HIRSCHOWITZ

3.4.2. Strategies. To rectify this, we consider the full subcategory of E consisting of views,
i.e., composites of seeds. Calling this category EV, we relativise views to a position X by
considering the comma category EV

X as defined in Section 2.1. Its objects are pairs of a view
V Ð rns on a single n-ary player, and an embedding rns ãÑ X, i.e., a player of X.

Definition 3.15. The category SX of strategies on X is the category ŇEV
X of presheaves of

finite ordinals on EV
X .

Remark 3.16. We could here replace finite ordinals with a wider category and still get
a valid semantics. But then to show the correspondence with the syntax below we would
work with the subcategory of presheaves of finite ordinals.

This definition of strategies rules out undesired behaviours. We now sketch how to map
strategies to behaviours (this is done in more detail for arbitrary playgrounds below): let
first EX be the category obtained by taking a comma category instead of a pullback in the

definition of EpXq. Then, embedding ŇEV
X into EV

X via ford ãÑ set, followed by right Kan

extension to Eop
X followed by restriction to EpXqop yields a functor p´q : SX Ñ BX . The

image of a strategy S may be computed as in

pEV
Xq

op Eop
X EpXqop

ford set,

S S1

S

where S1 is here obtained by right Kan extension (the embedding pEV
Xq

op ãÑ Eop
X being full

and faithful, we may choose the diagram to strictly commute). By the standard formula
for right Kan extensions as ends [41] we have, for any S : pEV

Xq
op Ñ ford:

SpUq “

ż

vPEV
X

SpvqEXpv,Uq.

If S is boolean, i.e., takes values in t∅, 1u, then the involved end may be viewed as a
conjunction, saying that U is accepted by S whenever all its views are accepted by S.

Equivalently, SpUq is a limit of pEV
X{Uq

op dom
ÝÝÑ pEV

Xq
op S
ÝÑ ford ãÑ set.

3.4.3. Decomposition: a syntax for strategies. Our definition of strategies is rather semantic
in flavour. Indeed, presheaves are akin to domain theory. However, they also lend themselves
well to a syntactic description (unlike behaviours). Again, this is treated at length in the
abstract setting below, so we here only sketch the construction.

First, it is shown in HP that strategies on an arbitrary position X are in 1-1 correspon-
dence with families of strategies indexed by the players of X. Recall that rns is the position
consisting of one n-ary player. A player of X is the same as a morphism rns Ñ X (for some
n) in DCCS

h . Thus, we define the set PlpXq “
ř

nPNDCCS
h prns, Xq of players of X.

Proposition 3.17. We have SX –
ś

pn,xqPPlpXq Srns. For any S P SX , we denote by Sx the

component corresponding to x P PlpXq under this isomorphism.

So, strategies on arbitrary positions may be entirely described by strategies on ‘typical’
players rns. As an important particular case, we may let two strategies interact along an
interface (recall from Section 3.2 that this means a position consisting only of channels),
which will be the basis of our semantic definition of fair testing equivalence. We proceed as
follows. Consider any pushout Z of X Ð I Ñ Y where I is an interface. We have

FULL ABSTRACTION FOR FAIR TESTING IN CCS 23

Corollary 3.18. SZ – SX ˆ SY .

Proof. We have EV
Z – EV

X ` EV
Y , and conclude by universal property of coproduct.

We denote by rS, T s the image of pS, T q P SX ˆ SY under this isomorphism.
Having shown how strategies may be decomposed into strategies on ‘typical’ players rns,

we now explain that strategies on such players may be further decomposed. First observe
that EV

rns is isomorphic to the full subcategory of Eprnsq spanning views. For any strategy S

on rns and seed b : rn1s rns, let the residual S ¨ b of S after b be the strategy playing like
S after b, i.e., for all v P EV

rn1s, pS ¨ bqpvq “ Spb ‚ vq. S is almost determined by its residuals.

The only information missing from the S ¨ b’s to reconstruct S is the set of initial states
and how they relate to the initial states of each pS ¨ bq. This may be taken into account as
follows.

Definition 3.19. For any initial state σ P Spid‚q, let S|σ be the restriction of S determined
by

S|σpvq “ tσ
1 P Spvq | Sp!vqpσ

1q “ σu,

where !v denotes the unique morphism ! : id‚ Ñ v.

S is determined by its set Spid‚q of initial states, plus the function pσ, bq ÞÑ pS|σ ¨ bq
mapping any σ P Spid‚q and isomorphism class b of seeds to S|σ ¨ b. In other words, we have
for all n:

Theorem 3.20. Srns – p
ś

n1PN,b : rn1s rns Srn1sq
‹.

Given an element pD1, . . . , Dmq of the right-hand side, the corresponding strategy maps
the identity view id‚ to m, and any non-identity view b‚v on rns to the sum

ř

iPmDipbqpvq.
A closely related result is that strategies on a player rns are in bijection with infinite

terms in the following typed grammar, with judgements n $D D and n $ S, where D is
called a definite strategy and S is a strategy :

. . . nb $ Sb . . . p@b : rnbs rns P rBsnq
n $D xpSbqbPrBsny

. . . n $D Di . . . p@i P mq

n $ ‘iPmDi
pm P Nq.

Here, rBsn denotes the set of all isomorphism classes of seeds from rns. This achieves the
promised syntactic description of strategies. We may readily define the translation of CCS
processes, coinductively, as follows. For processes with channels in Γ, we define

L
ř

iPn αi.PiM “ xb ÞÑ ‘tiPn|b“LαiMuLPiMy
Lνa.P M “ xνΓ ÞÑ LP M, ÞÑ ∅y
LP |QM “ xπlΓ ÞÑ LP M, πrΓ ÞÑ LQM, ÞÑ ∅y

LaM “ ιΓ,a
LaM “ oΓ,a

L♥M “ ♥Γ.

(3.2)

For example, a.P ` a.Q` b̄.R is mapped to

xιΓ,a ÞÑ pLP M‘ LQMq, oΓ,b ÞÑ LRM, ÞÑ ∅y.

24 T. HIRSCHOWITZ

3.5. Semantic fair testing. The tools developed in the previous section yield the following
semantic analogue of fair testing equivalence.

Definition 3.21. Closed-world moves are those generated by some seed among νn,♥n,πn,
and τn,i,m,j . A play is closed-world when it is a composite of closed-world moves. Let a
closed-world play be successful when it contains a ♥ move, and unsuccessful otherwise. A
state σ P BpUq of a behaviour B P BZ over a closed-world play U Ð Z is successful when
the play U is, and unsuccessful otherwise.

Let then KKZ denote the set of behaviours B P BZ such that any unsuccessful, closed-
world state admits a successful extension. Formally:

Definition 3.22. Let B P KKZ iff, for any unsuccessful, closed-world play U Ð Z and
σ P BpUq, there exists a successful, closed-world U 1, a morphism f : U Ñ U 1, and a state
σ1 P BpU 1q such that σ1 ¨ f “ σ.

Finally, let us say that a triple pI, h, Sq, for any h : I Ñ X (where I is an interface)
and S P SX , passes the test consisting of a morphism k : I Ñ Y of positions and a strategy
T P SY iff rS, T s P KKZ , where Z is the pushout of h and k. Let pI, h, SqKK denote the set of
all such pk, T q.

Definition 3.23. For any h : I Ñ X, h1 : I 1 Ñ X 1, S P SX , and S1 P SX 1 , pI, h, Sq „f
pI 1, h1, S1q iff I “ I 1 and pI, h, SqKK “ pI, h1, S1qKK.

Obviously, „f is an equivalence relation, analogous to standard fair testing equivalence,
which we hence also call (semantic) fair testing equivalence.

This raises the question of whether the translation L´M preserves or reflects fair testing
equivalence. The rest of the paper is devoted to proving that it does both. As announced
in the introduction, this is done by organising the game into a playground, as defined in the
next section.

4. Playgrounds: from behaviours to strategies

Y 1 Y

U 1 U

X 1 X

h

k

l

s1 s

t1 t

4.1. Motivation: a pseudo double category. We start by or-
ganising the game described above into a (pseudo) double category.
We have seen that positions are the objects of the category DCCS

h ,
whose morphisms are embeddings of positions. We have also seen
that positions are the objects of the bicategory DCCS

v , whose mor-
phisms are plays. It should seem natural to define a pseudo double
category structure with

‚ DCCS
h as horizontal category,

‚ DCCS
v as vertical bicategory,

‚ commuting diagrams as on the right as double cells.

Here, X is the initial position and Y is the final one; all arrows are mono. This forms a
pseudo double category DCCS , and we have:

Proposition 4.1. The functor codv : DCCS
H Ñ DCCS

h is a Grothendieck fibration [30].

FULL ABSTRACTION FOR FAIR TESTING IN CCS 25

Intuitively, codv being a fibration demands some canonical way of restricting a given
play on some position X to some ‘subposition’ X 1 Ñ X. More technically, it amounts to

the existence, for all plays Y
u
X and horizontal morphisms X 1

l
ÝÑ X, of a universal («

maximal) way of restricting u to X 1, as on the left below:

Y 1 Y

X 1 X

h

u1 u

l

α

E2

E1 E

ppE2q

ppE1q ppEq.

r

pprq

t

pptq

s

k

Formally, consider any functor p : E Ñ B. A morphism r : E1 Ñ E in E is cartesian when,
as on the right above, for all t : E2 Ñ E and k : ppE2q Ñ ppE1q, if pprq ˝ k “ pptq then there
exists a unique s : E2 Ñ E1 such that ppsq “ k and r ˝ s “ t.

Definition 4.2. A functor p : EÑ B is a fibration iff for all E P E, any h : B1 Ñ ppEq has
a cartesian lifting, i.e., a cartesian antecedent by p.

In the sequel, we will refer to domv and codv simply as dom and cod, reserving subscripts
for domh and codh .

Proposition 4.1 is proved among other facts in Section 7. This was the starting point
of the notion of playground: which axioms should we demand of a pseudo double category
in order to enable the constructions of HP? We follow the constructions in this section,
considering an arbitrary pseudo double category D, on which we impose axioms along the
way. Objects and vertical morphisms will respectively be called positions and plays. The
pseudo double category DCCS does satisfy the axioms, albeit in a non-trivial way. This is
stated and proved in Section 7, but we use the result in advance in examples to illustrate
our constructions.

For the reader’s convenience, we here record the axioms imposed on D in the next
sections to obtain Theorem 5.35:

‚ (P1), page 26,
‚ (P2)—(P5), page 27,
‚ (P6), page 28,
‚ (P7), page 29,
‚ (P8), page 29,
‚ (P9), page 36,
‚ (P10), page 43.

4.2. Behaviours. The easiest construction of HP to carry over to the abstract setting of
playgrounds is that of behaviours. First, let us stress that, in the case of DCCS , DCCS

H is very
different from the category of plays called E recalled in Section 3.4.1. Indeed, any morphism
α : uÑ u1 in DCCS

H in particular induces an embedding of the final position dompuq of u into
that of u1. In E, instead, a morphism U Ñ U 1 may involve extending U with more moves.

Example 4.3. The move of Example 3.8 embeds into the play of Example 3.11 in the sense
of E, but not in the sense of DCCS

H . Indeed, the passive player y of Example 3.8 does belong
to the final position, but its image in Example 3.11 does not.

26 T. HIRSCHOWITZ

Z Y 1

Y

X X 1

h

w

u

u1

k

α (4.1)

So our first step is to construct an analogue of E from any
playground D. Let it have as objects all plays, and as mor-
phisms u Ñ u1 all pairs pw,αq as on the right. Actually, this
definition is slightly wrong, in that α carries some informa-
tion about how w embeds into u1, while we are only interested
in how u does. Thus, we instead define morphisms u Ñ u1

to be pairs pw,αq as in (4.1), quotiented by the equivalence relation generated by pairs
ppw,αq, pw1, βqq such that there exists morphisms i and γ satisfying α “ β ˝ pu ‚ γq, as in

Y 1

Z

Z 1

Y

Y

X 1.

X

u

u

u1

i

id

γ α

β

id

(4.2)

In order to define composition in this category, we state the following axiom (cf. Propo-
sition 4.1).

Axiom. (P1) (Fibration) The vertical codomain functor cod : DH Ñ Dh is a fibration.

Composition may now be defined by pullback (i.e., cartesian lifting in the fibration
cod: DH Ñ Dh) and pasting:

Z2 Z 1 V

Z Y 1

Y

X X 1 U.

w

u

u1

w1

u2

w2

α

β

(We use ‘double pullback’ marks to denote cartesian double cells.) Quotienting makes
composition functional and associative, and furthermore it is compatible with the above
equivalence. Identities are obvious.

Proposition 4.4. This forms a category E.

Example 4.5. Consider the move M 1 from Example 3.8, and let us name its initial and final
positions as in M 1 : Y 1 X 1. Let us further call U : Y 2 X 1 the play from Example 3.11,
obtained by composing M 1 with a forking move by y P Y 1r2s. In order to obtain a double
cell M 1 Ñ U , we need to provide an extension of M 1 with some move by y, and there are
actually three ways of doing this. One is with a left forking move, another is with a right
forking move, and the last is with a full forking move. In this example, the last possibility

FULL ABSTRACTION FOR FAIR TESTING IN CCS 27

actually yields an identity double cell U Ñ U , and may be obtained using (P1) in the
following general way. Consider any double cell α : u Ñ u1 in DH , and play w1 such that
u1 ‚w1 is well-defined. Then, letting β : w Ñ w1 be the cartesian lifting of w1 along dompαq,
we obtain a morphism uÑ u1 ‚ w1 in E, as in

Z Z 1

Y Y 1

X X 1.

w

u

w1

u1
α

β

The universal property of β here amounts to the fact that left and right forking moves both
embed uniquely into full forking, which makes our three candidate morphisms uÑ u1 ‚ w1

equal in E.

Recalling notation from Section 2.1, consider now the pullback category EpXq, where
X is any position. Following Definition 3.13, we state:

Definition 4.6. The category BX of behaviours onX is EpXq, i.e., the category of presheaves
of finite sets on EpXq.

This construction has a bit of structure. Indeed, the map X ÞÑ EpXq extends to a
pseudo functor Ep´q : Dv Ñ Cat by vertical post-composition. Post-composing the opposite

of this pseudo functor by p´q : Catop Ñ Cat, we obtain a pseudo functor B´ : Dop
v Ñ Cat,

satisfying BupBqpu
1q “ Bpu ‚ u1q.

4.3. More axioms. We now turn to generalising further constructions of HP to the general
setting of playgrounds. We mentioned in Section 3 that strategies on a position X should
be defined as presheaves on the category of views on X. We will further want to generalise
the decomposition theorems for strategies of HP, which crucially rely on a property of views
stated (in Section 4.4 below) as Proposition 4.27.

In order to define strategies, while retaining this property, we state more axioms for D.
In particular, the axioms equip D with a notion of player for a position X. Each position
has a set of players, each player having a certain ‘type’. Furthermore, in Section 4.4, D is
equipped with a notion of view; and views have a type, too. Proposition 4.27, e.g., states
that views on a position X form a coproduct, over all players x in X, of views over the type
of x.

We first state a series of simple axioms, and then, building on these, two more compli-
cated axioms.

Axiom. D is equipped with

‚ a full subcategory I ãÑ Dh of objects called individuals,
‚ a replete class M of vertical morphisms called moves, with replete subclasses B and
F, respectively called basic and full moves,

satisfying the following conditions:

(P2) I is discrete. Basic moves have no non-trivial automorphisms in DH . Vertical
identities on individuals have no non-trivial endomorphisms.

(P3) (Individuality) Basic moves have individuals as both domain and codomain.

28 T. HIRSCHOWITZ

(P4) (Atomicity) Up to a special isomorphism in DH , all plays u admit decompositions
into moves. All such decompositions have the same number |u| of moves, which is
called the length of u. For any cell α : v Ñ u, if |u| “ 0 then also |v| “ 0.

For any u : X Y of length 0, there is an isomorphism

X

X Y

u

ū

αu

in DH .
(P5) (Fibration, continued) Restrictions of moves (resp. full moves) to individuals either

are moves (resp. full moves), or have length 0.

Replete means stable under isomorphism (here in DH). In (P5), restriction is w.r.t. the
fibration cod: DH Ñ Dh, as explained below Proposition 4.1.

Definition 4.7. A player in a position (i.e., object) X, is a pair pd, xq, where d P I and
x : dÑ X. Let PlpXq “

ř

dPIDhpd,Xq be the set of players of X.

Example 4.8. In DCCS , individuals are representable positions rns, which consist for some
n of a single n-ary player, connected to n distinct channels. Importantly, for each isomor-
phism class of such positions we pick one representative: this makes I discrete by Yoneda.
Furthermore, basic moves are seeds.

Here is a further, crucial axiom.

Definition 4.9. Let B0 be the full subcategory of DH having as objects basic moves and
morphisms of length 0 between individuals.

Axiom. (P6) (Views) For any moveM : Y X in Dv, the domain functor dom: B0{M Ñ

I{Y is an equivalence of categories.

In elementary terms, this means that, for any y : d Ñ Y in Dh with d P I, there exists
a cell

d Y

dy,M X,

y

vy,M M

yM

αy,M

with vy,M P B0, which is unique up to canonical isomorphism of such. An isomorphism
between two such tuples, say pd1, v1, y1, α1q and pd2, v2, y2, α2q is a diagram

d Y

d1 X

d2

y

v1 M
α1 α2

β y1

h y2

v2

such that α2 ˝ β “ α1 (where necessarily d1 “ d2, h “ id, and y1 “ y2).

Example 4.10. This axiom is obviously satisfied by DCCS .

We then have two decomposition axioms.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 29

Axiom. (P7) (Left decomposition) Any double cell

A X

Y

B Z

h

u

w1

w2

k

α
decomposes as

A X

C Y

B Z

h

u1

u

u2

l

w1

w2

k

α1

α2

α3

with α3 an isomorphism, in an essentially unique way.

Here is our second decomposition axiom.

Axiom. (P8) (Right decomposition) Any double cell as in the center below, where b is
a basic move and M is a move, decomposes in exactly one of the forms on the left
and right:

A X

B Y

C Z

α1

α2

ø

A X

B Y

C Z

h

w

b

u

M

k

α

ù

A X

B Y

C Z.

α1

α2

Remark 4.11. This axiom takes pseudoness of D rather sloppily. Indeed, the right-hand
composite cannot really have domain b ‚w. Rather, it has id‚C ‚ pb ‚wq. So we really mean
α “ pα2 ‚ α1q ˝ λ

´1
b‚w, where λ is the coherence isomorphism for cancelling identities on the

left.

Example 4.12.
X X

X X

X X

iy

Sox

α

That this axiom is satisfied by DCCS is not obvious and is proved in
Section 7. However, let us disprove the more general version where b is
not required to be basic. Let X consist of two players x and y sharing a
channel a. Let iy : X X be the play where y inputs on a, ox : X X
be the play where x outputs on a, and let S : X X be the play where
both players synchronise on a. We obtain a double cell as on the right,
which does not decompose as in (P8). The problem here is that, on the left-hand side, the
upper input by y has to be mapped to the same part of the right-hand side as the lower
output on x, which prevents any suitable decomposition.

We now continue by defining and studying views.

4.4. Views.

Definition 4.13. A view in D is a play which is specially isomorphic in DH to a possibly
empty (vertical) composite of basic moves. I.e., if

dn
bn

dn´1 . . . d1
b1
d0

are all basic moves, then the composite is a view. Let V be the full subcategory of DH
consisting of views.

30 T. HIRSCHOWITZ

The definition includes the ‘identity’ view id‚d. In DCCS , this of course coincides with
views as defined in HP.

Here is an important consequence of our axioms. It is a bit complicated to state, but
very useful in the (more intelligible) developments on views below.

Lemma 4.14. For all plays w : Y dn and u : Xp X0, views v : dn d0, and double
cells α : v ‚ w Ñ u, for all isomorphisms γ : v Ñ pb1 ‚ p. . . pbn´1 ‚ bnq . . .qq and γ1 : u Ñ
pM1 ‚ p. . . pMp´1 ‚Mpq . . .qq decomposing v and u into moves, there exists a unique, strictly
monotone map f : nÑ p and double cells β : w Ñ pMfpnq`1 ‚ p. . . ‚Mpqq and αk : b̄k ÑMk

for k ď fpnq, where

b̄k “

"

bi (if k P Impfq, with fpiq “ k)
id‚codpbmintiPn|fpiqąkuq

(otherwise),

such that α1 ‚ p. . . ‚ pαfpnq ‚ βqq “ γ1 ˝ α ˝ pγ´1 ‚ wq, as in

Y Xp

dn Xp´1

dn´1

...

d1 X1

d0 X0

w

bn

v

Mp

u

b1 M1

...γ´1

α γ1
“

Y Xp

dn Xfpnq

dn´1 Xfpnq´1

Xfp2q´1

d1 Xfp1q

d “ d0 Xfp1q´1

X0.

w

bn

b1

Mąfpnq

Mfpnq

Msfp1q,fp2qr

Mfp1q

Măfp1q

αfp1q

αfpnq

β

Remark 4.15. Only f is claimed to be unique here. Furthermore, as in (P8), we are a bit
sloppy regarding pseudoness.

Proof. We proceed by lexicographic induction on the pair pn, pq.
If n “ 0 then our map f : n Ñ p is the unique map 0 Ñ p, the ordinal fpnq is empty

and we take β “ α. Otherwise, we apply (P8) with v “ b1, w “ pb2 ‚ . . .‚bn´1 ‚wq, M “M1

and u “ pM2 ‚ . . . ‚Mp´1q.

‚ If we are in the left-hand case, α decomposes as α1 ‚ α2, with α1 : b1 Ñ M1 and
α2 : pb2 ‚ . . . ‚ bn ‚wq Ñ pM2 ‚ . . . ‚Mpq. By induction hypothesis, we obtain a map
f 1 : n´ 1 Ñ p´ 1 and a corresponding decomposition of α2. We then let f : nÑ p
map 1 to 1, and k ` 1 to f 1pkq ` 1 for any k P pn´ 1q.

‚ If we are in the right-hand case, we obtain a map f 1 : n Ñ p ´ 1, and return the
map k ÞÑ f 1pkq ` 1.

This shows existence of the desired decomposition. For uniqueness, consider any map
g : n Ñ p and corresponding decomposition. Axiom (P7) entails that at each stage,
f´1t1, . . . , ku and g´1t1, . . . , ku have the same cardinality. Indeed, otherwise, we would

FULL ABSTRACTION FOR FAIR TESTING IN CCS 31

find isomorphic decompositions of b1 ‚ . . .‚ pbn ‚wq with incompatible lengths. Thus, f “ g.

We continue with a few easy results. Recall the family of isomorphisms αu from
Axiom (P4), indexed by vertical morphisms of length 0. Furthermore, let us denote by
ρu : u ‚ id‚X Ñ u and λu : id‚Y ‚ u Ñ u the coherence isomorphisms from Dv for cancelling
vertical identities.

Lemma 4.16. For any u : X Y of length 0, there is an isomorphism

X Y

Y

ū

u
αu

in DH , such that αu ‚ α
u “ λ´1

u ˝ ρu and αu ˝ α
u “ id‚ū.

Proof. Pose αu “ id‚ū ˝ pα
uq´1.

Lemma 4.17. If b : d d1 has length 0, then d “ d1, αb ˝ αb “ id id‚d
, and αb ˝ α

b “ id id‚d
.

Otherwise said, b̄ “ idd, and αb and αb are horizontal inverses.

Proof. By (P2).

Lemma 4.18. B0 (Definition 4.9) is a groupoid.

Proof. This means that any α : b Ñ b1 in B0 is an isomorphism. Let b1 : d11 d12 and
b : d1 d2. Existence of α entails d1 “ d11 and d2 “ d12, by (P2).

If b1 P B, then α and id b1 are both mapped by dom: B0{b
1 Ñ I{d11 to dompαq “ idd11 .

By (P6), there is thus a unique isomorphism γ : b Ñ b1 in DH such that id b1 ˝ γ “ α, i.e.,
γ “ α. This shows that α is an iso.

If b1 has length 0, then by (P4) we furthermore have |b| “ 0 and d1 “ d2 “ d11 “ d12.
Moreover, the composite αb1 ˝ α ˝ α

b (with αb1 and αb as in Lemma 4.16 and (P4)) is an

endomorphism of id‚d11
, hence id id‚

d11

by (P2). Thus, αb
1

˝ αb1 ˝ α ˝ α
b ˝ αb is both

‚ equal to αb
1

˝ id id‚
d11

˝ αb “ αb
1

˝ αb,

‚ equal to α by two applications of Lemma 4.17.

Thus, α “ αb
1

˝ αb is an isomorphism.

Lemma 4.19. In any category C, for any object c isomorphic to an object d such that d
has no non-trivial endomorphisms, c does not have any non-trivial endomorphisms either.

Proof. By the Yoneda lemma, we have Cpc, cq – Cpc, dq – Cpd, dq – 1.

Lemma 4.20. Any groupoid C whose objects have no non-trivial endomorphisms is an
equivalence relation.

Proof. For any objects c and d, we have that if Cpc, dq is non-empty then c and d are
isomorphic, so by Yoneda Cpc, dq – Cpc, cq – 1.

Corollary 4.21. B0 is an equivalence relation.

This adds to Lemma 4.18 that there is at most one morphism between any two objects.

Proof. By Lemma 4.19 and (P4), its objects have no non-trivial automorphisms, which in
a groupoid is the same as having no non-trivial endomorphisms. By the last result, B0 is
an equivalence relation.

32 T. HIRSCHOWITZ

This provides a better understanding of V.

Lemma 4.22. Consider any morphism of views α : v Ñ v1, with isomorphisms γ : v Ñ
pb1 ‚ . . . ‚ bnq and γ1 : v1 Ñ pb11 ‚ . . . ‚ b

1
n1q, for basic moves bi : di di´1 and b1j : d1j d1j´1

for all i P n and j P n1. We have n “ n1, di´1 “ d1i´1 for all i P n ` 1, and there exist

unique isomorphisms αi : bi Ñ b1i such that γ1 ˝ α ˝ γ´1 “ pαn ‚ . . . ‚ α1q, as in

dn d1n

dn´1 d1n´1

...
...

d1 d11

d0 d10

bn

v

b1n

v1

b1 b11

αγ´1 γ1
“

dn d1n

dn´1 d1n´1

...
...

d1 d11

d0 d10.

bn b1n

b1 b11

αn

α1

Proof. Applying Lemma 4.14 with w “ id‚dn yields f : n Ñ n1 which by Corollary 4.21
and (P4) has to be a bijection. This yields the desired αi’s, which are unique by Corol-
lary 4.21 again.

This entails:

Corollary 4.23. V is an equivalence relation, compatible with length.

Here is an analogue of (P6) for general plays and views instead of just moves and basic
moves.

Proposition 4.24. For any y : d Ñ Y in Dh with d P I, and any u : Y X in Dv, there
exists a cell

d Y

dy,u X,

y

vy,u u

yu

αy,u

with vy,u a view, which is unique up to canonical isomorphism of such.

Proof. We find vy,u by repeated application of (P6). For essential uniqueness, by repeated
application of (P6), we find an isomorphism between any two such views, which by Corol-
lary 4.23 is unique.

We continue with an analogue of (P8):

Proposition 4.25. Any double cell

A X

B Y

C Z,

h

w

v

u

u1

k

α

FULL ABSTRACTION FOR FAIR TESTING IN CCS 33

where v is a view, decomposes in exactly one of the following forms:

A X

A1

B Y

Y 1

C Z

w2

u11

α1

α2

α3

α4

α5

with |w2| ą 0,

A X

B Y

C Z

α1

α2

A X

X 1

B Y

B1

C Z

v1

u2

α1

α2

α3

α4

α5

with |v1| ą 0,
with in the left and right cases α4 and α5 iso in DH .

A possible reading of this is that in the left and middle cases, the whole of v embeds
into u1. In the left case, a non-trivial part of w embeds into the remaining part of u1. In
the right case, a non-trivial part of v embeds into u.

Proof. Choose decompositions of u1 and u as M1‚. . .‚Mp and Mp`1‚. . .‚Mp`q, respectively,
and of v as b1‚ . . .‚bn. Apply Lemma 4.14 to obtain f : nÑ p`q. If fpnq ą p, we are in the
right-hand case. If fpnq “ p, we are in the middle case. If fpnq “ r ă p, let u12 “M1‚. . .Mr

and u11 “ Mr`1 ‚ . . . ‚Mp. Lemma 4.14 provides β : w Ñ u11 ‚ u and γ : v Ñ u12 such that
γ ‚ β “ α. Applying (P7) to β gives a decomposition of α as on the left below

A X

A1

B Y

T

C Z

w2

u11

u12

β1

β2

γ

α4

α5

A

A1

B A1

B

w2

w2

α4

with α4 and α5 isos. If |w2| ‰ 0, then we are in the left-hand case of the proposition, and the
middle case is impossible by essential uniqueness in (P7). Otherwise, we may decompose
α4 as on the right by atomicity (empty cells are given by coherence or (P4)), so we are in
the middle case of the proposition.

Lastly, we need a few more definitions before Proposition 4.27.

Definition 4.26. Let EV be the full subcategory of E consisting of views.

Consider, for any X, the comma category EX induced by the vertical codomain functor
cod: EÑ Dh mapping (4.1) to k (following notation from Section 2.1). Similarly, consider
EV
X . Concretely, an object of EV

X is a pair of a view v : d1 d, and a player x : d Ñ X

of X. A morphism pv1, x1q Ñ pv2, x2q is a morphism pw,αq : v1 Ñ v2 in EV, such that
x2 ˝ codpαq “ x1.

34 T. HIRSCHOWITZ

Recall now from above Definition 4.6 the pullback category EpXq. It is isomorphic to
the full subcategory of EX consisting of pairs pu, xq where x “ idX . Similarly, we have
EVpXq, which is empty unless X is an individual.

Proposition 4.27. We have

(i) The inclusion EVpdq ãÑ EV
d mapping v to pv, iddq is an isomorphism of categories.

(ii) The inclusion
ř

pd,xqPPlpXq EVpdq ãÑ EV
X mapping ppd, xq, vq to pv, xq is an isomor-

phism of categories.
(iii) EVpdq is a preorder.

Proof. First, because I is discrete, Dhpd, dq “ tiddu, hence (i). For (ii), the functor EV
X Ñ

ř

pd,xqPPlpXq EVpdq mapping any pv, xq to ppd, xq, vq, with v : d1 d a view and x : d Ñ X

a player, is inverse to the given functor. Finally, consider any two morphisms v1 Ñ v2 in
EVpdq, say

X1 d2

d1

d d

h1

w1

v1

v2
α1 and

X2 d2

d1

d d.

h2

w2

v1

v2
α2

Fixing decompositions of v1 and v2 into basic moves, we obtain by Lemmas 4.14 and 4.22
that α1 and α2 respectively decompose as

X1 d2

d1 d1

d d

h1

w1

v1

v12

v22

α1
1

α2
1

and

X2 d2

d1 d1

d d.

h2

w2

v1

v12

v22

α1
2

α2
2

By Corollary 4.23, α2
1 “ α2

2. Furthermore, we conclude by (P1) and the quotienting (4.2)
in the definition of E that both morphisms are equal in EVpdq to α2

1 ‚ idv12 .

4.5. From behaviours to strategies.

Definition 4.28. The category SX of strategies on X is the category ŇEV
X of presheaves of

finite ordinals on EV
X .

Example 4.29. On DCCS , EV
X as defined here yields a category equivalent to the definition

in HP, so the categories of strategies are also equivalent (even isomorphic because ford
contains no non-trivial automorphism).

The rest of this section develops some structure on strategies, which is needed for
constructing the lts in Section 5.2. We start by extending the assignment X ÞÑ SX to a
pseudo double functor Dop Ñ QCat, where QCat is Ehresmann’s double category of quintets
on the 2-category Cat:

FULL ABSTRACTION FOR FAIR TESTING IN CCS 35

Definition 4.30. QCat has small categories as objects, functors as both horizontal and
vertical morphisms, and natural transformations as double cells.

Actually, our first step is to extend the assignment X ÞÑ EV
X to pseudo double functor

D Ñ QCat. Define the action of a horizontal map h : X Ñ X 1 to map any object pv, xq of
EV
X to pv, h ˝ xq, and any morphism to itself viewed as a morphism in EV

X 1 . (This functor

is induced by universal property of EV
X as a comma category.) This defines a functor

EV
´ : Dh Ñ Cat. The pseudo functor Dv Ñ Cat is a bit harder to construct. For any

u : Y X in Dv and y : d Ñ Y , the cell αy,u from Proposition 4.24 induces a functor
Σvy,u : EVpdq Ñ EVpdy,uq mapping any v : d1 d to vy,u ‚v. Composing with the coproduct
injection inj dy,u,yu : EVpdy,uq ãÑ

ř

pd2,xqPPlpXq EVpd2q, because EV
X –

ř

pd2,xqPPlpXq EVpd2q,

we obtain functors

EVpdq
Σvy,u
ÝÝÝÑ EVpdy,uq

injdy,u,yu
ãÝÝÝÝÝÝÑ EV

X ,

whose copairing defines a functor EV
u : EV

Y Ñ EV
X .

Now, for any cell as on the left below, we obtain by Proposition 4.24 a canonical natural
isomorphism as on the right

Y Y 1

X X 1

k

u u1

h

α

EV
Y EV

Y 1

EV
X EV

X 1 .

EV
k

EV
u EV

u1

EV
h

–

By canonicity of the above double cell, we have

Proposition 4.31. This assignment defines a pseudo double functor EV
´ : DÑ QCat.

Definition 4.32. Let the opposite Dop of a pseudo double category D be obtained by
reversing both vertical and horizontal arrows, and hence double cells.

We obtain:

Definition 4.33. Let S : Dop Ñ QCat be the composite Dop
pEV
´q

op

ÝÝÝÝÑ QCatop
u´
ÝÑ QCat.

As a shorthand, we denote SpuqpSq by S ¨ u. Concretely, for any horizontal h : Z Ñ X,
S ¨ h is determined by

pS ¨ hqpv, zq “ Spv, h ˝ zq,

whereas for any vertical u : Y X, S ¨ u is determined by

pS ¨ uqpv, yq “ Spvy,u ‚ v, yuq.

We conclude this section by constructing the extension functor from strategies to be-
haviours, in arbitrary playgrounds.

Recall that strategies on a position X are presheaves of finite ordinals on EV
X , and that

behaviours are presheaves of finite sets on EpXq. To go from the former to the latter, we
use EX as a bridge. Recall from Section 2.1 that objects of EV

X are diagrams of the shape

d1
v
d

x
ÝÑ X, with v a view, and that objects of EpXq are just plays Y

u
X. The idea

here is that on the one hand EV
X is richer than EpXq, in that its objects may be plays

on subpositions of X, whereas objects of EpXq are plays on the whole of X. But on the
other hand, EpXq is richer than EV

X because its objects may be arbitrary plays, whereas

objects of EV
X have to be views. EX contains both EV

X and EpXq, its objects being diagrams

Y
u
Z

h
ÝÑ X, for arbitrary plays u.

36 T. HIRSCHOWITZ

First, let kX : ŇEV
X Ñ EV

X denote postcomposition with ford ãÑ set. Because views form

a full subcategory of DH , all embeddings iX : EV
X ãÑ EX are also full. This entails:

Lemma 4.34. For all X, right Kan extension piopX q‹ : EV
X ãÑ EX along iopX is well-defined,

full, and faithful.

Proof. One easily shows that, when defined, right extension along a full and faithful functor
is full and faithful.

It remains to show that the considered right extensions exist. It is well-known [41] that

for any S P EV
X , its right Kan extension, if it exists, maps any pu, hq to the limit of the

functor pEV
X{pu, hqq

op Ñ pEV
Xq

op S
ÝÑ set. Since finite limits exist in set (though not in ford,

which explains why we use set instead of ford for extending strategies), it is enough to prove
that each EV

X{pu, hq is essentially finite, i.e., equivalent to a finite category. This is proved
in the next lemma.

Lemma 4.35. For any play u : Z Y and horizontal h : Y Ñ X, the category EV
X{pu, hq

is essentially finite.

For this lemma to hold, we need more axioms.

Axiom. (P9) (Finiteness) For any position X, there are only finitely many players, i.e.,
the category I{X is finite.

Proof of Lemma 4.35. Let us fix a pair pu, hq. By Proposition 4.27, EV
X{pu, hq is a preorder,

so we just need to prove that its object set is essentially finite. Now, letting n “ |u|, we fix

a decomposition of u into moves, say Z “ Yn
Mn

Yn´1 . . . Y1
M1

Y0. For any morphism
α : pv, xq Ñ pu, hq in EX , by Lemma 4.14, m “ |v| may not exceed n. Furthermore, by
Lemma 4.14, Proposition 4.24, and our quotienting (4.2), any such α is determined up to
isomorphism by m, a strictly monotone map f : m Ñ n, and a player y of Yfpmq. Because

such triples pm, f, yq are in finite number, EV
X{pu, hq is essentially finite.

This concludes the proof of Lemma 4.34: right Kan extension along iopX : pEV
Xq

op ãÑ Eop
X

yields a full and faithful functor. We now design the second half of our bridge from EV
X

to EpXq via EX . Consider the embedding jX : EpXq ãÑ EX mapping any u to pu, idXq.

Restriction along pjXq
op defines a functor ∆pjXqop : EX Ñ EpXq.

Recall from Definition 4.6 the notion of behaviour.

Definition 4.36. For any X, let the extension functor extX : SX Ñ BX be the composite

ŇEV
X

kX
ÝÝÑ EV

X

piopX q‹
ÝÝÝÑ EX

∆pjX qop
ÝÝÝÝÝÑ EpXq.

We call a behaviour on X innocent when it is in the essential image of extX .

Notation: when X is clear from context, we abbreviate extXpSq as S.

Remark 4.37. The calculations of Section 3.4.2 carry over unchanged to the new setting.

Finally, the definitions of Section 3.5 apply more or less verbatim to the playground
DCCS , yielding a semantic fair testing equivalence which coincides with that of HP.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 37

5. Playgrounds: transition systems

In the previous section, we have defined behaviours and strategies, and constructed the
extension functor from the former to the latter. In this section, we first build on this to
state decomposition theorems, which lead to a syntax and an lts for strategies. Then, we
define our second lts, and relate the two by a strong, functional bisimulation.

5.1. A syntax for strategies. Let us begin by proving in the abstract setting of play-
grounds the decomposition results of HP, which lead in particular to proving that strategies
form a terminal coalgebra for a certain polynomial functor. This is equivalent to saying
that they are essentially infinite terms in a typed grammar. We use this in the next section
to define and study transitions in SD.

First, we have spatial decomposition:

Proposition 5.1. The functor SX Ñ
ś

pd,xqPPlpXq Sd given at pd, xq by Sx : SX Ñ Sd is an

isomorphism of categories.

Proof. We have:

SX “ CatppEV
Xq

op , fordq
– Catp

ř

pd,xqPPlpXq EVpdqop , fordq (by Proposition 4.27)

–
ś

pd,xqPPlpXq CatpEVpdqop , fordq

“
ś

pd,xqPPlpXq Sd.

For any S P SX , let Sd,x denote the strategy on d corresponding to pd, xq accross the
isomorphism.

Temporal decomposition is less straightforward, but goes through essentially as in the
concrete case. Let us be a bit more formal here than in Section 3.4.3, by showing that
strategies form a terminal coalgebra for some endofunctor on SetI. We start by defining the
relevant endofunctor.

Definition 5.2. Let rBsd denotes the set of all isomorphism classes of basic moves from d
(i.e., with vertical codomain d).

Definition 5.3. Let G : SetI Ñ SetI be the functor mapping any family U to

pGpUqqd “

¨

˝

ź

bPrBsd

Udompbq

˛

‚

‹

,

where p´q‹ denotes finite sequences.

Remark 5.4. This functor is polynomial in the sense of Kock [34], as

pGpUqqd “
ÿ

nPN

¨

˝

ź

iPn,bPrBsd

Udompbq

˛

‚.

We now show that strategies, viewed as the I-indexed family pobpSdqqdPI, form a terminal
G-coalgebra. We drop the obp´q for readability.

Definition 5.5. For any S P Sd and σ P Spid‚dq, let the restriction S|σ P Sd of S to σ be

defined by the fact that S|σpvq “ tσ
1 P Spvq | Sp!vqpσ

1q “ σu.

38 T. HIRSCHOWITZ

(Here, we freely use the isomorphism EV
d – EVpdq from Proposition 4.27, and let !v

denote the unique morphism id‚d Ñ v in EVpdq.)

In view of Remark 5.4, pGpSqqd “
ř

nPN

´

ś

bPrBsd Sdompbq

¯n
. We thus may define the

G-coalgebra structure B : SÑ GpSq in SetI of strategies as follows.

Definition 5.6. Let, for all d P I, Bd : Sd Ñ
ř

np
ś

bPrBsd Sdompbqq
n send any S P Sd to

n “ Spid‚dq and the map
Spid‚dq Ñ

ś

bPrBsd Sdompbq

σ ÞÑ b ÞÑ pS|σq ¨ b.

Here, we view the ordinal Spid‚dq as a natural number, and the given map Spid‚dq Ñ
ś

bPrBsd Sdompbq as a list of elements of
ś

bPrBsd Sdompbq. We further use the action of b on S,

as below Definition 4.33. We have:

Theorem 5.7. The map B : SÑ GpSq makes S into a terminal G-coalgebra.

This intuitively means that strategies, on individuals, are infinite terms for the following
typed grammar with judgements d $D D and d $ S, where D is a definite strategy and S is
a strategy

. . . d1 $ Sb . . . p@b : d1 d P rBsdq
d $D xpSbqbPrBsdy

. . . d $D Di . . . p@i P nq

d $
à

iPn

Di

pn P Nq.

Semantically, definite strategies correspond to strategies S such that Spid‚dq “ 1, which will
play a crucial role in the lts below.

The rest of this section is a proof of Theorem 5.7.
First of all, we construct an inverse to B.

Definition 5.8. Consider B “ pB1, . . . , Bnq P pGpSqqd. For any view v : d1 d, define
B1pBq P Sd by

B1pBqpvq “

"

n if v “ id‚d
ř

iPnBipbqpv
1q if v “ b ‚ v1,

and on morphisms

B1pBqpv
pw,αq
ÝÝÝÑ v1qpσq “

$

&

%

i if v1 “ id‚d and σ “ i P n
or if v “ id‚d and σ “ pi, xq

pi, Bipbqpw,α1qpxqq if v “ b ‚ v1 and σ “ pi, xq,

where in the last clause necessarily v1 – b1 ‚ v11 and Lemma 4.14 yields αb : b
–
ÝÑ b1 and

α1 : v1 ‚ w Ñ v11 such that αb ‚ α1 “ α.

Lemma 5.9. We have B1 “ B´1.

Proof. Starting from a strategy S P Sd, let n “ Spid‚dq, and Bipbqpv
1q “ pS|iqpb ‚ v

1q, for

any d2
v1
d1

b
d. We have BS “ pB1, . . . , Bnq, and thus B1pBSqpvq “ n if v “ id‚d, and

B1pBSqpvq “
ř

iPnpS|iqpb ‚ v
1q “ Spvq if v “ b ‚ v1, as desired.

Conversely, starting from B “ pB1, . . . , Bnq P pGpSqqd, let S “ B1B. We have that
BS has length n, and its ith component maps any b : d1 d to the strategy mapping any
v1 : d2 d1 to the strategy pS|iq ¨ b. Thus, pBSqipbqpv

1q “ ppS|iq ¨ bqpv
1q “ pS|iqpb ‚ v

1q. But

by definition, this is equal to Bipbqpv
1q, as desired.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 39

Consider any G-coalgebra a : U Ñ GU .
We define by induction on N a sequence of maps fN : U Ñ S, such that for any d and

u P Ud the fN puq’s agree on views of length ď n, for n ď N . I.e., for any d P I, u P Ud, view
v of length less than n, and any N ě n, fN puqpvq “ fnpuqpvq, and similarly the action of
fN puq on morphisms is the same as that of fnpuq.

To start the induction, take f0puq to be the strategy mapping id‚d to πpapuqq, i.e., the
length of apuq P

ř

nPNp
ś

b Udompbqq
n, and all other views to 0.

Furthermore, given fN , define fN`1 to be

U
a
ÝÑ GU

GpfN q
ÝÝÝÝÑ GpSq

B´1

ÝÝÑ S.

In other words, fN is

U
a
ÝÑ GU

Gpaq
ÝÝÝÑ . . . GN´1U

GN´1a
ÝÝÝÝÑ GNU

GNf0
ÝÝÝÑ GNS

GN´1pB´1q
ÝÝÝÝÝÝÝÑ GN´1pSq . . . GpSq

B´1

ÝÝÑ S.

Unfolding the definitions yields:

Lemma 5.10. Consider any u P Ud, and let apuq “ pz1, . . . , zkq. For any f : U Ñ S, we
have

‚ B´1pGpfqpapuqqqpid‚dq “ k, and
‚ B´1pGpfqpapuqqqpb‚vq “

ř

iPk fpzipbqqpvq for any composable basic move b and view
v.

Corollary 5.11. We have, for any N P N, fN puqpid
‚
dq “ k. Furthermore, for any basic

move b : d1 d, and view v : d2 d1, we have for any N P N:

fN`1puqpb ‚ vq “
ÿ

iPk

fN pzipbqqpvq.

As announced, we have:

Lemma 5.12. For any view v : d1 d and n P N, f|v|`npuqpvq “ f|v|puqpvq.

Proof. We proceed by well-founded induction on p|v|, nq, for the lexical ordering. Let again
apuq “ pz1, . . . , zkq. First, we have f|id‚|puqpid

‚q “ k, and for any n, f|id‚|`n`1puqpid
‚q “ k

by Corollary 5.11. Now, if v “ b ‚ v1, then by Corollary 5.11 again:

f|v|`n`1puqpb ‚ v
1q “

ř

iPk f|v|`npzipbqqpv
1q

“
ř

iPk f|v1|`n`1pzipbqqpv
1q (by |v| “ |v1| ` 1)

“
ř

iPk f|v1|pzipbqqpv
1q (by induction hypothesis)

“ f|v|puqpb ‚ v
1q (by Corollary 5.11 again).

The sequence pfnpuqq thus has a colimit in Sd “
ŇEV
d : the presheaf mapping any view v

to f|v|puqpvq. This allows us to define:

Definition 5.13. Let f : U Ñ S map any u P Ud to the colimit of the fN puq’s.

Lemma 5.14. The following diagram commutes:

U GU

S GpSq.

a

f Gpfq

B´1

40 T. HIRSCHOWITZ

Proof. Consider any u P Ud and view v, and let apuq “ pz1, . . . , zkq. By definition of f ,
we have n “ fpuqpvq “ f|v|puqpvq on one side of the diagram. On the other side, we have

n1 “ B´1pGpfqpapuqqqpvq.

‚ If |v| “ 0, then by Lemma 5.10 n “ n1 “ k.
‚ If v “ b ‚ v1, then by Lemma 5.10 again we have n1 “

ř

iPk fpzipbqqpv
1q. But

by definition of f , we obtain n1 “
ř

iPk f|v1|pzipbqqpv
1q, which is in turn equal to

f|v|puqpvq “ n by Corollary 5.11.

Corollary 5.15. The map f is a map of G-coalgebras.

Lemma 5.16. The map f is the unique map U Ñ S of G-coalgebras.

Proof. Consider any such map g of coalgebras, and let apuq “ pz1, . . . , zkq. The map g must
be such that

gpuqpid‚dq “ B
´1pGpgqpapuqqqpid‚dq “ k,

by Lemma 5.10. Furthermore, by the same lemma, it must satisfy:

gpuqpb ‚ vq “ B´1pGpgqpapuqqqpb ‚ vq “
ÿ

iPk

gpzipbqqpvq,

which imposes by induction that f “ g.

The last two results directly entail Theorem 5.7.

5.2. The labelled transition system for strategies. In this section, we go beyond HP,
and define an lts for strategies, for an arbitrary playground D.

First, the alphabet for our lts will constist of quasi-moves, in the following sense.

Notation 5.17. We use the following notation for cartesian lifting (by (P1)) of a play u
along a horizontal morphism k (fixing a global choice of liftings):

Dk,u X 1

Y X.

hk,u

u|k u

k

αk,u

Definition 5.18. A quasi-move is a vertical morphism which locally either is a move or
has length 0. More precisely, a play u : Y X is a quasi-move iff for all players x : dÑ X,
u|x either is a move or has length 0.

A quasi-move is full when it locally either is a full move or has length 0. Let Q denote
the subgraph of Dv consisting of full quasi-moves.

Observe that a quasi-move on an individual either is a move or has length 0.
States in our lts will be the following special kind of strategies:

Definition 5.19. A strategy S P SX is definite when Spid‚Xq – 1, or equivalently when for
all players pd, xq P PlpXq, we have Spid‚d, xq “ 1.

Intuitively, for any quasi-move X 1
M

X, we would like transitions pX 1, S1q
M
ÝÑ pX,Sq

in our lts to occur when S1 is a definite restriction of S ¨M to some state of SpMq. I.e., a
transition precisely corresponds to a way for S to accept M . However, S ¨M is not quite
SpMq so the right notion of restriction may not be obvious. We first define our lts based

FULL ABSTRACTION FOR FAIR TESTING IN CCS 41

directly on what a restriction of S ¨M should be, and then elucidate the connection with
SpMq.

Consider, for any S P SX , any σ P
ś

pd,xqPPlpXq Spid
‚
d, xq. Obviously, id‚d is initial in

EVpdq, so we have a general analogue of Definition 3.19 for arbitrary positions:

Definition 5.20. Let the restriction S|σ P SX of S to σ be defined by the fact that for

any player x : dÑ X, S|σpv, xq “ tσ
1 P Spv, xq | Sp!vqpσ

1q “ σpd, xqu, where !v is the unique

morphism pid‚d, xq Ñ pv, xq in EV
X .

We now define our lts for strategies over Q.

Definition 5.21. The underlying graph SD for our lts is the graph with as vertices all
pairs pX,Sq where X is a position and S P SX is a definite strategy, and whose edges
pX 1, S1q Ñ pX,Sq are all full quasi-moves M : X 1 X such that there exists a state
σ P

ś

pd1,x1qPPlpX 1qpS ¨Mqpid
‚
d1 , x

1q with

S1 “ pS ¨Mq|σ,

i.e.,

S1d1,x1 “ pSdx1,M ,px1qM ¨ v
x1,M q|σpd1,x1q

for all pd1, x1q P PlpX 1q.
The assignment pX,Sq ÞÑ X defines a morphism pS : SD Ñ Q of reflexive graphs, which

is our lts.

Let us now return to the connection between
ś

pd1,x1qPPlpX 1qpS ¨Mqpid
‚
d1 , x

1q and SpMq.

First, we have by definition pS ¨Mqpid‚d1 , x
1q “ Spvx

1,M , px1qM q, for any player x1 : d1 Ñ X 1.
Now, as recalled above, SpMq may be characterised as a limit of

pEV
X{Mq

op dom
ÝÝÑ pEV

Xq
op S
ÝÑ ford ãÑ set.

Since αx
1,M : vx

1,M ÑM is an object in pEV
X{Mq

op , we obtain by projection a map SpMq Ñ

Spvx
1,M , px1qM q.

Definition 5.22. For any S P SX , let ψM : SpMq Ñ
ś

pd1,x1qPPlpX 1q Spv
x1,M , px1qM q denote

the corresponding tupling map.

We have:

Proposition 5.23. For any definite S P SX , the map ψM is a bijection.

We prove this through the following lemma. For any full quasi-move M : X 1 X,
observe that for any player x1 : d1 Ñ X 1, vx

1,M has length at most 1 (consider M|px1qM), and
let

PlM pX
1q “ tpd1, x1q P PlpX 1q | |vx

1,M | ‰ 0u.

Lemma 5.24. For any definite S P SX , and full quasi-move M : X 1 Ñ X, the map

SpMq
ψM
ÝÝÑ

ź

pd1,x1qPPlpX 1q

Spvx
1,M , px1qM q Ñ

ź

pd1,x1qPPlM pX 1q

Spvx
1,M , px1qM q,

where the second map is by projection, is bijective.

42 T. HIRSCHOWITZ

Proof. Recall that SpMq is a limit of

pEV
X{Mq

op dom
ÝÝÑ pEV

Xq
op S
ÝÑ ford ãÑ set.

Consider now the poset P with underlying set PlpXq ` PlM pX
1q and ordering given by

pd, xq ă pd1, x1q iff x “ px1qM . Consider the functor p : P Ñ EV
X{M mapping any pd, xq P

PlpXq to the unique morphism id‚d Ñ M with lower border x, and any pd1, x1q P PlM pX
1q

to αx
1,M . Since P is a poset, p is faithful. It is furthermore full by Proposition 4.27 (iii).

Finally, for any pw,αq : v ÑM in EV
X{M ,

‚ either |v| “ 0 and there is a unique player x : dÑ X such that pw,αq is the (unique)
morphism id‚d ÑM with lower border x,

‚ or |v| “ 1 and there exists a unique player pd1, x1q P X 1 such that pw,αq “ pid , αx
1,M q

(let x “ codpαq; |M|x| “ 1, so by Proposition 4.25 |w| “ 0).

This entails that p is essentially surjective on objects, hence an equivalence. Thus, SpMq
is also a limit of

P op » pEV
X{Mq

op dom
ÝÝÑ pEV

Xq
op S
ÝÑ ford ãÑ set.

But now, because S is definite, this functor maps any pd, xq P PlpXq to a singleton,
hence SpMq is also a limit of

PlM pX
1q ãÑ P op » pEV

X{Mq
op dom
ÝÝÑ pEV

Xq
op S
ÝÑ ford ãÑ set,

i.e., isomorphic to
ś

pd1,x1qPPlM pX 1q
Spvx

1,M , px1qM q, as desired.

Proof of Proposition 5.23. If |vx
1,M | “ 0, then Spvx

1,M , px1qM q is a singleton.

The moral of Proposition 5.23 is that transitions pX,Sq
M
ÐÝ pX 1, S1q in SD are precisely

given by full quasi-moves M : X 1 X such that there exists a state σ P SpMq with

S1 “ pS ¨Mq|ψM pσq,

i.e.,

S1d1,x1 “ pSdx1,M ,px1qM ¨ v
x1,M q|ψM pσqpd1,x1q

for all pd1, x1q P PlpX 1q.
We now give more syntactic characterisations of transitions, starting with transitions

from states of the shape pd, Sq. Recall the syntax for strategies below Theorem 5.7.

Proposition 5.25. If S “ xpSbqbPrBsdy is a definite strategy on d P I, and if for all b P rBsd,
Sb “

À

iPnb
Db
i for definite Db

i , then for any M : X 1 d we have pd, Sq
M
ÐÝ pX 1, S1q iff

‚ for all pd1, x1q P PlM pX
1q, there exists ix1 P nvx1,M such that S1d1,x1 “ Dvx

1,M

ix1
,

‚ and for all pd1, x1q P PlpX 1qzPlM pX
1q, S1x1 “ S.

Let us now characterise transitions from arbitrary positions in terms of their restrictions
to individuals. Recalling Notation 5.17, we have:

Proposition 5.26. We have pX,Sq
M
ÐÝ pX 1, S1q iff for all pd, xq P PlpXq,

pd, Sxq
M|x
ÐÝÝ pDx,M , S

1 ¨ hx,M q.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 43

Here, recall that S1¨hx,M is shorthand for the image of S1 under the action of hx,M : Dx,M Ñ

X 1 for the horizontal part of our pseudo double functor S.
Putting both previous results together, we obtain:

Corollary 5.27. Let, for all pd, xq P PlpXq, Sx “ xpS
x
b qbPrBsdy and for all b P rBsd, Sxb “

À

iPnxb
Dx,b
i for definite Dx,b

i .

Then, for any M : X 1 d, we have pX,Sq
M
ÐÝ pX 1, S1q iff

‚ for all pd1, x1q P PlM pX
1q, there exists ix1 P n

px1qM

vx1,M
such that S1x1 “ D

px1qM ,vx
1,M

ix1
,

‚ and for all pd1, x1q P PlpX 1qzPlM pX
1q, S1x1 “ Spx1qM .

5.3. Process terms. In the previous section, starting from a playground D, we have con-
structed an lts SD of strategies. We now begin the construction of the lts TD of process
terms announced in Section 1.3, starting with process terms themselves.

Definition 5.28. For any X, let rFsX be the set of isomorphism classes of full moves with
codomain X, in DHpXq, and let χ denote the map

rFsd Ñ Pf prBsdq
M ÞÑ trbs P rBs | Dα P DHpb,Mqu.

Let rF1sd denote the subset of rFsd consisting of (isomorphism classes of) full moves
M : X 1 d such that PlM pX

1q is a singleton (and hence so is χpMq). Let rF`sd denote the
complement subset.

The map χ is easily checked to be well-defined.
We state one more axiom to demand that basic sub-moves of a full move rM s P rFsd

may not be sub-moves of other full moves.

Axiom. (P10) (Basic vs. full) For any d P I and M,M 1 P rFsd, if M ‰ M 1, then χpMq X
χpM 1q “ ∅.

Let process terms be infinite terms in the typed grammar:

. . . di $ Ti . . . p@i P nq

d $
ÿ

iPn

Mi.Ti
pn P N;@i P n,Mi P rF1sd and χrMis “ tbi : di duq

. . . d1 $ Tb . . . p@pb : d1 dq P χrM sq

d $MxpTbqbPχrMsy
pM P rF`sdq.

The first rule is a guarded sum, in a sense analogous to guarded sum in CCS. It should
be noted that guards have to be full moves with only one non-trivial view. There is good
reason for that, since allowing general moves as guards would break bisimilarity between
process terms and strategies. To understand this, consider a hypothetical guarded sum
R “ pP |Qq ` pP 1|Q1q. Since this has no interaction before the choice is made, R behaves,
in CCS, just like an internal choice pP |Qq ‘ pP 1|Q1q. However, our translation to strategies
does not translate guarded sum as an internal choice, with right, since other guarded sums,
e.g., a.P ` b.Q should certainly not be translated this way. Instead, R would be translated
as something equivalent to pP |Qq‘pP 1|Qq‘pP |Q1q‘pP 1|Q1q, which is clearly not bisimilar
to R in general.

44 T. HIRSCHOWITZ

We could easily include internal choice in the grammar, since strategies do model it,
directly. We refrain from doing so for simplicity.

Definition 5.29. Let TD be the set of process terms.

Example 5.30. For DCCS , the obtained syntax is equivalent to

. . . Γ ¨ αi $ Pi . . .

Γ $
ÿ

i

αi.Pi

Γ $ P Γ $ Q

Γ $ P |Q
¨

where

‚ Γ ranges over natural numbers;
‚ α ::“ a | a | ♥ | ν (for a P Γ);
‚ Γ ¨ α denotes pΓ` 1q if α “ ν and just Γ otherwise.

This grammar obviously contains CCS, and we let θ : obpCCS q ãÑ TDCCS be the injection.

5.4. The labelled transition system for process terms. We now define the lts TD.
States, i.e., vertices of the graph underlying this lts, are pairs pX,T q of a position X and
a family T of process terms, indexed by the players of X, i.e., T P

ś

pd,xqPPlpXqpTDqd, where

pTDqd is the set of process terms of type d.
To define edges, we need a lemma. For any play u : X 1 X and x : d Ñ X, recalling

Notation 5.17, consider the map

ru :
ř

pd,xqPPlpXq PlpDx,uq Ñ PlpX 1q

ppd, xq, pd1, x1qq ÞÑ hx,u ˝ x
1

sending any pd, xq P PlpXq and x1 : d1 Ñ Dx,u to d1
x1
ÝÑ Dx,u

hx,u
ÝÝÑ X 1.

Consider the map iu in the other direction sending any y : d1 Ñ X 1 to ppdy,u, yuq, pd1, y|yuqq,

where y|yu is the (domain in DV of the) unique α1 making the diagram

d1

Dyu,u X 1

dy,u

dy,u X

u

y

vy,u

y|yu

αy,u

yu

yu

u|yu

hyu,u

αyu,u

α1

commute (by (P1)). This map iu is well-defined by uniqueness of yu and cartesianness of
αyu,u.

Lemma 5.31. The maps iu are ru are mutually inverse.

Proof. Straightforward.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 45

Let us return to the definition of our lts. We first say that for any full quasi-move
M : D d, a process term d $ T has anM -transition to pD,T 1q, for T 1 P

ś

pd1,x1qPPlpDqpTDqd1 ,

when one of the following holds:

(i) DM 1 P rF`s, T “M 1xT 2y, and, for all pd1, x1q P PlpDq,

‚ if vx
1,M is a basic move, then vx

1,M P χpM 1q and T 1d1,x1 “ T 2
vx1,M

;

‚ otherwise |vx
1,M | “ 0 (hence d1 “ d), and T 1d1,x1 “ T ;

(ii) rM s P rF1s, T “
ř

iPnMi.Ti, Mi0 “ rM s for some i0 P n, and for all players
x1 : d1 Ñ D
‚ if vx

1,M P χpMq, then T 1d1,x1 “ Ti0 ,

‚ and otherwise (|vx
1,M | “ 0), T 1d1,x1 “ T ;

(iii) |M | “ 0 and for all pd1, x1q P PlpDq, T 1d1,x1 “ T (which, again, makes sense by

Lemma 4.17).

We denote such a transition by T
M
ÐÝ pD,T 1q.

Remark 5.32. The first case (i) allows χpMq “ ∅.

Definition 5.33. Let TD be the graph with pairs pX,T q as vertices, and as edges pX 1, T 1q Ñ

pX,T q full quasi-moves M : X 1 X such that for all pd, xq P PlpXq, Td,x
M|x
ÐÝÝ pDx,M , pT

1 ˝

Σhx,M qq. Here, we let Σhx,M denote composition with hx,M : Dx,M Ñ X 1, viewed as a map

PlpDx,M q Ñ PlpX 1q.

TD is viewed as an lts over Q, by mapping pX,T q
M
ÐÝ pX 1, T 1q to X

M
X 1.

Example 5.34. For DCCS , the obtained lts differs subtly, but significantly from the usual
lts for CCS. In order to explain this clearly, let us introduce some notation. First, let
evaluation contexts be generated by the grammar

Γ;x : n $ xpa1, . . . , anq

Γ; ∆1 $ e1 Γ; ∆2 $ e2

Γ; ∆1,∆2 $ e1|e2
,

where, in the first rule, @i P n, ai P Γ, and in the second domp∆1q X domp∆2q “ ∅. Here,
x ranges over a fixed set of variables, and ∆, . . . range over finite maps from variables to
natural numbers. Evaluation contexts are considered equivalent up to associativity and
commutativity of |. Positions are essentially a combinatorial, direct representation of such
contexts.

Leaving the details aside, states in TDCCS may be viewed as pairs pX,T q of an evaluation
context X, plus, for each n-ary variable xpa1, . . . , anq in X, a process term over n in the
grammar of Example 5.30. Instead of separately writing the evaluation context and the
map from its variables to process terms, we inline the process terms between brackets in
the context, thus avoiding variables. Moves are either put in context similarly, or located
implicitly. E.g., for a state pX,T q where X contains two players respectively mapped by
T to process terms P and Q, we would write rP s|rQs. There is some ambiguity in this
notation, e.g., in case some channels are absent from P : are they absent from the arity of
P , or only unused? Since we use this notation mostly for clarifying examples, we will avoid
such ambiguities. Finally, we sometimes use brackets to denote the fact that some holes
are filled with the given state. E.g., XrrP s|rQss denotes a state X, where a hole has been
replaced by a parallel composition of two holes, respectively filled with P and Q.

Returning to our examination of TDCCS , of course, a first difference is the fact that
labels may contain several moves, as quasi-moves only locally have length 1.

46 T. HIRSCHOWITZ

A second difference is the presence of heating rules for parallel composition and channel
creation, in a sense close to the chemical abstract machine [4]. For example, we have

transitions XrP |Qs
π
ÐÝ XrrP s|rQss, for any sensible P and Q.

There is a third important difference, related to channel creation. For instance, we have
transitions

rνa.a.P s
ν
ÐÝ ra.P s

ιa
ÐÝ rP s.

The second transition cannot occur in a closed-world setting, since the environment cannot
know a.

A final difference with the expected transition rules is that labels contain too much
information to be relevant for behavioural equivalences. E.g., they contain the whole eval-
uation context in which the transition takes place, as well as which players are involved.
The second difference, i.e., the presence of heating rules, is not really problematic, and
merely forces us to use weak bisimulations rather than strong ones. All other defects will
be corrected below.

5.5. Translation and a first correctness result. We conclude this section on the general
theory of playgrounds by establishing a strong, functional bisimulation from process terms
to strategies.

Mimicking (3.2) (page 23), our translation from process terms to definite strategies is
defined coinductively by

J
ř

iPnMi.TiK “ xb ÞÑ
À

tiPn|bPχpMiqu
JTiKy

JMxpTbqbPχpMqyK “

B

b ÞÑ

"

JTbK if b P χpMq
∅ otherwise

F

.
(5.1)

Let us extend the map J´K : TD Ñ SD to a map J´K : obpTDq Ñ obpSDq, defined by
JX,T K “ pX, pJTpd,xqKqpd,xqPPlpXqq.

Theorem 5.35. The map J´K : obpTDq Ñ obpSDq is a functional, strong bisimulation.

Proof. The theorem follows from Proposition 5.26 and the next lemma.

Lemma 5.36. For any full quasi-move M : X 1 d, for any T P pTDqd and S1 P pSDqX 1,
we have

pd, JT Kq M
ÐÝ pX 1, S1q iff DT 1, pT

M
ÐÝ pX 1, T 1qq ^ ppX 1, S1q “ JX 1, T 1Kq.

Note the implicit typing: T 1 P
ś

pd1,x1qPPlpX 1qpTDqd1 . Also the second condition on the

right is equivalent to @x1 : d1 Ñ X 1, S1x1 “ JT 1x1K.

Proof. If |M | “ 0, then both sides are equivalent to the fact that for all x1 : d1 Ñ X 1,
S1x1 “ JT K.

Otherwise, we proceed by case analysis on T .
If T “ M 1xpT 2b qbPχpM 1qy, then by (P10) both sides are equivalent to χpMq Ď χpM 1q,

plus

‚ for all pd1, x1q P PlM pX
1q, S1x1 “ JT 2

vx1,M
K, and

‚ for all pd1, x1q P PlpX 1qzPlM pX
1q, S1x1 “ JT K.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 47

Indeed, for any b P χpMq, JT K ¨ b “ JT 2b K is definite. We thus put T 1x1 “ T 2
vx1,M

in the first

case and T 1x1 “ T in the second case.
If T “

ř

iPnMi.Ti, then both sides are equivalent to the existence of i0 P n such that
rM s “Mi0 and

‚ for the unique pd1, x1q P PlM pX
1q, S1x1 “ JTi0K, and

‚ for all pd1, x1q P PlpX 1qzPlM pX
1q, S1x1 “ JT K.

This uses (P10), since the left-hand side unfolds to the existence of x1 : d1 Ñ X 1 such that

vx
1,M P χrM s and JT K ¨ vx1,M ‰ ∅, i.e., vx

1,M P χpMi0q for some i0 P n, by definition of JT K.
This entails in particular rM s “Mi0 by (P10).

6. Graphs and fair morphisms

In this section, we derive our main result. For this, we develop a notion of graph with
complementarity, which aims at being a theory of ltss over which fair testing makes sense.
Although the theory would apply with any predicate K compatible with »Σ equivalence
classes (see below), the question of whether such a generalisation would have useful appli-
cations is deferred for now.

For any graph with complementarity A and relation R : G H over A, we exhibit
sufficient conditions for R to be fair, i.e., to preserve and reflect fair testing equivalence.
We then relate this theory to our semantics, and show that it entails our main result. For
now, this section lies outside the scope of playground theory. Some aspects of it could be
formalised there, but we leave the complete formalisation for further work. Because the
only playground involved is DCCS , we often omit sub or superscripts, e.g., in D, SD (even
just S), etc.

Before we start, let us define WCCS to be the set of closed-world quasi-moves, i.e.,
vertical morphisms in D which either are closed-world moves (Definition 3.21) or have
length 0. Please note: quasi-moves must locally restrict to plays of length ď 1, whereas
closed-world quasi-moves have length ď 1 globally. Let DW be the subbicategory of Dv
generated by WCCS , and let Σ be the free reflexive graph on an endo-edge ♥. Finally, let
¯̀D : DW Ñ fcpΣq be the pseudo functor determined by the mapping `D : WCCS Ñ Σ sending
all closed-world quasi-moves to id except ♥ moves, which are sent to ♥.

6.1. Graphs with complementarity. A relation A B between two reflexive graphs
A and B is a subgraph R ãÑ A ˆ B. Such a relation R is total when, for all vertices,
resp. edges, x P A, there exists a vertex, resp. an edge y P B, such that px, yq P R. It
is partially functional there is at most one such y. It is functional when it is total and
partially functional. The domain of R is the subgraph of A consisting of vertices and edges
related to something in B.

Definition 6.1. A graph with complementarity is a reflexive graph A, equipped with a
subgraph AW, a relation ŹA : A2 AW, and a map `A : AW Ñ Σ, such that the composite
A2 AW Ñ Σ is partially functional and symmetric.

We let A¨ “ dompŹAq and write a ¨ a1 for pa, a1q P A¨. We further denote the map
A¨ ãÑ A2 AW Ñ Σ by pa, bq ÞÑ pa ó bq.

Remark 6.2. A¨ has to be symmetric as the domain of a symmetric relation.

48 T. HIRSCHOWITZ

Definition 6.3. A morphism of graphs with complementarity is a morphism f : AÑ B of
reflexive graphs such that

fpAWq Ď BW `B ˝ fW “ `A ppa1, a2q Ź
A a3q ñ ppfpa1q, fpa2qq Ź

A fpa3qq,

where fW : AW Ñ BW is the restriction of f .

Proposition 6.4. Graphs with complementarity and morphisms between them form a cat-
egory GCompl.

We now introduce the graph IQ, which as announced in the introduction will serve as
base for making SDCCS and TDCCS into graphs with complementarity. It is an interfaced
variant of Q, hence its name.

Example 6.5. Let IQ be the graph with as vertices all horizontal morphisms h : I Ñ X
from some interface to some position, and whose edges k Ñ h are given by diagrams

I Y

I X

k

h

Mα (6.1)

in DH , where M is either a full move or an identity, such that if M is an input or an
output, then the corresponding channel is in the image of I. IQ forms a reflexive graph
with identities given by the case where M “ id‚, which forms a graph with complementarity
as follows.

Let pIQqW consist of all closed-world quasi-moves. For any h : I Ñ X, k : J Ñ Y , and
c : K Ñ Z, let ph, kq ŹIQ c iff I “ J “ K, Z “ h `I k, and c is the corresponding map
I Ñ Z. On edges, for any Mh : h1 Ñ h, Mk : k1 Ñ k, and Mc : c1 Ñ c, let pMh,Mkq Ź

IQ Mc

iff there exists a diagram

I Y 1

X 1 Z 1

I Y

X Z,
h

Mk

Mh Mc

h1

(6.2)

where Mc is a closed-world quasi-move and double cells with a ‘double pullback’ mark are
cartesian, as below Axiom (P1) (page 26). (One easily shows that the upper square is also
a pushout.) Then pIQq¨, consists of all pairs pMh,Mkq for which there exists a diagram of
the shape (6.2).

Let `IQ be the composite pIQqW ãÑWCCS
`D
ÝÑ Σ. It thus maps tick moves to ♥ and all

other closed-world moves to id . The composite pIQq2 ŹIQ
pIQqW Ñ Σ is indeed partially

functional and symmetric.
There is an obvious morphism χ : IQÑ Q of reflexive graphs.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 49

Example 6.6. Recall the alphabet A for CCS. It also forms a graph with complementarity,
as follows. Let AW consist of all vertices and of all ♥ and id edges. Let A¨ consist, on
vertices, of the diagonal, i.e., all pairs pn, nq. On edges, let e ¨ e1 when dompeq ¨ dompe1q
and:

‚ one of e and e1 is in AW, the other being an identity,
‚ or one of e and e1 is an input on, say, i P dompeq, the other being an output on i.

Define now ŹA by mapping all coherent pairs e ¨ e1 to id , except when one is a ♥, in which
case the pair is mapped to ♥ P Σ. The axioms are easily satisfied.

Let ξ : IQÑ A map any vertex h : I Ñ X to n “ Ip‹q, and any edge (6.1) to

‚ idn if M is an identity, a synchronisation, a fork, or a channel creation,
‚ ♥n if M is a tick move,
‚ i if M is an input on h‹piq,
‚ i if M is an output on h‹piq.

This map ξ is a morphism of graphs with complementarity.

We have the following general way of constructing graphs with complementarity. Con-
sider any A with complementarity and morphism of reflexive graphs p : G Ñ A, equipped
with a choice, for all x, y P G and a P A such that pppxq, ppyqq ŹA a, of a vertex rx, ysa P G
such that pprx, ysaq “ a, satisfying the following condition: for all edges ex : x1 Ñ x and
ey : y1 Ñ y in G, and ea : a1 Ñ a in A, if pppexq, ppeyqq Ź

A ea, then there exists a (unique if
p is faithful) rex, eysea : rx1, y1sa1 Ñ rx, ysa such that pprex, eyseaq “ ea.

Let GW “ GˆA A
W denote the pullback

GW AW

G A.

pW

p

(6.3)

Let `G be the composite GW pW
ÝÝÑ AW `A

ÝÑ Σ, and let px, yq ŹG z iff pppxq, ppyqq ŹA ppzq (for
both vertices and edges).

Proposition 6.7. GW, `G, and ŹG make G into a graph with complementarity, and p is a
morphism of graphs with complementarity.

Proof. By standard relational algebra, the composite relation

G2 ŹG

GW pW
ÝÝÑ AW

is equal to

G2 p2
ÝÑ A2 ŹA

AW pW
ÐÝÝ GW pW

ÝÝÑ AW

(where the backward pW arrow denotes the converse of the graph of pW), hence included in

G2 p2
ÝÑ A2 ŹA

AW.

The hypothesis implies that this inclusion is an equality.
Composing with `A, we obtain that `G ˝ ŹG “ `A ˝ ŹA ˝ p2, which is straightforwardly

symmetric and partially functional. The morphism p is obviously a morphism of graphs
with complementarity.

50 T. HIRSCHOWITZ

Definition 6.8. Let SIQ “ ∆χpSq and TIQ “ ∆χpTq be the pullbacks of SÑ Q and T Ñ Q
along χ : IQÑ Q.

Example 6.9. SIQ and TIQ form graphs with complementarity over IQ, and CCS forms a
graph with complementarity over A, by Proposition 6.7.

6.2. Modular graphs and fair testing equivalence. We now introduce the notion of
modular graph, which is appropriate for defining fair testing. We could actually introduce
fair testing for arbitrary graphs with complementarity, but the extra generality would make
little sense.

For any graph with complementarity G, G¨ forms an lts over Σ, through G¨ ó
ÝÑ Σ.

Definition 6.10. G is modular iff for all px, yq ŹG z we have both:

(1) for all e : z1 Ñ z, there exists ex : x1 Ñ x and ey : y1 Ñ y such that pex, eyqŹ
G e; and

(2) for all ex : x1 Ñ x and ey : y1 Ñ y such that ex ¨ ey there exists e : z1 Ñ z such that
pex, eyq Ź

G e.

Remark 6.11. The second condition is almost redundant: in any graph with complemen-
tarity G, there exists e1 such that pex, eyqŹ

G e1, but the target of e1 may be any u such that
px, yq ŹG u; it does not have to be z.

Proposition 6.12. G is modular iff ŹG is a strong bisimulation over Σ.

Proof. We show that modularity implies ŹG is a bisimulation, the converse being just as

easy. If x1
ex
ÝÑ x, y1

ey
ÝÑ y, and px, yq ŹG z, with ex ó ey “ σ, then by (2) there exists

e : z1 Ñ z such that pex, eyq Ź
G e and `Gpeq “ σ (by definition of ó). Hence, z1 Σ

σ
ÐÝ z and

px1, y1q ŹG z1 as desired.
Conversely, if px, yq ŹG z and e : z1 Ñ z in GW, then by (1) there exist ex : x1 Ñ x and

ey : y1 Ñ y such that pex, eyq Ź
G e.

Example 6.13. SIQ and TIQ, as well as CCS , are modular.

We now define fair testing in any modular graph, and compare with both semantic fair
testing equivalence („f) for strategies and standard fair testing equivalence („f,s) for CCS
processes. Recall that „Σ denotes strong bisimilarity over Σ.

Lemma 6.14. For any modular graph with complementarity G and x, y, z, t P G, if px, yqŹG

z and px, yq ŹG t, then z „Σ t.

Proof. We have z „Σ px, yq „Σ t.

Any modular graph may be equipped with a choice of z such that px, yq ŹG z, for all
x ¨ y. We denote such a choice by rx, ys. By the lemma, the choice of z does not matter as
long as we only consider properties invariant under „Σ. Here, we only need the standard
predicate for fair testing.

Definition 6.15. For any reflexive graph G over Σ, let KG denote the set of all x P G such

that for all xð x1 there exists x1
♥
ðù x2.

When G is a graph with complementarity, we often denote KG
W

by KG. There is no
confusion because G is not even a graph over Σ in general.

In any modular graph with complementarity G, let, for any x P G, x¨ “ ty | x ¨ yu,
and let x ’ y iff x¨ “ y¨.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 51

Definition 6.16. For any x, y P G, let x „Gf y iff x ’ y and for all z P x¨, rx, zs P KG
W

iff

ry, zs P KG
W

.

We may at last define fair relations:

Definition 6.17. For all modular graphs with complementarity G and H, and full relations
R : G H, let R preserve fair testing equivalence when, for all x R x1 and y R y1, px „Gf yq

implies px1 „Hf y1q. R reflects fair testing equivalence when the converse implication holds.
R is fair when it preserves and reflects fair testing equivalence.

Modularity enables a first, easy characterisation of fair testing.

Proposition 6.18. If G is modular, then for any x ¨ y, rx, ys P KG iff px, yq P KG
¨

.

Proof. A direct consequence of Proposition 6.12.

We now prove that the general definition of fair testing equivalence instantiates correctly
for SIQ and CCS . First, we easily have

Proposition 6.19. For any two CCS processes P and Q over n, P „f,s Q iff P „CCS
f Q.

Proof. Straightforward.

We now wish to compare KSIQ , as defined in this section, and the semantic KK. As an
intermediate step, we consider the following, bare ‹, which lives over Q, but is defined in
terms of ltss (as opposed to successful states of strategies). Let SW be the restriction of S

to closed-world transitions; this is an lts over Σ via `D. Let ‹ be KSW , i.e., the set of pairs

pX,Sq P S such that for all pX,Sq ð pX 1, S1q there exists pX 1, S1q
♥
ðù pX2, S2q.

Lemma 6.20. For all pX,Sq P S, S P KKX iff pX,Sq P‹.

This essentially amounts to checking that the notions of closed-world, successful, and
unsuccessful play (Definition 3.21), correspond with closed-world, successful, and unsuc-
cessful transition sequences. The former are defined in terms of plays and moves therein,
while the latter rest upon the map `D : WCCS Ñ Σ.

We first observe:

Lemma 6.21. For any two closed-world plays W,W 1 over X, and α : W Ñ W 1 in DH , if
codpαq “ idX , then α is an isomorphism, and it is unique.

Proof of Lemma 6.20. Let S P SX and assume S P KKX . Let S ð S1 (over Σ). This means
that there exists a path p

X “ X0
M1
ÐÝÝ X1

M2
ÐÝÝ . . . Xn “ X 1,

such that, omitting positions,

S “ S0
M1
ÐÝÝ S1

M2
ÐÝÝ . . . Sn “ S1,

and p is mapped by `‹D to the path of length n consisting only of id edges. This implies

by induction the existence of σ P SpW q, where W “ M1 ‚ . . . ‚Mn is closed-world and
unsuccessful, such that S1 “ pS ¨W q|ψpσq. Because S P KKX , there exists a successful, closed-

world play W 1, a morphism f : W Ñ W 1 in EpXq, and σ1 P SpW 1q such that σ1 ¨ f “ σ.

52 T. HIRSCHOWITZ

By Lemma 6.21, W 1 is isomorphic to an extension of W with closed-world moves, say
W 1 –W ‚Mn`1 ‚ . . . ‚Mn`m. By induction on m, we obtain a path

S1 “ Sn
Mn`1
ÐÝÝÝ Sn`1

Mn`2
ÐÝÝÝ . . . Sn`m,

where Sn`m “ pS ¨ W 1q|ψpσ1q. Because W 1 is successful, there exists i P m such that

`DpMn`iq “ ♥, hence S1
♥
ðù Sn`i. Thus, pX,Sq P‹.

Conversely, assume pX,Sq P‹. Let W be an unsuccessful, closed-world play over X
and σ P SpW q. Picking a decomposition W “M1 ‚ . . . ‚Mn of W , we obtain a path p

S “ S0
M1
ÐÝÝ S1 . . .

Mn
ÐÝÝ Sn “ S1

in S such that S1 “ pS ¨W q|ψpσq, which yields S ð S1. Because pX,Sq P‹, there exists

S1 ð S2
♥
ÐÝ S3, with underlying path

S1 “ Sn
Mn`1
ÐÝÝÝ Sn`1 . . .

Mn`m
ÐÝÝÝÝ Sn`m “ S2

Mn`m`1
ÐÝÝÝÝÝ S3

in SW, such that `DpMn`iq “ id for all i P m and `DpMn`m`1q “ ♥. But by definition this
means that S3 “ pS1 ¨W 1q|ψpσ1q for some

σ1 P S1pW 1q “ pS ¨W q|ψpσqpW
1q “ tσ2 P SpW ‚W 1q | σ2 ¨ f “ σu,

where W 1 “Mn`1 ‚ . . .‚Mn`m`1 and f : W Ñ pW ‚W 1q is the extension. By construction,
σ1 ¨ f “ σ. Hence, S P KKX .

We furthermore have:

Lemma 6.22. For any vertex h : I Ñ X of IQ and S P SX , pI, h, Sq P KSIQ iff pX,Sq P‹.

Proof. The map χW : IQW Ñ QW is a strong, functional bisimulation, because for any
h : I Ñ X and closed-world move M : Y X, there exists a diagram (6.1). Thus, the
projection pSIQqW Ñ SW is a strong, functional bisimulation by Proposition 2.11.

Remark 6.23. Interfaces are pretty irrelevant here, and indeed we could have decreed that
closed-world moves only relate vertices with empty interfaces in IQ. This is unnecessary
here, though, so we stick to the simpler definition, but it will be crucial for the π-calculus.

This entails:

Corollary 6.24. For any h : I Ñ X, h1 : I Ñ X 1, S P SX , and S1 P SX 1, pI, h, Sq „f
pI, h1, S1q iff pI, h, Sq „SIQ

f pI, h1, S1q.

Proof. We have

pI, h, Sq „f pI, h
1, S1q

õ(by definition)

@Y, k : I Ñ Y, T P SY , prS, T s P KKX`IY ô rS1, T s P KKX 1`IY q
õ(by Lemma 6.20)

@Y, k : I Ñ Y, T P SY , ppX `I Y, rS, T sq P‹ô pX 1 `I Y, rS
1, T sq P‹q

õ(by Lemma 6.22)

@Y, k : I Ñ Y, T P SY , ppI Ñ X `I Y, rS, T sq P K
SIQ ô pI Ñ X 1 `I Y, rS

1, T sq P KSIQq

õ(by definition)

pI, h, Sq „SIQ
f pI, h1, S1q,

which concludes the proof.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 53

6.3. Adequacy. Until now, our study of graphs with complementarity and fair testing
therein is intrinsic, i.e., fair testing equivalence in a modular graph with complementarity
G does not depend on any alphabet. We now address the question of what an alphabet
should be, for G. The main idea is that such an alphabet A should be a graph with
complementarity, and that viewing it as an alphabet for G is the same as providing a
morphism p : GÑ A in Gph, satisfying a certain condition called adequacy. To understand
the role of this condition, one should realise that edges in G may be much too fine a tool
for checking fair testing equivalence. E.g., in SIQ, they include information about which
players played which move. Thus, although it is true that weak bisimilarity implies fair
testing equivalence, this property is essentially useless for fair testing, because too few
strategies are weakly bisimilar. Any morphism p : SIQ Ñ A induces an a priori coarser
version of fair testing for SIQ, where one only looks at labels in A. Adequacy is a sufficient
condition for this latter version to coincide with the original. This will in particular entail
that weak bisimilarity over A is finer than fair testing equivalence.

Adequacy relies on the following:

Definition 6.25. Consider, for any p : GÑ A and q : H Ñ A the pullback

G ˛A H A¨

GˆH A2.
pˆq

We call G ˛A H the blind composition of G and H over A, viewed as an lts over Σ via
G ˛A H Ñ A¨ Ñ Σ.

Recall from Section 2.2 that »A denotes weak bisimilarity for reflexive graphs over A.

Definition 6.26. Let p : G Ñ A be morphism of graphs with complementarity. We say
that p is adequate iff

‚ the graph of obG¨ ãÑ obpG ˛A Gq is included in »Σ, and
‚ for all x, y P obpGq, x ¨ y iff ppxq ¨ ppyq.

Concretely, any transition pe1, e2q P G
¨ is matched, without any hypothesis on G, by

pe1, e2q itself. Conversely, having a transition px1, x2q
e1,e2
ÐÝÝÝ px11, x

1
2q in G ˛A G means that

ppe1q ó ppe2q “ σ. Adequacy demands that there exists a path pr1, r2q : px1, x2q Ð
‹ px21, x

2
2q

in G¨, such that Čr1 ó
‹ r2 “

Ăpσq, and px21, x
2
2q »Σ px

1
1, x

1
2q, where the left-hand side is in G¨

and the right-hand side is in G ˛A G.
Recall the map ξ : IQ Ñ A from Example 6.6. Via this map, SIQ and TIQ form ltss

and even graphs with complementarity over A.

Proposition 6.27. The maps from CCS, SIQ, and TIQ to A are adequate.

Proof. For all three graphs p : G Ñ A over A, both G¨ and G ˛A G form graphs over
AW, because ŹA : A2 AW is actually partially functional. In each case, the graph of
obG¨ ãÑ obpG ˛A Gq is a weak bisimulation over A, because for all e and e1 in G, if
ppeq ¨ ppe1q, then either e ¨ e1, or both interleavings are coherent, i.e., pe, idq ¨ pid , e1q and

pid , eq ¨ pe1, idq, pointwise. (Here, e.g., pe, idq denotes the path ¨
e
ÐÝ ¨

id
ÐÝ ¨.)

54 T. HIRSCHOWITZ

The only subtle point is that this only holds thanks to the restrictions put on edges
of IQ. E.g., consider the graph the graph IQ´ with the same vertices as IQ, and edges

pI
k
ÝÑ Y q Ñ pI

h
ÝÑ Xq given just as for IQ, except that we do not require existence of

a diagram (6.1). Pullback yields a graph S´ over IQ´. Extending ξ to ξ1 : IQ´ Ñ A in
the obvious way, we obtain a graph over A. Consider now the moves o2,1, ι2,1 : r2s r2s,
let I “ 2 ¨ ‹, and let f be one of the two embeddings I Ñ r2s, say the one which is an
inclusion at ‹, f 1 being the other. Recalling labels in A from Definition 2.19, we have edges

pI, f, r2sq
1
ÐÝ pI, f, r2sq and pI, f, r2sq

1
ÐÝ pI, f 1, r2sq, and pI, f, r2sq ¨ pI, f, r2sq. However, the

two edges are not coherent, because any attempt to construct a diagram (6.2) (with here
h “ h1 “ k “ f , and k1 “ f 1) fails (even if we forget about the vertical identity). This is
the very reason we use IQ instead of IQ´.

We have the following two easy properties of blind composition.

Proposition 6.28. For any adequate p : GÑ A and x ¨ y in G, we have rx, ys P KG
W

iff
px, yq P KG˛AG.

Proof. We have rx, ys »Σ ppx, yq P G
¨q »Σ ppx, yq P G ˛A Gq.

Proposition 6.29. For any H over A and adequate p : GÑ A, x1, x2 P G, and y in H, if
x2 »A y, then

rx1, x2s P K
G iff px1, yq P K

G˛AH .

Proof. By adequacy, it is enough to prove that the right-hand side is equivalent to px1, x2q P

KG˛AG, which is straightforward by hypothesis.

We conclude this section by stating the main property of blind composition, Proposi-
tion 6.33 below, which will be used extensively in the next section.

To start with, recall the notation from Section 2.2.1. There, considering a morphism

p : GÑ A of reflexive graphs, we defined x A
r
ðù x1, for x, x1 P obpGq and r : ppxq Ð ppx1q in

A‹. Namely, this denotes any path r1 : xÐ‹ x1 in G, such that Čp‹pr1q “ rr.
In order to state Proposition 6.33, we now need to equip fcpAq with complementarity

structure, but we cannot do it over the graph Σ, because closed-world paths may contain
more than one ♥ edge, hence cannot all be mapped to Σ. We thus define categories with
complementarity.

The notions of relation, partial functionality, functionality, totality, and domain on
reflexive graphs carry over to categories, e.g., a relation A B is a subcategory R Ď AˆB.
The only subtlety is that the definitions imply certain functoriality properties. E.g., for any
composites g ˝ f in A and g1 ˝ f 1 in B, if pf, f 1q P R and pg, g1q P R, because R, as a
subcategory, is stable under composition, we have for free that pg ˝ f, g1 ˝ f 1q P R. Similarly,
if px, yq P R for objects x P A and y P B, then pidx, idyq P R. We thus rename partial
functionality and functionality into partial functoriality and functoriality in this setting.

Definition 6.30. A category with complementarity is a category A, equipped with a sub-
category AW, a relation ŹA : A2 AW, and a functor `A : AW Ñ fcpΣq, such that the
composite A2 AW Ñ fcpΣq is partially functorial and symmetric.

We let A¨ “ dompŹAq and write a ¨ a1 for pa, a1q P A¨. We further denote the map
A¨ ãÑ A2 AW Ñ fcpΣq by pa, bq ÞÑ pa ó bq.

Defining functors with complementarity in the obvious way, we obtain:

FULL ABSTRACTION FOR FAIR TESTING IN CCS 55

Proposition 6.31. Categories with complementarity form a (locally small) category CCompl.

There is an obvious functor UCompl : CComplÑ GCompl forgetting the category struc-
ture. Objects G in the image of UCompl have the property that for all e ¨ e1, if e ¨ idcodpe1q

and iddompeq ¨ e1, then Čpe ó e1q “ Čpe ó idq; pid ó e1q in fcpΣq. Let GCompl` denote the full
subcategory of GCompl spanning such objects. We consider UCompl as a functor to this
subcategory.

Proposition 6.32. The functor UCompl : CCompl Ñ GCompl` has a left adjoint, which
coincides with fc on underlying graphs.

Proof. Let us start by defining a complementarity structure on A‹. Let pA‹qW denote the
subcategory of closed-world paths in A, i.e., pA‹qW “ pAWq‹. Accordingly, let `A

‹

be the
composite

pAWq‹
p`Aq‹
ÝÝÝÑ Σ‹

r´
ÝÑ fcpΣq.

Finally, consider the functor

pA2q‹
xπ‹,pπ1q‹y
ÝÝÝÝÝÝÑ pA‹q2.

It yields a relation pA2q‹ pA‹q2, whose converse we use to define ŹA
‹

as the composite
relation

pA‹q2
xπ‹,pπ1q‹y:

pA2q‹
pŹAq‹

A‹.

Concretely, ŹA
‹

is ŹA on objects, and on paths, we have pr1, r2q Ź
A‹ r iff all three paths

r1, r2, and r have the same length n and pri1, r
i
2q Ź

A ri for all i P n. This clearly makes A‹

into a category with complementarity.
Let us now define the complementarity structure on fcpAq, for any A P GCompl`. Let

first fcpAqW be the image of pA‹qW ãÑ A‹
r´
ÝÑ fcpAq, i.e., all id -free, closed-world paths. This

in particular induces a functor pA‹qW Ñ pfcpAqqW, with which `pA
‹q is obviously compatible,

hence we define `fcpAq to be the induced functor. Finally, let ŹfcpAq be the following relational
composite, where the backwards arrow denotes a converse:

pfcpAqq2
pr´q2

ÐÝÝÝ pA‹q2
ŹA

‹

pA‹qW Ñ fcpAqW.

Concretely, pρ1, ρ2q Ź
fcpAq ρ3 iff there exist pr1, r2q Ź

A‹ r3 such that rri “ ρi for i “ 1, 2, 3.
Intuitively, ρ1 and ρ2 are coherent if upon insertion of identities at appropriate places they
become pointwise coherent. Again, this makes fcpAq into a category with complementarity
(partial functoriality follows from A P GCompl`).

This clearly extend fc to a functor GCompl` Ñ CCompl coinciding with fc : GphÑ Cat
on underlying graphs, hence the notation. Proving that this is left adjoint to UCompl
reduces to showing that the composite

GCompl`pA,UComplpCqq ãÑ GphpA,UpCqq
–
ÝÑ CatpfcpAq, Cq

factors through CComplpfcpAq, Cq ãÑ CatpfcpAq, Cq, and conversely the composite

CComplpfcpAq, Cq ãÑ CatpfcpAq, Cq
–
ÝÑ GphpA,UpCqq

factors through GCompl`pA,UComplpCqq ãÑ GphpA,UpCqq, which is routine.

56 T. HIRSCHOWITZ

We may now state the main property of blind composition:

Proposition 6.33. For any graphs with complementarity G and H over A, and transition

sequences x A
ρx
ðù x1 and y A

ρy
ðù y1 respectively in G and H, if pρx, ρyqŹ

fcpAqρ, then px, yq A
ρ
ðù

px1, y1q in G ˛A H.

Proof. Let p : GÑ A and q : H Ñ A be the given projections. Let also pri1, r
i
2q Ź

A ri3 for all

i P n witness the fact that pρx, ρyq Ź
fcpAq ρ. It is enough to prove px, yq A‹

r3
ÐÝ px1, y1q, which

is in fact a trivial induction on the length of r3 using the definition of G ˛A H.

6.4. Trees. Returning to our main question, we know by Theorem 5.35 that the graph
morphism T Ñ S is a functional, strong bisimulation over Q. Hence, by Proposition 2.11,
we have:

Proposition 6.34. The graph morphism TIQ Ñ SIQ is a functional, strong bisimulation
over IQ, and thus also over A.

In this section, we introduce a criterion for a relation R : G H between modular
graphs with complementarity over some adequate alphabet A, which essentially ensures
that if R Ď»A, then R is fair. This will reduce our main question to proving that the full
relation induced by the map CCS ãÑ TIQ is included in weak bisimilarity over A, which we
do in Section 6.5.

Our criterion will rest upon the notion of A-tree, for any graph with complementarity
A, which is directly inspired by the work of Brinksma et al. on failures [51].

Let the set HA of A-trees consist of possibly infinite terms in the grammar

. . . vi $ ti . . . p@i P nq

v $
ÿ

iPn

ai.ti
pn P Nq

where for all i P n, ai : vi Ñ v in A is not silent, i.e., ai P A
W implies `Apaiq ‰ id . A-trees

form a reflexive graph over A with edges determined by

pv $
ÿ

iPn

ai.tiq
ai
ÐÝ pvi $ tiq.

Definition 6.35. A modular graph p : GÑ A over A has enough A-trees iff for all x P G,
v P A such that ppxq ¨ v, for all A-trees v $ t, there exists xt P G such that x ¨ xt and xt
is weakly bisimilar to t (over A).

Remark 6.36. In the case where x ¨ x1 is equivalent to ppxq ¨ ppx1q, this is equivalent to
requiring that for all a P A and A-tree t over a, there exists xt P G such that ppxtq “ a and
xt »A t.

Example 6.37. CCS , SIQ, and TIQ have enough A-trees, and Remark 6.36 applies.

A-trees yield a new testing equivalence, called A-tree equivalence, as follows.

Definition 6.38. For any modular p : GÑ A, let „
G|A
f be the relation defined by x „

G|A
f y

iff x ’ y and for all v P A such that ppxq ¨ v and A-trees t P HA
v ,

px, tq P KG˛AH
A

iff py, tq P KG˛AH
A

.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 57

A graph with complementarity A has enough ticks iff for all a P A, there exists an edge
♥a : a1 Ñ a such that `Ap♥aq “ ♥. Furthermore, A is inertly silent iff for all e : b Ñ a in
AW such that `Apeq “ id , we have a “ b and e “ ida.

Definition 6.39. A graph with complementarity A is a nice alphabet iff it has enough ticks,
and is finitely branching and inertly silent.

Example 6.40. A is a nice alphabet, but IQ is not, because it is not inertly silent.

The main property of A-trees is:

Proposition 6.41. Consider any adequate p : GÑ A, where G has enough A-trees and A

is a nice alphabet. Then, „Gf “ „
G|A
f .

We start with some preparation. Let a path in A be loud iff it contains no silent
(=identity if A is inertly silent) edge, and ♥-free iff no edge is in p`Aq´1p♥q. Let the set Fa
of failures over a P A consist of all pairs pp, Lq, where p : a1 Ñ a is any loud, ♥-free path in
A and L Ď A‹ is a set of loud paths such that for all q P L, codpqq “ a1.

We define a map fl : Fa Ñ HA
a to A-trees over a, for all a, by induction on p, followed

by coinduction on L:

pe ˝ p, Lq ÞÑ e.pflpp, Lqq `♥a.0
pε, Lq ÞÑ flpLq

L ÞÑ
ř

tePAp´,aq|L¨e‰∅u e.flpL ¨ eq

where L ¨ e is the set of paths p such that pe ˝ pq P L. Note in particular that if L “ ∅ or
tεu, then flpLq “ 0. The sum is finite at each stage because A is finitely branching, and we
use the fact that A has enough ticks.

Proof of Proposition 6.41. It is straightforward to show that „Gf Ď „
G|A
f , by Proposi-

tion 6.28. For the converse, assume x ’ y and x Gf y. This means that there exists

z such that x ¨ z and y ¨ z, and, w.l.o.g., py, zq P KG˛AG and px, zq R KG˛AG.
By the latter, we obtain a transition sequence px, zq ð px1, z1q, such that for no px2, z2q

we have px1, z1q
♥
ðù px2, z2q. Let r be the given path witnessing px, zq ð px1, z1q. Its second

projection pπ1q‹prq is mapped by p‹ to a path in A, from which we remove all identity edges

(which are also all silent edges by A being inertly silent) to obtain ρ “ Čpp ˝ π1q‹prq. This

path ρ may be viewed as a loud, ♥-free path in A. Further let L Ď A‹ be the set of all Čp‹pr1q

for paths r1 : z1 Ð‹ z2. Let t “ flpρ, Lq. We show px, tq R KG˛AH
A

and py, tq P KG˛AH
A

.

For the first point, t
ρ
ðù t1, with t1 “ flpε, Lq, hence px, tq ð px1, t1q, by Proposition 6.33.

Now, assume px1, t1q
♥
ðù b2. By definition of G˛AH

A, we split this into x1
ρ1
ðù x2 and t1

ρ2
ðù t2,

with b2 “ px2, t2q. But then z1
ρ2
ðù z2 by construction of t, and hence px1, z1q

♥
ðù px2, z2q (by

Proposition 6.33), contradicting px, zq R KG˛AG.

Let us now show py, tq P KG˛AH
A

. For any py, tq ð py1, t1q, we have accordingly t
ρ1

ðù t1.
By construction, ρ1 is in the prefix closure of ρ ˝ L ,i.e.,

ρ1 P tr P A‹ | Dr1 P A‹, l P L, r ˝ r1 “ ρ ˝ l | l P Lu.

‚ If ρ1 is a strict prefix of ρ, then by construction t1
♥
ðù 0 and we are done by Propo-

sition 6.33, since pid ,♥q ŹA ♥.

58 T. HIRSCHOWITZ

‚ Otherwise, ρ is a prefix of ρ1. Let ρ2 be the unique path such that ρ1 “ ρ ˝ ρ2. We

have ρ2 P L, hence by construction of L there exists z2 such that z
ρ
ðù z1

ρ2

ðù z2,
and thus py, zq ð py1, z2q, by Proposition 6.33. By py, zq P KG˛AG, there exists

py1, z2q
♥
ðù py2, z3q, which projects to y1

ρy
ðù y2 and z2

ρz
ðù z3. But then t1

ρz
ðù t2,

hence py1, t1q
♥
ðù py2, t2q, by Proposition 6.33 again, which concludes the proof.

Corollary 6.42. For any nice alphabet A, adequate p : GÑ A and q : H Ñ A, and relation
R : G H over A such that R Ď »A, if G and H have enough A-trees and R preserves
and reflects ’, then for any xRx1 and yRy1, we have x „Gf y iff x1 „Hf y1.

Proof. We have
x „Gf y

õ(by Proposition 6.41)

x ’ y and @v P ppxq¨.@t P HA
v .px, tq P K

G˛AH
A
ô py, tq P KG˛AH

A

õ(by weak bisimilarity over A)

x1 ’ y1 and @v P ppxq¨.@t P HA
v .px

1, tq P KH˛AH
A
ô py1, tq P KH˛AH

A

õ(by Proposition 6.41 again)
x1 „Hf y1.

6.5. Main result. We now provide the missing piece to our main result, and then conclude.

Lemma 6.43. The graph of θ : ob CCS Ñ obTIQ is included in weak bisimilarity over A.

Proof. We would like, for any h : I Ñ X and family P P
ś

nPN
ś

xPXrnsCCSn, to define a

process term hrP s with interface Ip‹q, which would amount to

p|n |xPXrns Pxrl ÞÑ x ¨ slsq,

but restricting all channels in Xp‹qzhpIp‹qq. When h is not an inclusion, this is a bit tricky,
because in our De Bruijn-like syntax Γ $ ν.P may be understood as Γ $ νpΓ` 1q.P . That
is, ν-bound channels are always strictly greater than names in Γ.

The correct way of doing this is to use subtraction, i.e., restrict channels in Xp‹q´Ip‹q,
and accordingly rename channels in the body. Formally, let γh be the unique non-decreasing
isomorphism pXp‹qzhpIp‹qqq Ñ pXp‹q ´ Ip‹qq (which exists thanks to h being monic), and
let hrP s be

Ip‹q $ νXp‹q´Ip‹q.

ˆ

|n |xPXrns Px

„

l ÞÑ εa.ph‹paq “ x ¨ slq if x ¨ sl P h‹pIp‹qq
l ÞÑ γhpx ¨ slq otherwise

˙

,

where ε is Hilbert’s definite description operator, i.e., εa.Apaq denotes the unique a such
that Apaq holds, and νn.P denotes ν. . . . ν.P , n times.

Definition 6.44. Let I : ob CCS obTIQ consist, for any P P
ś

nPN
ś

xPXrnsCCSn, of

all pairs phrP s, pI, h, θpP qq.

Let R be the composite relation

ob CCS
”

ob CCS
I

obTIQ.

We show that R is an expansion [54, Chapter 6], which implies that it is a weak
bisimulation. Hence, since the graph of θ is included in R, this entails the desired result.

Let x
pα
ÐÝ x1 iff

FULL ABSTRACTION FOR FAIR TESTING IN CCS 59

‚ either α is an identity and x
x
ðù
1

in zero or one step,

‚ or α is not an identity and x
α
ðù x1.

Recall:

Definition 6.45. R is an expansion iff for all P R T ,

‚ if P
α
ÐÝ P 1, then there exists T 1 such that P 1 R T 1 and T

α
ðù T 1; and

‚ if T
α
ÐÝ T 1, then there exists P 1 such that P

pα
ÐÝ P 1 R T 1.

First, one easily shows that transitions in CCS are dealt with by ‘heating’ the right-hand
side until it may match the given transition.

Conversely, we show below in (1) that for any transition pI, h, θpP qq
M
ÐÝ pI, k, T 1q, for

M : k Ñ h in IQ, where M is either a fork or a channel creation, then T 1 “ θpP 1q, for some
P 1 P

ś

nPN
ś

yPY rnsCCSn, and hrP s ” krP 1s.

Thus, any such transition, which is silent, is matched by the empty transition sequence,
as in

Q ” hrP s I pI, h, θpP qq

“ ”

Q ” krP 1s I pI, k, T 1q.

M

Similarly, for any transition pI, h, θpP qq
M
ÐÝ pI, k, T 1q not falling in the previous cases, we

prove below in (2) that there exists P 1 P
ś

nPN
ś

yPY rnsCCSn and Q1 such that hrP s
ξpMq
ÐÝÝÝ

Q1 ” krP 1s. Thus, any such transition is matched as in

Q ” hrP s I pI, h, θpP qq

Q2 ” Q1 ” krP 1s I pI, k, T 1q,

MξpMq
ξpMq

where Q2 is obtained by ” being a bisimulation.

(1) As announced, let us now consider the case of a transition pI, h, θpP qq
M
ÐÝ pI, k, T 1q,

for M : k Ñ h in IQ, where M is either a fork or a channel creation. Consider first the case
where M is a fork. Let x1, . . . , xn be the players of X, let m1, . . . ,mn be their respective
arities, and let i0 P n be the forking player. Let, for any i P n` 1,

µpiq “

$

&

%

i if i ă i0
i0 if i “ i0 or i “ i0 ` 1
i´ 1 if i ą i0 ` 1

and

P 1i “

$

’

’

&

’

’

%

Pi if i ă i0
P 1
i0

if i “ i0
P 2
i0

if i “ i0 ` 1
Pi´1 if i ą i0 ` 1,

where Pi0 “ P 1
i0
| P 2

i0
. For all j P n ` 1, we have that yj is an avatar of xµpjq (i.e.,

xµpjq “ pyjq
M), and P 1j “ Pµpjq if µpjq ‰ i0, while Pi0 “ P 1i0 | P

1
i0`1.

Thanks to the restriction of edges

60 T. HIRSCHOWITZ

I

X M Y

h
u

k

t s

in IQ, for any j P n ` 1, if µpjq “ i, l P mi and a, b P Ip‹q, we have that if h‹paq “ xi ¨ sl
and k‹pbq “ yj ¨ sl, then, since s ˝ yj ˝ sl “ t ˝ xi ˝ sl, both squares

‹ I

rmis M

a,b

sl

s˝yj ,t˝xi

u

commute, hence a “ b by monicity of u.
So, for all j P n`1 and l P mi, for i “ µpjq, we have xi ¨sl P h‹pIp‹qq iff yj ¨sl P k‹pIp‹qq,

in which case
εa.ph‹paq “ xi ¨ slq “ εb.pk‹pbq “ yj ¨ slq.

Furthermore, we have a commuting diagram

Xp‹qzhpIp‹qq Mp‹qzupIp‹qq Y p‹qzkpIp‹qq

Xp‹q ´ Ip‹q Y p‹q ´ Ip‹q,

–

γh

δM

–

γk

δ1M

of bijections, where δM and δ1M are obtained by composition and the arrows marked – are
the respective restrictions of t and s. This diagram is such that for all j P n`1 and i “ µpjq,
l P mi, if xi ¨ sl R hpIp‹qq, then δM pxi ¨ slq “ yj ¨ sl. We have

hrP s “ νXp‹q´Ip‹q.

ˆ

|iPnPi

„

l ÞÑ εa.ph‹paq “ xi ¨ slq if xi ¨ sl P h‹pIp‹qq
l ÞÑ γhpxi ¨ slq otherwise

˙

and

krP 1s “ νY p‹q´Ip‹q.

ˆ

|jPn`1P
1
j

„

l ÞÑ εb.pk‹pbq “ yj ¨ slq if yj ¨ sl P k‹pIp‹qq
l ÞÑ γkpyj ¨ slq otherwise

˙

.

Via the renaming δ1M , we have

hrP s ” νY p‹q´Ip‹q.

ˆ

|jPn`1,j‰i0`1Pµpjq

„

l ÞÑ εb.pk‹pbq “ yj ¨ slq if yj ¨ sl P k‹pIp‹qq
l ÞÑ γkpδM pxi ¨ slqq otherwise

˙

” νY p‹q´Ip‹q.

ˆ

|jPn`1,j‰i0`1Pµpjq

„

l ÞÑ εb.pk‹pbq “ yj ¨ slq if yj ¨ sl P k‹pIp‹qq
l ÞÑ γkpyj ¨ slqq otherwise

˙

id
ÐÝ νY p‹q´Ip‹q.

ˆ

|jPn`1P
1
j

„

l ÞÑ εb.pk‹pbq “ yj ¨ slq if yj ¨ sl P k‹pIp‹qq
l ÞÑ γkpyj ¨ slqq otherwise

˙

” krP 1s.

The case of a channel creation move is similar.
(2) Consider now any transition pI, h, θpP qq

M
ÐÝ pI, k, T 1q, where M is an input or an

output on some channel c P h‹pIp‹qq, or a synchronisation, or a tick. Then, proceeding as
for the forking move above, we may take µ “ id , and still obtain δM and δ1M . In all cases,

FULL ABSTRACTION FOR FAIR TESTING IN CCS 61

we have T 1i “ θpP 1i q, for some family P 1 of CCS processes. E.g., if M is an input on c by

xi0 , then P 1i “ Pi for all i ‰ i0, and Pi0 ” c.P 1i0 ` P
2. We have hrP s

ξpMq
ÐÝÝÝ Q, where

Q “ νXp‹q´Ip‹q.

ˆ

|iPnP
1
i

„

l ÞÑ εa.ph‹paq “ xi ¨ slq if xi ¨ sl P h‹pIp‹qq
l ÞÑ γhpxi ¨ slq otherwise

˙

,

which via the renaming δ1M , is structurally congruent to

νY p‹q´Ip‹q.

ˆ

|iPnP
1
i

„

l ÞÑ εb.pk‹pbq “ yi ¨ slq if yi ¨ sl P k‹pIp‹qq
l ÞÑ γkpδM pxi ¨ slqq otherwise

˙

” νY p‹q´Ip‹q.

ˆ

|iPnP
1
i

„

l ÞÑ εb.pk‹pbq “ yi ¨ slq if yi ¨ sl P k‹pIp‹qq
l ÞÑ γkpyi ¨ slq otherwise

˙

” krP 1s,

which concludes the proof.

This leads to our first full abstraction result:

Corollary 6.46. The composite obpCCS q ãÑ obpTIQq Ñ obpSIQq is included in weak bisim-
ilarity.

Proof. By the previous lemma, Proposition 6.34, and the fact that weak bisimulations are
closed under composition.

Corollary 6.47. The composite ob CCS
θ
ÝÑ obTIQ J´K

ÝÝÑ ob SIQ is fair, and we have for all
CCS processes P and Q over any common n:

P „f,s Q iff JθpP qK „f JθpQqK.

Proof. We have:

P „f,s Q
õ(by Proposition 6.19)

P „CCS
f Q

õ(by Corollaries 6.42 and 6.46, and Example 6.37)

JθpP qK „SIQ
f JθpQqK
õ(by Corollary 6.24)

JθpP qK „f JθpQqK,

as desired.

7. CCS as a playground

At last, we prove that DCCS forms a playground. We rewind to the beginning of Section 4.1,
to state things a bit more formally.

62 T. HIRSCHOWITZ

7.1. A pseudo double category. Recall from HP the notion of dimension in C: ‹ is the
sole object of dimension 0, all rns’s have dimension 1, all on,i, ιn,i, π

l
n, πrn, ♥n, and νn have

dimension 2, all πn have dimension 3, and all τn,i,m,j have dimension 4. By extension, a
presheaf F has dimension i if F is empty over objects of dimension strictly greater than i.
We call interfaces the presheaves of dimension 0 (i.e., empty beyond dimension 0), positions
the finite presheaves of dimension 1.

We start by viewing the base pseudo double category of our playground, DCCS , as a
sub-pseudo double category of the following pseudo double category DCCS ,0.

Definition 7.1. Let DCCS ,0 have:

‚ as objects all positions,

‚ horizontal category DCCS ,0
h the subcategory of pCf consisting of positions and monic

arrows between them;

‚ vertical (bi)category DCCS ,0
v the sub-bicategory of CospanppCf q consisting of positions

and cospans of monic arrows between them;
‚ and all commuting diagrams

X X 1

U V

Y Y 1

h

k

l

s s1

t t1

as double cells
X X 1

Y Y 1,

h

U V

l

ph,k,lq (7.1)

with all ãÑ arrows monic.

Horizontal composition of double cells is induced by composition in pCf . Vertical com-

position of double cells is induced by pushout in pCf . It is of course the vertical direction
here which is pseudo.

Proposition 7.2. DCCS is the pseudo double category obtained by restricting DCCS ,0 to
vertical morphisms which are either equivalences or finite composites of moves.

Since DCCS is again the only involved (candidate) playground in this section, we often
omit the superscript. E.g., D0 denotes DCCS ,0.

The rest of Section 7 is devoted to proving:

Theorem 7.3. D, equipped with

‚ as individuals, all positions of the shape Cp´, rnsq, i.e., all strictly representable
presheaves,

‚ moves as moves, seeds as basic moves, and full moves as full moves.

forms a playground.

We start with a combinatorial correctness criterion for characterising plays U : X Y
among general cospans X ãÑ U Ðâ Y , which we then put to use in proving the theorem.
Our convention for plays X ãÑ U Ðâ Y is that the (candidate) final position is always on
the left.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 63

7.2. Correctness. We prove a few properties of plays, which we then find are sufficient for
a cospan to be a play.

Given a play X ãÑ U Ðâ Y , we start by forgetting the cospan structure and exhibiting
some properties of U alone.

Definition 7.4. A core of a presheaf U P pCf is an element of dimension ą 1 which is not
the image (under the action of some morphism of C) of any element of higher dimension.

Here is a first easy property of plays. Observing that for all seeds Y ãÑM Ðâ X, M is
a representable presheaf, we put:

Definition 7.5. A presheaf U is locally 1-injective iff for any seed Y ãÑ M Ðâ X with
interface I and core µ P UpMq, if two elements of M are identified by the Yoneda morphism
µ : M Ñ U , then they are in (the image of) Ip‹q.

The name ‘locally 1-injective’ is designed to evoke the fact that M Ñ U is injective
above dimension 0.

Proposition 7.6. Any play U is locally 1-injective.

Proof. Choose a decomposition of U into moves; µ corresponds to precisely one such move,
say M 1, obtained, by definition, from some seed M as a pushout (3.1). By construction
of pushouts in presheaf categories, M 1 is obtained from M by identifying some channels
according to I Ñ Z.

We now extract from any presheaf a graph, which represents its candidate causal struc-
ture. Observe that, in C, for any object µ of dimension ą 1 (i.e., a move), all morphisms
from a player, i.e., an object of the shape rns, to µ have exactly one of the shapes f ˝ s ˝ f 1

and f ˝ t ˝ f 1. In the former case, the given player belongs in the final position of µ and we
say that it is a source of µ; in the latter, it belongs in the initial position and we call it a
target. We extend these notions to arbitrary presheaves.

Definition 7.7. In any U , the sources of a core µ are the players x with a morphism, in
ş

U (the category of elements of U , recalled in Section 3.1), of the shape x
f˝s˝f 1
ÝÝÝÝÑ µ to µ;

its targets are the players y with a morphism of the shape y
f˝t˝f 1
ÝÝÝÝÑ µ.

Example 7.8. In the representable πn, there is one target, l ˝ t (or equivalently r ˝ t), and
two sources, s1 “ l ˝ s and s2 “ r ˝ s, respectively the left and right players obtained by
forking. Another example is τn,i,m,j , which has two targets, the sender ε ˝ t and the receiver
ρ ˝ t, and two sources ε ˝ s and ρ ˝ s.

Definition 7.9. A channel a PMp‹q is created by a seed Y
s
ãÝÑM

t
ÐÝâ X iff a P Y p‹qzXp‹q.

Recall that in C, the channels known to a player rns are represented by morphisms

s1, . . . , sn : ‹ Ñ rns, so that in a presheaf U P pCf , the channels known to x P U rns are x ¨ s1,
. . . , and x ¨ sn.

Given a presheaf U , we construct its causal (simple) graph GU as follows:

‚ its vertices are all channels, players, and cores in U ;
‚ there is an edge to each core from its sources and one from each core to its targets,

as in

64 T. HIRSCHOWITZ

source1 source2;

core

target1 target2;

‚ there is an edge xÑ x ¨ si for all x P U rns and i P n;
‚ there is an edge aÑ µ for each channel a created by µ.

This graph is actually a binary relation, since there is at most one edge between any two
vertices. It is also a coloured graph, in the sense that it comes equipped with a morphism
to the graph L:

8 1 0,

mapping cores to 8, players to 1, and channels to 0. (Observe in particular that there
are no edges from channels to players nor from cores to channels.) For any simple graph
G, equipped with a morphism l : G Ñ L, we call vertices of G channels, players, or cores,
according to their label.

Definition 7.10. Seen as an object of Gph{L, G is source-linear iff for any cores µ, µ1, and
other vertex (necessarily a player or a channel) x, µ Ð x Ñ µ1 in G, then µ “ µ1. G is
target-linear iff for any cores µ, µ1 and player x, if µ Ñ x Ð µ1 in G, then µ “ µ1. G is
linear iff it is both source-linear and target-linear.

Proposition 7.11. For any play Y
s
ãÝÑ U

t
ÐÝâ X, GU is linear.

Proof. By induction on any decomposition of U into moves.

Proposition 7.12. For any play as above, GU is acyclic (in the directed sense).

Proof. Again by induction on any decomposition of U .

Definition 7.13. A player x in U is final iff it is not the target of any move, i.e., for no
move µ P U , x “ µ ¨ t.

Lemma 7.14. A player is final in U iff it has no edge from any core in GU .

Definition 7.15. A player is initial in U when it is not the source of any move, i.e., for no
move µ P U , x “ µ ¨ s. A channel is initial when it is not created by any move.

Lemma 7.16. A player is initial in U iff it has no edge to any core in GU .

Now, here is the expected characterisation:

Theorem 7.17. A cospan Y
s
ãÝÑ U

t
ÐÝâ X is a play iff

(i) U is locally 1-injective,
(ii) X contains precisely the initial players and channels in U ,

(iii) Y contains all channels, plus precisely the final players in U ,
(iv) and GU is linear and acyclic.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 65

Of course, we have almost proved the ‘only if’ direction, and the rest is easy, so only
the ‘if’ direction remains to prove. The rest of this section is devoted to this. First, let
us familiarise ourselves with removing elements from a presheaf. For two morphisms of

presheaves U
f
ÝÑ V

g
ÐÝ W , we denote by UzW the topos-theoretic difference U X W of

(the images of) f and g in the lattice SubpV q of subobjects of V . This differs in general
from what we denote U ´W , which is the set of elements in V which are in the image of U
but not that of W , i.e.,

ř

cPC UpcqzW pcq. More generally, for any morphism of presheaves
f : U Ñ V and set W , let U ´W “

ř

cPC ImpUpcqqzW . U ´W is generally just a set, not
a presheaf; i.e., its elements are not necessarily stable under the action of morphisms in C.
Proposition 7.19 below exhibits a case where they are, which is useful to us.

Definition 7.18. For any seed Y ãÑM Ðâ X, let the past pastpMq “M ´ Y of M be the
set of its elements not in the image of Y . For any such M , presheaf U , and core µ P UpMq,
let pastpµq “ ImppastpMqq consist of all images of pastpMq.

To explain the statement a bit more, by Yoneda, we see µ as a map M Ñ U , so we
have a set-function

pastpMq ãÑ
ş

M Ñ
ş

U.

Observe that pastpµq is always a set of players and moves only, since channels present in X
always are in Y too.

Given a core µ P U , an important operation for us will be

U) µ “
ď

tV ãÑ U |
ş

V X pastpµq “ ∅u.

U)µ is thus the largest subpresheaf of U not containing any element of the past of µ. The
good property of this operation is:

Proposition 7.19. If µ is a maximal core in GU (i.e., there is no path to any further core)
and GU is target-linear, then U) µ “ U ´ pastpµq, i.e., pU) µqpcq “ Upcqzpastpµq for all
c.

Proof. The direction pU)µqpcq Ď Upcqzpastpµq is by definition of). Conversely, it is enough
to show that c ÞÑ Upcqzpastpµq forms a subpresheaf of U , i.e., that for any f : cÑ c1 in C,
and x P Upc1qzpastpµq, x ¨ f R pastpµq. Assume on the contrary that x1 “ x ¨ f P pastpµq.
Then, of course f cannot be the identity. Furthermore, x1 is either a player or a move; so,
up to pre-composition of f with a further morphism, we may assume that x1 is a player.
But then, since f is non-identity, x must be a move, with x1 being one of its sources or
targets. Now, up to post-composition of f with a further morphism, we may assume that
x is a core. So, there is either an edge x Ñ x1 or an edge x1 Ñ x in GU . However, x ‰ µ,
so x Ñ x1 is impossible by target-linearity of GU , and x1 Ñ x is impossible by maximality
of µ.

Proof of Theorem 7.17. We proceed by induction on the number of moves in U . If it is zero,
then U is a position; by (ii), t is an iso, and by (iii) so is s, hence the cospan is a play. For
the induction step, we first decompose U into

Y
s2
ãÝÑ U 1

t2
ÐÝâ Z

s1
ãÝÑM 1 t1

ÐÝâ X,

and then show that M 1 is a move and U 1 satisfies the conditions of the theorem.
So, first, pick a maximal core µ in GU , i.e., one with no path to any other core. Let

66 T. HIRSCHOWITZ

I0

Y0 M0 X0

be the seed with interface corresponding to µ, so we have the Yoneda morphism µ : M0 Ñ U .
Let U 1 “ pU) µq, and X1 “ X ´ PlpX0q. X1 is a subpresheaf of X, since it contains

all names. The square

I0 X1

X0 X

is a pushout, since it just adds the missing players to X1. Define now Z, M 1, s1, and t1 by
the pushouts

Y0 Z

M0 M 1 U

I0 X1

X0 X

C
t1

s1

and the induced arrows. We further obtain arrows to U by universal property of pushout,
which are monic because X ãÑ U is, using (i). We observe that U “ M 1 Y U 1, i.e., the
square

Z U 1

M 1 U

is a pushout, so U is indeed a composite as claimed, with Z ãÑ M 1 Ðâ X a move by
construction. So, it remains to prove that Y ãÑ U 1 Ðâ Z satisfies the conditions. First, as
a subpresheaf of U , U 1 is locally 1-injective and has a linear and acyclic causal graph, so
satisfies (i) and (iv). U 1 furthermore satisfies (ii) by construction of Z and source-linearity
of GU , and (iii) because removing pastpµq cannot make any non-final player final.

7.3. CCS as a pre-playground. We now start proving:

Theorem 7.20. D forms a playground.

Axioms (P2)–(P4) are easy, as well as (P6), (P9) and (P10). Furthermore, once (P1)
is clear, (P5) is also easy. This leaves (P1) and the decomposition axioms.

For (P1), i.e., the fact that cod: DH Ñ Dh is a fibration, we introduce the notion

of ‘history’ for plays. For a presheaf U P pCf , let zU { be its restriction to dimension 3,
i.e., zU {pτn,i,m,jq “ ∅ for all n, i,m, j, and zU {pcq “ Upcq on other objects. Further let

ElpUq “
ř

cPobpCqzU {pcq be the set of elements of zU {. We have a category ElppCf q, whose

objects are those of pCf , and whose morphisms U Ñ U 1 are set-functions ElpUq Ñ ElpU 1q.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 67

We denote such morphisms with special arrows U U 1. There is a forgetful functor

El : pCf Ñ ElppCf q, which we implicitly use in casting arrows U Ñ U 1 to arrows U U 1.

Definition 7.21. Consider any seed X ãÑ M Ðâ Y which is not a synchronisation, where
Y is the initial position and X is the final position. Then Y is a representable position, say
rns, and we let the history of M be the map pM : ElpMq Ñ ElpY q sending

‚ all channels in ElpMq X ElpY q to themselves,
‚ all other elements to id rns.

The history pM 1 of a move M 1 is the map obtained by pushout of the history of its generating
seed M , as in

M M 1

I Z

Y Y 1.

C

This defines the history of moves. We have:

Proposition 7.22. For any move X
s
ãÝÑM

t
ÐÝâ Y , we have pM ˝ t “ id.

We graphically represent histories by arrows between the presheaves, as p in

X U Y.s
t

p

(7.2)

We now define the history of sequences of moves, which we here call sequential plays.

We denote such a sequence Xn
Mn
ÝÝÑ Xn´1 . . . X1

M1
ÝÝÑ X0 by pMn, . . . ,M1q.

Definition 7.23. Define now the history of a sequential play X Ñ pMn, . . . ,M1q Ð Y ,
letting U “ M1 ‚ . . . ‚Mn be the corresponding play, to be the map U Y defined by
induction on n as follows:

‚ if |U | “ 0, then t is an isomorphism, and the history is the inverse of the corre-
sponding bijection on elements;

‚ if |U | “ 1, then U is a move M and its history is that of M ;
‚ if |U | ą 1, then U “ pU 1,Mq for some move M and sequential play U 1; letting pU 1

be the history of U 1 obtained by induction hypothesis, we let pU “ pM ˝ q, where q
is defined by universal property of pushout in

X U 1 Y M Z

Y U

M.

sU 1

tU 1

pU 1

sM
tM

pM

pU 1

s
t

qsM

Proposition 7.24. For any sequential plays U1, U2 : X Y with isomorphic compositions,
we have pU1 “ pU2.

68 T. HIRSCHOWITZ

Proof. For any presheaf U such that GU is source-linear and acyclic, consider the function
hU : ElpUq Ñ ElpUq mapping

‚ initial players and channels to themselves,
‚ non-initial players and channels to the (unique by source-linearity of GU) core that

created them,
‚ elements of dimension 2 to their image under t,
‚ elements of higher dimensions to the image of one of their images in dimension 2

(which all map to the same element by a simple case analysis).

Observe that this map is ultimately idempotent because it is strictly increasing w.r.t. GU ,
and let HU be the corresponding idempotent function.

It is easy to see that if X ãÑ U Ðâ Y is a move, then ImpHU q “ Y and pU “ HU .

Furthermore, for all composable plays X
U 1
Y

U
Z, we have HU‚U 1 “ HU ˝H

U
U 1 , where

HU
U 1 : ElpU ‚ U 1q Ñ ElpUq is the extension of HU 1 to ElpU ‚ U 1q which is the identity on

ElpUqzElpU 1q. Because ImpHU 1q “ Y , this indeed goes to ElpUq.
When U is a move, this is actually equivalent to the diagrammatic definition of pM‚U 1 ,

which entails by induction that for any play U , pU “ HU , which does not depend on the
decomposition of U into moves.

Just as for moves, the target map is a section of the history:

Proposition 7.25. For any play X ãÑ U
t
ÐÝâ Y , we have pU ˝ t “ idY .

Proposition 7.26. Any double cell ph, k, lq as on the left below

X X 1

U V

Y Y 1

h

k

l

s s1

t t1

U V

Y Y 1

k

p

l

p1

is compatible with histories p : U Y and p1 : U 1 Y 1, in the sense that the square on the
right commutes.

The important point for us is:

Proposition 7.27. The vertical codomain functor cod: DH Ñ Dh is a fibration.

Proof. We first consider the restriction of cod to the full subcategory of DH consisting of

moves and isomorphisms. Given a move X
s
ãÝÑ M

t
ÐÝâ Y and a morphism l : Y 1 Ñ Y in Dh,

consider the pullback (in sets) and the induced arrow t1:

Y 1 Y

U0 M

Y 1 Y.

l

t

k0

p1

l

t1

p

FULL ABSTRACTION FOR FAIR TESTING IN CCS 69

Now, consider U0 as a presheaf over C3 by giving each element the type of its image under
k0, and checking that U0, viewed as an obpC3q-indexed family of subsets of M , is stable
under the action of morphisms in C3. This, in passing, equips k0 and t1 with the structure

of maps in pCf .
Furthermore, let the pn, i,m, jq-horn (see, e.g., Joyal and Tierney [32] for the origin

of our terminology) τ´n,i,m,j be the representable presheaf on τn,i,m,j , minus the element
idτn,i,m,j , and consider the family A of commuting squares

τ´n,i,m,j U0

τn,i,m,j M,

w

i k0

w1

where i is the inclusion. Define then U and k by pushout as in

ř

aPA τ
´
na,ia,ma,ja

U0

ř

aPA τna,ia,ma,ja U

M.

rwasaPA

ř

aPA ia

rw1asaPA

k0

k

Informally, U is U0, where we add all the τn,i,m,j ’s that exist in M and whose horn is in U0.
We have by construction ElpUq “ ElpU0q, so p1 is indeed a left inverse to t1 : ElpY 1q Ñ ElpUq.

Finally, define X 1, h, and s1 by the pullback

X 1 X

U M.

h

s1

k

s

This altogether yields a vertical morphism

X 1 U Y 1,
s1

t1

p1

in D0
v. A tedious case analysis (made less tedious by l : Y 1 ãÑ Y being monic) shows that,

because M is a move, U is either a move or isomorphic to Y 1. So it is in Dv. U is our

candidate cartesian lifting of M along l. More generally, for any play X
s
ãÝÑ U

t
ÐÝâ Y , choose

a decomposition into moves. We obtain a candidate cartesian lifting X 1
s1
ãÝÑ U 1

t1
ÐÝâ Y 1 for U ,

with morphism ph, k, lq to U , along any l : Y 1 ãÑ Y by taking the successive candidates for
each move in the obvious way, and composing them.

To show that this indeed yields a cartesian lifting, consider any vertical morphism

X2
s2
ãÝÑ U2

t2
ÐÝâ Y 2 and diagram

70 T. HIRSCHOWITZ

X2 X

U2 U

Y 2 Y,

h2

k2

l2

s2 s

t2 t

together with a map l1 : Y 2 Ñ Y 1 such that l ˝ l1 “ l2. By Proposition 7.26, letting p2 be
the history of U2, the diagram

U2 U

Y 2 Y

k2

p2

l2

p

commutes, so by universal property of pullback, we obtain a map k10 : ElpU2q Ñ ElpU 1q,
such that k0 ˝ k

1
0 “ k20, where k20 is the restriction of k2 to dimensions ă 4. Furthermore,

the expected map k1 : U2 Ñ U 1, is given by universal property of pushout in

ř

aPA τ
´
na,ia,ma,ja

U 10

ř

bPB τ
´
nb,ib,mb,jb

zU2{

ř

aPA τna,ia,ma,ja U 1

ř

bPB τnb,ib,mb,jb U2
k1

where B is the family of all commuting squares

τ´n,i,m,j zU2{

τn,i,m,j U2.

w

i k0

w1

Finally, the desired map h1 : X2 Ñ X 1 follows from universal property of X 1 as a
pullback, and the square

U2 U 1

Y 2 Y 1
t2

l1

k1

t1

commutes by uniqueness in the universal property of U 1 as a pullback.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 71

7.4. Towards CCS as a playground. In this section, we prove an intermediate result
for proving the decomposition axioms.

Consider a double cell α of the shape

A X

B

C Y,

h

w

u

v

k

α

where v is a view. Let now Dα denote the category with

‚ objects all tuples T “ pZ, l, u1, u2, α1, α2, α3q such that

A X

B Z

C Y,

h

w u2

u1

u

v

k

l

α2

α1

α3

equals α and α3 is an isomorphism;
‚ with morphisms T Ñ T 1 given by tuples pU, f, β, γ, δq (where f is vertical) such that

A X

B Z 1

Z

C Y,

h

w

u

v

k

f

α11

δ

α2

α12

α1

γ α13

α3

β

u2

commutes, i.e., γ ˝ pα1 ‚ δq “ α11, β ˝ α2 “ δ ‚ α12, and α13 ˝ pγ ‚ u
1
2q ˝ pu1 ‚ βq “ α3,

and β and γ are isomorphisms;
‚ composition and identities are obvious.

So, objects of Dα are decompositions of u permitting corresponding decompositions of α.
The rest of this section is a proof of:

Lemma 7.28. Dα has a weak initial object, i.e., an object T such that for any object T 1

there is a morphism T Ñ T 1.

We start by extending the assignment U ÞÑ GU to a functor, at least for source-linear

U . Let SLin denote the full subcategory of pC spanning source linear presheaves. The
assignment U ÞÑ GU actually extends to a functor G´ : SLin Ñ Gph{L, as follows. Let,
first, for any move x P U , the core associated to x, corepxq, be the unique core reachable
from x in

ş

U , i.e., the unique core µ for which there exists f in C such that µ ¨ f “ x. Now,

for any α : U Ñ U 1 in pC, let Gα : GU Ñ GU 1 map any core x in GU to corepαpxqq P GU 1 ,

72 T. HIRSCHOWITZ

and any non-core vertex x P GU to αpxq P GU 1 . By naturality, this indeed defines a unique
morphism of simple graphs over L.

Proposition 7.29. G´ : SLinÑ Gph{L is a functor.

We continue with some properties of D.

Definition 7.30. A filiform play is any play U such that the restriction of GU to cores and
players is a filiform graph, i.e., a graph of the shape ¨ Ñ ¨ Ñ ¨ ¨ ¨

E.g., all views are filiform.

Lemma 7.31. Any epimorphic (in DH , hence isomorphic) double cell

A X

B

C Y,

h

w

u

v

k

α

(7.3)

where v is filiform decomposes as

A X

B Z

C Y,

h

w u2

u

u1v

k

α2

α1

α3

with α3 an isomorphism, α1 and α2 epimorphic, uniquely up to isomorphism. In this case,
u1 is filiform.

Proof. B has just one player, say b. Let b1 “ αpbq. Because α is epi, α induces a morphism
Gα : Gv‚w Ñ Gu of graphs, which is also epi. So, Gu may be decomposed as a pushout

b1 G1

G2 Gu

with G1 “ ImGαpGvq and G2 “ ImGαpGwq. From this one deduces a decomposition of u
and α.

Lemma 7.32. For any vertically composable α and β, if α ‚ β is epi, then so are α and β.

Proof. Easy.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 73

Proof of Lemma 7.28. The double cell α induces morphisms of graphs Gv Ñ Gu Ð Gw, by
Proposition 7.29. Let

u1 “
č

tu1 Ď u | pY Ď u1q ^ pImαpGvq Ď Gu1qu.

Thus, v Ñ u factors as v Ñ u1 Ñ u. Let Z be the position containing all channels of u1,
and all final players of u1. Further let ÒZ denote the full subgraph of Gu containing all
vertices x with a path to some vertex of Z. Let then

u2 “
č

tu2 Ď u | Gu2 Ě ÒZu.

The union u1 Y u2 is u, i.e., the square

Z u1

u2 u

is a pushout, i.e., u2 ‚ u1 – u in CospanppCf q. So it only remains to prove that Z Ñ u1 Ð

X and Y Ñ u2 Ð Z are plays, for which we use Theorem 7.17. First, u1 and u2, as
subpresheaves of u, both are locally 1-injective. Furthermore, Gu1 and Gu2 , as subgraphs
of a linear and acyclic graph, are also linear and acyclic. Now, by definition of Z, Z Ñ u1

contains all channels and the final players of u1. Further, since X Ď u1, being initial in u
implies being initial in u1, so Z Ñ u1 Ð X indeed is a play. Symmetrically, no player of
u1 not in Z is final, so Y Ď u2, and hence Y Ñ u2 indeed contains all channels and final
players. Finally, the players and channels of Z are precisely the initial players and channels
of u2.

It remains to show that the induced decomposition of α is weakly initial. But any
decomposition, inducing a decomposition u11‚u

1
2 of u, should satisfy Y Ď u11, ImαpGvq Ď Gu11 ,

and Gu12 Ď ÒZ, so, ignoring isomorphisms for readability, u1 Ď u11 and u12 Ď u2, as desired.

7.5. CCS as a playground. We are now ready to prove the decomposition axioms, which
entail Theorem 7.3. They are proved in Lemmas 7.35 and 7.34 below.

Let us start with the following easy lemma.

Lemma 7.33. If u “ u2 ‚ u1, then, in Gu
‚ no player of u1 is reachable from any core of u2;
‚ no core of u1 is reachable from any element of u2.

Proof. For the first point, cores of u2 only reach initial channels of u1.
For the second point, we further observe that channel and players of u2 only reach

initial players and channels of u1, hence no core.

The easiest decomposition axiom is (P8).

Lemma 7.34. D satisfies (P8).

Proof. Although the statement is complicated, this is rather easy: α restricts to a map of
presheaves f : bÑ pM ‚ uq, on which we proceed by case analysis.

If Impfq Ď M , then by Lemma 7.28 and correctness we are in the left-hand case.
Otherwise, assume that a move µ1 PM is in the image of α, say of a move µ P w. We have
a path µÑ b in b ‚w, hence a path corepµ1q Ñ αpbq in M ‚u, contradicting Lemma 7.33.

74 T. HIRSCHOWITZ

Let us now attack the last axiom.

Lemma 7.35. D satisfies (P7).

We need a few lemmas.

Lemma 7.36. For any plays A
u1

B
u2

C, for any player or channel x P u2 and core
µ P u1, there is no edge xÑ µ in u2 ‚ u1.

Proof. The existence of e : xÑ µ implies x P B, hence x initial in u1, which contradicts the
very existence of e.

Lemma 7.37. Morphisms of plays preserve finality.

Proof. If a player is final in the domain, then it is in the final position, hence has an image
in the final position of the codomain, hence is final there.

Lemma 7.38. For any map α : uÑ w in DH , for any player x in u and edge e1 : µ1 Ñ αpxq
from a core in w, there exists a core µ P u and an edge e : µÑ x in u such that Gαpeq “ e1.

Proof. Let first X Ñ uÐ Y and X 1 Ñ w Ð Y 1 be the considered morphisms.
Then, observe that x is not final in u, for otherwise it would be in X, hence αpxq would

be in X 1 and final, contradicting the existence of e1.
So there exists e : µ Ñ x in u. But now, by target-linearity, Gαpµq “ µ1, which entails

the result.

Lemma 7.39. In any double cell (7.1), both squares are pullbacks.

Proof. X must consist precisely of all final players and channels of GU , which must also
be final in GV , so finality in GU implies finality in GV . Conversely, any player or channel
mapped to a final one in GV has to be final. So X is a pullback of U and X 1. The lower
square being a pullback follows from similar reasoning.

Proof of Lemma 7.35. Consider any α, and construct C, u1, u2, and the morphisms in Fig-
ure 5, as follows. First, let u1 be the pullback uˆw w1, and then C “ u1 ˆw1 Y . Let then
u2 “ u ˆw w2, and the arrow C Ñ u2 be induced by universal property of pullback. By

the pullback lemma, C “ u2 ˆw2 Y . Because presheaf categories are adhesive [35], pCf is,
and, Y Ñ w1 being monic, we have a Van Kampen square. Thus, by the main axiom for

adhesive categories, u is a pushout u1 `C u2, i.e., u – u2 ‚ u1 in CospanppCf q. Letting αi be
the arrow ui Ñ wi, for i “ 1, 2, this yields the desired decomposition of α.

We still need to show that A Ñ u1 Ð C and C Ñ u2 Ð B are plays, and that the

obtained decomposition is unique. Uniqueness follows from adhesivity of pC and Lemma 7.39.
Indeed, any decomposition looks like Figure 5, except that u1, u2, and C are not a priori
obtained by pullback. But by Lemma 7.39, both back faces have to be pullbacks, hence so
are the front faces by adhesivity.

Let us finally show that u1 and u2 are plays. It is easy to see that non-linearity or
non-acyclicity of Gu1 (resp. Gu2) would entail non-linearity or non-acyclicity of u or w1

(resp. or w2). Local 1-injectivity is also easy.

Let us now prove the missing conditions for AÑ u1 Ð C.
a) Any player x of u1 in the image of A is final, for otherwise its image in w1 would be

in the image of X and non-final.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 75

A X

u1 w1

C Y

u w

u2 w2

B Z,

f

f1

f2

fs

ft

Figure 5: Proof of Lemma 7.35

b) Conversely, if a player x P u1 is final but not in A, then its image in u must be
non-final by Theorem 7.17, because u1 Ñ u is monic. But then there is a core µ of u2 with
a path µ Ñ x in Gu, whose images in w yield a path from a core of w2 to a player of w1,
contradicting Lemma 7.33. So A contains precisely the final players of u1.

c) Now, if a channel x P u1 is not in A, then its image in u must be in A, hence u1 Ñ u
cannot be mono, so neither can w1 Ñ w, so neither can Y Ñ w2, contradiction.

d) Finally, by construction, C contains precisely the initial players and channels of u1.

Now, for C Ñ u2 Ð B.
a) By universal property of pullback, C contains all channels of u2.
b) For players, clearly, for any player x in C, x is final in u2. Indeed, otherwise, there

would be a path µÑ x from a core µ in u2, yielding a path f2pµq Ñ f2pxq in w2. But since
x is in C, f2pxq P Y , which hence contains a non-final player, contradiction.

c) Conversely, if x is final in u2, then x1 “ f2pxq is final in w2. Indeed, otherwise, there
would be an edge µ1 Ñ x1 from a core in w2, so, by Lemma 7.38, an edge µÑ x in u with
fpµq “ µ1. But then, µ P u2, so x cannot be final. This shows that x1 is final in w2. But
then x1 P Y , so, because C “ u2 ˆw Y , x P C.

d) Consider now any player or channel x initial in u2. First, x is also initial in u:
otherwise, there would be an edge x Ñ µ to a core in u, with µ P u1, hence an edge
fpxq Ñ fpµq in w from a channel of w2 to a core of w1, which is impossible by Lemma 7.36.
So x is initial in u, hence x P B.

e) Now, for any player or channel x P B, x is initial in u, hence x is a fortiori initial in
u2.

76 T. HIRSCHOWITZ

8. Conclusion and perspectives

8.1. Conclusion. We have described a denotational semantics of CCS based on presheaves,
with a strong game-semantical flavour. Some aspects of the approach look promising to us.

First, our result is encouraging for potential applications of Kleene coalgebra to pro-
gramming language theory, i.e., ascribing a semantics to the ‘rule of the game’ rather than
attempting to organise operational semantics into some categorical structure.

Second, our use of techniques from categorical combinatorics (e.g., defining positions
and plays as finite presheaves) provide a high-level, yet rigorous toolbox for dealing with
string diagrams. (Compare, e.g., with available definitions of linear logic proof nets or
interaction nets.)

Third, our notion of play encompassing both views and closed-world plays, and its rich
notion of morphism yields a convincing interplay between strategies (presheaves on views)
and behaviours (presheaves on plays). In particular,

‚ passing from one to the other is handled by standard categorical constructions,
‚ the general syntax and lts for strategies provides a link to syntactic approaches.

Other aspects of our model are not as satisfactory.
First of all, the notion of playground is very complicated. In work in progress on a

similar approach for π-calculus, we bypass the intermediate TD of process terms, because
it does not help so much — strategies are already really close to π-calculus terms. This
seems to hint that the main result of playground theory is actually the characterisation of
strategies by the syntax of Section 5.1. The good point is: this result does not at all need
all axioms for playgrounds.

A second negative point is that some proofs may probably be improved. E.g., our proof
that θ : CCS Ñ TDCCS is included in weak bisimilarity is a bit of a nightmare, with no
apparent good reason. Similarly, we know already that our constructions for showing the
fibration axiom (P1) may be improved. Indeed, the trick we use to restore synchronisations
after restriction implicitly rests upon a factorisation system [17, 31]. In our current work
on π, we use factorisation systems to prove the fibration axiom in a much more direct way
(which was prompted by the fact that the method used here does not apply).

8.2. Perspectives. Beyond these rather technical concerns, we plan to adapt our semantics
to more complicated calculi like π, the Join and Ambients calculi, calculi with passivation,
functional calculi, possibly with extra features (e.g., references, data abstraction, encryp-
tion), with a view to eventually generalising it, perhaps to some SOS format. In particular,
adapting the approach to functional calculi should clarify the relationship with Hyland-Ong
innocence. In work in progress mentioned above, we construct a playground for π, whose
proof of full abstraction remains to be completed. More speculative directions include

‚ designing a general way of constructing playgrounds automatically from more ele-
mentary data; work in progress reveals that this is a very subtle task;

‚ defining a notion of morphisms for playgrounds, which should induce translation
functions between strategies, and find sufficient conditions for such morphisms to
preserve, resp. reflect testing equivalences;

‚ generalising playgrounds to apply them beyond programming language semantics;
in particular, preliminary work shows that playgrounds easily account for cellular

FULL ABSTRACTION FOR FAIR TESTING IN CCS 77

automata; this raises the question of how morphisms of playgrounds would compare
with various notions of simulations between cellular automata [11];

‚ incorporate quantitative aspects from Kleene coalgebra into playground theory; this
may start by refining fair testing equivalence to keep track of the probability of
passing each test successfully.

References

[1] Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness.
In LICS 1999 [40], pages 431–442. ISBN 0-7695-0158-3.

[2] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for
PCF. Information and Computation, 163(2):409–470, 2000.

[3] Benedikt Ahrens. Initiality for typed syntax and semantics. In C.-H. Luke Ong and
Ruy J. G. B. de Queiroz, editors, WoLLIC, volume 7456 of LNCS, pages 127–141.
Springer Verlag, 2012. ISBN 978-3-642-32620-2.

[4] Gérard Berry and Gérard Boudol. The chemical abstract machine. In POPL, pages
81–94, 1990. doi: 10.1145/96709.96717.

[5] Filippo Bonchi, Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva.
Deriving syntax and axioms for quantitative regular behaviours. In CONCUR, volume
5710 of LNCS, pages 146–162. Springer Verlag, 2009. ISBN 978-3-642-04080-1. doi:
10.1007/978-3-642-04081-8z 11.

[6] Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva. A Kleene theorem
for polynomial coalgebras. In FoSSaCS, volume 5504 of LNCS, pages 122–136. Springer
Verlag, 2009. ISBN 978-3-642-00595-4. doi: 10.1007/978-3-642-00596-1z 10.

[7] Roberto Bruni and Ugo Montanari. Cartesian closed double categories, their lambda-
notation, and the pi-calculus. In LICS. IEEE Computer Society, 1999.

[8] Diletta Cacciagrano, Flavio Corradini, and Catuscia Palamidessi. Explicit fairness in
testing semantics. Logical Methods in Computer Science, 5(2), 2009.

[9] Simon Castellan, Pierre Clairambault, and Glynn Winskel. Concurrent Hyland-Ong
games. GaLoP, 2014.

[10] Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984. doi: 10.1016/0304-3975(84)90113-0.

[11] Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, and Guillaume Theyssier. Bulk-
ing I: An abstract theory of bulking. Theoretical Computer Science, 412(30):3866–3880,
2011.

[12] Charles Ehresmann. Catégories structurées. Annales scientifiques de l’Ecole Normale
Supérieure, 80(4):349–426, 1963.

[13] Charles Ehresmann. Catégories et structures. Dunod, 1965.
[14] Claudia Faggian and Mauro Piccolo. Partial orders, event structures and linear strate-

gies. In Pierre-Louis Curien, editor, TLCA, volume 5608 of LNCS, pages 95–111.
Springer Verlag, 2009. ISBN 978-3-642-02272-2.

[15] Marcelo P. Fiore. Fibred models of processes: Discrete, continuous, and hybrid systems.
In Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and Takayasu
Ito, editors, IFIP TCS, volume 1872 of LNCS, pages 457–473. Springer Verlag, 2000.
ISBN 3-540-67823-9.

[16] FoSSaCS 2004. 7th Foundations of Software Science and Computation Structures,
volume 2987 of LNCS, 2004. Springer Verlag. ISBN 3-540-21298-1.

78 T. HIRSCHOWITZ

[17] Peter Freyd and G. M. Kelly. Categories of continuous functors, I. Journal of Pure
and Applied Algebra, 2:169–191, 1972.

[18] Fabio Gadducci and Ugo Montanari. The tile model. In Gordon D. Plotkin, Colin
Stirling, and Mads Tofte, editors, Proof, Language, and Interaction, pages 133–166.
The MIT Press, 2000. ISBN 978-0-262-16188-6.

[19] Richard H. G. Garner. Polycategories. PhD thesis, University of Cambridge, 2006.
[20] Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained concurrency.

In FoSSaCS 2004 [16], pages 211–225. ISBN 3-540-21298-1.
[21] Daniele Gorla. Towards a unified approach to encodability and separation results for

process calculi. Information and Computation, 208(9):1031–1053, 2010.
[22] Marco Grandis and Robert Paré. Limits in double categories. Cahiers de Topologie et

Géométrie Différentielle Catégoriques, 40(3):162–220, 1999.
[23] Marco Grandis and Robert Paré. Adjoints for double categories. Cahiers de Topologie

et Géométrie Différentielle Catégoriques, 45(3):193–240, 2004.
[24] Russell Harmer and Guy McCusker. A fully abstract game semantics for finite nonde-

terminism. In LICS 1999 [40], pages 422–430. ISBN 0-7695-0158-3.
[25] Russell Harmer, Martin Hyland, and Paul-André Melliès. Categorical combinatorics

for innocent strategies. In LICS, pages 379–388. IEEE Computer Society, 2007.
[26] Tom Hirschowitz. Cartesian closed 2-categories and permutation equivalence in higher-

order rewriting. Logical Methods in Computer Science, 9(3), 2013. doi: 10.2168/
LMCS-9(3:10)2013. URL http://hal.archives-ouvertes.fr/hal-00540205.

[27] Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves and interactive
equivalences for CCS. In ICE, pages 2–24, 2011. doi: 10.4204/EPTCS.59.2.

[28] Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves and interactive
equivalences for CCS. Scientific Annals of Computer Science, 22(1):147–199, 2012. doi:
10.7561/SACS.2012.1.147. Selected papers from ICE ’11.

[29] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf.
Comput., 163(2):285–408, 2000.

[30] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and
the Foundations of Mathematics. North Holland, Amsterdam, 1999.

[31] André Joyal. Factorisation systems. http://ncatlab.org/joyalscatlab.
[32] André Joyal and Myles Tierney. Notes on simplicial homotopy theory. Course at the

CRM, February 2008.
[33] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation and open maps. In

LICS, pages 418–427. IEEE Computer Society, 1993. ISBN 0-8186-3140-6.
[34] Joachim Kock. Polynomial functors and trees. International Mathematics Research

Notices, 2011(3):609–673, 2011. doi: 10.1093/imrn/rnq068.
[35] Stephen Lack and Pawel Sobocinski. Adhesive categories. In FoSSaCS 2004 [16], pages

273–288. ISBN 3-540-21298-1. doi: 10.1007/978-3-540-24727-2z 20.
[36] James Laird. Game semantics for higher-order concurrency. In FSTTCS, volume 4337

of LNCS, pages 417–428. Springer Verlag, 2006. ISBN 3-540-49994-6.
[37] F. William Lawvere and Stephen H. Schanuel. Conceptual mathematics - a first intro-

duction to categories. Cambridge University Press, 1997. ISBN 978-0-521-47249-4.
[38] Tom Leinster. Higher Operads, Higher Categories, volume 298 of London Mathematical

Society Lecture Notes. Cambridge University Press, Cambridge, 2004.
[39] Tom Leinster. Basic Category Theory. Cambridge University Press, 2014. Forthcoming.

http://hal.archives-ouvertes.fr/hal-00540205
http://ncatlab.org/joyalscatlab

FULL ABSTRACTION FOR FAIR TESTING IN CCS 79

[40] LICS 1999. 14th Symposium on Logic in Computer Science, 1999. IEEE Computer
Society. ISBN 0-7695-0158-3.

[41] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate
Texts in Mathematics. Springer Verlag, 2nd edition, 1998.

[42] Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Intro-
duction to Topos Theory. Universitext. Springer, 1992. ISBN 0387977104.

[43] Paul-André Melliès. Asynchronous games 2: the true concurrency of innocence. In
Proc. CONCUR ’04, volume 3170 of LNCS, pages 448–465. Springer Verlag, 2004.

[44] Paul-André Melliès. Game semantics in string diagrams. In LICS, pages 481–490.
IEEE, 2012. ISBN 978-1-4673-2263-8.

[45] Paul-André Melliès and Samuel Mimram. Asynchronous games: Innocence without
alternation. In CONCUR, volume 4703 of LNCS, pages 395–411. Springer Verlag,
2007. ISBN 978-3-540-74406-1.

[46] Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer,
1980. doi: 10.1007/3-540-10235-3.

[47] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
[48] Hanno Nickau. Hereditarily sequential functionals. In LFCS, volume 813 of LNCS,

pages 253–264. Springer Verlag, 1994. ISBN 3-540-58140-5.
[49] Robert Paré. Yoneda theory for double categories. Theory and Applications of Cate-

gories, 25(17):436–489, 2011.
[50] Julian Rathke and Pawel Sobocinski. Deconstructing behavioural theories of mobility.

In IFIP TCS, volume 273 of IFIP, pages 507–520. Springer Verlag, 2008. ISBN 978-0-
387-09679-7. doi: 10.1007/978-0-387-09680-3z 34.

[51] Arend Rensink and Walter Vogler. Fair testing. Information and Computation, 205
(2):125–198, 2007. doi: 10.1016/j.ic.2006.06.002.

[52] Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS ’11. IEEE Computer
Society, 2011.

[53] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University
Press, 2012.

[54] Davide Sangiorgi and Jan Rutten, editors. Advanced Topics in Bisimulation and Coin-
duction. Number 52 in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2011.

[55] Davide Sangiorgi and David Walker. The π-calculus - a theory of mobile processes.
Cambridge University Press, 2001. ISBN 978-0-521-78177-0.

[56] Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational semantics.
In LICS, pages 280–291, 1997. doi: 10.1109/LICS.1997.614955.

[57] Glynn Winskel. Strategies as profunctors. In FoSSaCS, volume 7794 of LNCS, pages
418–433. Springer Verlag, 2013. ISBN 978-3-642-37074-8.

[58] Glynn Winskel and Mogens Nielsen. Handbook of Logic in Computer Science, volume 4
of Oxford science publications, chapter Models for concurrency. Clarendon, 1995.

80 T. HIRSCHOWITZ

C base category, over which positions
and plays are presheaves

‹, rns,
πln, π

r
n, πn,

νn, ♥n, ιn,i,
om,j , τn,i,m,j ,

objects of C

rmsa1,...|c1,...rns two players sharing some channels
Cospanp´q bicategory of cospans of ´
Dh category of positions and embed-

dings
Dv bicategory of positions and plays
D playground
DCCS
h ,DCCS

v ,DCCS CCS versions of the above
E category of plays and extensions
BX category of behaviours on X
EV category of views and extensions
SX category of strategies on X
PlpXq players of position X
vx,u view of x : dÑ X in u : X Y
xu : dx,u : Y initial player of x in u
u|k : Dk,u Y restriction of u : X 1 X along

k : Y Ñ X
PlM pXq players of position X whose view in

M : X Y is non-trivial
Sx projection of S P SX to x P PlpXq
rS, T s copairing of S and T
S ¨ v residual of S after v
S|σ restriction of S to antecedents of σ
Q graph of full quasi-moves
rBsd set of isomorphism classes of basic

moves over d
rFsX set of isomorphism classes of full

moves over X
χrM s set of basic b’s s.t. D bÑM
rF1sX Ď rFsX subset of full moves M such that

χrM s is a singleton
rF`sX Ď rFsX subset of full moves M such that

χrM s is not a singleton
ru, iu bijection, for all plays u : X 1 X,

ř

pd,xqPPlpXq PlpDx,uq Ñ PlpX 1q

d $ S strategy term
d $D D definite strategy term
d $ T process term
pI, h, SqK set of tests passed by pI, h, Sq
„Gf fair testing eq. in graph w.c. G

„f,s standard fair testing eq. in CCS
„f semantic fair testing eq.

KG pole for fair testing eq. in G
KK pole for semantic fair test. eq.
K pole for CCS (Def. 2.21)
‹ intermediate pole (Lem. 6.20)
CCS lts for CCS
S lts for strategies
T set of process terms
T lts for T: obpTq“T
L´M translation CCS Ñ S

θ translation CCS Ñ T

J´K translation T Ñ S

WCCS set of closed-world quasi-moves
DW Ď Dv subbicat. of closed-world plays
`D labelling of closed-world plays

in tid ,♥u: DW Ñ fcpΣq
AW ‘closed-world’ subgraph of a

graph with complementarity A
ŹA compatibility relation for A:

A2 AW

e ó e1 notation for the composite
A¨ ãÑ A2 AW Ñ Σ

rx, ys choice of ‘amalgamation’ in G
χ : IQÑ Q subgraph of edges with double

cell id‚I ÑM
ξ : IQÑ A mapping to CCS labels
G modular ŹG strong bisim over Σ
x¨ ty | x ¨ yu
x ’ y x¨ “ y¨
G ˛A H blind composition of G and H

over A

adequacy
of GÑA

(essentially) KG
¨
“ KG˛AG

HA A-trees
Fa failures over a P A
fl failures to A-trees: F Ñ HA

nice alphabet enough ticks, finitely branch-
ing, inertly silent (Def. 6.39)

core move element of some presheaf,
of maximal dimension

U locally 1-inj. cores map inj. to U , except per-
haps for channels in the inter-
face

GU causal graph of U
Elp´q elements z synchronisations

map between Elp´q’s
horn τ´n,i,m,j synchro. minus idτn,i,m,j
∆f change of base along f

Figure 6: Cheat sheet

	1. Introduction
	1.1. Overview of the approach
	1.2. Main result: which behavioural equivalence?
	1.3. Plan and overview
	1.4. Related work

	2. Prerequisites and preliminaries
	2.1. Sets, categories, presheaves
	2.2. Transition systems
	2.3. CCS

	3. Summary of previous work
	3.1. Diagrams
	3.2. From diagrams to moves
	3.3. From moves to plays
	3.4. Behaviours and strategies
	3.5. Semantic fair testing

	4. Playgrounds: from behaviours to strategies
	4.1. Motivation: a pseudo double category
	4.2. Behaviours
	4.3. More axioms
	4.4. Views
	4.5. From behaviours to strategies

	5. Playgrounds: transition systems
	5.1. A syntax for strategies
	5.2. The labelled transition system for strategies
	5.3. Process terms
	5.4. The labelled transition system for process terms
	5.5. Translation and a first correctness result

	6. Graphs and fair morphisms
	6.1. Graphs with complementarity
	6.2. Modular graphs and fair testing equivalence
	6.3. Adequacy
	6.4. Trees
	6.5. Main result

	7. CCS as a playground
	7.1. A pseudo double category
	7.2. Correctness
	7.3. CCS as a pre-playground
	7.4. Towards CCS as a playground
	7.5. CCS as a playground

	8. Conclusion and perspectives
	8.1. Conclusion
	8.2. Perspectives

	References

