
Spatial Computing as Intensional Data Parallelism

Antoine Spicher, Olivier Michel

LACL

Université Paris XII - Paris Est

94010 Créteil cedex, France

Email: {antoine.spicher, olivier.michel}@univ-paris12.fr

Jean-Louis Giavitto

IBISC

CNRS – Université d’Evry

91025 Evry cedex, France

Email: giavitto@ibisc.univ-evry.fr

Abstract—In this paper, we show that various concepts and
tools developed in the 90’s in the field of data-parallelism provide
a relevant spatial programming framework. It allows high level
spatial computation specifications to be translated into efficient
low-level operations on processing units. We provide some short
examples to illustrate this statement.

Keywords-spatial computing, collection, data-fields, data flow,
declarative definition, intensionnal programming, stream, data
parallelism

I. SPATIAL COMPUTING

It is customary to make a distinction between operational

and semantic properties of a computation. Operational prop-

erties affect how a computation is done, but not the result.

A semantic property impacts what is computed. Traditional

models of computation consider space as an operational

property and have abstracted out physical locations in space:

implementation predominantly performs computations in time

(i.e. sequentially) and most of common data structures are

spatially agnostic.
In contrast, spatial computing [1]–[4] explicitly recognizes

computation as intertwined with the physical world: (1) mov-

ing information has a non-uniform cost depending on a notion

of distance and (2) space appears as a semantic property of

the computations (e.g. when the functional goal of the system

is defined in terms of the system’s spatial structure).
The increasing relevance of spatial computing (with the

development of new computing media like cyberphysical sys-

tems, ad hoc mobile and sensor networks, ambient computing,

smart dust [5], field-programmable gate arrays, etc.) leads us

to ask: “ What are the correct relevant abstraction for spatial

computing ? ”
Various spatial computing tasks have been identified and

include: establishing a set of coordinates, generating fields,

using gradients to move localized entities, computing Voronoı̈

tesselations, flooding, querying a neighborhood, pattern for-

mation, motion coordination. . . and more generally specifying

a space and the computation which occurs at each location

in this space. Ideally, we would like to program these spatial

computations at a high level of abstraction so as to lighten

the burden exposed to the programmer. We could layer these

abstractions on top of an existing, space-agnostic, program-

ming language or we can create new programing languages

that naturally capture the spatial aspects and semantics of the

spatial programming tasks.

In this paper, we advocate that some concepts and tools

developed in the field of data parallelism provide a relevant

spatial programming framework allowing high level spatial

computation specifications to be efficiently translated into low-

level behaviors of elementary processing units. We illustrate

this statement using as an example the declarative data parallel

programming language 8 1

2 . This language was developed in the

90’s for the parallel simulation of dynamical systems.

This paper is organized as follows. In the rest of this

section, we introduce the notion of data parallelism (Sect. I-A)

and the notion of collection (Sect. I-B) which enables the

representation of entities with a spatial extension. Handling

a collection as a whole allows the intensional definition of

spatial computation (Sect. I-C).

The next section is dedicated to the presentation of 8 1

2 from

a spatial computing perspective. The handling of data fields

in an imperative setting presents some drawbacks that can be

solved in a declarative framework. This leads us to introduce

a new data structure, the fabric (Sect.. II-C), which combines

the notion of collection (Sect. II-A) and the notion of stream

(Sect. II-B).

Section III illustrates the previous notions on several spatial

computations.

The conclusion summarizes our arguments for revisiting the

data parallel paradigm in the light of spatial computing, but

also points out the shortcomings of this approach.

A. Data Parallelism

There is an obvious link between the notions of parallelism

and spatial computing: if two computations are done simul-

taneously, they must be done in different physical locations.

Therefore, the expression of parallelism is tightly coupled

with the expression of spatial relationships. Table I extends

the Flynn classification of parallel architectures [6] giving

a taxonomy of the various expressions of parallelism in

programming languages [7]. This classification compares the

parallel language features following two criteria: the way they

let the programmer express the control and the way they let

the programmer manipulate the data.

The programmer has three choices to express the flow of

computations:

• Implicit control: this is the declarative approach. The

compiler (static extraction of the parallelism) or the run-

time environment (dynamic extraction by an interpreter

TABLE I
A CLASSIFICATION OF LANGUAGES FROM THE PARALLEL FEATURES POINT OF VIEW.

Declarative languages Sequential languages Concurrent languages

0 instruction counter 1 instruction counter n instructions counters

Scalar Sisal, Id, LAU, Fortran, C, Ada,
Languages Actors Pascal Occam

Collection Gamma, *LISP, HPF, CMFortran + multi-
Languages 8

1

2 , MGS, PROTO CMFortran threads

or a hardware architecture) has to build a computation

order compatible with the data dependencies exhibited in

the program.

• Explicit control which refines in:

– Express what has to be done sequentially: this is

the classical sequential imperative execution model,

where control structures build only one thread of

computation.

– Express what can be done in parallel: this is the

concurrent languages approach. Such languages offer

explicit control structures like PAR, ALT, FORK,

JOIN, etc.

For the data handling, we will consider two major classes of

languages:

• Collection based languages allow the programmer to

handle sets of data as a whole. Such a set is called a

collection [8]. Examples of languages of that kind are:

APL, SETL, SQL, *Lisp, C*. . .

• Scalar languages allow also the programmer to ma-

nipulate a set of data but only through references to

one element. For example, in standard Pascal, the main

operation performed on an array is accessing one of its

elements.

Historically, the data-parallelism paradigm has been developed

from the possibility of introducing parallelism in sequential

languages (this is the “starization” of languages: from C to C*,

from Lisp to *Lisp. . .). It relies on sequential control structures

(*when. . .) and collections. A collections is an organized set

of data distributed on a space such that they can be managed

simultaneously through global operations.

B. Collections and Data Fields

A collection is an aggregate of elements handled as a whole:

no index manipulation or iteration loop appear in expressions

over collections. For example, APL arrays are collections but

Pascal arrays are not, because the only available operation on

a Pascal array is the access to one element. The relationships

between the spatial distribution of the collection’s elements

and the parallel operations are sketched in Fig. 1.

The global view on collections and collections operations

corresponds to the coordination of local data structure and lo-

cal operations done by a processing unit. The spatial properties

of the computing medium are then reflected in the aggregation

structure of the collection [9], [10]. Collections may have

several aggregation structures — sets as in SETL [11], bags

in Gamma [12], relations (set of tuples) in SQL. The array

structure is one of the most popular: vectors (e.g. in *LISP),

nested vectors (in NESL [13], 8 1

2 [7], [14]), and multidimen-

sional arrays (HPF [15], MOA [16], Indexical Lucid [17]).

In this paper, we restrict ourself to arrays. However in spatial

computing, the aggregation structure are more sophisticated:

in [9], [18], [19] we have proposed to organize data structure

using the general notion of neighborhood relationship as

developed in cellular complexes [20], Proto [21]–[23] relies

on manifolds.

Typical operations on “arrays as collections” are point-wise

applied scalar functions, reductions, scans [24] and various

permutations or rearranging operations that can be interpreted

as communication operations in a data-parallel implementation

(Cf. Sect. II-A).

Data fields (the term was introduced in the context of

systolic computation [25]) has been proposed by Lisper to

enrich the “arrays as collections” parallel data structure. They

have been formalized as an extensional partial function from

an index set to a value set, with a finite extent (i.e. its definition

domain is finite) [26]–[28]. As a matter of fact, an array

can be abstractly seen as a function from indices to values.

This function is not defined intensionally as some “rule of

computation” but it is defined extensionally as a set of pairs

of index and element. Very often, pairs are listed following a

predefined order on the indices, which relieves of storing the

indices explicitly (this is the case for the usual implementation

of dense arrays). There is an attractive advantage for partial

functions: their domain is not restricted to be a n-dimensional

box defined by a lower and upper bound in each dimension.

Fields may have more complex or dynamic shapes.

elements)

processing

local or

temporal

view

(from a

11 22 33B

12 24 36C

:= := :=:=

+ + ++

1 2 3A

PE1 PE2 PE3

global or

spatial

view (an

collection

algebra of

operations)

Fig. 1. Local and global view on a collection. The local view considers the
data stored and the operations performed on one processing unit. The global
view records the simultaneous operations performed on the collection.

The indices of a data field correspond to a physical location.

In classical data parallel language, distribution and mapping

statements are used to specify this correspondence.

C. Intensional Programming

Collections can be termed as “intensional data structures”

because elements of a collection are not explicitly referred

to [29]. The intensional definition of collections allows the

management of the collection as a whole. The spatial distri-

bution of the data elements is reflected in the properties of the

collection algebra, especially in the properties of the various

rearrangement operations which correspond to communication

in a data parallel implementation [30].
Another well known intensional object is the function (like

the concept of function found in the λ-calculus): in functional

languages [31] functions are first class values that can be

composed through a rich algebra of high-order operators

without referring to the final function application. A function

represents also an aggregate of data: the set of pairs (argument,

value). This has to be compared with an array which repre-

sents a set of pairs of index and element. However, arrays

implement this set extensionally by listing all the involved

elements (in some predefined order to make implicit the link

between indices and elements) whilst functions implement

them intensionally as a process of going from an argument

to a value. We describe the situation by the slogan

collection (i.e. spatial data structure) =

intensional specification of an extensional data structure.

The intensional approach, based on collection expressions,

can be embedded in a variety of host programming languages.

For example, HPF extends Fortran with array expressions

like C = A + B where A,B and C are arrays. Adding

collection expressions in an imperative language presents

several drawbacks [32]. Many propositions have been made to

embed collection expressions in a declarative framework [26],

[28].
In the rest of this paper, we present the approach developed

within the 8
1

2 language: collection expressions are embedded

in a data flow language.

II. THE FABRIC DATA STRUCTURE

8
1

2 has a single data structure called a fabric. A fabric is

the combination of the concepts of stream and collection. This

section describes these three notions.

A. The Notion of Collection in 8
1

2

A scalar is an indecomposable value. A collection is an

aggregate of values. Here, we consider collections that are

ordered sets of elements. An element of a collection, also

called a point in 8
1

2 , is accessed through an index. The

expression T.n where T is a collection and n an integer, is a

collection with one point; the value of this point is the value

of the nth point of T (point numbering begins with 0). If

necessary, a collection with one point is implicitly coerced

into a scalar and vice-versa through a type inference system

described in [33].

1) Geometric Operations: Geometric operators change the

geometry of a collection, i.e. its shape or structure. The

geometry of a collection of scalars is reduced to its cardinal

(the number of its points). A collection can also be nested: the

value of a point is a collection. The geometry of the collection

is the hierarchical structure of point values.

The first geometric operation consists in packing some

collections together:

C = {a, b}

In the previous definition, a and b are collections resulting in

a nested collection C.

The composition operator # concatenates the values:

A = {a, b}; B = {c, d};

A#B =⇒ {a, b, c, d}

The last geometric operator is the selection: it generalizes

the dot operator to build a new collection by selecting some

values in a given collection. For example:

Source = {a, b, c, d, e}

target = {1, 3, {0, 4}}

Source(target) =⇒ {b, d, {a, e}}

The notation Source(target) has to be understood in the

following way: a collection can be viewed as a function

from [0..n] to some co-domain. Therefore, the dot operation

corresponds to function application. If the co-domain is the

set of natural numbers, collections can be composed and the

following property holds:

Source(target).i = Source(target.i)

mimicking the function composition definition.

The dot operator and the selection imply communications

of values between the processing units of a data parallel

implementation. In a data parallel language, any kind of

communication is allowed. In a spatial computer, the commu-

nications are restricted to the neighbors, which corresponds to

restricting the geometry and the value of the target argument.

2) Functions: Table II describes the four kinds of function

applications defined in 8
1

2 , where X means both scalar or

collection, and p is the arity of the functional parameter f .

The first operator is the standard function application.

The second type of function applications produces a collec-

tion whose elements are the “point-wise” applications of the

function to the elements of the arguments. Then, using a scalar

addition, we obtain an addition between collections. Extension

is implicit for the basic operators (+, ∗, the conditional, etc.)

but is explicit for user-defined functions to avoid ambiguities

between application and extension (consider the application of

the reverse function to a nested collection).

The third type of function application is the reduction.

Reduction of a collection using the binary scalar addition

results in the summation of all the elements of the collec-

tion. Any associative binary operation can be used, e.g. a

reduction with the min function gives the minimal element

TABLE II
FUNCTION APPLICATIONS ON COLLECTIONS.

Operator Signature Syntax

application (collectionp −→ X) × collectionp −→ X f(c1, . . . , cp)
extension (scalarp −→ scalar) × collectionp −→ collection fˆ(c1, . . . , cp)
reduction (scalar2 −→ scalar) × collection −→ scalar f\c
scan (scalar2 −→ scalar) × collection −→ collection f\\c

of a collection. The scan application mode is similar to the

reduction but returns the collection of all partial results. For

instance: +\\{1, 1, 1} =⇒ {1, 2, 3}. See [24] for a complete

algorithmics based on scan.

B. The Notion of Stream in 8
1

2

1) Dealing with Infinite Sequence of Values: Streams are in-

finite sequences of values. Such data structure is implemented

for instance in Haskell by lazy infinite lists [34]. In this case,

a program only enumerates a bounded prefix of these infinite

lists. Streams can also be implemented by processes as in

Lustre [35] or Signal [36]. These two languages are originated

in the field of real-time programming and a Lustre or a Signal

program does not terminate: it processes “forever” the stream

of inputs to produce a stream of outputs. The notion of stream

makes one of its first appearance in the language Lucid [37]

where they are defined by equations (i.e. recursive definitions).

8
1

2 streams are very different from those of Lucid. They

are tightly linked with the idea of observing a remanent state

along time. If you observe a measuring apparatus during an

experiment run, you can record the results of the successive

measure operations on this apparatus, together with their dates.

The timed sequence of data is a 8
1

2 stream. At the very

beginning, before the start of the experiment, the initial value

of any observable is an undefined value. Then we record the

initial value (at time 0 for some observable, later for some

others). This value can be read and used to compute other

values recorded elsewhere, as long as another observation has

not yet been made.

The time used to label the observation is not the computer

physical time, it is the logical time linked to the semantics of

the program. The situation is exactly the same between the

logical time of a discrete-events simulation and the physical

time of the computer that runs the simulation. Therefore, the

time which we refer to is a countable set of “events”. An event

is something meaningful for the computation, like a change in

a point.

2) The Pace of a Stream (Ticks, Tocks and Clocks): 8
1

2 is

a declarative language which operates by making descriptive

statements about data and relationships between data, rather

than by describing how to produce them.

For instance, the definition C = A + B means the value

recorded by stream C is always equal to the sum of the values

recorded by stream A and B. We assume that the changes of

the values are propagated instantaneously. When A (or B)

changes, so does C at the same logical instant. Note that C

is uninitialized as long as A or B are uninitialized.

Table III gives some examples of 8
1

2 streams operations.

The first line gives the instants of the logical clock which

counts the events in the program. The instants of this clock

are called a tick (a tick is a column in the table). The dates of

the recording of a new observation for a particular observable

are called the tock of this stream. Tocks represent the set of

events meaningful for that stream. A tock is a non-empty cell

in the table.

You can always observe your measuring apparatus, which

gives the result of the last measurement, until a new measure

is made. Consequently, at a tick t, the value of a stream is:

the last value recorded at the previous tock t′ ≤ t if t′ exists,

the undefined value otherwise.

3) Stream Operations: A scalar constant stream is a stream

with only one “measurement” operation, at the beginning of

the time, to compute the constant value of the stream. A

constant n in a 8
1

2 program denotes a scalar constant stream.

Constructs like Clock n denote another kind of constant

streams: they are predefined sequences of true values with

an infinite number of tocks. The set of tocks depends on the

parameter n. They represent some clocks used to give the beat

of some other observations.

Scalar operations are extended to denote element-wise ap-

plication of the operation on the values of the streams.

The delay operator $ shifts the entire stream to give access,

at the current time, to the previous stream’s value. This

operator is the only operator that does not act in a point-wise

fashion. The tocks of the delayed stream are the tocks of the

arguments except for the first one. For example, the value of

$C at tick 0 is undefined whilst its value at tick 4 is 3.

The last kind of stream operators is the set of sampling

operators. The most general one is the trigger. It corresponds

to the temporal version of the conditional. The values of

“T when B” are those of T sampled at the tocks where B

takes a true value (see table IV). A tick t is a tock of

“A when B” if A and B are both defined and t is a tock

of B and the current value of B is true. The operator “until”

can be computed in terms of “when”: “A until B” is a stream

which is like A until the first occurrence of B to true and

constant after this event. The “after” operator is the dual of

“until”: “A after B” is undefined until the first occurrence of

true in B and then it is like A.

8
1

2 streams present several advantages:

• 8
1

2 streams are manipulated as a whole, using filters,

transducers. . . [38].

• A stream is the ideal implementation for the trajectory

of a dynamical system: a temporal sequence of values

TABLE III
EXAMPLES OF CONSTANT STREAMS AND STREAM EXPRESSIONS.

0 1 2 3 4 5 6 7 8 . . .

1 1 . . .
1+2 3 . . .

Clock 2 true true true true true . . .

assuming A 1 2 3 4 5 6 . . .
assuming B 1 2 1 1 . . .
C = A+B 2 3 5 6 6 7 7 . . .

$ C 2 3 5 6 6 7 . . .

is represented by a temporal succession of computations

and therefore can be infinite.

• The tocks of a stream represent the logical instants

where some computation must occur to maintain the

relationships stated in the program.

• The 8
1

2 stream algebra verifies the causality assumption:

the value of a stream at any tick t may only depend

on values computed for previous tick t′ ≤ t. This is

definitively not the case for Lucid (Lucid includes the

inverse of $, an “uncausal” operator).

• The 8
1

2 stream algebra verifies the finite memory assump-

tion: there exists a finite bound such that the number

of past values that are necessary to produce the current

values remains smaller than the bound (this is not the

case for infinite lazy lists in Haskell).

Note that the implementation of 8
1

2 streams enables a static

execution model: the successive values making a stream are

the successive values of a single memory location and we do

not have to rely on a garbage collector to free the unreachable

past values (as in Haskell lazy lists for instance). In addition,

we do not have to compute the value of a stream at each tick,

but only at the tocks.

C. Combining Streams and Collections into Fabrics

A fabric is a stream of collections or a collection of streams.

In fact, we distinguish between two kinds of fabrics: static

and dynamic. A static fabric is a collection of streams where

every element has the same clock (the clock of a stream is

the set of its tocks). In an equivalent manner, a static fabric

is a stream of collections where every collection has the same

geometry. Fabrics that are not static are called dynamic. The 8 1

2

compiler is able to detect the kind of the fabric and compiles

only the static ones. Programs involving dynamic fabrics are

interpreted.

Collection operations and stream operations are easily ex-

tended to operate on static fabrics considering that the fabric

is a collection (of streams) or a stream (of collections).

8
1

2 is a declarative language: a program is a system repre-

senting a set of fabric definitions. A fabric definition takes a

form similar to:

T = A + B (1)

Equation (1) is a 8
1

2 expression that defines the fabric T from

the fabric A and B (A and B are the parameters or the inputs

of T). This expression can be read as a definition (the naming

of the expression A + B by the identifier T) as well as a

relationship, satisfied at each moment and for each collection

element of T , A and B. Figure 2 gives a three-dimensional

representation of the concept of fabric.

Running a 8
1

2 program consists in solving fabric equations.

Solving a fabric equation means “enumerating the values

constituting the fabric”. This set of values is structured by

the stream and collection aspects of the fabric: let a fabric

be a stream of collections; in accordance with the time

interpretation of streams, the values constituting the fabric are

enumerated in the stream’s ascending order. So, running a 8
1

2

program means enumerating, in sequential order, the values

of the collections making the stream. The enumeration of the

collection values is not subject to some predefined order and

may be done in parallel.

D. Recursive Definitions

A definition is recursive when the identifier on the left hand

side appears also directly or indirectly on the right hand side.

Two kinds of recursive definitions are possible.

1) Temporal Recursion: Temporal recursion allows the

definition of the current value of a fabric using its past values.

For example, the definition

T@0 = 1

T = $T + 1 when Clock 1

specifies a counter which starts at 1 and counts at the speed

of the tocks of Clock 1. The @0 is a temporal guard that

Space

Values

TimeC
o
ll

ec
ti

o
n
s

Streams

F
a
b
ri
c

Dynamical structures

Fig. 2. A fabric specified by a 8
1

2 equation is an object in the 〈time, space,
value〉 reference axis. A stream is a value varying in time. A collection
is a value varying in space. The variation of space in time determines the
dynamical structure.

TABLE IV
EXAMPLE OF A SAMPLING EXPRESSION.

A 1 2 3 4 5 6 7 8 9 . . .
B false false false true false true true false true . . .

A when B 4 6 7 9 . . .

quantifies the first equation and means “for the first tock only”.

In fact, T counts the tocks of Clock 1.

The order of equations in the previous program does not

matter: the unquantified equation applies only when no quan-

tified equation applies. The language for expressing guards

is restricted to @n with the meaning “valid for the nth tock

only”.

2) Spatial Recursion: Spatial recursion is used to define the

current value of a point using current values of other points

of the same fabric. For example,

iota = 0#(1 + iota : [4]) (2)

is a fabric with 5 elements such that iota.i is equal to

i. The take operator : [n] truncates a collection to n el-

ements so we can infer from the definition that iota has

5 elements (0 is implicitly coerced into a one-point col-

lection and 1 into a collection with four elements). Let

{iota0, iota1, iota2, iota3, iota4} be the value of the collec-

tion iota. The definition states that:

{iota0, iota1, iota2, iota3, iota4} = {0}#

({1, 1, 1, 1} + {iota0, iota1, iota2, iota3})

which can be rewritten as:

iota0 = 0
iota1 = 1 + iota0

iota2 = 1 + iota1

iota3 = 1 + iota2

iota4 = 1 + iota3

which proves our previous assertion. See also Fig. 3.

We have developed the notions that are necessary to check if

a recursive collection definition has a well-defined solution and

to solve it efficiently. The solution can always be defined as the

least solution of some fixpoint equation. However, an equation

like “x = {x}” does not define a well formed array (the

number of dimensions is not finite). We insist that all elements

of the array solution must be defined and can be computed by

a statically predefined enumeration of the elements [39].

III. EXAMPLES IN 8
1

2

A. Three computations of the Factorial Function

We present three ways to compute, for a given value n, n!
in 8

1

2 . The first one uses the temporal recursion to enumerate

the successive values of n!:

i@0 = 1

i = $i + 1 when Clock 1

fact@0 = 1

fact = i ∗ $fact

iota:[4]

0 1 2 3 4
iota =

0 # (iota:[4] + 1)

take

addition

concatenation

1

2

3

0

1

2

3

4

iota:[4]+1

Fig. 3. Resolution of the iota equation.

The value of fact at tock n is n!: i is a counter and fact

computes the products.

Instead of enumerating the values of n! in time, we can

compute it in space, using the scan operation:

fact = ∗\\(+\\1 : [n])

The expression 1 : [n] computes a vector of n elements filled

with 1. Thus, expression (+\\1 : [n]) is a vector which

enumerates the integer from 1 to n. The scan of this vector

with the multiplication gives the desired results.

The spatial computation can also be done using spatial

recursion (the scan operator hides an implicit but simple form

of spatial recursion):

i = 1 + (+\\(1 : [n]))

fact = (1#(fact ∗ i)) : [n]

Collection i enumerates the integer from 2 to n + 1 and the

definition of fact uses the spatial recursion in a manner similar

to iota.

B. From Vector to Arrays

We have presented 8
1

2 collection as (nested) vectors, how-

ever 8 1

2 handles several kinds of collections: multidimensional

arrays, data fields [40], GBF [41], [42] (partial arrays whose

elements are indexed by an element in a group) and amal-

gams [43].

We stick here with the notion of collections as vectors and

shows how to emulate a 2D grid with a NEWS neighborhood

using nested vectors: a 2D grid is a collection of columns. Two

auxiliary functions left and right are used to shift a vector to

the left or to the right:

function left(x, c) = (x#c)(′x + 1)

function right(x, c) = (c#x) : [x]

where the argument c gives the value on the bound-

ary. For example, left({0, 1, 2}, 33) returns {1, 2, 33} and

right({0, 1, 2}, 33) returns {33, 0, 1}.

In the definition of right , expression A : [x] restricts the

collection A to the geometry of collection x. In the definition

of left , expression ′x computes a collection with the same

geometry as x that enumerates the integers. The expression ′x

is an abbreviation for:

′x = +\\(oneˆx)

where one is the constant function that returns 1.

With these functions, it is easy to define the functions giving

access to the NEWS neighbors:

N(x, c) = rightˆ(x, c : [x])

E(x, c) = left(x, c : [x])

W (x, c) = right(x, c : [x])

S(x, c) = leftˆ(x, c : [x])

C. The Eden Growth Model

The previous functions can be used to program a growth

process similar to the Eden growth model [44]. In this model,

a space is partitioned in empty or occupied cells. At each step,

empty cells may be invaded by an occupied neighbor:

start = initial condition. . .

eden@0 = start

Deden@0 = false

Deden = $eden

neighbors = N(Deden, false) | S(Deden, false)

| E(Deden, false) | W (Deden, false)

ok = if (neighbors & not(Deden))

then random() else false

eden = (if ok then true else Deden) when Clock 1

Operators | and &, corresponding to the usual disjunctive

and conjunctive boolean predicates, are naturally extended to

collections. The function random() returns a random boolean

value. At each tock, for each element in the grid which is not

occupied, if a neighbor is occupied (i.e., holds a true value),

the element randomly chooses to stay empty or to become

occupied.

D. Computing the Connected Components in an Image

We want to determine, in a spatial way, the connected

components of an image I . For the sake of simplicity, we

suppose that I is a black and white image. A connected

component is a maximal set of black points. The idea is

to label all the points belonging to a connected component

by an integer: all points in a connected component share

the same integer and two different components are identified

by different integers. A point which does not belongs to a

connected component is labeled by −1.

The algorithm consists in assigning a different integer value

to each point and then to propagate this value to the neighbors

belonging to the same component. Between two labels, a

point chooses the label with a maximal value. We iterate the

procedure until a fixpoint is reached.

The first step is to generate a different label for each point.

This can be done using the auxiliary function

function findex (col) = ′col + col ∗ |col|

Let I be the initial B&W image, then

index = findexˆ(′I)

computes a collection index with the same geometry as I

and where each point has a different value. For example, if

I is an array of 256 × 256 pixels, then index = {{1, 2, . . . ,

256}, {257, . . . }, . . . }. Let c the fabric that will compute the

labeling. Then, the definition of c is given by the following

equations:

c@0 = if I then index else − 1

c = if I then max(c1, c2, c3, c4) else $c

until fixpoint

dc@0 = −1

dc = $c when Clock 1

fixpoint = &\($dc == dc)

c1 = max(dc, N(dc,−1))

c2 = max(dc, E(dc,−1))

c3 = max(dc, W (dc,−1))

c4 = max(dc, S(dc,−1))

Computing the number of connected components ncc is im-

mediate:

x = if (index == c after fixpoint) then 1 else 0

ncc = +\x

E. Spatial Handling of Combinatorial Computations

The example of the computation of n! has shown that 8 1

2

expresses very naturally simple algorithms where each event in

time is used to compute new values using previously computed

ones. This is the “stream of collections” point of view on

fabrics. We extend this point of view here by showing the

computation of collections which geometry changes in time.

Following the terminology introduced in Sect. II-C, we deal

here with dynamic fabrics.

1) Stirling’s Numbers: Our first example is motivated by

the work of the Chinese mathematician Li Shanlan (1811-

1882) who has defined a method allowing to spatially compute

sequences of integers: the sequence is represented as a pyramid

where each element is the result of a computation involving

its immediate neighbors and previously computed values. For

+

1

∗1

1 1

+ ∗2 + ∗2

+ ∗3 + ∗3 + ∗3

0 0

∗1 +

0 0

∗2 +

1 3 2

1 6 11 6

∗3 +

00

n m

Fig. 4. The first four steps of the spatial computation of the Stirling’s
numbers.

example, Stirling’s numbers of the first kind defined as

S(0, 0) = 1 (3)

S(n, 0) = 0 n 6= 0

S(0,m) = 1 m 6= 0 (4)

S(n, m) = (n − 1) S(n − 1,m) n, m 6= 0 (5)

+ S(n − 1,m − 1)

can be computed by considering n in time and by associating

a vector with the computation of m. Figure 4 represents the

first values of S. The 8
1

2 program is straightforward

s@0 = 0 /* from (3) */

s@1 = 1 when Clock 1 /* from (3) */

s = (|$f | ∗ $f) + ($s# 0) /* from (5) */

f@0 = 1 /* from (4) */

f = 1#s

Operator |x| computes the rank of the fabric x, that is a vector

where the ith value is equal to the size of the ith dimension
of x. Consequently, expression $f is a counter corresponding
to the (n − 1) coefficient used to multiply each previous
computed line to obtain the current line. The five first lines of
the Stirling’s triangle are:

Tock: 0 : { 1 } : int[1]

Tock: 1 : { 1, 1 } : int[2]

Tock: 2 : { 1, 3, 2 } : int[3]

Tock: 3 : { 1, 6, 11, 6 } : int[4]

Tock: 4 : { 1, 10, 35, 50, 24 } : int[5]

2) Pascal’s Triangle: It is folk’s knowledge that the com-

putational scheme of the binomial coefficients Cp

n
maps a

triangle, namely Pascal’s triangle. In 8
1

2 , the triangle can be

implemented by mapping columns in a collection and having

the computation on each line as an element of the stream.

If we focus on the parity of the numbers found in Pascal’s

triangle we obtain a triangle of zeros and ones: Pascal’s

triangle modulo 2. This (recursive) triangle can be spatially

computed following the scheme described in Fig. 5: if T

is such a triangle then the new triangle obtained by first

concatenating T aligned with the upper left corner of T with

the lower left corner and then by concatenating T again to the

1 1

1 1

1

1 1

0

1

1 1

0 1

1 1

0

0 1

1 1

0

1

1 1

0 1

1 1

0

0

1

1 1

0

1

1 1

0 1

1 1

0

0

1

1 1

0

1

1 1

0 1

1 1

0

0

0

Fig. 5. Recursive building of Pascal’s triangle modulo 2. The dark dots
correspond to the vertices where the triangle is duplicated. The initial triangle
of the construction appears in gray.

previous result by aligning the the upper left corner with the

lower right corner, is also a Pascal’s triangle. The following 8
1

2

program handles the rectangular shape that embeds the triangle

(since we restricted ourselves to only rectangular regions). The

program is quite straightforward and expresses faithfully the

building process:

p = (($p # 0 : |$p|) #ˆ ($p # $p)) when Clock 1

p@0 = 1 : [1, 1]

We use here a specialized version of the concatenation operator
#ˆ to allow the concatenation of the second argument below
the first one. The 4 first tocks of the program are

Tock: 0 : { { 1 } } : int[1, 1]

Tock: 1 : { { 1, 0 }, { 1, 1 } } : int[2, 2]

Tock: 2 : { { 1, 0, 0, 0 },

{ 1, 1, 0, 0 },

{ 1, 0, 1, 0 },

{ 1, 1, 1, 1 } } : int[4, 4]

Tock: 3 : { { 1, 0, 0, 0, 0, 0, 0, 0 },

{ 1, 1, 0, 0, 0, 0, 0, 0 },

{ 1, 0, 1, 0, 0, 0, 0, 0 },

{ 1, 1, 1, 1, 0, 0, 0, 0 },

{ 1, 0, 0, 0, 1, 0, 0, 0 },

{ 1, 1, 0, 0, 1, 1, 0, 0 },

{ 1, 0, 1, 0, 1, 0, 1, 0 },

{ 1, 1, 1, 1, 1, 1, 1, 1 } } : int[8, 8]

which are spatially rendered in Fig. 6.

IV. CONCLUSIONS

The 8
1

2 language has been implemented in several ways: an

interpreter in Ocaml [7], a compiler (to C) for the static subset

of the language [45], a tool for the mapping and the scheduling

of (static) collection operations on parallel computers [46] and

a distributed implementation of collection computations on a

grid [47].

The examples of section III are toy examples but give

a good idea of the possibilities brought by the intensional

manipulation of fabrics. Others examples, including advanced

cellular automata similar to those used in blob computing [48]

have been developed.

The purpose of this article is to show that the notion of

collections (parallel data structure) is tightly coupled with

a spatial abstraction of the values distributed on a network

Fig. 6. Seven first steps of the building of Pascal’s triangle (producing the
famous Sierpiński’s gasket).

of processing elements. Combining collection with streams

enables the scheduling of sets of local computations. Note

that the idea to merge the notions of collections and streams

is also exploited in Proto.

One advantage of the equational definition of fabrics al-

lowed in 8
1

2 is that equational reasoning can be used to

refine or implement a program. This line of research has been

investigated for example by Skillicorn and coworkers [49].

Originated in the data parallel community in the 90’s, 8 1

2

lacks completely some of the features investigated for example

in the amorphous computing community: amorphous medium,

asynchrony, fault tolerance, self-healing, etc. They have not

been tackled in the framework of data parallelism and are the

subject of future works.

Spatial computing also includes space computation where

space is fundamental to the problem and is a result of a

computation. In this area also, 8
1

2 suffers some drawbacks.

One of the main shortcomings is the difficulty to compose

streams and dynamic collections. As a matter of fact, stream

equations are defined a priori which constraints a priori all the

collections that appear in a program. Some solution have been

investigated with the notion of amalgams [50]. An amalgam

represents a partially specified computation that awaits to be

completed before to be run. However this approach is not

flexible enough.

These lessons learned from the 8
1

2 project have lead to

the development of the MGS project [9]. MGS investigates

the flexible management of complex spatial abstractions using

local transformation rules.

ACKNOWLEDGMENT

The authors would like to thank J.-P. Sansonnet, A. Mahiout

and D. De Vito that have actively collaborated on the 8
1

2

project.

REFERENCES

[1] A. De Hon, J.-L. Giavitto, and F. Gruau, Eds., Computing Media

and Languages for Space-Oriented Computation, ser. Dagsthul Seminar

Proceedings, no. 06361. Dagsthul, http://www.dagstuhl.de/en/program/
calendar/semhp/?semnr=2006361, 3-8 sptember 2006.

[2] H. Berry, J.-L. Giavitto, F. Gruau, and O. Michel, “From amorphous to
spatial computing - workshop. paris.” July 2008, http://amorphous.ibisc.
univ-evry.fr.

[3] J. Bachrach, J. Beal, O. Michel, J. Werfel, and D. Yamins, “Spa-
tial computing workshop,” October 2008, http://projects.csail.mit.edu/
scw08/index.html.

[4] F. Zambonelli and M. Mamei, “Spatial computing: a recipe for
self-organization in distributed computing scenarios,” 2008. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.
1.106.5917

[5] K. S. J. Pister, “Smart dust - hardware limits to wireless sensor
networks,” in ICDCS. IEEE Computer Society, 2003, p. 2. [Online].
Available: http://csdl.computer.org/comp/proceedings/icdcs/2003/1920/
00/19200002abs.htm

[6] M. J. Flynn, “Some computers organizations and their effectiveness,”
IEEE Trans. on Computers, vol. C-21, pp. 948–960, 1972.

[7] O. Michel, “Design and implementation of 81/2, a declarative data-
parallel language,” Computer Languages, vol. 22, no. 2/3, pp. 165–179,
1996, special issue on Parallel Logic Programming. [Online]. Available:
ftp://ftp.lri.fr/LRI/articles/michel/elsevier96.ps.gz

[8] J. M. Sipelstein and G. Blelloch, “Collection-oriented languages,”
Proceedings of the IEEE, vol. 79, no. 4, pp. 504–523,
Apr. 1991. [Online]. Available: http://www.cs.cmu.edu/afs/cs.cmu.
edu/project/scandal/public/papers/CMU-CS-90-127.ps.Z

[9] J.-L. Giavitto and O. Michel, “Data structure as topological spaces,”
in Proceedings of the 3nd International Conference on Unconventional

Models of Computation UMC02, vol. 2509, Himeji, Japan, Oct. 2002,
pp. 137–150, lecture Notes in Computer Science.

[10] J.-L. Giavitto, O. Michel, and A. Spicher, Software-Intensive Systems

and New Computing Paradigms, ser. LNCS. Springer, november
2008, vol. 5380, ch. Spatial Organization of the Chemical Paradigm
and the Specification of Autonomic Systems, pp. 235–254. [Online].
Available: http://www.springerlink.com/content/g1357n85j8301078/?p=
a5c6f79393724a9d88f508d110a8bfe2&pi=6

[11] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg,
Programming with sets: and introduction to SETL. Springer-Verlag,
1986.

[12] J.-P. Banatre, A. Coutant, and D. L. Metayer, “A parallel machine for
multiset transformation and its programming style,” Future Generation

Computer Systems, vol. 4, pp. 133–144, 1988.
[13] G. Blelloch, “NESL: A nested data-parallel language (version 2.6),”

School of Computer Science, Carnegie Mellon University, Tech. Rep.
CMU-CS-93-129, April 1993.

[14] J.-L. Giavitto, “A synchronous data-flow language for massively parallel
computer,” in Proc. of Int. Conf. on Parallel Computing (ParCo’91),
D. J. Evans, G. R. Joubert, and H. Liddell, Eds., London, 3–6 Sep.
1991, pp. 391–397.

[15] High Performance Fortran Language Specification, 1st ed., Rice
University, Houston, Texas, May 93. [Online]. Available: http://www.
erc.msstate.edu/hpff/hpf-report-ps/hpf-v11.ps

[16] G. Hains and L. M. R. Mullin, “An algebra of multidimensional arrays,”
Université de Montréal, Tech. Rep. 782, 1991.

[17] E. A. Ashcroft, A. Faustini, R. Jagannathan, and W. Wadge, Multidimen-

sional Programming. Oxford University Press, February 1995, iSBN
0-19-507597-8.

[18] J.-L. Giavitto, “Invited talk: Topological collections, transformations
and their application to the modeling and the simulation of dynamical
systems,” in Rewriting Technics and Applications (RTA’03), ser. LNCS,
vol. LNCS 2706. Valencia: Springer, Jun. 2003, pp. 208 – 233.

[19] J.-L. Giavitto, O. Michel, J. Cohen, and A. Spicher, “Computation
in space and space in computation,” in Unconventional Programming

Paradigms (UPP’04), ser. LNCS, vol. 3566. Le Mont Saint-Michel:
Spinger, Sep. 2005, pp. 137–152.

[20] J. Munkres, Elements of Algebraic Topology. Addison-Wesley, 1984.
[21] J. Beal and J. Bachrach, “Infrastructure for engineered emergence

in sensor/actuator networks,” IEEE Intelligent Systems, pp. 10–19,
March/April 2006.

[22] ——, “Programming manifolds,” in Computing Media and Languages

for Space-Oriented Computation, ser. Dagstuhl Seminar Proceedings,
A. DeHon, J.-L. Giavitto, and F. Gruau, Eds., no. 06361. Dagstuhl,
Germany: Internationales Begegnungs- und Forschungszentrum für In-
forma tik (IBFI), Schloss Dagstuhl, Germany, 2007.

[23] J. Bachrach, J. Beal, and T. Fujiwara, “Continuous space-time semantics
allow adaptive program execution,” in IEEE SASO 2007, July 2007.

[24] G. Blelloch, “Scans as primitive parallel operations,” IEEE Transactions

on Computers, vol. 38, no. 11, pp. 1526–1538, Nov. 1989.

[25] J. A. Yang and Y.-i. Choo, “Data fields as parallel programs,” in
Proceedings of the Second International Workshop on Array Structure,
Montreal, Canada, June/July 1992.

[26] B. Lisper, “On the relation between functional and data-parallel pro-
gramming languages,” in Proc. of the 6th. Int. Conf. on Functional

Languages and Computer Architectures, ACM. ACM Press, Jun. 1993.

[27] B. Lisper and J.-F. Collard, “Extent analysis of data fields,” Royal
Institute of Technology, Sweden, Tech. Rep. TRITA-IT R 94:03, January
1994.

[28] B. Lisper, “Data parallelism and functional programming,” in Proc.

ParaDigme Spring School on Data Parallelism. Springer-Verlag, Mar.
1996, les Ménuires, France.

[29] M. A. Orgun and E. A. Ashcroft, Eds., Intensional Programming I.
Macquarie University, Sydney Australia: World Scientific, May 1995.

[30] D. B. Skillicorn, “Architecture-independent parallel computation,” IEEE

Computer, vol. 23, no. 12, pp. 38–49, Dec. 1990.

[31] J. Backus, “Can programming be liberated from the von neumann style
? A functional style and its algebra of programs,” Com. ACM, vol. 21,
pp. 613–641, Aug. 1978.

[32] L. Bougé, “The data parallel programming model: A semantic perspec-
tive,” in The Data Parallel Programming Model, ser. Lecture Notes in
Computer Science, vol. 1132. Springer, 1996, pp. 4–26.

[33] J.-L. Giavitto, “Typing geometries of homogeneous collection,” in 2nd

Int. workshop on array manipulation, (ATABLE), Montral, 1992.

[34] P. Hudak et al., Report on the programming language HASKELL a

non-strict, purely functional language, version 1.3, Yale University,
CS Dept., May 1996. [Online]. Available: ftp://haskell.systemsz.cs.yale.
edu/pub/haskell/report

[35] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: A
declarative language for programming synchronous systems,” in Confer-

ence Record of the Fourteenth Annual ACM Symposium on Principles

of Programming Languages, ACM SIGACT-SIGPLAN. Munich, West
Germany: ACM Press, Jan. 21–23, 1987, pp. 178–188.

[36] A. Benveniste, P. L. Guernic, and C. Jacquemot, “Synchronous pro-
gramming with events and relations: the SIGNAL language and its
semantics,” Science of Computer Programming, vol. 16, pp. 103–149,
1991.

[37] W. W. Wadge and E. A. Ashcroft, “Lucid - A formal system for writing
and proving programs,” SIAM Journal on Computing, vol. 3, pp. 336–
354, Sep. 1976.

[38] Arvind and J. D. Brock, “Streams and managers,” in Proceedings of the

14th IBM Computer Science Symposium, 1983.

[39] J.-L. Giavitto, “A framework for the recursive definition of data struc-
tures,” in ACM-Sigplan 2nd International Conference on Principles and

Practice of Declarative Programming (PPDP’00). Montral: ACM-
press, Sep. 2000, pp. 45–55.

[40] J.-L. Giavitto, D. De Vito, and J.-P. Sansonnet, “A data parallel Java
client-server architecture for data field computations over ZZ

n,” in Eu-

roPar’98 Parallel Processing, ser. Lecture Notes in Computer Science,
Sep. 1998.

[41] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet, “Group based fields,”
in Parallel Symbolic Languages and Systems (International Workshop

PSLS’95), ser. Lecture Notes in Computer Science, I. Takayasu,
R. H. J. Halstead, and C. Queinnec, Eds., vol. 1068. Beaune (France):
Springer-Verlag, 2-4 October 1995, pp. 209–215. [Online]. Available:
ftp://ftp.lri.fr/LRI/articles/michel/psls95.ps.gz

[42] J.-L. Giavitto and O. Michel, “Declarative definition of group indexed
data structures and approximation of their domains.” in Proceedings of

the 3nd International ACM SIGPLAN Conference on Principles and

Practice of Declarative Programming (PPDP-01). ACM Press, Sep.
2001.

[43] O. Michel, “Introducing dynamicity in the data-parallel language 81/2,”
in EuroPar’96 Parallel Processing, ser. Lecture Notes in Computer
Science, L. Boug, P. Fraigniaud, A. Mignotte, and Y. Robert, Eds., vol.
1123. Springer-Verlag, Aug. 1996, pp. 678–686. [Online]. Available:
ftp://ftp.lri.fr/LRI/articles/michel/europar21-96.ps.gz

[44] M. Eden, “A two-dimensional growth process,” in Proceedings of Fourth

Berkeley Symposium on Mathematics, Statistics, and Probability, vol. 4.
University of California Press, Berkeley, 1961, pp. 223–239.

[45] J.-L. Giavitto, D. De Vito, and O. Michel, “Semantics and
compilation of recursive sequential streams in 81/2,” in Ninth

International Symposium on Programming Languages, Implementations,

Logics, and Programs (PLILP’97), ser. Lecture Notes in Computer
Science, H. Glaser and H. Kuchen, Eds., vol. 1292. Southampton:
Springer-Verlag, 3–5 Sep. 1997, pp. 207–223. [Online]. Available:
ftp://ftp.lri.fr/LRI/articles/michel/plilp97.ps.gz

[46] A. Mahiout and J.-L. Giavitto, “Data-parallelism and Data-flow: au-
tomatic mapping and scheduling for implicit parallelism,” in Franco-

British meeting on Data-parallel Languages and Compilers for portable

parallel computing, Villeneuve d’Ascq, 20 avril, 1994.
[47] D. De Vito and O. Michel, “Effective SIMD code generation for the

high-level declarative data-parallel language 81/2,” in EuroMicro’96.
IEEE Computer Society, 2–5 Sep. 1996, pp. 114–119. [Online].
Available: ftp://ftp.lri.fr/LRI/articles/devito/euromicro96.ps.gz

[48] F. Gruau, Y. Lhuillier, P. Reitz, and O. Temam, “Blob computing,” in
Proceedings of the 1st conference on Computing frontiers. ACM New
York, NY, USA, 2004, pp. 125–139.

[49] D. B. Skillicorn, Foundations of Parallel Programming. Cambridge
University Press, 1994.

[50] O. Michel and J.-L. Giavitto, “Amalgams: Names and name
capture in a declarative framework,” LaMI – Universit d’vry Val
d’Essonne, Tech. Rep. 32, Jan. 1998, also avalaible as LRI Research-
Report RR-1159. [Online]. Available: \url{ftp://ftp.lami.univ-evry.fr/
pub/publications/reports/1998/lami 32.ps.gz}

