Jean-Guillaume Dumas
email: guillaume.dumas@imag.fr

Dominique Duval
email: dominique.duval@imag.fr

Burak Ekici
email: burak.ekici@imag.fr

Damien Pous
email: damien.pous@ens-lyon.fr

Formal verification in Coq of program properties involving the global state effect

The syntax of an imperative language does not mention explicitly the state, while its denotational semantics has to mention it. In this paper we present a framework for the verification in Coq of properties of programs manipulating the global state effect. These properties are expressed in a proof system which is close to the syntax, as in effect systems, in the sense that the state does not appear explicitly in the type of expressions which manipulate it. Rather, the state appears via decorations added to terms and to equations. In this system, proofs of programs thus present two aspects: properties can be verified up to effects or the effects can be taken into account. The design of our Coq library consequently reflects these two aspects: our framework is centered around the construction of two inductive and dependent types, one for terms up to effects and one for the manipulation of decorations.

Introduction

The evolution of the state of the memory in an imperative program is a computational effect: the state is never mentioned as an argument or a result of a command, whereas in general it is used and modified during the execution of commands. Thus, the syntax of an imperative language does not mention explicitly the state, while its denotational semantics has to mention it. This means that the state is encapsulated: its interface, which is made of the functions for looking up and updating the values of the locations, is separated from its implementation; the state cannot be accessed in any other way than through its interface.

It turns out that equational proofs in an imperative language may also encapsulate the state: proofs can be performed without any knowledge of the implementation of the state. This is made possible by adding decorations to terms, as in effect systems [START_REF] Lucassen | Polymorphic effect systems[END_REF][START_REF] Wadler | The marriage of effects and monads[END_REF], or by adding decorations to both the terms and the equations [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. The latter approach uses categorical constructions to model the denotational semantics of the state effect and prove some properties of programs involving this effect. Strong monads, introduced by Moggi [START_REF] Moggi | Notions of computation and monads[END_REF], were the first categorical approach to computational effects, while Power et al. [START_REF] Power | Premonoidal categories and notions of computation[END_REF] then proposed the premonoidal categories. Next Hughes [START_REF] Hughes | Generalising monads to arrows[END_REF] extended Haskell with arrows that share some properties with the approach of cartesian effect categories of Dumas et al. [START_REF] Dumas | Cartesian effect categories are freyd-categories[END_REF].

The goal of this paper is to propose a Coq environment where proofs, written in the latter decorated framework for the state effect, can be mechanised.

Proving properties of programs involving the state effect is important when the order of evaluation of the arguments is not specified or more generally when parallelization comes into play [START_REF] Lucassen | Polymorphic effect systems[END_REF]. Indeed, pure computations, i.e. those not having any side-effects (or in other words not modifying the state), are independent and could thus be run in parallel. Differently, computations depending on or modifying the state should be handled with more care. Now, proofs involving side-effects can become quite complex in order to be fully rigorous. We will for instance look at the following property in details: recovering the value of a variable and setting up the value of another variable can be performed in any order. Such properties have been formalized for instance by Plotkin et al. [START_REF] Plotkin | Notions of computation determine monads[END_REF] but the full mathematical proof of such properties can be quite large. The decorated approach of [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF] helps since it enables a • As the name suggests, a modifier may modify or use the state: it is a read-write function. We will use the keyword rw as an annotation for modifiers.

• An accessor may use the state structure but never modifies it: it is a read-only function. We will use the keyword ro for accessors.

• A pure function never interacts with the state. We will use the keyword pure for pure functions.

The denotational semantics of this language is given in terms of the set of states S and the cartesian product operator '×'. For all types X and Y , interpreted as sets X and Y , a modifier function f : X → Y is interpreted as a function f : X × S → Y × S (it can access the state and modify it); an accessor g as g : X × S → Y (it can access the state but not modify it); and a pure function h as h : X → Y (it can neither access nor modify the state). There is a hierarchy among those functions. Indeed any pure function can be seen as both an accessor or a modifier even though it will actually do not make use of its argument S. Similarly an accessor can be seen as a modifier.

The state is made of memory locations, or variables; each location has a value which can be updated. For each location i, let V i be the type of the values that can be stored in the location i, and let Val i = V i be the interpretation of V i . In addition, the unit type is denoted by 1; its interpretation is a singleton, it will also be denoted by 1.

The assignment of a value of type V i to a variable i takes an argument of type V i . It does not return any result but it modifies the state: given a value a ∈ Val i , the assignment of a to i sets the value of location i to a and keeps the value of the other locations unchanged. Thus, this operation is a modifier from V i to 1. It is denoted by update rw i : V i → 1 and it is interpreted as update i :

Val i × S → S.
The recovery of the value stored in a location i takes no argument an returns a value of type V i . It does not modify the state but it observes the value stored at location i. Thus, this operation is an accessor from 1 to V i . It is denoted by lookup ro i : 1 → V i and it is interpreted (since 1 × S is in bijection with S) as lookup i : S → Val i . For each type X, the identity operation id X : X → X, which is interpreted by mapping each element of X to itself, is pure.

Similarly, the final operation X : X → 1, which is interpreted by mapping each element of X to the unique element of the singleton 1, is pure. In order to lighten the notations we will often use id i and i instead of respectively id Val i and Val i .

In addition, decorations are also added to equations.

• Two functions f , g : X → Y are strongly equal if they return the same result and have the same effect on the state structure. This is denoted f == g.

• Two functions f , g : X → Y are weakly equal if they return the same result but may have different effects on the state. This is denoted f ∼ g.

The state can be observed thanks to the lookup functions. For each location i, the interpretation of the update i operation is characterized by the following equalities, for each state s ∈ S and each x ∈ Val i : lookup i (update i (s, x)) = x lookup j (update i (s, x)) = lookup j (s) for every j ∈ Loc, j = i According to the previous definitions, these equalities are the interpretations of the following weak equations:

lookup ro i • update rw i ∼ id pure i : V i → V i lookup ro j • update rw i ∼ lookup ro j • pure i for every j ∈ Loc, j = i : V i → V j

Sequential products

In functional programming, the product of functions allows to model operations with several arguments. But when side-effects occur (typically, updates of the state), the result of evaluating the arguments may depend on the order in which they are evaluated. Therefore, we use sequential products of functions, as introduced in [START_REF] Dumas | Cartesian effect categories are freyd-categories[END_REF], which impose some order of evaluation of the arguments: a sequential product is obtained as the sequential composition of two semi-pure products. A semi-pure product, as far as we are concerned in this paper, is a kind of product of an identity function (which is pure) with another function (which may be any modifier).

For each types X and Y , we introduce a product type X × Y with projections π pure 1,X 1 ,X 2 : X 1 × X 2 → X 1 and π pure 2,X 1 ,X 2 : X 1 × X 2 → X 2 , which will be denoted simply by π pure 1 and π pure 2 . This is interpreted as the cartesian product with its projections. Pairs and products of pure functions are built as usual. In the special case of a product with the unit type, it can easily be proved, as usual, that π pure 1 : X ×1 → X is invertible with inverse the pair (π -1 1) pure = id pure X , pure X : X → X × 1, and that π pure 2 = pure X : X × 1 → 1. The permutation operation perm X×Y : X × Y → Y × X is also pure: it is interpreted as the function which exchanges its two arguments.

Given a pure function f pure

1 : X → Y 1 , interpreted as f 1 : X → Y 1 , and a modifier f rw 2 : X → Y 2 with its interpretation f 2 : X × S → Y 2 × S, the left semi-pure pair f 1 , f 2 rw l : X → Y 1 × Y 2 is the modifier interpreted by f 1 , f 2 l : X ×S → Y 1 × Y 2 ×S such that f 1 , f 2 l (x, s) = (y 1 , y 2 , s ′) where y 1 = f 1 (x) and (y 2 , s ′) = f 2 (x, s).
The left semi-pure pair f 1 , f 2 rw l is characterized, up to strong equations, by a weak and a strong equation:

π pure 1 • f 1 , f 2 rw l ∼ f pure 1 and π pure 2 • f 1 , f 2 rw l == f rw 2 The right semi-pure pair f 1 , f 2 rw r : X → Y 1 × Y 2 where f rw 1 : X → Y 1 and f pure 2 : X → Y 2 is defined in the symmetric way: Y 1 X f 1 5 5 5 u 5 u 5 u 5 u 5 u 5 u 5 u 5 u f 2)) S S S S S S S S S S S S S f 1 , f 2 l / / Y 1 × Y 2 ∼ == π 1 O O O π 2 O Y 2 Y 1 X f 2))) i) i) i) i) i) i) i) i f 1 5 5 k k k k k k k k k k k k k f 1 , f 2 r / / Y 1 × Y 2 == ∼ π 1 O O O π 2 O Y 2
Note. In all diagrams, the decorations are expressed by shapes of arrows: waving arrows for pure functions, dotted arrows for accessors and straight arrows for modifiers.

The left semi-pure product is defined in the usual way from the left semi-pure pair: given f pure 1

:

X 1 → Y 1 f rw 2 : X 2 → Y 2 , the left semi-pure product of f 1 and f 2 is (f 1 ⋉ f 2) rw = f 1 • π 1,X 1 ,X 2 , f 2 • π 2,X 1 ,X 2 rw l : X 1 × X 2 → Y 1 × Y 2 .
It is characterized, up to strong equations, by a weak and a strong equation:

π pure 1,Y 1 ,Y 2 • (f 1 ⋉ f 2) rw ∼ f pure 1 • π pure 1,X 1 ,X 2 and π pure 2,Y 1 ,Y 2 • (f 1 ⋉ f 2) rw == f rw 2 • π pure 2,X 1 ,X 2
The right semi-pure product (

f 1 ⋊ f 2) rw : X 1 × X 2 → Y 1 × Y 2 is
defined in the symmetric way:

X 1 f 1 / / / o / o / o / o / o / o / o / o / o Y 1 X 1 × X 2 f 1 ⋉ f 2 / / π 1 O O O π 2 O Y 1 × Y 2 ∼ == π 1 O O O π 2 O X 2 f 2 / / Y 2 X 1 f 1 / / Y 1 X 1 × X 2 f 1 ⋊ f 2 / / π 1 O O O π 2 O Y 1 × Y 2 == ∼ π 1 O O O π 2 O X 2 f 2 / / / o / o / o / o / o / o / o / o / o Y 2
Now, it is easy to define the left sequential product of two modifiers f rw 1 : X 1 → Y 1 and f rw 2 : X 2 → Y 2 by composing a right semi-pure product with a left semi-pure one and using id function as the pure component:

(f 1 ⋉ f 2) rw = (id Y 1 ⋉ f 2) rw • (f 1 ⋊ id X 2) rw : X 1 × X 2 → Y 1 × Y 2
In a symmetric way, the right sequential product of f rw 1 : X 1 → Y 1 and f rw 2 : X 2 → Y 2 is defined as:

(f 1 ⋊ f 2) rw = (f 1 ⋊ id Y 2) rw • (id X 1 ⋉ f 2) rw : X 1 × X 2 → Y 1 × Y 2
The left sequential product models the fact of executing f 1 before f 2 , while the right sequential product models the fact of executing f 2 before f 1 ; in general they return different results and they modify the state in a different way.

(

f 1 ⋉ f 2) rw : (f 1 ⋊ f 2) rw : X 1 f 1 / / Y 1 id / / / o / o / o / o / o / o / o Y 1 X 1 × X 2 f 1 ⋊id / / π 1 O O O π 2 O Y 1 × X 2 id⋉ f 2 / / == ∼ π 1 O O O π 2 O Y 1 × Y 2 ∼ == π 1 O O O π 2 O X 2 id / / / o / o / o / o / o / o / o X 2 f 2 / / Y 2 X 1 id / / / o / o / o / o / o / o / o X 1 f 1 / / Y 1 X 1 × X 2 id⋉ f 2 / / π 1 O O O π 2 O Y 1 × X 2 f 1 ⋊id / / ∼ == π 1 O O O π 2 O Y 1 × Y 2 == ∼ π 1 O O O π 2 O X 2 f 2 / / Y 2 id / / / o / o / o / o / o / o / o Y 2

A property of states

In [START_REF] Plotkin | Notions of computation determine monads[END_REF] an equational presentation of states is given, with seven equations. These equations are expressed as decorated equations in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. They are the archetype of the properties of the proofs we want to verify. For instance, the fact that modifying a location i and observing the value of another location j can be done in any order is called the commutation update-lookup property. This property can be expressed as an equation relating the functions update i and lookup j . For this purpose, let lookup j ′ : S × Val j × S be defined by

lookup j ′ (s) = (s, lookup j (s)) for each s ∈ S .
Thus, given a state s and a value a ∈ Val i , assigning a to i and then observing the value of j is performed by the function:

lookup j ′ • update i : Val i × S → Val j × S .
Observing the value of j and then assigning a to i also corresponds to a function from Val i × S to Val j × S built from update i and lookup j ′ . This function first performs lookup j ′ (s) while keeping a unchanged, then it performs update i (s, a) while keeping b unchanged (where b denotes the value of j in s which has been returned by lookup j (s)). The first step is

id Val i × lookup j ′ : Val i × S → Val i × (Val j × S) and the second step is id Val j × update i : Val j × (Val i × S) → Val j × S. An intermediate permutation step is required, it is called perm i, j : Val i × (Val j × S) → Val j × (Val i × S) such that perm i, j (a, (b, s)) = (b, (a, s)).
Altogether, observing the value of j and then assigning a to i corresponds to the function:

(id Val j × update i) • perm i, j • (id Val i × lookup j ′) : Val i × S → Val j × S
Thus, the commutation update-lookup property means that:

lookup j ′ • update i = (id Val j × update i) • perm i, j • (id Val i × lookup j ′)
According to Section 2.2, this is the interpretation of the following strong equation, which can also be expressed as a diagram:

lookup ro j • update rw i == π pure 2 • (update rw i ⋊ id pure j) • (id pure i ⋉ lookup ro j) • (π -1 1) pure : V i → V j . (1
)
V i update i / / 1 lookup j / / V j == V i π -1 1 / / / o / o / o / o V i × 1 id i ⋉lookup j / / V i × V j update i ⋊id j / / 1 × V j π 2 / / / o / o / o / o V j
Remark. Using the right sequential product, the right hand-side of the commutation update-lookup equation can be written as π pure 2 • (update rw i ⋊ lookup ro j) • (π -1 1) pure . In addition, using the left sequential product, it is easy to check that the left hand-side of this equation can be written as π pure 2

• (update rw i ⋉ lookup ro j) • (π -1 1) pure . Since π pure 1 : V i × 1 → V i and π pure 2 : 1 × V j → V j
are invertible, we get a symmetric expression for the equation which corresponds nicely to the description of the commutation update-lookup property as "the fact that modifying a location i and observing the value of another location j can be done in any order":

update rw i ⋊ lookup ro j == update rw i ⋉ lookup ro j 3

The Environment in Coq

In this Section we present the core of this paper, namely the implementation in the Coq proof assistant of the rules for reasoning with decorated operations and equations and the proof of the update-lookup commutation property using these rules.

In the preceding section, we have shown proofs of propositions involving effects. We now present the construction of a Coq framework enabling one to formalize such proofs. This framework has been released as STATES-0.5 library and is available in the following web-site: http://coqeffects.forge.imag.fr.

In order to construct this framework, we need to define data structures, terms, decorations and basic rules as axioms. Those give rise to derived rules and finally to proofs. This organization is reflected in the library with corresponding Coq modules, as shown in the following diagram:

PROOFS: Proofs

The memory module uses declarations of locations. A location represents a field on the memory to store and observe data. Then terms are defined in steps. First we give the definitions of non-decorated terms: they constitute the main part of the design with the inclusion of all the required functions. For instance, the lookup function which observes the current state is defined from void (1, the terminal object of the underlying category) to the set of values that could be stored in that specified location.

The next step is to decorate those functions with respect to their manipulation abilities on the state structure. For instance, the update function is defined as a modifier. the modifier status is represented by a rw label in the library. All the rules related to decorated functions are stated in the module called Axioms.

Then, based on the ones already defined, some other terms are derived. For example, the derived permut function takes projections as the basis and replaces the orders of input objects in a categorical product. Similarly, by using the already defined rules (given in the axioms section), some additional rules are derived concerning categorical pairs, products and others pointing the rules constructed over the ones from different sources.

In the following subsection we detail the system sub-modules. The order of enumeration gives the dependency among sub-modules as shown in the above diagram.

For instance, the module decorations requires definitions from the memory and the terms modules. Then, as an example, we give the full proof, in Coq, of the update-lookup commutation property of [START_REF] Plotkin | Notions of computation determine monads[END_REF].

Proof System for States

In this section we give the Coq definitions of our proof system and explore them module by module.

The major ideas in the construction of this Coq framework are:

• All the features of the proof system, that are given in the previous Sections 2.2, 2.3, 2.4 and in the appendix A, definitely constitute the basis for the Coq implementation. In brief, we first declare all the terms without decorations, then we decorate them and after all we end up with the rules involving decorated terms. We also confirm that if one removes all the decorations (hence transforming every operations into pure terms), the proof system remains valid.

• The terms pair and perm pair express the construction of pairs of two functions. As shown in Section 2.3, in the presence of effects the order of evaluation matters. Therefore, we first define the left pair in Coq and simply call it pair (see Section 3.3). Then, the right pair can be derived using the permutation rule and it is called perm pair (see Section 3.6).

• The most challenging part of the design is the proof implementations of the propositions by [START_REF] Plotkin | Notions of computation determine monads[END_REF], since they are quite tricky and long. We assert implementations tricky, because to see the main schema (or flowchart) of the proofs at first sight and coding them in Coq with this reasoning is quite difficult. To do so, we first sketch the related diagrams with marked equalities (strong or weak), then we convert them into some line equations, representing the main propositions to be shown. In order to do so, we use a fractional notation together with the exploited rules for each step. Eventually, Coq implementations are done by coding each step which took part in the fractional notation. From this aspect, without the fractional correspondences, proofs might be seen a little tough to follow. In order to increase the readability score, we divided those implementations into sub-steps and gave the associated relevant explanations. See Section 4 for an example.

• Considering the entire design, we benefit from an important aspect provided by Coq environment, namely dependent types. They provide a unified formalism in the creation of new data types and allow us to deal in a simple manner with most of the typing issues. More precisely, the type term is not a Type, but rather a Type → Type → Type. The domain/codomain information of term is embedded into Coq type system, so that we do not need to talk about ill-typed terms. For instance, pi1 • final is ill-typed since final is defined from any object X: Type to unit where pi1 if from Y: Type to Z: Type. Therefore, the latter composition cannot be seen as a term.

Memory

We represent the set of memory locations by a Coq parameter Loc : Type. Since memory locations may contain different types of values, we also assume a function Val : Loc → Type that indicates the type of values contained in each location.

Terms

Non-decorated operators, using the monadic equational logic and categorical products, are represented by an inductive Coq data type named term. It basically gets two Coq types, that are corresponding either to objects or to mappings in the given categorical structure, and returns a function type. Those function types are the representations of the homomorphisms of the category. We summarize these non-decorated constructions below:

Inductive term: Type → Type → Type := | id: ∀ {X: Type}, term X X | comp: ∀ {X Y Z: Type}, term X Y → term Y Z → term X Z | final: ∀ {X: Type}, term unit X | pair: ∀ {X Y Z: Type}, term X Z → term Y Z → term (X×Y) Z | pi1: ∀ {X Y: Type}, term X (X×Y) | pi2: ∀ {X Y: Type}, term Y (X×Y) | lookup: ∀ i: Loc, term (Val i) unit | update: ∀ i: Loc, term unit (Val i).
Infix "o" := comp (at level 70).

Note that a term of type term X Y is interpreted as a function from the set Y to the set X (the co-domain, X, is given first.)

The constructor id denotes the identity function: for any type X, id X has type term X X. The term comp composes two given compatible function types and returns another one. The term pair represents the categorical product type of two given objects. For instance, if term X Z corresponds to a mapping defined from an object Z to another one denoted as X, then pair with input types term X Z and term Y Z, agreeing on domains, returns a new function type of form term (X × Y) Z. The terms pi1 and pi2 are projections of products while final maps any object to the terminal object (the singleton set, denoted by 1) of the Cartesian effect category in question. lookup takes a location identifier and denotes the lookup operation for the relevant location. It is mathematically defined from the terminal object of the category. As the name suggests, the update operator updates the value in the specified location.

Decorations

In order to keep the semantics of state close to syntax, all the operations are decorated with respect to their manipulation abilities on the state structure. In Coq, we define another inductive data type, called kind, to represent these decorations. Its constructors are pure (decorated by pure), ro (for read-only and decoration ro) and rw (for read-write and decoration rw). It should be recalled that if a function is pure, then it could be seen both as ro (accessor) and rw (modifier), due to the hierarchy rule among decorated functions:

Inductive kind := pure | ro | rw.
the weak equality between parallel morphisms models the fact that those morphisms return the same value but may perform different manipulations of the state. On the other hand, if both the returned results and the state manipulations are identical, then the equality becomes strong.

In order to define these decorations of equations in Coq, we again use inductive terms and preserve the naming strategy of Section 2.

Below are given the reserved notations for strong and weak equalities, respectively.

Reserved Notation " x == y" (at level 80). Reserved Notation "x ∼ y" (at level 80).

We have some number of rules stated w. r. t. strong and weak equalities. The ones used in the proof given in Section 4 are detailed below. It is also worth to note that for each constructor of the given inductive types strong and weak, corresponding rules are shown in Appendix A, see Figures 1, 2 and5.

Inductive strong: ∀ X Y, relation (term X Y) :=
• The rules strong refl, strong sym and strong trans state that strong equality is reflexive, symmetric and transitive, respectively. Obviously, it is an equivalence relation. See (s-refl) , (s-sym) and (s-trans) rules in Figure 1.

• Both id src and id tgt state that the composition of any arbitrarily selected function with id is itself regardless of the composition order. See (dec-id-src) and (dec-id-tgt) rules in Figure 1.

• strong subs states that strong equality obeys the substitution rule. That means that for a pair of parallel functions that are strongly equal, the compositions of the same source compatible function with those functions are still strongly equal. strong repl states that for those parallel and strongly equal function pairs, their compositions with the same target compatible function are still strongly equal. See (s-subs) and (s-repl) rules in Figure 1.

• ro weak to strong is the rule saying that all weakly equal ro terms are also strongly equal. Intuitively, from the given weak equality, they must have the same results. Now, since they are not modifiers, they cannot modify the state. That means that effect equality requirement is also met. Therefore, they are strongly equal. See (ro-w-to-s) rule in Figure 1.

• comp final unique ensures that two parallel rw functions (say f and g) are the same (strongly equal) if they return the same result f ∼ g together with the same effect final • f == final • g. See Figure 2.

with weak: ∀ X Y, relation (term X Y) :=

• pure weak repl states that weak equality obeys the substitution rule stating that for a pair of parallel functions that are weakly equal, the compositions of those functions with the same target compatible and pure function are still weakly equal. See (pure-w-repl) rule in Figure 1.

• strong to weak states that strong equality could be converted into weak one, free of charge. Indeed, the definition of strong equality encapsulates the one for weak equality. See (s-to-w) rule in Figure 1.

• axiom 2 states that first updating a location i and then implementing an observation to another location k is weakly equal to the operation which first forgets the value stored in the location i and observes location k. See (axiom-rw) rule in Figure 5.

Please note that weak equality is an equivalence relation and obeys the substitution rule such as the strong one.

Derived Terms

Additional to those explained in Section 3.3, some extra terms are derived via the definitions of already existing ones:

Definition inv pi1 {X Y}: term (X×unit) (X) := pair id unit. Definition permut {X Y}: term (X×Y) (Y×X) := pair pi2 pi1.

Decorated Products

Semi-pure products are actually specific types of semi-pure pairs, as explained in Section 2.3. In the same way in Coq, the pair and perm_pair definitions give rise to the prod and perm_prod ones.

• dec prod exists purerw ensures that a prod with a pure and a rw arguments exists and is rw. weak proj pi1 purerw rect is the first projection rule and states that pi1 • (prod f g) ∼ f • pi1. strong proj pi2 purerw rect is the second projection rule and assures that pi2 • (prod f g) == f • pi2. Similarly, the rule dec perm prod exists rwp with projections: strong perm proj pi1 rwpure rect (pi1 • (perm prod f g) == f • pi1) and weak perm proj pi (pi2 • (perm prod f g) ∼ g • pi2) relate to permuted products.

• dec prod exists purero ensures that a prod with a pure and a ro arguments exists and is ro. weak proj pi1 purero rect is the first projection rule and states that pi1 • (prod f g) == f • pi1. strong proj pi2 purerw rect is the second projection rule and assures that pi2 • (prod f g) == f • pi2. Similarly, permutation rule could be applied to get dec prod exists ropure rule with its projections: strong perm proj pi1 ropure rect (pi1 • (perm prod f g) == f • pi1) and weak perm proj pi2 ropure rect (pi2

• (perm prod f g) == g • pi2)
For further explanation of each derivation with Coq implementation, refer to the Decorated Products.v source file.

Derived Rules

The library also provides derived rules which can be just simple shortcuts for frequently used combinations of rules or more involved results. For instance:

• weak refl describes the reflexivity property of the weak equality: It is derived from the reflexivity of the strong equality.

• Two pure functions having the same codomain 1 must be strongly equal (no result and state unchanged). Therefore E 0 3 extends this to a composed function f • g, for two pure compatible functions f and g, and another function h, provided that g and h have 1 as codomain.

• In the same manner, E 1 4 states that the composition of any ro function h: 1 → X, with final is strongly equal to the id function on 1. Indeed, both have no result and do not modify the state.

More similar derived rules can be found in the Derived Rules.v source file.

Implementation of a proof: update-lookup commutation

We now have all the ingredients required to prove the update-lookup commutation property of Section 2.4 the order of operations between updating a location i and retrieving the value at another location j does not matter. The formal statement is given in Equation [START_REF] Ahrens | Initial semantics for higher-order typed syntax[END_REF].

The value intended to be stored into the location i is an element of Val i set while the lookup operation to the location j takes nothing (apart from j), and returns a value read from the set Val j. If the order of operations is reversed, then the element of Val i has to be preserved while the other location is examined. Thus we need to form a pair with the identity and create a product Val i × 1, via inv pi1. Similarly, the value recovered by the lookup operation has to be preserved and returned after the update operation. Then a pair with the identity is also created with update and a last projection is used to separate their results. The full Coq proof thus uses the following steps:

1. assume i, j:Loc

2. lookup j • update i == pi2 • (perm prod (update i) id)
3.

• (prod id (lookup j)) • inv pi1 by comp final unique 4. step 1

5.

final • lookup j • update i == final 6.

• pi2 • (perm prod (update i) id) by strong sym 7.

• (prod id (lookup j)) • inv pi1

8. final • pi2 • (perm prod (update i) id)
9.

• (prod id (lookup j)) • inv pi1

• (prod id (lookup j)) • inv pi1

To prove such a proposition, the comp final unique rule is applied first and results in two sub-goals to be proven:

final • lookup j • update i == final • pi2 • (perm prod (update i) id) • (prod id (lookup j))
• inv pi1 (to check if both hand sides have the same effect or not) and lookup j • update i ∼ pi2 • (perm prod (update i) id) • (prod id (lookup j)) • inv pi1 (to see whether they return the same result or not). Proofs of those sub-goals are given in step 1 and step 2, respectively.

Step 1. final

• lookup j • update i == final • pi2 • (perm prod (update i) id)
• (prod id (lookup j)) • inv pi1:

(1.1) The left hand side final • pi2 • (perm prod (update i) id) • (prod id (lookup j)) • inv pi1, (after the strong sym rule application) is reduced into: pi1 • (perm prod (update i) id) • (prod (id (Val i)) (lookup j)) • inv pi1. The base point is an application of E 0 3, stating that final • pi2 == pi1 and followed by strong subs applied to (perm prod (update i) id), (prod id (lookup j)) and inv pi1.

(1.2) In the second sub-step, strong perm proj pi1 rwpure rect rule is applied to indicate the strong equality between pi1 • perm prod (update i) id and update i • pi1. After the applications of strong subs with arguments prod id (lookup j) and inv pi1, we get: pi1

• (perm prod (update i) id) • (prod id (lookup j)) • inv pi1 == update i • pi1 • (prod id (lookup j)) • inv pi1.
Therefore, the left hand side of the equation can now be stated as: update i • pi1 • (prod id (lookup j)) • inv pi1.

(1.3) Then, the third sub-step starts with the application of weak proj pi1 purerw rect rule in order to express the following weak equality: pi1 • prod id (lookup j) ∼ id • pi1. The next step is converting the existing weak equality into a strong one by the application of ro weak to strong, since none of the components are modifiers. Therefore we get: pi1 • prod id (lookup j) == id • pi1. Now, using id tgt, we remove id from the right hand side. The subsequent applications of strong subs with arguments inv pi1 and strong repl enables us to relate update i • pi1 • (prod id (lookup j)) • inv pi1 with update i • pi1 • inv pi1 via a strong equality.

(1.4) In this sub-step, update i • pi1 • inv pi1 is simplified into update i • id. To do so, we start with strong proj pi1 purepure so that pi1 • pair id final == id, where pair id final defines inv pi1=pair id final. Then, the application of strong repl to update i provides: update i • pi1 • pair id final == update i • id.

(1.5) In the last sub-step, the right hand side of the equation, final • lookup j • update i, is reduced into update i • id. To do so, we use E 1 4 which states that final • lookup j == id. Then, using strong subs on update i, we get: final • lookup j • update i == id • update i. By using id tgt again we remove id on the right hand side and id src rewrites final • lookup j • update i as update i • id.

At the end of the third step, the left hand side of the equation is reduced into the following form: update i • id via a strong equality. Thus, in the fourth step, it was sufficient to show final • lookup j • update i == update i • id to prove final • pi2 • (perm prod (update i) id)) • (prod id (lookup j)) • inv pi1 == final • lookup j • update i. This shows that both sides have the same effect on the state structure.

Step 2. We now turn to the second step of the proof, namely: lookup j • update i ∼ pi2 • (perm prod (update i) id) • (prod id (lookup j)) • inv pi1. The results returned by both input composed functions are examined. Indeed, from step 1 we know that they have the same effect and thus if they also return the same results, then they we will be strongly equivalent.

(2.1) Therefore, the first sub-step starts with the conversion of the left hand side of the equation, lookup j • update i, into lookup j • final via a weak equality. This is done by the application of the axiom 2 stating that lookup j • update i ∼ lookup j • final for j = i.

(2.

2) The second sub-step starts with the application of strong proj pi2 purepure which states pi2 • (pair id final) == final still with (pair id final) = inv pi1. Then, via the applications of strong repl, with argument lookup j, strong to weak and strong sym, we get: lookup j • final ∼ lookup j • pi2 • inv pi1.

(2.3) In the third sub-step, the right hand side of the equation, pi2 • (perm prod (update i) id) • (prod id (lookup j)) • inv pi1, is simplified by weak equality: we start with the application of weak perm proj pi2 rwpu since pi2 • (perm prod (update i) id) ∼ id • pi2. Then, we once again use id tgt to remove the identity and the applications of weak subs with arguments prod id (lookup j) and inv pi1 yields the following equation: pi2 • (perm prod (update i) id) • (prod id (lookup j)) • inv pi1 ∼ pi2 • (prod id (lookup j)) • inv pi1.

(2.4) In the last sub-step, pi2 •(prod id (lookup j)) • inv pi1 is reduced into lookup j • pi2 • inv pi1 via a weak equality using strong proj pi2 purerw rect so that pi2 • (prod id (lookup j)) == lookup j • pi2. Then, strong repl is applied with argument inv pi1. Finally, the strong to weak rule is used to convert the strong equality into a weak one.

Both hand side operations return the same results so that the statement lookup j • update i ∼ pi2 • (perm prod (update i) id) • (prod id (lookup j)) • inv pi1 is proven.

Merging the two steps (same effect and same result) yields the proposition that both sides are strongly equal. The full Coq development can be found in the library in the source file Proofs.v.

Conclusion

In this paper, we introduce a framework for the Coq proof assistant. The main goal of this framework is to enable programmers to verify properties of programs involving the global states effect. We use a presentation of these properties which is close to syntax. In other words, the state structure itself is not explicitly mentioned in the verification progress. Instead, it is represented by the term decorations that are used to declare program properties. We then used this framework to verify several well known properties of states as the ones of [START_REF] Plotkin | Notions of computation determine monads[END_REF]. In order to verify these properties we first expressed them in the mathematical environment of [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF] where the effect of any operation (function) is defined as the distance from being pure and is denoted as Y • f for any f: X → Y. Therefore, for the specific case of the global state effect, to check for instance the strong equality between any parallel morphisms f, g: X → Y, we first check whether they have the same effect (this is expressed via an equality Y • f == Y • g) and then monitor if they return the same result (this is expressed via a weak equation f ∼ g). This scheme has been integrally developed in Coq and Section 4 illustrate the behavior of the resulting proofs on one of the checked proofs of [START_REF] Plotkin | Notions of computation determine monads[END_REF].

It is worth noting also that the framework has been succesfully used to check a more involved proof, namely that of Hilbert-Post completeness of the global state effect in a decorated setting [START_REF] Dumas | Patterns for computational effects arising from a monad or a comonad[END_REF]. The process of writing this proof in our Coq environment (now more than 16 Coq pages) for instance helped discovering at least one non obvious flaw in a preliminary version of the proof.

Future work includes extending this framework to deal with the exception effect: we know from [START_REF] Dumas | A duality between exceptions and states[END_REF] that the core part of exceptions is dual to the global state effect. Then the extension would focus on the pattern matching of the handling of exceptions. We also plan to enable the verification of the composition of effects and to extend the framework to other effects: for monadic or comonadic effects the generic patterns of [START_REF] Dumas | Patterns for computational effects arising from a monad or a comonad[END_REF] could then be of help.

(pure-id)

X id pure X : X → X (dec-comp) f d : X → Y g d : Y → Z (g • f) d : X → Z (pure-to-ro) f pure f ro (ro-to-rw) f ro f rw (s-refl) f rw f == f (s-sym) f rw == g rw g == f (s-trans) f rw == g rw g rw == h rw f == h (dec-assoc) f rw : X → Y g rw : Y → Z h rw : Z → W h • (g • f) == (h • g) • f (dec-id-src) f rw : X → Y f • id X == f (dec-id-tgt) f rw : X → Y id Y • f == f (s-subs) f rw : X → Y g rw 1 == g rw 2 : Y → Z g 1 • f == g 2 • f : X → Z (s-repl) f rw 1 == f rw 2 : X → Y g rw : Y → Z g • f 1 == g • f 2 : X → Z (ro-w-to-s) f ro ∼ g ro f == g (s-to-w) f rw == g rw f ∼ g (w-sym) f rw ∼ g rw g ∼ f (w-trans) f rw ∼ g rw g rw ∼ h rw f ∼ h (w-subs) f rw : X → Y g rw 1 ∼ g rw 2 : Y → Z g 1 • f ∼ g 2 • f : X → Z (pure-w-repl) f rw 1 ∼ f rw 2 : X → Y g pure : Y → Z g • f 1 ∼ g • f 2 : X → Z

A.2 Rules for the decorated finite categorical products

The rules of the usual equational logic are made of the rules of the monadic equational logic together with the rules for all finite categorical products "up to equations", or equivalently, the rules for a terminal object (or empty product) and for binary products "up to equations". When dealing with states, we use the decorated version of these rules, as described in Figures 2,3 One of the most important rules given in this context is (dec-comp-final-unique) in Figure 2, which compares both the effects of two given parallel functions (f and g) and their results. If they have the same effect (• f == • g) and the same result (f ∼ g), then the rule says that they are strongly equal (f == g).

The rule (w-pair-unique) in Figure 4 is another important rule for parallel functions (f and g) returning a pair of results. It compares the first and the second result of both functions with respect to weak equality (π 1 • f ∼ π 1 • g stands for the first comparison and π 2 • f ∼ π 2 • g for the second one); if both weak equalities hold, then the rule says that the functions f and g are weakly equal (f ∼ g).

(prod-exists)

X 1 X 2 X 1 × X 2 (pure-proj-ro) X 1 X 2 π pure X 1 ,X 2 ,1 : X 1 × X 2 → X 1 (pure-proj-rw) X 1 X 2 π pure X 1 ,X 2 ,2 : X 1 × X 2 → X 2
Figure 3: Rules of the decorated binary products for states: Existence (dec-pair-exists)

f d 1 : X → Y 1 f d 2 : X → Y 2 < f 1 , f 2 > d : X → Y 1 × Y 2 (dec-pair-proj-ro) f ro 1 : X → Y 1 f rw 2 : X → Y 2 π Y 1 ,Y 2 ,1 • < f 1 , f 2 > ∼ f 1 (dec-pair-proj-rw) f ro 1 : X → Y 1 f rw 2 : X → Y 2 π Y 1 ,Y 2 ,2 • < f 1 , f 2 > == f 2 (w-pair-unique) f rw , g rw : X → Y 1 × Y 2 π pure Y 1 ,Y 2 ,1 • f rw ∼ π Y 1 ,Y 2 ,1 • g rw π pure Y 1 ,Y 2 ,2 • f rw ∼ π pure Y 1 ,Y 2 ,2 • g rw f ∼ g

A.3 Rules for the observational products

The rules in Figure 5 are dedicated to the operations for dealing with states: the lookup operations for observing the state and the update operations for modifying it. Let Loc denote the set of locations, for each i ∈ Loc the type V i represents the set of possible values that can be stored in the location i, while lookup i and update i correspond to the basic operations that can be performed on this location.

for each i ∈ Loc : The rule (axiom-ro) states that by updating a location i and then reading the value that is stored in the same location i, one gets the input value. The equation is weak: indeed, the left hand side returns the same result as the right hand side but they have different state effects: lookup i • update i is a modifier while id i is pure.

V i (ro-
The rule (axiom-rw) indicates that by updating a location i and then reading the value that is stored in another location k, one gets the value stored in the location i. Besides, forgetting the value stored in the location k and reading the one located in i, one gets as well the value stored in i. The equation is weak, since both hand side return the same result but they have different state effects: lookup i • update k is a modifier while lookup i • k is an accessor.

The rule (dec-local-to-global) will be used for proving the strong equality of two parallel functions f and g (without result) by checking that the observed value at each location is the same after modifying the state according to f or according to g. Thus, many local observations yield a global result.

Figure 1 :

 1 Figure 1: Rules of the decorated monadic equational logic for states

Figure 2 :

 2 Figure 2: Rules of the decorated empty product for states

Figure 4 :

 4 Figure 4: Rules of the decorated pairs for states: Existence & Unicity

Figure 5 :

 5 Figure 5: Rule of the decorated observational products for states

In Coq, we had to define the decorations of terms via the separate inductive data type called is. The latter takes a term and a kind and returns a Prop. In other words, is indicates whether the given term is allowed to be decorated by the given kind or not. For instance, the term id is pure, since it cannot use nor modify the state. Therefore it is by definition decorated with the keyword pure. This decoration is checked by a constructor is id. To illustrate this, if one (by using apply tactic of Coq) asks whether id is pure, then the returned result would be have to be True. In order to check whether id is an accessor or a modifier, the constructors is pure ro and is ro rw should be applied beforehand to convert both statements into is pure id. The incidence of decorations upon the terms is summarized below together with their related rules (detailed in Appendix A):

The decorated functions stated above are classified into four different manners:

• terms specific to states effect: is lookup and is update

• categorical terms: is id, is comp and is final

• terms related to categorical products: is pair, is pi1 and is pi2.

• term decoration conversions based on the operation hierarchy: is pure ro and is ro rw.

The term comp enables one to compose two compatible functions while the constructor is comp enables one to compose functions and to preserve their common decoration. For instance, if a ro function is composed with another ro, then the composite function becomes ro as well. For the case of the pair, the same idea is used. Indeed, the constructor is pair takes two terms agreeing on domains such as term Y 1 X, say an ro, and term Y 2 X, which is ro as well. is pair then asserts that the pair of these terms is another ro. It is also possible to create both compositions and pairs of functions with different decorations via the hierarchy rule stated among decoration types. This hierarchy is build via the last two constructors, is pure ro and is rp rw. The constructor is pure ro indicates the fact that if a term is pure, then it can be seen as ro. Lastly is ro rw states that if a term is ro, then it can be seen as rw as well.

Note that the details of building pairs with different decorations can be found in the derived pairs module (Pairs.v in the library).

The terms final, pi1 and pi2 are all pure functions since they do not manipulate the state. final forgets its input argument(s) and returns nothing. Although this property could make one think that it generates a sort of sideeffect, this is actually not the case. Indeed, it is the only pure function whose co-domain is the terminal object (1) and it is therefore used to simulate the execution of a program: successive, possibly incompatible, functions can then be composed with this intermediate forgetfulness of results.

The lookup functions are decorated with the keyword ro, as accessors. The constructor is lookup is used to check the validity of the lookup' decoration. The different update functions are rw and decorated with the keyword rw. Similarly, the constructor is update is thus used to check the validity of the update' decoration.

Axioms

We can now detail the Coq implementations of the axioms used in the proof constructions. They use the given monadic equational logic and categorical products. The idea is to decorate also the equations. On the one hand,

Val i and Val i×1 are isomorphic. Indeed, on the one hand, let us form the left semi-pure pair h = id Val i , Val i r . As Val i is pure, then so is also h. Now, from the definitions of semi-pure products the projections yields π 1 • h ∼ id Val i , which is also π 1 • h == id Val i since all the terms are pure. On the other hand,

). but the latter weak equivalences are strong since all the terms are pure. Therefore

Overall we have that π 1 is invertible and π -1 1 = h = id Val i , Val i r as defined above. We also have the permut term. It takes a product, switches the order of arguments involved in the input product cone and returns the new product: its signature is term (Y×X) (X×Y). The term perm pair f g is handled via the composition of pair g f with permut. The definition prod is based on the definition of pair with a difference that both input functions are taking a product object and returning another one while perm prod is the permuted version of prod which is built on perm pairs.

The decorations of perm pair, prod and perm prod, depend on the decorations of their input arguments. For instance, a perm pair of two pure functions is also pure while the prod and perm prod of two rws is a rw. These properties are provided by is perm pair, is prod and is perm prod. More details can be found in the associated module of the library (Derived Terms.v). Note that it is also possible to create perm pairs, prods and perm prods of functions with different decorations via the hierarchy rule stated among decoration types (is pure ro and is rp rw). Existence proofs together with projection rules, can also be found in their respective modules in the library (Decorated Pairs.v and Decorated Products.v).

Decorated Pairs

In this section we present some of the derived rules, related to pairs and projections. In Section 2.3 we have defined the left semi-pure pair id X , f rw l : X → X × Y of the identity id pure X with a modifier f rw : X → Y . In Coq this construction will be called simply the pair of id pure X and f rw . The right semi-pure pair f , id X rw r : X → Y × X of f rw and id pure X can be obtained as id X , f rw l followed by the permutation perm X,Y : X × Y → Y × X, it will be called the perm_pair of f rw and id pure X . Then, the pair and perm pair definitions, together with the hierarchy rules among function classes (is pure ro and is ro rw), are used to derive some other rules related to existences and projections.

• dec pair exists purerw is the rule that ensures that a pair with a rw and a pure arguments also exists and is rw too. weak proj pi1 purerw is the first projection rule stating that the first result of the pair is equal to the result of its first coefficient function. In our terms it is given as follows: pi1 • pair f1 f2 ∼ f1. The given equality is weak since its left hand side is rw, while its right hand side is pure. strong proj pi2 purerw is the second projection rule of the semi-pure pair. It states that the second result of the pair and its effect are equal to the result and effect of its second coefficient function. In our terms it is given as follows: pi2 • pair f1 f2 == f2. dec perm pair exists rwpure is similar with pure and modifier inverted.

• dec pair exists purero is similar but with one coefficient function pure and the other ro. Thus it must be an accessor by itself and its projections must be strongly equal to its coefficient functions, since there is no modifiers involved. These properties are stated via strong proj pi1 purero (pi1 • pair f1 f2 == f1) and strong proj pi2 purero (pi2 • pair f1 f2 == f2). dec perm pair exists ropure is similar with pure and accessor inverted.

More details can be found in the Decorated Pairs.v source file.

A Decorated rules for states

In order to prove properties of states, we introduce a set of rules which can be classified as follows: decorated monadic equational logic, decorated categorical products and observational products. The full inference system can be found in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. We give here a subset of theses rules, enclosing those required for the proof of Section 4.

A.1 Rules for the decorated monadic equational logic

From the usual categorical point of view, the rules of the monadic equational logic are the rules for defining categories "up to equations": identities are terms, terms are closed under composition, the axioms for identities and associativity of composition are stated only up to equations, and the equations form a congruence. For dealing with states, we use the decorated version of the rules of the monadic equational logic which is provided in Figure 1. These rules involve three kinds of terms (pure, ro and rw) and two kinds of equations (== and ∼); the meaning of these decorations is given in Section 2.2. The decoration d stands for "any decoration".

For instance, the rule (pure-to-ro) says that if a function is pure, then it can be treated as an accessor, while the rule (ro-to-rw) says that an accessor can be treated as a modifier. The rule (pure-w-repl) says that the replacement rule for ∼ holds for pure terms, but there is no general replacement rule for ∼: if f rw 1 ∼ f rw 2 : X → Y and g ro : Y → Z or g rw : Y → Z, then in general it cannot be proved that g • f 1 ∼ g • f 2 : indeed, this property does not hold in the intended models.