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Abstract

The syntax of an imperative language does not mention explicitly the state,

while its denotational semantics has to mention it. In this paper we present a

framework for the verification in Coq of properties of programs manipulating the

global state effect. These properties are expressed in a proof system which is

close to the syntax, as in effect systems, in the sense that the state does not appear

explicitly in the type of expressions which manipulate it. Rather, the state appears

via decorations added to terms and to equations. In this system, proofs of programs

thus present two aspects: properties can be verified up to effects or the effects can

be taken into account. The design of our Coq library consequently reflects these

two aspects: our framework is centered around the construction of two inductive

and dependent types, one for terms up to effects and one for the manipulation of

decorations.

1 Introduction

The evolution of the state of the memory in an imperative program is a computational

effect: the state is never mentioned as an argument or a result of a command, whereas

in general it is used and modified during the execution of commands. Thus, the syntax

of an imperative language does not mention explicitly the state, while its denotational

semantics has to mention it. This means that the state is encapsulated: its interface,

which is made of the functions for looking up and updating the values of the locations,

is separated from its implementation; the state cannot be accessed in any other way

than through his interface.

It turns out that equational proofs in an imperative language may also encapsulate

the state: proofs can be performed without any knowledge of the implementation of the

state. This is made possible by adding decorations to terms, as in effect-systems [6, 11],

and by also decorating the equations [3]. The latter approach uses category theoretical

constructions to model the denotational semantics of the state effect and prove some

properties of programs involving this effect. Strong monads, introduced by Moggi [7],

were the first categorical approach to computational effects, while Power et al [9] then

proposed the premonoidal categories. Next Hughes [5] extended Haskell with arrows
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that share some properties with the approach of cartesian effect categories of Dumas

et al [4].

The goal of this paper is to propose a Coq environment where proofs, written in the

latter decorated framework for the state effect, could be automatically verified.

Proving properties of programs involving the state effect is important when the

order of evaluation of the arguments is not specified or more generally when paral-

lelization comes into play [6]. Indeed, pure computations, i.e. those not having any

side-effects (or in other words not modifying the state), are independent could thus be

run in parallel. Differently, computations depending on or modifying the state should

be handled with more care.

Now, proofs involving side-effects can become quite complex in order to be fully

rigorous. We will for instance look at the following property in details: recovering

the value of a variable and setting up the value of another variable can be performed

in any order. Such properties have been formalized for instance by Plotkin et al [8]

but the full mathematical proof of such properties can be quite large. The decorated

approach of [3] helps since it enables a verification of such proofs in two steps: a first

step checks the syntax up to effects by dropping the decorations; a second step then

takes the effects into account.

To some extent, our work looks quite similar to the work by [2] in the sense that we

also define our own programming language and verify its properties by using axiomatic

semantics. We construct our system on category theoretical notions (e.g. monads) as

done in [1]. In brief, we first declare our system components including their properties

and then prove some related propositions. In that manner, the overall idea is also quite

close to the one given in [10], even though technical details completely differ.

In this paper, we show that the latter decorated proof system can be developed in

Coq thus enabling an automatic verification of decorated proofs for side-effect sys-

tems. We recall in Section 2 the logical environment for decorated equational proofs

involving the state effect. Then in Section 3 we present the translation of the cat-

egorical rules into Coq as well as their resulting derivations and the necessary ad-

ditions. The resulting Coq code has been integrated into a library, available there:

http://coqeffects.forge.imag.fr. Finally, in Section 4 we give the full details

of the proof of the property above and its verification in Coq, as an example of the

capabilities of our library. Appendix A is then added for the sake of completeness and

readability in order to give the logical counterparts of the rules verified in our Coq

library.

2 The Logical Environment for Equational Proofs

2.1 Motivation

Basically, in a purely functional programming language, an operation or a term f with

an argument of type X and a result of type Y , which may be written f : X → Y (in

the syntax), is interpreted (in the denotational semantics) as a function J f K between

the sets JXK and JY K, interpretations of X and Y . It follows that, when an operation

has several arguments, these arguments can be evaluated in parallel, or in any order.

It is possible to interpret a purely functional programming language via a categorical

semantics based on cartesian closed categories; the word “cartesian” here refers to the

categorical products, which are interpreted as cartesian products of sets, and which

are used for dealing with pairs (or tuples) of arguments. The logical semantics of the
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language defines a set of rules that may be used for proving properties of programs.

But non-functional programming languages such as C or Java do include compu-

tational effects. For instance a C function may modify the state structure and a Java

function may throw an exception during the computation. Such operations are exam-

ples of computational effects. In this paper we focus on the states effect. We consider

the lookup and update operations for modeling the behavior of imperative programs:

namely an update operation assigns a value to a location (or variable) and a lookup op-

eration recovers the value of a location. There are many ways to handle computational

effects in programming languages. Here we focus on the categorical treatment of [4],

adapted to the state effect [3]: this provides a logical semantics relying on decorations,

or annotations, of terms and equations.

2.2 Decorated functions and equations for the states effect

The functions in our language

are classified according to the way they interact with the state. The classification

takes the form of annotations, or decorations, written as superscripts. A function can

be a modifier, an accessor or a pure function.

• As the name suggests, a modifier may modify or use the state: it is a read-write

function. We will use the keyword rw as an annotation for modifiers.

• An accessor may use the state structure but never modifies it: it is a read-only

function. We will use the keyword ro for accessors.

• A pure function never interacts with the state. We will use the keyword pure for

pure functions.

The denotational semantics of this language is given in terms of the set of states S and

the cartesian product operator ‘×’. For all types X and Y , interpreted as sets JXK and

JYK, a modifier function f : X → Y is interpreted as a function J f K : JXK×S → JY K×S

(it can access the state and modify it); an accessor g as JgK : JXK×S→ JY K (it can access

the state but not modify it); and a pure function h as JhK : JXK → JYK (it can neither

access nor modify the state). There is a hierarchy among those functions. Indeed any

pure function can be seen as both an accessor or a modifier even though it will actually

do not make use of its argument S. Similarly an accessor can be seen as a modifier.

The state is made of memory locations, or variables; each location has a value

which can be updated. For each location i, let Vi be the type of the values that can be

stored in the location i, and let Vali = JViK be the interpretation of Vi. In addition, the

unit type is denoted by 1; its interpretation is a singleton, it will also be denoted by 1.

The assignment of a value of type Vi to a variable i takes an argument of type

Vi. It does not return any result but it modifies the state: given a value a ∈ Vali, the

assignment of a to i sets the value of location i to a and keeps the value of the other

locations unchanged. Thus, this operation is a modifier from Vi to 1. It is denoted by

updaterw
i : Vi → 1 and it is interpreted as JupdateiK : Vali × S → S.

The recovery of the value stored in a location i takes no argument an returns a value

of type Vi. It does not modify the state but it observes the value stored at location i.

Thus, this operation is an accessor from 1 to Vi. It is denoted by lookupro
i : 1 →Vi and

it is interpreted (since 1× S is in bijection with S) as JlookupiK : S → Vali.

For each type X , the identity operation idX : X → X , which is interpreted by map-

ping each element of JXK to itself, is pure.
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Similarly, the final operation 〈〉X : X → 1, which is interpreted by mapping each

element of JXK to the unique element of the singleton 1, is pure. In order to lighten the

notations we will often use idi and 〈〉i instead of respectively idVali and 〈〉Vali .

In addition, decorations are also added to equations.

• Two functions f ,g : X → Y are strongly equal if they return the same result and

have the same effect on the state structure. This is denoted f == g.

• Two functions f ,g : X → Y are weakly equal if they return the same result but

may have different effects on the state. This is denoted f ∼ g.

The state can be observed thanks to the lookup functions. For each location i, the

interpretation of the updatei operation is characterized by the following equalities, for

each state s ∈ S and each x ∈ Vali:
{

JlookupiK(JupdateiK(s,x)) = x

Jlookup jK(JupdateiK(s,x)) = Jlookup jK(s) for every j ∈ Loc, j 6= i

According to the previous definitions, these equalities are the interpretations of the

following weak equations:

{

lookupro
i ◦ updaterw

i ∼ id
pure
i : Vi →Vi

lookupro
j ◦ updaterw

i ∼ lookupro
j ◦ 〈〉pure

i for every j ∈ Loc, j 6= i : Vi →V j

2.3 Sequential products

In functional programming, the product of functions allows to model operations with

several arguments. But when side-effects occur (typically, updates of the state), the

result of evaluating the arguments may depend on the order in which they are evaluated.

Therefore, we use sequential products of functions, as introduced in [4], which impose

some order of evaluation of the arguments: a sequential product is obtained as the

sequential composition of two semi-pure products. A semi-pure product, as far as we

are concerned in this paper, is a kind of product of an identity function (which is pure)

with another function (which may be any modifier).

For each types X and Y , we introduce a product type X ×Y with projections

π
pure
1,X1,X2

: X1 × X2 → X1 and π
pure
2,X1,X2

: X1 × X2 → X2, which will be denoted simply

by π
pure
1 and π

pure
2 . This is interpreted as the cartesian product with its projections.

Pairs and products of pure functions are built as usual. In the special case of a product

with the unit type, it can easily be proved, as usual, that π
pure
1 : X ×1 → X is invertible

with inverse the pair (π−1
1 )pure = 〈idpure

X ,〈〉pure
X 〉 : X → X ×1, and that π

pure
2 = 〈〉pure

X :

X × 1 → 1. The permutation operation permX×Y : X ×Y → Y ×X is also pure: it is

interpreted as the function which exchanges its two arguments.

Given a modifier f rw : X →Y and its interpretation J f K : JXK×S → JYK×S, the left

semi-pure pair 〈idX , f 〉rw
l : X → X ×Y is the modifier interpreted by J〈idX , f 〉lK : JXK×

S → JXK× JYK× S such that J〈idX , f 〉lK(x,s) = (x,y,s′) where (y,s′) = J f K(x,s). This

is a generalization of the usual graph of a function. The left semi-pure pair 〈idX , f 〉rw
l

is characterized, up to strong equations, by a weak and a strong equation:

π
pure
1 ◦ 〈idX , f 〉rw

l ∼ id
pure
X and π

pure
2 ◦ 〈idX , f 〉rw

l == f rw

The right semi-pure pair 〈 f , idX 〉
rw
r : X → Y ×X is defined in the symmetric way. This

is illustrated in Figure 1.
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Note. In all diagrams, the decorations are expressed by shapes and colors of arrows:

waving arrows for pure functions, black and red (or grey in B/W viewing) straight

arrows for accessors and modifiers, respectively.
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Figure 1: Left and right semi-pure pairs

The left semi-pure product is defined in the usual way from the left semi-pure pair:

given f rw : X →Y and a type Z, the left semi-pure product of idZ and f is (idZ ⋉ f )rw =
〈π1,Z,X , f ◦π2,Z,X〉

rw
l : Z ×X → Z ×Y . It is characterized, up to strong equations, by a

weak and a strong equation:

π
pure
1,Z,Y ◦ (idZ ⋉ f )rw ∼ π

pure
1,Z,X and π

pure
2,Z,Y ◦ (idZ ⋉ f )rw == f rw ◦π

pure
2,Z,X

This means that the “context” in Z is kept unchanged while the modifier f is executed.

The right semi-pure product ( f ⋊ idZ)
rw : X ×Z → Y ×Z is defined in the symmetric

way. This is illustrated in Figure 2.

Z
idZ

///o/o/o/o/o/o/o/o Z

Z ×X idZ⋉ f //

π1

OO

O�

π2
��

�O
Z ×Y

∼
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π1
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π2
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X
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X
f

// Y

X ×Z f⋊idZ
//

π1

OO

O�

π2
��

�O
Y ×Z

==

∼

π1

OO

O�

π2
��

�O

Z
idZ

///o/o/o/o/o/o/o/o Z

Figure 2: Left and right semi-pure products

Now, it is easy to define the left sequential product of two modifiers f rw
1 : X1 → Y1

and f rw
2 : X2 → Y2 by composing a right semi-pure product with a left semi-pure one,

as follows:

( f1 ⋉ f2)
rw = (idY1

⋉ f2)
rw ◦ ( f1 ⋊ idX2

)rw : X1 ×X2 → Y1 ×Y2

In a symmetric way, the right sequential product of f rw
1 : X1 → Y1 and f rw

2 : X2 → Y2 is

defined as:

( f1 ⋊ f2)
rw = ( f1 ⋊ idY2

)rw ◦ (idX1
⋉ f2)

rw : X1 ×X2 → Y1 ×Y2

The left sequential product models the fact of executing f1 before f2, while the right

sequential product models the fact of executing f2 before f2; in general they return

different results and they modify the state in a different way. Sequential products are

illustrated in Figure 3 (some indices are omitted).
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( f1 ⋉ f2)
rw : ( f1 ⋊ f2)

rw :
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Figure 3: Left and right sequential products

2.4 A property of states

In [8] an equational presentation of states is given, with seven equations. These equa-

tions are expressed as decorated equations in [3]. They are the archetype of the proper-

ties of which proofs we want to verify. For instance, the fact that modifying a location i

and observing the value of another location j can be done in any order is called the com-

mutation update-lookup property. This property can be expressed as an equation relat-

ing the functions JupdateiK and Jlookup jK. For this purpose, let Jlookup jK
′
: S×Val j×S

be defined by

Jlookup jK
′(s) = (s,Jlookup jK(s)) for each s ∈ S .

Thus, given a state s and a value a ∈ Vali, assigning a to i and then observing the value

of j is performed by the function:

Jlookup jK
′ ◦ JupdateiK : Vali × S → Val j × S .

Observing the value of j and then assigning a to i also corresponds to a function from

Vali × S to Val j × S built from JupdateiK and Jlookup jK
′
. This function first performs

Jlookup jK
′(s) while keeping a unchanged, then it performs JupdateiK(s,a) while keep-

ing b unchanged (where b denotes the value of j in s which has been returned by

Jlookup jK(s)). The first step is idVali × Jlookup jK
′
: Vali ×S → Vali × (Val j ×S) and the

second step is idVal j
×JupdateiK : Val j ×(Vali×S)→ Val j ×S. An intermediate permu-

tation step is required, it is called permi, j : Vali × (Val j × S)→ Val j × (Vali × S) such

that permi, j(a,(b,s)) = (b,(a,s)).
Altogether, observing the value of j and then assigning a to i corresponds to the

function:

(idVal j
× JupdateiK)◦ permi, j ◦ (idVali × Jlookup jK

′) : Vali × S → Val j × S

Thus, the commutation update-lookup property means that:

Jlookup jK
′ ◦ JupdateiK = (idVal j

× JupdateiK)◦ permi, j ◦ (idVali × Jlookup jK
′)

According to Section 2.2, this is the interpretation of the following strong equation,

which corresponds to the diagram in Figure 4.

lookupro
j ◦updaterw

i == π
pure
2 ◦(updaterw

i ⋊ id
pure
j )◦(idpure

i ⋉ lookupro
j )◦(π

−1
1 )pure :Vi →V j .

(1)

Remark. Using the right sequential product, the right hand-side of the commuta-

tion update-lookup equation can be written as π
pure
2 ◦(updaterw

i ⋊ lookupro
j )◦(π

−1
1 )pure.
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Vi

updatei
// 1

lookup j
// V j == Vi

π
−1
1

///o/o/o/o Vi ×1

idi⋉lookup j
// Vi ×V j

updatei⋊id j
// 1×V j

π2
///o/o/o/o V j

Figure 4: The commutation update-lookup equation

In addition, using the left sequential product, it is easy to check that the left hand-side

of this equation can be written as π
pure
2 ◦ (updaterw

i ⋉ lookupro
j ) ◦ (π

−1
1 )pure. Since

π
pure
1 : Vi ×1 → Vi and π

pure
2 : 1×V j → V j are invertible, we get a symmetric expres-

sion for the equation which corresponds nicely to the description of the commutation

update-lookup property as “the fact that modifying a location i and observing the value

of another location j can be done in any order”:

updaterw
i ⋊ lookupro

j == updaterw
i ⋉ lookupro

j

3 The Environment in Coq

In this Section we present the core of this paper, namely the implementation in the Coq

proof assistant of the rules for reasoning with decorated operations and equations and

the proof of the commutation update-lookup property using these rules.

In the preceding section, we shown proofs of propositions involving effects. We

now present the construction of a Coq framework enabling one to verify such proofs

automatically. This framework has been released as a library and is available in the

following web-site: http://coqeffects.forge.imag.fr.

In order to construct this framework, we need to define data structures, terms, deco-

rations and basic rules as axioms. Those give rise to derived rules and finally to proofs.

This organization is reflected in the library with corresponding Coq modules, as shown

on Figure 5.

BASES: Memory Terms Decorations Axioms

DERIVED: D.Terms D.Pairs D.Products D.Rules

PROOFS: Proofs

Figure 5: Dependency Chart among Sub-modules

The memory module uses declarations such as locations and location identifiers. A

location represents a field on the memory to store and observe data and while identifiers

correspond to variable names.

Then terms are defined in steps. First we give the definitions of non-decorated

terms: they constitute the main part of the design with the inclusion of all the required

functions. For instance, the lookup function which observes the current state is defined
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from void (1, the terminal object of the underlying category) to the set of values that

could be stored in that specified location.

The next step is to decorate those functions with respect to their manipulation abil-

ities on the state structure. For instance, the update function is defined as a modifier.

the modifier status is represented by a rw label in the library. All the rules related to

decorated functions are stated in the module called axioms.

Then, based on the ones already defined, some other terms are derived. For exam-

ple, the derived permut function takes projections as the basis and replaces the orders

of input objects in a categorical product. Similarly, by using the already defined rules

(given in the axioms section), some additional rules are derived concerning categorical

pairs, products and others pointing the rules constructed over the ones from different

sources.

The following subsection we detail the system sub-modules. The order of enumer-

ation gives the dependency among sub-modules as shown in figure 5. For instance,

the module decorations requires definitions from the memory and the terms modules.

Then, as an example, we give the full proof, in Coq, of the commutation update-lookup

property of [8].

3.1 Proof System for States

In this section we give the Coq definitions of our proof system and explore them module

by module. Apart from the classical one, a possible alternative order of reading could

be to start by the example proof in Section 4 and fiddle backwards to the preceding

sections for details on a given rule.

The major ideas in the construction of this Coq framework are:

• All the features of the proof system, that are given in the previous sections 2.2,

2.3, 2.4 and in the appendix A, definitely constitute the basis for the Coq im-

plementation. In brief, we first declare all the terms without decorations, then

we decorate them and after all we end up with the rules involving decorated

terms. We also confirm that if one removes all the decorations (admitting every

operation is pure), the proof system keeps smoothly working.

• The constructors is comp and is pair mainly state that two compatible func-

tions could be composed or paired up if they retain the same type of decorations.

In order to avoid repeating the same pair and composition constructors for the

cases in which input functions are both pure, ro or rw, the variant k, repre-

senting each decoration type, is used. By this way, mentioned constructors are

stated in one line of code such as the others. The constructors is pure ro and

is ro rw enable us to compose or pair up those compatible functions having

different decorations.

• In the proof implementations of some propositions, we use products to spec-

ify the evaluation order among functions. In this context, we declare how to

construct function pairs, since they are the generic case of products. In some

cases, especially when function evaluations are decided to be sequentialized, in-

put functions might required to be permuted. This operation switches the order

of sequential function evaluations. In that sense, we derive permuted pairs and

so permuted products via the definitions of terms pair and permutation. See sub-

section 3.6.
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• The most challenging part of the design is the proof implementations of the

propositions by [8], since they are quite tricky and long. We assert implementa-

tions tricky, because to see the main schema (or flowchart) of the proofs at first

sight and coding them in Coq with this reasoning is quite difficult. To do so, we

first sketch the related diagrams with marked equalities (strong or weak), then

we convert them into some line equations, representing main propositions to be

shown, by using fractional notation together with the exploited rules for each

step. After all, Coq implementations are done by coding each step took part in

the fractional notation. From this aspect, without the fractional correspondences,

proofs might be seen a little tough to follow. In order to increase the readability

score, we divide those implementations into sub-steps and give relevant expla-

nations for each. See section 4.

• Considering the entire design, we benefit an important aspect provided by Coq

environment, dependent types. They provide unified formalism in the creation

of new data types and allow us to play with all the typing issues for free. More

precisely, the type term is not a Type, but a Type → Type → Type. The do-

main/codomain information of term is embedded into Coq type system, so that

we do not need to talk about ill-typed terms. For instance, pi1 ◦ final is

ill-typed since, final is defined from any object X: Type to unit which is not

compatible with pi1. Therefore, it cannot be seen as a term but anyway, we do

not have to state that information explicitly.

3.2 Memory

Let Loc be the set of memory locations. A specific Coq Type, called Loc, is used

to represent these locations and is defined as a Parameter. This allows it to become

globally accessible. For instance, any location i ∈ Loc is represented in Coq by i : Loc,

where Loc is a global type:

Parameter Loc: Type.

The values allowed to be stored in any location are defined by another parameter,

named Val, taking the location identifier as an argument and returning the associ-

ated set of values. For instance, for the location identifier i : Loc, the possible values

allowed to be stored in this location are given as the set Val i:

Parameter Val: Loc→ Type.

3.3 Terms

Non-decorated operators, using the monadic equational logic and categorical products,

are represented by an inductive (or recursive) Coq data type named term. It basically

gets two Coq types, that are corresponding either to objects or to mappings in the given

categorical structure, and returns a function type. Those function types are the repre-

sentations of the homomorphisms of the category. We summarize these non-decorated

constructions below:

Inductive term: Type→ Type→ Type :=

| id: ∀ {X: Type}, term X X

| comp: ∀ {X Y Z: Type}, term X Y → term Y Z → term X Z

| final: ∀ {X: Type}, term unit X

9



| pair: ∀ {X Y Z: Type}, term X Z → term Y Z → term (X×Y) Z

| pi1: ∀ {X Y: Type}, term X (X×Y)

| pi2: ∀ {X Y: Type}, term Y (X×Y)

| lookup: ∀ i: Loc, term (Val i) unit

| update: ∀ i: Loc, term unit (Val i).

Infix "o" := comp (at level 70).

For instance, the identity mapping defined from any type to itself is given as term

X X, taking two types (here two ‘X’s) as input arguments and returning the term X X

as the output type. It is actually a function mapping the object X to itself. The term

comp composes two given compatible function types and returns another one. The term

pair represents the categorical product type of two given objects. For instance, if term

X Z corresponds to a mapping defined from an object Z to another one denoted as X,

then pair with input types term X Z and term Y Z, agreeing on domains, returns a

new function type of form term (X × Y) Z. The terms pi1 and pi2 are projections of

products while finalmaps any object to the terminal object (the singleton set, denoted

by 1) of the Cartesian effect category in question. lookup takes nothing or null apart

from a location identifier and performs a lookup operation for the relevant location. It

is mathematically defined from the terminal object of the category to an object denoted

by Val i (set of values that could be stored in the location identified by i). As the name

suggests, the update operator updates the value in the specified location, taking any

value a ∈ Val i and returning null. It is defined from an arbitrary object (Val i, Val j,

. . . ) to the terminal object of the category.

3.4 Decorations

In order to keep the semantics of state close to syntax, all the operations are decorated

with respect to their manipulation abilities on the state structure. In Coq, we define

another inductive data type, called kind, to represent these decorations. Its constructors

are pure (decorated by 0), ro (for read-only and decoration 1) and rw (for read-write

and decoration 2). It should be recalled that if a function is pure, then it could be seen

both as ro (accessor) and rw (modifier), due to the hierarchy rule among decorated

functions:

Inductive kind := pure | ro | rw.

In Coq, we had to define the decorations of terms via the separate inductive data

type called is. The latter takes term with a kind and returns a Prop. In other words,

is checks whether the given term is allowed to be decorated by the given kind or not.

For instance, the term id is pure, since it cannot use nor modify the state. Therefore it

is by definition decorated with 0. This decoration is checked by a constructor is id.

To illustrate this, if one (by using apply tactic of Coq) asks whether id is pure, then

the returned result would be have to be True. In order to check whether id is an

accessor or a modifier, the constructors is pure ro and is ro rw should be applied

beforehand to convert both statements into is pure id. The incidence of decorations

upon the terms is summarized below together with their related rules:
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Inductive is: kind → ∀ X Y, term X Y → Prop := Rule Fig.

| is id: ∀ X, is pure (@id X) (0-id) (6)

| is comp: ∀ k X Y Z (f: term X Y) (g: term Y Z), is k f → is k g → is k (f o g) (dec-comp) (6)

| is final: ∀ X, is pure (@final X) (0-final) (7)

| is pair: ∀ k X Y Z (f: term X Z) (g: term Y Z), is k f → is k g → is k (pair f g) (dec-pair-exists) (9)

| is pi1: ∀ X Y, is pure (@pi1 X Y) (0-proj-1) (8)

| is pi2: ∀ X Y, is pure (@pi2 X Y) (0-proj-2) (8)

| is lookup: ∀ i, is ro (lookup i) (1-lookup) (10)

| is update: ∀ i, is rw (update i) (2-update) (10)

| is pure ro: ∀ X Y (f: term X Y), is pure f → is ro f (0-to-1) (6)

| is ro rw: ∀ X Y (f: term X Y), is ro f → is rw f (1-to-2) (6)

The decorated functions stated above are classified into four different manners:

• terms specific to states effect: is lookup and is update

• categorical terms: is id, is comp and is final

• terms related to categorical products: is pair, is pi1 and is pi2.

• term decoration conversions based on the operation hierarchy: is pure ro and

is ro rw.

The term comp enables one to compose two compatible functions while the constructor

is comp enables one to compose functions and to preserve their common decoration.

For instance, if a ro function is composed with another ro, then the composite func-

tion becomes ro as well. For the case of the pair, the same idea is used. Indeed, the

constructor is pair takes two terms agreeing on domains such as term Y1 X, say an

ro, and term Y2 X, which is ro as well. is pair then returns the pair of these terms

given as term Y1×Y2 X and this is another ro. This is realized with both is pair and

is comp taking input functions with the same decorations, denoted by k, and returning

a new function (a pair and a composite, respectively) with the same decoration k. It is

also possible to create both compositions and pairs of functions with different decora-

tions via the hierarchy rule stated among decoration types. This hierarchy is build via

the last two constructors, is pure ro and is rp rw. The constructor is pure ro

indicates the fact that if a term is pure, then it can be seen as ro. Lastly is ro rw

states that if a term is ro, then it can be seen as rw as well.

Note that the details of building pairs with different decorations can be found in the

derived pairs module (Pairs.v in the library).

The same manner could be used to construct compositions of different decorated

functions, but due to not being used, they are not specified such as pairs.

The terms final, pi1 and pi2 are all pure functions since they do not manipu-

late the state. final forgets its input argument(s) and returns nothing. Although this

property could make one think that it generates a sort of side-effect, this is actually not

the case. Indeed, it is the only pure function whose co-domain is the terminal object

(1) and it is therefore used to simulate the execution of a program: successive, possibly

incompatible, functions can then be composed with this intermediate forgetfulness of

results.

The lookup functions are decorated by 1, as accessors. The constructor is lookup

is used to check the validity of the lookup’ decoration. The different update functions

are rw and decorated by 2. Similarly, the constructor is update is thus used to check

the validity of the update’ decoration.
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3.5 Axioms

We can now detail the Coq implementations of the axioms used in the proof construc-

tions. They use the given monadic equational logic and categorical products. The idea

is to decorate also the equations. On the one hand, the weak equality between parallel

morphisms models the fact that those morphisms return the same value but may per-

form different manipulations of the state. On the other hand, if both the returned results

and the state manipulations are identical, then the equality becomes strong.

In order to define these decorations of equations in Coq, we again use inductive

terms and preserve the naming strategy of Section 2. Both type of equations are equiv-

alence relations and we thus use the Coq definition of relation and import the Relations

Morphisms package. This relation statement takes two objects of identical types (term

X Y in our case) and determines whether those input objects have the same values or

not by returning a Prop.

Below are given the reserved notations for strong and weak equalities, respectively.

Reserved Notation " x == y" (at level 80). Reserved Notation "x ∼ y"

(at level 80).

We have some number of rules stated w. r. t. strong and weak equalities. The ones

used in the proof given in Section 4 are detailed below:

Inductive strong: ∀ X Y, relation (term X Y) :=

• The rules strong refl, strong sym and strong trans state that strong equal-

ity is reflexive, symmetric and transitive, respectively. Obviously, it is an equiv-

alence relation. See (s-refl) , (s-sym) and (s-trans) rules in figure 6.

• Both id src and id tgt state that the composition of any arbitrarily selected

function with id is itself regardless of the composition order. See (dec-id-src) and (dec-

id-tgt) rules in figure 6.

• strong subs demonstrates that strong equality obeys the substitution rule. That

means that for a pair of parallel functions that are strongly equal, the compo-

sitions of the same source compatible function with those functions are still

strongly equal. strong repl states that for those parallel and strongly equal

function pairs, their compositions with the same target compatible function are

still strongly equal. See (s-subs) and (s-repl) rules in figure 6.

• ro weak to strong is the rule saying that all weakly equal ro terms are also

strongly equal. Intuitively, from the given weak equality, they must have the same

results. Now, since they are not modifiers, they cannot modify the state. That

means that effect equality requirement is also met. Therefore, they are strongly

equal. See (ro-w-to-s) rule in figure 6.

with weak: ∀ X Y, relation (term X Y) :=

• pure weak repl demonstrates that weak equality obeys the substitution rule

stating that for a pair of parallel functions that are weakly equal, the compositions

of those functions with the same target compatible and pure function are still

weakly equal. See (pure-w-repl) rule in figure 6.

• strong to weak states that strong equality could be converted into weak one,

free of charge. Indeed, the definition of strong equality encapsulates the one for

weak equality. See (s-to-w) rule in figure 6.

12



• axiom 2 states that first updating a location i and then implementing an obser-

vation to another location k is weakly equal to the operation which first forgets

the value stored in the location i and observes location k. See (axiom-2) rule in

figure 10.

Please note that weak equality is an equivalence relation and obeys the substitution rule

such as the strong one.

3.6 Decorated Terms

Additional to those explained in 3.3, some extra terms are derived via the definitions of

already existing ones:

Definition inv pi1 {X Y}: term (X×unit) (X) := pair id unit.

Definition permut {X Y}: term (X×Y) (Y×X) := pair pi2 pi1.

Definition perm pair {X Y Z} (f: term Y X) (g: term Z X): term (Y×Z)

X

:= permut o pair g f.

Definition prod {X Y X’ Y’} (f: term X X’) (g: term Y Y’): term (X×Y)

(X’×Y’)

:= pair (f o pi1) (g o pi2).

Definition perm prod {X Y X’ Y’} (f: term X X’) (g: term Y Y’): term

(X×Y) (X’×Y’)

:= perm pair (f o pi1) (g o pi2).

Val i and Val i×1 are isomorphic. Indeed, on the one hand, let us form the

left semi-pure pair h = 〈idVali ,〈〉Vali〉r. As 〈〉Vali is pure, then so is also h. Now, from

the definitions of semi-pure products (see Figure 1) the projections yields π1 ◦ h ∼
idVali , which is also π1 ◦ h == idVali since all the terms are pure. On the other hand,

π1 ◦ (h◦π1) == idVali ◦π1 == π1 == π1 ◦ (idVali×1) and π2 ◦ (h◦π1) == 〈〉Vali ◦π1 ∼
〈〉Vali×1 ∼ π2 == π2 ◦ (idVali×1). but the latter weak equivalences are strong since all

the terms are pure. Therefore π1 ◦ (h ◦ π1) == π1 ◦ (idVali×1) and π2 ◦ (h ◦ π1) ==
π2 ◦ (idVali×1) so that h ◦ π1 == idVali×1. Overall we have that π1 is invertible and

π
−1
1 = h = 〈idVali ,〈〉Vali〉r as defined above.

We also have the permut term. It takes a product, switches the order of arguments

involved in the input product cone and returns the new product: its signature is term

(Y×X) (X×Y). The term perm pair f g is handled via the composition of pair g f

with permut. The definition prod is based on the definition of pair with a difference

that both input functions are taking a product object and returning another one while

perm prod is the permuted version of prod which is built on perm pairs.

The decorations of perm pair, prod and perm prod, depend on the decorations

of their input arguments. For instance, a perm pair of two pure functions is also

pure while the prod and perm prod of two rws is a rw. These properties are pro-

vided by is perm pair, is prod and is perm prod. More details can be found

in the associated module of the library (Derived Definitions Decorations.v).

Note that it is also possible to create perm pairs, prods and perm prods of func-

tions with different decorations via the hierarchy rule stated among decoration types

(is pure ro and is rp rw). Existence proofs together with projection rules, can

also be found in their respective modules in the library (Pairs.v and Products.v).
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3.7 Decorated Pairs

In this section we present some of the derived rules, related to pairs and projections.

In Section 2.3 we have defined the left semi-pure pair 〈idX , f 〉rw
l : X → X ×Y of the

identity id
pure
X with a modifier f rw : X → Y . In Coq this construction will be called

simply the pair of id
pure
X and f rw. The right semi-pure pair 〈 f , idX 〉

rw
r : X → Y ×X of

f rw and id
pure
X can be obtained as 〈idX , f 〉rw

l followed by the permutation permX ,Y : X ×

Y → Y ×X , it will be called the perm_pair of f rw and id
pure
X .

Then, the pair and perm pair definitions, together with the hierarchy rules among

function classes (is pure ro and is ro rw), are used to derive some other rules re-

lated to existences and projections.

• dec pair exists purerw is the rule that ensures that a pair with a rw and a

pure arguments also exists and is rw too. weak proj pi1 purerw is the first

projection rule stating that the first result of the pair is equal to the result of its

first coefficient function. In our terms it is given as follows: pi1 ◦ pair f1

f2 ∼ f1. The given equality is weak since its left hand side is rw, while its

right hand side is pure. strong proj pi2 purerw is the second projection

rule of the semi-pure pair. It states that the second result of the pair and its effect

are equal to the result and effect of its second coefficient function. In our terms

it is given as follows: pi2 ◦ pair f1 f2 == f2.

• dec perm pair exists rwpure is similar with pure and modifier inverted.

• dec pair exists purepure is similar but with both coefficient functions pure.

Thus it must be pure by itself and its projections must be strongly equal to its co-

efficient functions. These properties are stated via strong proj pi1 purepure

(pi1 ◦ pair f1 f2 == f1) and pure. strong proj pi2 purepure (pi2

◦ pair f1 f2 == f2).

More details can be found in the Pairs.v source file.

3.8 Decorated Products

Semi-pure products are actually specific types of semi-pure pairs, as explained in Sec-

tion 2.3. In the same way in Coq, the pair and perm_pair definitions give rise to the

prod and perm_prod ones.

• dec prod exists purerw ensures that a prod with a pure and a rw argu-

ments exists and is rw.

weak proj pi1 purerw rect is the first projection rule and states that pi1

◦ (prod f g) ∼ f ◦ pi1. strong proj pi2 purerw rect is the second

projection rule and assures that pi2 ◦ (prod f g) == f ◦ pi2.

• Similarly, the rules dec perm prod exists rwpure, strong perm proj pi1 rwpure rect

(pi1 ◦ (perm prod f g) == f ◦ pi1) and weak perm proj pi2 rwpure rect

(pi2 ◦ (perm prod f g) ∼ g ◦ pi2) relate to permuted products.

For further explanation of each derivation with Coq implementation, refer to the Products.v

source file.
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3.9 Derived Rules

We detail here some other derived, used in the example proof given next.

• weak refl describes the reflexivity property of the weak equality.

• comp final unique ensures that two parallel rw functions (say f and g) are the

same (strongly equal) if they return the same result pi1 ◦ f ∼ pi1 ◦ g and

have the same effect pi2 ◦ f == pi2 ◦ g.

• Two pure functions have the same co-domain 1 must be strongly equal (no result

and state unchanged). Therefore E 0 3 extends this to a composed function

f ◦g, for two pure compatible functions f and g, and another function h, provided

that g and h have 1 as co-domain. In the same parallel, E 1 4 states that the

composition of any ro function h: 1→ X , with final is strongly equal to the id

function on 1. Indeed, the bioth have no result and do not modify the state since

h is not a modifier.

More similar derived rules can be found in the Derived.v source file.

4 Implementation of a Proof: Commutation update-

lookup

We now have all the ingredients required to prove the commutation update-lookup

property of Figure 4: it states that the order of operations between updating a location

and retrieving the value at another location does not matter. The formal statement

is given in Equation (1): lookup j ◦ update i == pi2 ◦ (perm prod (update

i) id) ◦ (prod id (lookup j)) ◦ inv pi1. The value intended to be stored

into the location i is an element of Val i set while the lookup operation to the location

j takes nothing (apart from j), and returns a value read from the set Val j. If the order

of operations is reversed, then the element of Val i has to be preserved while the other

location is examined. Thus we need to form a pair with the identity and create a product

Val i × 1, via inv pi1. Similarly, the value recovered by the lookup operation has

to be preserved and returned after the update operation. Then a pair with the identity is

also created with update and a last projection is used to separate their results. The full

Coq proof thus uses the following steps:

1. assume i, j:Loc

2. lookup j ◦ update i == pi2 ◦ (perm prod (update i) id)

3. ◦ (prod id (lookup j)) ◦ inv pi1 by comp final unique

4. step 1

5. final ◦ lookup j ◦ update i == final

6. ◦ pi2 ◦ (perm prod (update i) id) by strong sym

7. ◦ (prod id (lookup j)) ◦ inv pi1

8. final ◦ pi2 ◦ (perm prod (update i) id)

9. ◦ (prod id (lookup j)) ◦ inv pi1
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10. == final ◦ lookup j ◦ update i by strong trans

11. substep 1.1

12. final ◦ pi2 ◦ (perm prod (update i) id)

13. ◦ (prod id (lookup j)) ◦ inv pi1

14. == pi1 ◦ (perm prod (update i) id)

15. ◦ (prod id (lookup j)) ◦ inv pi1 by E 0 3

16. substep 1.2

17. pi1 ◦ (perm prod (update i) id)

18. ◦ (prod id (lookup j)) ◦ inv pi1

19. == update i ◦ pi1 ◦ (prod id (lookup j)) ◦ inv pi1 by strong perm proj

20. substep 1.3

21. update i ◦ pi1 ◦ (prod id (lookup j)) ◦ inv pi1

22. == update i ◦ pi1 ◦ inv pi1 by strong proj

23. substep 1.4

24. update i ◦ pi1 ◦ inv pi1 == update i ◦ id by id tgt

25. substep 1.5

26. final ◦ lookup j ◦ update i == update i ◦ id by E 1 4

27. step 2

28. lookup j ◦ update i ∼ pi2 ◦ (perm prod (update i) id)

29. ◦ (prod id (lookup j)) ◦ inv pi1 by weak trans

30. substep 2.1

31. lookup j ◦ update i ∼ lookup j ◦ final by axiom 2

32. substep 2.2

33. lookup j ◦ final ∼ lookup j ◦ pi2 ◦ inv pi1 see § 3.7

34. substep 2.3

35. pi2 ◦ (perm prod (update i) id)

36. ◦ (prod id (lookup j)) ◦ inv pi1

37. ∼ pi2 ◦ (prod id (lookup j)) ◦ inv pi1 by strong perm proj

38. substep 2.4

39. pi2 ◦ (prod id (lookup j)) ◦ inv pi1

40. ∼ lookup j ◦ pi2 ◦ inv pi1 by strong proj

41. lookup j ◦ update i == pi2 ◦ (perm prod (update i) id)

42. ◦ (prod id (lookup j)) ◦ inv pi1

To prove such a proposition, the comp final unique rule is applied first and results

in two sub-goals to be proven: final ◦ lookup j ◦ update i == final ◦ pi2

◦ (perm prod (update i) id) ◦ (prod id (lookup j)) ◦ inv pi1 (to check

if both hand sides have the same effect or not) and lookup j ◦ update i ∼ pi2

◦ (perm prod (update i) id) ◦ (prod id (lookup j)) ◦ inv pi1 (to see

whether they return the same result or not). Proofs of those sub-goals are given in step
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1 and step 2, respectively.

Step 1. final ◦ lookup j ◦ update i == final ◦ pi2 ◦ (perm prod (update

i) id) ◦ (prod id (lookup j)) ◦ inv pi1:

(1.1) The left hand side of the equation, final ◦ pi2 ◦ (perm prod (update

i) id) ◦ (prod id (lookup j)) ◦ inv pi1, (after the strong sym

rule application) is reduced into: pi1 ◦ (perm prod (update i) id)

◦ (prod (id (Val i)) (lookup j)) ◦ inv pi1. The base point is

an application of E 0 3, stating that final ◦ pi2 == pi1 and followed

by strong subs applied to (perm prod (update i) id), (prod id

(lookup j)) and inv pi1.

(1.2) In the second sub-step, strong perm proj pi1 rwpure rect rule is

applied to indicate the strong equality between pi1 ◦ perm prod (update

i) id and update i ◦ pi1. After the applications of strong subs

with argumentsprod id (lookup j) and inv pi1, we get: pi1 ◦ (perm prod

(update i) id) ◦ (prod id (lookup j)) ◦ inv pi1 == update

i ◦ pi1 ◦ (prod id (lookup j)) ◦ inv pi1. Therefore, the left hand

side of the equation can now be stated as: update i ◦ pi1 ◦ (prod id

(lookup j)) ◦ inv pi1.

(1.3) Then, the third sub-step starts with the application of weak proj pi1 purerw rect

rule in order to express the following weak equality: pi1 ◦ prod id

(lookup j) ∼ id ◦ pi1. The next step is converting the existing weak

equality into a strong one by the application of ro weak to strong,

since none of the components are modifiers. Therefore we get: pi1 ◦
prod id (lookup j) == id ◦ pi1. Now, using id tgt, we remove

id from the right hand side. The subsequent applications of strong subs

with arguments inv pi1 and strong repl enables us to relate update i

◦ pi1 ◦ (prod id (lookup j)) ◦ inv pi1 with update i ◦ pi1

◦ inv pi1 via a strong equality.

(1.4) In this sub-step, update i ◦ pi1 ◦ inv pi1 is simplified into update

i ◦ id. To do so, we start with strong proj pi1 purepure so that

pi1 ◦ pair id final == id, where pair id final defines inv pi1=pair

id final. Then, the application of strong repl to update i provides:

update i ◦ pi1 ◦ pair id final == update i ◦ id.

(1.5) In the last sub-step, the right hand side of the equation, final ◦ lookup

j ◦ update i, is reduced into update i ◦ id. To do so, we use E 1 4

which states that final ◦ lookup j == id. Then, using strong subs

on update i, we get: final ◦ lookup j ◦ update i == id ◦ update

i. By using id tgt again we remove id on the right hand side and id src

rewrites final ◦ lookup j ◦ update i as update i ◦ id.

At the end of the third step, the left hand side of the equation is reduced into the fol-

lowing form: update i ◦ id via a strong equality. Thus, in the fourth step, it was

sufficient to show final ◦ lookup j ◦ update i == update i ◦ id to prove

final ◦ pi2 ◦ (perm prod (update i) id)) ◦ (prod id (lookup j)) ◦ inv pi1

== final ◦ lookup j ◦ update i. This shows that both sides have the same ef-

fect on the state structure.

Step 2. We now turn to the second step of the proof, namely: lookup j ◦ update i

∼ pi2 ◦ (perm prod (update i) id) ◦ (prod id (lookup j)) ◦ inv pi1.
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The results returned by both input composed functions are examined. Indeed,

from step 1 we know that they have the same effect and thus if they also return

the same results, then they we will be strongly equivalent.

(2.1) Therefore, the first sub-step starts with the conversion of the left hand side

of the equation, lookup j ◦ update i, into lookup j ◦ final via a

weak equality. This is done by the application of the axiom 2 stating that

lookup j ◦ update i ∼ lookup j ◦ final for j 6= i.

(2.2) The second sub-step starts with the application of strong proj pi2 purepure

which states pi2 ◦ (pair id final) == final still with (pair id

final) = inv pi1. Then, via the applications of strong repl, with ar-

gument lookup j, strong to weak and strong sym, we get: lookup

j ◦ final ∼ lookup j ◦ pi2 ◦ inv pi1.

(2.3) In the third sub-step, the right hand side of the equation, pi2 ◦ (perm prod

(update i) id) ◦ (prod id (lookup j)) ◦ inv pi1, is simplified

by weak equality: we start with the application of weak perm proj pi2 rwpure rect

since pi2 ◦ (perm prod (update i) id) ∼ id ◦ pi2. Then, we

once again use id tgt to remove the identity and the applications of weak subs

with arguments prod id (lookup j) and inv pi1 yields the following

equation: pi2 ◦ (perm prod (update i) id) ◦ (prod id (lookup

j)) ◦ inv pi1 ∼ pi2 ◦ (prod id (lookup j)) ◦ inv pi1.

(2.4) In the last sub-step, pi2 ◦(prod id (lookup j)) ◦ inv pi1 is re-

duced into lookup j ◦ pi2 ◦ inv pi1 via a weak equality using strong proj pi2 purerw rect

so that pi2 ◦ (prod id (lookup j)) == lookup j ◦ pi2. Then, strong repl

is applied with argument inv pi1. Finally, the strong to weak rule is

used to convert the strong equality into a weak one.

Both hand side operations return the same results so that the statement lookup j

◦ update i ∼ pi2 ◦ (perm prod (update i) id) ◦ (prod id (lookup

j)) ◦ inv pi1 is proven.

Merging the two steps (same effect and same result) yields the proposition that both

sides are strongly equal. The full Coq development can be found in the library in the

source file Proofs.v.

5 Conclusion

In this paper, we introduce a framework implemented in Coq proof assistant. The main

goal of the implementation is enabling programmers to verify properties of programs

with the global states effect. We present those properties close to syntax meaning that

the state structure itself is not mentioned in the verification progress. Instead, it is rep-

resented by the term decorations that are used to declare program properties. We also

remark that such type of a framework should definitely serve the proof implementa-

tions of the propositions by [8]. To prove them, we benefit the mathematical structure

proposed by [3] in which the effect of any operation (function) is defined as the dis-

tance from being pure and denoted as 〈〉Y ◦ f where f: X → Y. Therefore, for the

specific case of states effect, to state the strong equality between any parallel mor-

phisms f, g: X → Y, we first check whether they have the same effect over the

existence of following equation: 〈〉Y◦ f == 〈〉Y ◦ g and then monitor if they return
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the same result depending on the existence of the equation f ∼ g. To illustrate, sec-

tion 4 gives one of the proofs of the mentioned propositions in detail according to the

corresponding steps stated in Coq environment.

By using the way stated in this paper, the next step is to build another frame-

work (also in Coq) which lets programmers to prove properties of programs including

exceptions. This work is planned to be followed by the study of composing states

effect with exceptions. In other words, the idea is to end up with one general frame-

work in which properties of programs with only states effect or only exceptions

effect or both at the same time are enabled to be proven.
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A Decorated rules

In order to prove mentioned propositions by Plotkin et al [8], we introduce some num-

ber of rules based on three different subjects stated as follows: monadic equational

logic, categorical products and observational products.

A.0.1 Rules Related to Monadic Equational Logic

Monadic equational logic is a category C in which the axioms constructing the category

in question exist up to two equivalence relations, denoted by "==" and "∼" in this

paper. In more precise terms, monadic equational logic is a directed graph whose

vertices are objects and edges are morphisms together with the satisfaction of the rules

given in Table 6 where d-type decorations could be either of pure, ro or rw.

(0-id)
X

id
pure
X : X → X

(dec-comp)
f (d) : X → Y g(d) : Y → Z

(g ◦ f )(d) : X → Z
(0-to-1)

f pure

f ro
(1-to-2)

f ro

f rw

(s-refl)
f rw

f == f
(s-sym)

f rw == grw

g == f
(s-trans)

f rw == grw grw == hrw

f == h

(dec-assoc)
f rw : X → Y grw : Y → Z hrw : Z →W

h ◦ (g ◦ f ) == (h ◦ g)◦ f
(dec-id-src)

f rw : X → Y

f ◦ idX == f
(dec-id-tgt)

f rw : X → Y

idY ◦ f ==

(s-subs)
f rw : X → Y grw

1 == grw
2 : Y → Z

g1 ◦ f == g2 ◦ f : X → Z
(s-repl)

f rw
1 == f rw

2 : X → Y grw : Y → Z

g ◦ f1 == g ◦ f2 : X → Z

(ro-w-to-s)
f ro ∼ gro

f == g
(s-to-w)

f rw == grw

f ∼ g
(w-sym)

f rw ∼ grw

g ∼ f
(w-trans)

f rw ∼ grw grw ∼ hrw

f ∼ h

(w-subs)
f rw : X → Y grw

1 ∼ grw
2 : Y → Z

g1 ◦ f ∼ g2 ◦ f : X → Z
(pure-w-repl)

f rw
1 ∼ f rw

2 : X → Y gpure : Y → Z

g ◦ f1 ∼ g ◦ f2 : X → Z

Figure 6: Rules of the decorated monadic equational logic for states

For instance, the rule (0-to-1) is stating that if a function is pure, then it could be

treated as an accessor while (1-to-2) rules an accessor to be counted as a modifier.

A.0.2 Rules Related to Categorical Products

Due to the background mathematical structure, which is a Cartesian Category, rules

concerning sequential products (compositions of semi-pure ones) have to be stated by

definition. The rules related to existence and projections of binary products, existence

of empty products, existence and projections of left morphism pairs are given in the

following tables 7, 8 and 9, respectively in which d-type decorations could be either

of pure, ro or rw. The existence and projections of right morphism pairs, left and

right morphism products together with the rules stating the existences of forgetfulness,

permutation and isomorphism are the ones could be derived and not stated in this paper.
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(unit-exists)
1

(0-final)
X

〈〉pure
X : X → 1

(w-final-unique)
f rw, grw : X → 1

f ∼ g

(dec-comp-final-unique)
f rw, grw : X → Y 〈〉pure

Y ◦ f rw == 〈〉pure
Y ◦ grw f rw ∼ grw

f == g

Figure 7: Rules of the decorated empty products for states

One of the most important rules given in this context is (dec-comp-final-unique) (in

figure 7) which checks both the state effects of the input parallel functions (f and g) and

their results. If they have the same effect 〈〉 ◦ f == 〈〉 ◦ g and the same returned

results f ∼ g, then they are called strongly equal and denoted as follows: f == g.

The (w-pair-unique) (in figure 9) is another important rule for parallel functions

(f and g) returning more than one arguments (categorical products are used for the

representation issues). It mainly checks the returned results of both functions. pi 1 ◦
f ∼ pi 1 ◦ g stands for the first argument comparison and pi 2 ◦ f ∼ pi 2 ◦
g for the second one. If both are the same, then it is obvious to state that those input

functions do return the same results after evaluations, shown as follows: f ∼ g. There

is nothing more to say.

(prod-exists)
X1 X2

X1 ×X2

(0-proj-1)
X1 X2

π
pure
X1,X2,1

: X1 ×X2 → X1

(0-proj-2)
X1 X2

π
pure
X1,X2,2

: X1 ×X2 → X2

Figure 8: Rules of the decorated binary products for states: Existence

(dec-pair-exists)
f
(d)
1 : X → Y1 f

(d)
2 : X → Y2

< f1, f2 >
(d): X → Y1 ×Y2

(dec-pair-proj-1)
f ro
1 : X → Y1 f rw

2 : X → Y2

πY1,Y2,1◦< f1, f2 > ∼ f1

(dec-pair-proj-2)
f ro
1 : X → Y1 f rw

2 : X → Y2

πY1,Y2,2◦< f1, f2 > == f2

(w-pair-unique)
f rw

,grw : X → Y1 ×Y2 π
pure
Y1,Y2,1

◦ f rw ∼ πY1,Y2,1 ◦ grw
π

pure
Y1,Y2,2

◦ f rw ∼ π
pure
Y1,Y2,2

◦ grw

f ∼ g

Figure 9: Rules of the decorated pairs for states: Existence & Unicity

A.0.3 Rules of Observational Products

As the name suggests, observational products let us define the types of equalities be-

tween functions or function compositions by arranging observations to the memory

locations which might be used or modified.

Let Loc be the set of locations. Then, rules for each location i,k ∈ Loc where i 6= k

are given as follows: where Vi represents the set of possible values that could be stored
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Vi

(1-lookup)
lookupro

i : 1 →Vi

(2-update)
updaterw

i : Vi → 1

(axiom-1)
lookupi ◦ updatei ∼ idi

(axiom-2)
lookupi ◦ updatek ∼ lookupi ◦ 〈〉k

(dec-local-to-global)
f rw,grw : X → 1 for each location k, lookupro

k ◦ f rw ∼ lookupro
k ◦ grw

f == g

Figure 10: Rule of the decorated observational products for states

in the location pointed by i, while lookupi and updatei correspond to lookup and

update operations that are performed on the same location.

The rule (axiom-1) states that by updating a specific location pointed by i ∈ Loc

and then reading the stored value, one gets the input value of the latest update operation.

If this value is passed to an identity function, it gets returned as it is. Therefore, lookup

i ◦ update i ∼ id i. Because, left hand side composition returns the same result

with right hand side function but different state effects: lookup i ◦ update i is a

modifier while id i is pure.

The rule (axiom-2) indicates that by updating a location identified by k ∈ Loc and

then observing another location identified by i ∈ Loc, one gets the stored value in

the location pointed by i. On the other hand, forgetting the value stored in the lo-

cation pointed by k and reading the one located in i, one gets the value stored in i.

Therefore, lookup i ◦ update k ∼ lookup i ◦ 〈〉 k. Both hand sides return

the same result but left hand side composition is a modifier while right hand side one

is an accessor.

(dec-local-to-global) states that being able to define equivalences between given

two parallel morphisms, one of the strategies to be followed is that all of the memory

locations are observed before and after the applications of both input functions. They

are said to be strongly equal if all the values stored in the every location are the same.

Since, too many local observations yield in a global one, meaning that both of the input

functions have the same effect on the state structure.
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