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GLOBAL WELL-POSEDNESS FOR A NONLINEAR WAVE

EQUATION COUPLED TO THE DIRAC SEA

JULIEN SABIN

Abstract. We prove the global well-posedness and we study the linear response

for a system of two coupled equations composed of a Dirac equation for an infinite

rank operator and a nonlinear wave or Klein-Gordon equation.

1. Introduction

The purpose of this article is to study the time evolution of a classical scalar field

propagating in relativistic vacuum. The free evolution of a scalar field W of mass m in

the non-relativistic vacuum is governed by a nonlinear wave (m = 0) or Klein-Gordon

(m > 0) equation of the form

(∂2
t −∆x +m2)W = −W 3, t ∈ R, x ∈ R

3. (1)

The role of the cubic nonlinearity is to take into account some internal phenomena of

the field and it is not essential for our analysis. When relativistic effects are taken into

account, the structure of the vacuum changes. According to Dirac’s picture [2], the

relativistic vacuum is composed of infinitely many virtual particles, whose distribution

is uniform in space and thus unobservable. These virtual particles can however react

to the presence of the field W , resulting in a new distribution of particles not uniform

anymore: we say that the vacuum becomes polarized. The goal of this article is to

study mathematically how the scalar field reacts when coupled to the Dirac sea, from

a time-dependent point of view.

A rigorous description of an infinite number of Dirac particles is not an easy task,

due to the ill-posedness of many-body relativistic quantum mechanics. As a conse-

quence, we use the Hartree-Fock approximation of Quantum Electrodynamics devel-

oped by Hainzl, Lewin, and Séré [7], which provides a well-defined functional setting

to describe systems with an infinite number of particles. In this framework, the state

of the vacuum is given by a self-adjoint operator γ = γ(t) on a Hilbert space H

satisyfing the constraint 0 6 γ 6 1. The Hilbert space H we consider is

H = HΛ := {f ∈ L2(R3,C4), f̂(k) = 0 for a.e. |k| > Λ},
where Λ > 0 is an ultraviolet cut-off, taken to avoid well-known divergences in rela-

tivistic theories. Typically, γ is an orthogonal projection of infinite rank, and if (ϕi)i
is an orthonormal basis of Ran(γ), then the (ϕi)i are interpreted as the wavefunctions
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of the particles present in the vacuum, which here are taken to be fermions. The free

evolution of the vacuum is governed by the following von Neumann-type equation

i∂tγ =
[
D0, γ

]
, (2)

where D0 denotes the Dirac operator on HΛ given by

D0 :=
3∑

k=1

αk(−i∂xk
) + β,

and (α1, α2, α3, β) are the usual Dirac matrices [19]. Notice that D0 stabilizes HΛ

since it is a Fourier multiplier. The vacuum in the absence of fields (the free vacuum)

is described by the negative spectral projection of the Dirac operator γ(t) = P 0
− :=

χ(−∞,0)(D
0), which is formally the state of lowest possible energy and is a stationary

solution to (2). When the vacuum reacts to the presence of the scalar field, one has to

couple the evolution (1) of the field to the evolution (2) of the vacuum. The dynamics

of the system is then governed by two coupled Partial Differential Equations
{

(∂2
t −∆x +m2)W = f(γ,W ),

i∂tγ = ΠΛ [D
0 + g(W ), γ] ΠΛ,

(3)

where ΠΛ is the orthogonal projection from L2(R3,C4) onto HΛ, needed since the

term g(W ) may not stabilize the space HΛ. The coupling between the Dirac field γ

and the scalar field W is expressed through the functions f and g. These functions

must satisfy the crucial property that f(P 0
−, 0) = 0 and g(0) = 0, meaning that the

free vacuum without any field (γ(t),W (t)) ≡ (P 0
−, 0) is a stationary solution to (3).

We could study the general equation (3) under appropriate assumptions on f and g,

but we will for shortness restrict ourselves to two physical situations.

Case 1: Coulomb case. In the first case, W = V is a classical Coulomb potential

that polarizes the Dirac sea γ composed of an infinity of relativistic electrons. The

parameters are given by

m = 0, f(γ, V ) = 4πeργ−1/2, g(V ) = eV, (P1)

where e > 0 is the absolute value of the charge of an electron, and ργ−1/2 is the charge

density associated to the state γ, defined formally by

∀x ∈ R
3, ργ−1/2(x) := TrC4

(
γ − 1

2

)
(x, x) ∈ R.

The substraction of 1/2 in γ − 1/2 is to ensure charge conjugation symmetry [10].

One can also easily verify that ρP 0
−
−1/2 ≡ 0, so that f(P 0

−, 0) = 0 as desired, and we

also have ργ−1/2 = ργ−P 0
−

. For this set of parameters, the equation is thus
{

(∂2
t −∆x)V = 4πeργ−1/2,

i∂tγ = ΠΛ [D
0 + eV, γ] ΠΛ.

(4)
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This model describes the polarization of the Dirac sea γ by the repulsive retarded

potential V generated by its own charge distribution ργ−1/2. This picture is however

physically incomplete, because this time-dependent charge distribution should also

produce a magnetic field. Including a magnetic field in the Hartree-Fock approxima-

tion of QED leads to a much more complicated model [4], and therefore (4) is only a

toy model for studying retardation effects in the polarized Dirac sea.

Case 2: Meson case. The second case concerns a model of nuclear physics, where

W = U represents an attractive classical scalar meson field and γ is a quantum Dirac

nucleon field. The new set of parameters is

m > 0, f(γ, U) = −U3 − 4πeρβ(γ−P 0
−
), g(U) = eβU, (P2)

where we recall that β is the fourth Dirac matrix. The equation is thus
{

(∂2
t −∆x +m2)U = −U3 − 4πeρβ(γ−P 0

−
),

i∂tγ = ΠΛ [D
0 + eβU, γ] ΠΛ.

(5)

Modelling the meson field by a classical field and adding a nonlinear term U3 are well-

known procedures in the so-called relativistic mean-field theory [15, 13, 16, 17]. Here,

e > 0 should be interpreted as the square root of the coupling constant α = e2 > 0

between the two fields.

In both cases, the initial condition for γ is chosen to be of the form γ|t=0 = P 0
− +

Q0, where Q0 is a Hilbert-Schmidt (hence compact) operator. We show that for all

times t > 0, γ(t) remains of this form, i.e. γ(t) = P 0
− + Q(t) with Q(t) Hilbert-

Schmidt. We thus study compact perturbations of the stationary state P 0
−, exactly

as in [7, 8, 11]. Hence, the operator γ(t) is infinite-rank for all t and really describes

a vacuum composed of an infinity of particles. We can rewrite the system (3) in the

variables (Q,W ):
{

(∂2
t −∆x +m2)W = f(P 0

− +Q,W ),

i∂tQ = ΠΛ

[
D0 + g(W ), P 0

− +Q
]
ΠΛ.

(6)

The advantage of this formulation is that it has a much nicer functional setting, since

Q is a Hilbert-Schmidt operator on HΛ. In particular, the quantities ργ−1/2 = ρQ
and ρβ(γ−P 0

−
) = ρβQ, which were present in (P1) and (P2), are well-defined square

integrable functions [9, Lemma 1].

The main difference between the Coulomb case and the meson case is the sign of

the coupling term ±4πeρ in (P1) and (P2), reminiscent of the fact that the Coulomb

potential is repulsive and the meson potential is attractive. While our mathematical

treatment of these two types of interactions is essentially the same thanks to the

presence of the cut-off Λ, it is worth mentioning that in a model without cut-off, the
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long time behaviour of the repulsive case looks more mathematically involved than

the attractive case, even for simpler models (see Remark 4.2 below).

When V is instantaneous (i.e. when ∂2
t −∆x is replaced by −∆x in (4)), global well-

posedness for the equation on Q has been proved in [11] via conservation of an energy,

after the pioneering works on the so-called Bogoliubov-Dirac-Fock model in [7, 8]. In

[11], it is remarkable that the conservation of energy leads to global well-posedness

since usual energies for Dirac equations are unbounded and cannot control any norm

of the solution. The coupling of a wave or Klein-Gordon equation with a Schrödinger

or Dirac equation for one particle has been extensively studied. We mention [1, 3]

and references therein for the study of the Cauchy problem in the energy space and

scattering for the Wave-Schrödinger system, and [14] for the local existence theory in

the energy space for the much more involved Maxwell-Dirac system, which includes

magnetic fields as well. We are not aware of any rigorous work on the coupling

between infinitely many Dirac particles and the nonlinear Klein-Gordon equation.

In this article, we prove the global existence and uniqueness of solutions to (6),

for (Q,W, ∂tW ) in the space S2(HΛ)×H1(R3)× L2(R3). Here, S2(HΛ) denotes the

space of Hilbert-Schmidt operators on HΛ. Our two main results are Theorem 1 and

Theorem 2 below. Furthermore, in the Coulomb case, we study the linear response

associated to the evolution problem, and compare it with the results of [5] in the time-

independent case. Finally, we explain the difficulties of deriving a “time-dependent

charge renormalization” formula, which we have not succeeded in proving yet. To

our knowledge, this is the first result on global well-posedness for coupled wave-Dirac

equations with an infinite number of Dirac particles. Sections 2 and 3 are devoted to

the proof of global well-posedness. In Section 4, we study the linear response theory

for our system, and discuss the charge renormalization question.

2. Local existence theory

For initial conditions (Q0,W0,W1) ∈ S2(HΛ) × H1(R3) × L2(R3), we prove local

existence and uniqueness of solutions

(Q,W, ∂tW ) ∈ C0([−T, T ],S2 ×H1 × L2) ∩ C1([−T, T ],S2 × L2 ×H−1)

to the system (6) for some small T > 0, for both the Coulomb and meson cases,

such that (Q,W, ∂tW )|t=0 = (Q0,W0,W1). This is equivalent to the existence of

(Q,W ) ∈ C0([−T, T ],S2 ×H1) solution to the following Duhamel integral equation:




Q(t) = e−itD0

Q0e
itD0 − i

∫ t

0

e−i(t−t′)D0

ΠΛ[g(W (t′)), Q(t′) + P 0
−]ΠΛe

i(t−t′)D0

dt′,

W (t) = cos(tKm)W0 +
sin(tKm)

Km
W1 +

∫ t

0

sin((t− t′)Km)

Km
f(Q(t′),W (t′)) dt′,

(7)
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where Km :=
√
−∆+m2 and we have written f(Q,W ) instead of f(P 0

− + Q,W ).

We prove local existence of solutions to (7) by a standard fixed-point argument. In

particular, the strategy to handle the nonlinearity U3 in the meson case (P2) is well-

known, and seems to go back to [12]. Hence, the difficulty here is not the nonlinearity

U3 but rather the coupling between the two equations.

Proposition 1 (Local Existence). Let Λ > 0, m, f , g satisfying either (P1) or

(P2), and R > 0. Then, there exists T = T (Λ, m, e, R) > 0 such that for any

(Q0,W0,W1) ∈ S2(HΛ)×H1(R3)×L2(R3) satisfying ‖(Q0,W0,W1)‖S2×H1×HL2 6 R,

there exists (Q,W ) ∈ C0([−T, T ],S2 ×H1) solution to (7).

Proof. Let T > 0 to be chosen later. For any (Q,W ) ∈ C0([−T, T ],S2 × H1), we

introduce Φ(Q,W ) = (Φ1(Q,W ),Φ2(Q)), defined for any t ∈ [−T, T ] by




Φ1(Q,W )(t) = e−itD0

Q0e
itD0 − i

∫ t

0

e−i(t−t′)D0

ΠΛ[g(W (t′)), Q(t′) + P 0
−]ΠΛe

i(t−t′)D0

dt′,

Φ2(Q)(t) = cos(tKm)W0 +
sin(tKm)

Km
W1 +

∫ t

0

sin((t− t′)Km)

Km
f(Q(t′),W (t′)) dt′.

(8)

We apply a fixed-point argument to Φ. We first need to show that Φ stabilizes the

space C0([−T, T ],S2 ×H1).

Lemma 2. If (Q,W ) ∈ C0([−T, T ],S2×H1), then Φ(Q,W ) ∈ C0([−T, T ],S2×H1),

and we have, for some universal constant C > 0,

‖Φ(Q,W )‖C0([−T,T ],S2×H1) 6 ‖(Q0,W0,W1)‖S2×H1×L2

+ CeΛ3/2T (1 + T )(1 + ‖Q‖C0(S2))(1 + ‖W‖C0(H1)). (9)

Proof of Lemma 2. We first prove that

t 7→
(
e−itD0

Q0e
itD0

, cos(tKm)W0 +
sin(tKm)

Km
W1

)

belongs to C0([−T, T ],S2 × H1). Let us show that t ∈ R 7→ e−itD0

Q0e
itD0 ∈ S2

is continuous. Since (e−itD0 · eitD0

)t∈R is a semi-group of unitary operators on S2,

it is sufficient to show the continuity at t = 0. We know that for any ϕ ∈ HΛ,

e−itD0

ϕ → ϕ as t → 0 in HΛ. Using this fact, we obtain the continuity at t = 0 of

t ∈ R 7→ e−itD0

Q0e
itD0 ∈ S2 if Q0 is finite-rank. Then, continuity for any Q0 ∈ S2

is obtained by density of finite rank operators in S2. The continuity of t ∈ R 7→
cos(tKm)W0 +

sin(tKm)
Km

W1 ∈ H1 is a well-known fact about the free wave equation:

for instance one can write

‖ cos(tKm)W0 − cos(t′Km)W0‖2H1

=

∫

R3

(cos(tKm(p))− cos(t′Km(p)))
2(1 + |p|2)|Ŵ0(p)|2 dp,



6 JULIEN SABIN

with Km(p) :=
√
|p|2 +m2, to see that it goes to 0 as t → t′ by Lebesgue’s dominated

convergence theorem. The proof works the same for t 7→ sin(tKm)
Km

W1, and we obtain

the estimates for all t ∈ [−T, T ]

‖e−itD0

Q0e
itD0‖S2

= ‖Q0‖S2
, ‖ cos(tKm)W0‖H1 6 ‖W0‖H1 ,

∥∥∥∥
sin(tKm)

Km
W1

∥∥∥∥
H1

6 (1 + |t|)‖W1‖L2 .

We now turn to the terms with the time-integrals in (8). We first show that t′ 7→
eit

′D0

ΠΛ[g(W (t′)), Q(t′) + P 0
−]ΠΛe

−it′D0 ∈ L∞([−T, T ],S2), which is enough to prove

that Φ1(Q,W ) ∈ C0([−T, T ],S2). Notice that for any U, V ∈ H1, we have

‖ΠΛV ΠΛ‖L2→L2 6 ‖ΠΛV ΠΛ‖S2
6 ‖V ΠΛ‖S2

= CΛ3/2‖V ‖L2 6 CΛ3/2‖V ‖H1 ,

‖ΠΛβUΠΛ‖L2→L2 6 ‖ΠΛβUΠΛ‖S2
6 ‖UΠΛ‖S2

= CΛ3/2‖U‖L2 6 CΛ3/2‖U‖H1 ,

where we have used that for all f, g ∈ L2(R3),

||f(x)g(−i∇)||2
S2 = Tr(f(x)2g(−i∇)2) = (2π)−3 ||f ||2L2 ||g||2L2 .

Hence, we have for g satisfying either (P1) of (P2),

‖ΠΛg(W (t′))ΠΛ‖L2→L2 6 CeΛ3/2‖W (t′)‖H1 ,

‖[ΠΛg(W (t′))ΠΛ, P
0
−]‖S2

6 2‖ΠΛg(W (t′))ΠΛ‖S2
6 CeΛ3/2‖W (t′)‖H1 . (10)

Therefore, for all t′ ∈ [−T, T ],

‖eit′D0

ΠΛ[g(W (t′)), Q(t′) + P 0
−]ΠΛe

−it′D0‖S2

6 CeΛ3/2‖W‖C0([−T,T ],H1)(1 + ‖Q‖C0([−T,T ],S2)),

and this shows that

t′ 7→ eit
′D0

ΠΛ[W (t′), Q(t′) + P 0
−]ΠΛe

−it′D0 ∈ L∞([−T, T ],S2) ⊂ L1([−T, T ],S2),

which, in turn, implies that Φ1(Q,W ) ∈ C0([−T, T ],S2). Furthermore, we also have

‖Φ1(Q,W )‖C0([−T,T ],S2) 6 ‖Q0‖S2
+ CeΛ3/2T‖W‖C0([−T,T ],H1)(1 + ‖Q‖C0([−T,T ],S2)).

Finally, for any t ∈ [−T, T ] and for any ρ ∈ C0([−T, T ], L2(R3)), we have
∫ t

0

sin((t− t′)Km)

Km
ρ(t′) dt′ = t

∫ 1

0

sin(t(1− u)Km)

Km
ρ(tu) du.

Since for any u ∈ [0, 1], t 7→ sin(t(1−u)Km)
Km

ρ(tu) ∈ C0([−T, T ], H1) with
∥∥∥∥
sin(t(1− u)Km)

Km
ρ(tu)

∥∥∥∥
H1

6 C(1 + T )‖ρ‖C0([−T,T ],L2), (11)

we infer again from Lebesgue’s dominated convergence theorem that

t 7→
∫ t

0

sin((t− t′)Km)

Km

ρ(t′) dt′ ∈ C0([−T, T ], H1),
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for any ρ ∈ C0([−T, T ], L2). Notice that, in the bound (11), the constant C(1 + T )

on the right side can be replaced by C = C(m) if m > 0. It thus remains to prove

that t 7→ f(W (t), Q(t)) belongs to C0([−T, T ], L2). The map Q ∈ S2 7→ ρQ ∈ L2 is

linear and continuous with the estimate

‖ρQ‖L2 6 CΛ3/2‖Q‖S2
. (12)

This can be proved by duality:

∀W ∈ L2(R3),

∫

R3

ρQ(x)W (x) dx = TrWQ,

and we have the estimate valid for any W ∈ L2(R3):

|TrWQ| = |TrWΠΛQ| 6 CΛ3/2‖W‖L2‖Q‖S2
. (13)

Together with the inequality

‖W (t′)3‖L2 = ‖W (t′)‖3L6 6 C‖W (t′)‖3H1 , (14)

this proves that the maps

t′ 7→ 4πeρQ(t
′)

t′ 7→ −4πeρβQ(t
′)−W (t′)3

both belong to C0([−T, T ], L2) and we have Φ2(Q) ∈ C0([−T, T ], H1), with the esti-

mate

‖Φ2(Q)‖C0([−T,T ],H1)

6 (1 + T )‖(W0,W1)‖H1×L2 + CT (1 + T )(eΛ3/2‖Q‖C0([−T,T ],S2) + ‖W‖3C0(R,H1)).

This concludes the proof of Lemma 2. �

By Lemma 2, we see that for any T satisfying

T (1 + T ) 6
1

CR(1 + eΛ3/2 +R)
,

Φ maps B(2R) = {(Q,W ), ‖(Q,W )‖C0([−T,T ],S2×H1 6 2R} into itself. We are now

in position to use the fixed point theorem of Banach-Picard to prove that Φ has a

unique fixed point on B(2R). To do so, it remains to prove that Φ is a contraction on

B(2R), for T small enough. Let (Q,W ), (Q′,W ′) ∈ B(2R). We start with the second

term: for any t ∈ [−T, T ], we have

‖Φ2(Q)(t)−Φ2(Q
′)(t)‖H1

6 C(1 + T )

∫ T

0

‖f(Q(t′),W (t′))− f(Q′(t′),W ′(t′))‖L2 dt′

6 CT (1 + T )(eΛ3/2‖Q−Q′‖C0([−T,T ],S2) +R2‖W −W ′‖C0([−T,T ],H1)).
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In the previous inequality, we have used the fact that

‖W 3 −W ′3‖L2 6 ‖W −W ′‖L6‖W 2 +WW ′ +W ′2‖L3 6 CR2‖W −W ′‖H1.

For the term involving Φ1, we have for any t ∈ [−T, T ]

Φ1(Q,W )(t)− Φ1(Q
′,W ′)(t)

= −i

∫ t

0

e−i(t−t′)D0

ΠΛ[g(W (t′)), Q(t′)−Q′(t′)]ΠΛe
i(t−t′)D0

dt′

− i

∫ t

0

e−i(t−t′)D0

ΠΛ[g(W (t′))− g(W ′(t′)), Q′(t′) + P 0
−]ΠΛe

i(t−t′)D0

dt′.

Hence, by the estimates we already mentioned, we have

‖Φ1(Q,W )(t)−Φ1(Q
′,W ′)(t)‖S2

6 CeΛ3/2T (1+R)‖(Q,W )−(Q′,W ′)‖C0([−T,T ],S2×H1).

If we choose T small enough such that

T (1 + T ) 6 min

(
1

CR(1 + eΛ3/2 +R)
,

1

2C(eΛ3/2 +R2)
,

1

2CeΛ3/2(1 +R)

)
,

then, for any (Q,W ), (Q′,W ′) ∈ B(2R), we have

‖Φ(Q,W )− Φ(Q′,W ′)‖C0([−T,T ],S2×H1) 6
1

2
‖(Q,W )− (Q′,W ′)‖C0([−T,T ],S2×H1),

meaning that we can apply the fixed point theorem of Banach-Picard. This ends the

proof of Proposition 1. �

Remark 2.1. With the same estimates, we also have Lipschitz continuity of the solu-

tion map as a function of the initial data.

We not only have uniqueness of solutions in B(2R), but also global uniqueness:

Proposition 3 (Uniqueness). If I = [T−, T+] is a time interval containing 0, and if

(Q,W ), (Q′,W ′) ∈ C0(I,S2 ×H1) are two solutions to (7), then (Q,W ) ≡ (Q′,W ′)

on I.

Proof. The proof relies on a Grönwall-type argument. For any t ∈ I we have

Q(t)−Q′(t) = −i

∫ t

0

e−i(t−t′)D0

ΠΛ[g(W (t′)), Q(t′)−Q′(t′)]ΠΛe
i(t−t′)D0

dt′

− i

∫ t

0

e−i(t−t′)D0

ΠΛ[g(W (t′))− g(W ′(t′)), Q′(t′) + P 0
−]ΠΛe

i(t−t′)D0

dt′,

W (t)−W ′(t) =

∫ t

0

sin((t− t′)Km)

Km

(f(Q(t′),W (t′))− f(Q′(t′),W ′(t′))) dt′.
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Hence, there exists C = C(Λ, m, e, T±, ‖W‖C0(H1), ‖W ′‖C0(H1), ‖Q′‖C0(S2)) such that

for any t ∈ I,

‖Q(t)−Q′(t)‖S2
+‖W (t)−W ′(t)‖H1 6 C

∫ t

0

(‖Q(t′)−Q′(t′)‖S2
+‖W (t′)−W ′(t′)‖H1) ds,

which implies Q ≡ Q′ and W ≡ W ′ on I. �

Proposition 1 and Proposition 3 imply the existence of a unique maximal solution

to (7) belonging to C0((T ∗
−, T

∗
+),S2 ×H1), −∞ 6 T ∗

− < 0 < T ∗
+ 6 +∞, with

(T ∗
−, T

∗
+) :=⋃{
I open interval containing 0, ∃(Q,W ) ∈ C0(I,S2 ×H1) satisfying (7)

}
.

We have the following blowup criterion:

Proposition 4 (Blow-Up Criterion). Let (Q,W ) ∈ C0((T ∗
−, T

∗
+),S2 × H1) be the

unique maximal solution to (6) with initial conditions (Q0,W0,W1) ∈ S2 ×H1 ×L2.

Then we have the following criterion:

T ∗
+ < +∞ =⇒ lim

t→T ∗

+

t∈(T ∗

−
,T ∗

+)

‖(Q(t),W (t), ∂tW (t))‖S2×H1×L2 = +∞, (15)

T ∗
− < +∞ =⇒ lim

t→T ∗

−

t∈(T ∗

−
,T ∗

+)

‖(Q(t),W (t), ∂tW (t))‖S2×H1×L2 = +∞. (16)

Proof. We prove it for T ∗
+, the proof for T ∗

− being the same. Assume that T ∗
+ < +∞

and that there exists a sequence of times (tn) such that tn ∈ (T ∗
−, T

∗
+) for all n and

tn → T ∗
+ as n → ∞, with ‖Q(tn),W (tn), ∂tW (tn)‖S2×H1×L2 remaining bounded: there

exists R > 0 such that for all n,

‖Q(tn),W (tn), ∂tW (tn)‖S2×H1×L2 6 R.

By Proposition 1, from any time tn, we can extend the solution to tn + T (Λ, m, e, R),

T (Λ, m, e, R) > 0 being independent of n, hence tn 6 T ∗
+ − T (Λ, m, e, R). This

contradicts the fact that T ∗
+ < +∞ since tn → T ∗

+. �

3. Global existence

Global existence of solutions is obtained by a Grönwall-type argument, based on a

Lyapunov functional which depends on whether we work with the Coulomb case (P1)

or the meson case (P2).
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3.1. Meson case. We introduce the following functional

F (Q,U) :=
1

2
TrQ(t)2 +

1

2

∫

R3

(
(∂tU)2 + |∇U |2 +m2U2

)
dx+

1

4

∫

R3

U4 dx.

If (Q,U) is a solution to (6) for the parameters (P2), then for any T ∗
− < t < T ∗

+, the

map t′ 7→ F (Q(t′), U(t′)) ∈ C1([min(0, t),max(0, t)],R) and we have

d

dt
F (Q(t′), U(t′)) = −ieTrQ(t′)[βU(t′), P 0

−]− 4πe

∫

R3

ρβQ(t
′)∂tU(t′) dx.

As a consequence, by (10) and (12) we have for all t′ ∈ [min(0, t),max(0, t)]

d

dt
F (Q(t′), U(t′)) 6 CeΛ3/2‖Q(t′)‖S2

(‖U(t′)‖H1 + ‖∂tU(t′)‖L2)

6 CΛ,m,eF (Q(t′), U(t′)).

Hence, by Grönwall’s inequality, for all t ∈ (T ∗
−, T

∗
+) we have

F (Q(t), U(t)) 6 F (Q(0), U(0))eCm,Λ|t|.

Combining this inequality with the blow-up criterion (15), we deduce the

Theorem 1. Let m > 0, e > 0 and Λ > 0. Then, for any (Q0, U0, U1) ∈ S2×H1×L2,

there exists a unique (Q,U) ∈ C0(R,S2 × H1) ∩ C1(R,S2 × L2) such that ∂tU ∈
C1(R, H−1), and satisfying for all t ∈ R

{
(∂2

t −∆x +m2)U(t) = −4πeρβQ(t) − U(t)3 in H−1(R3),

i∂tQ(t) = ΠΛ

[
D0 + βU(t), P 0

− +Q(t)
]
ΠΛ in S2(HΛ),

(17)

with initial conditions (Q,U, ∂tU)|t=0 = (Q0, U0, U1).

Remark 4.1. The conserved energy of the system is

Et(Q,U) = Tr0(D
0Q)+e

∫
ρQU dx+

1

2

∫ (
(∂tU)2 + |∇xU |2 +m2U2

)
dx+

1

4

∫
U4 dx,

where Tr0(D
0Q) := Tr(|D0|(Q++ − Q−−)) > TrQ2, and with the notation Q++ :=

(1−P 0
−)Q(1−P 0

−), Q−− := P 0
−QP 0

−. The term Tr0(D
0Q) represents the kinetic energy

of Q [7]. For it to be well defined and positive, it is enough to know that P 0
− +Q0 is

an orthogonal projection [11]. Then, estimating
∣∣∣∣e
∫

ρQU dx

∣∣∣∣ 6 CeΛ3TrQ2 + Ce

∫
U2 dx,

we deduce that for e small enough (depending on Λ), the conservation of energy also

leads to global well-posedness, if P 0
− + Q0 is an orthogonal projection. These are

stronger assumptions than those of Theorem 1, but they imply furthermore that the

solution belongs to L∞(R,S2 ×H1).
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3.2. Coulomb case. In this case, we consider the functional

G(Q, V ) =
1

2
TrQ2 +

1

2

∫

R3

(
(∂tV )2 + |∇V |2

)
dx.

It verifies

d

dt
G(Q(t), V (t)) = −ieTr(Q(t)[V (t), P 0

−]) + 4πe

∫

R3

ρQ(t)∂tV (t) dx,

for any solution (Q, V ) of (6) with parameters (P1). By the same estimates as in the

previous section, together with the inequality

‖[V, P 0
−]‖S2(HΛ) 6 CΛ‖∇V ‖L2

which has been proved in [11, Lemma 3.1], we also obtain

d

dt
G(Q(t), V (t)) 6 CΛ,eG(Q(t), V (t)).

We again deduce

∀t ∈ (T ∗
−, T

∗
+), G(Q(t), V (t)) 6 eCΛ,e|t|.

To use the blow-up criterion (15), it remains to obtain a control on ‖V (t)‖L2, but

since we have

‖V (t)‖L2 6 ‖V (0)‖L2 +

∣∣∣∣
∫ t

0

‖∂tV (s)‖L2 ds

∣∣∣∣ 6 ‖V (0)‖L2 +

∣∣∣∣
∫ t

0

√
2G(Q(s), V (s)) ds

∣∣∣∣ ,

we have proved the

Theorem 2. Let e > 0 and Λ > 0. Then, for any (Q0, V0, V1) ∈ S2×H1 ×L2, there

exists a unique (Q, V ) ∈ C0(R,S2×H1)∩C1(R,S2×L2) such that ∂tV ∈ C1(R, H−1),

and satisfying for all t ∈ R

{
(∂2

t −∆x)V (t) = 4πeρQ(t) in H−1(R3),

i∂tQ(t) = ΠΛ

[
D0 + eV (t), P 0

− +Q(t)
]
ΠΛ in S2(HΛ),

(18)

with initial conditions (Q, V, ∂tV )|t=0 = (Q0, V0, V1).

Remark 4.2. The main tool to prove global well-posedness is the cut-off Λ. With-

out the cut-off, it is not clear at all that global well-posedness holds, even for the

apparently simpler repulsive Schrödinger-Klein-Gordon system
{

(∂2
t −∆+m2)W = e|u|2,

(i∂t +∆)u = eWu,

which conserved energy has no particular sign. When e|u|2 is replaced by −e|u|2 in

the equation above (attractive case), global well-posedness in the energy space was

proved in [1]. It heavily relies on the fact that, in this case, the energy is positive and

controls the energy norm.
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4. Linear response in the Coulomb case

In this section, we study the linear response of Duhamel’s equation

Q(t) = eitD
0

Q0e
itD0 − i

∫ t

0

e−i(t−t′)D0

ΠΛ[eV (t′), Q(t′) + P 0
−]ΠΛe

i(t−t′)D0

dt′,

which corresponds to the first equation of (6) in the Coulomb case. More precisely,

we compute the density ρQ1
of the operator Q1 defined by the formula

Q1(t) = −ie

∫ t

0

e−i(t−t′)D0

[V (t′), P 0
−]e

i(t−t′)D0

dt′, ∀t ∈ R.

This density ρQ1
is relevant since it corresponds to the divergent part (with respect to

the cut-off Λ) of the operator Q(t), in analogy with the time-independent version of

this equation studied in [5]. As a consequence, controlling this term is a key first step

in the process of understanding the limit Λ → +∞ of Equation (6). In Section 4.1,

we compute explicitly ρQ1
and estimate it. In Section 4.2, we discuss the difficulties

of studying the limit Λ → +∞ and its link with charge renormalization.

4.1. Pointwise estimate. The integral kernel of Q1(t) can be computed explicitly

in Fourier space,

Q̂1(t; p, q) =
−ie

(2π)
3
2

∫ t

0

V̂ (t′, p− q)e−i(t−t′)D0(p)(P̂ 0
−(q)− P̂ 0

−(p))e
i(t−t′)D0(q) dt′

=
−ie

(2π)
3
2

∫ t

0

V̂ (t′, p−q)
(
e−i(t−t′)(E(p)+E(q))P̂ 0

+(p)P̂
0
−(q)− ei(t−t′)(E(p)+E(q))P̂ 0

−(p)P̂
0
+(q)

)
dt′,

where P 0
+ := 1− P 0

− and

E(p) :=
√

1 + |p|2

for all p ∈ R3. Hence, the (space) Fourier transform of the density ρQ1
(t) can be

written as

ρ̂Q1
(t, k) =

−e

4π3

∫ t

0

V̂ (t′, k)×

×
∫
|p+k/2|6Λ
|p−k/2|6Λ

sin((t−t′)(E(p+k/2)+E(p−k/2)))

(
1− 1 + (p+ k/2) · (p− k/2)

E(p+ k/2)E(p− k/2)

)
dpdt′,

for all t ∈ R and k ∈ R3. Integrating by parts, one finds the formula

ρ̂Q1
(t, k) = − e

4π
|k|2V̂ (t, k)BΛ(0, k) +

e

4π
|k|2V̂ (0, k)BΛ(t, k)

+
e

4π

∫ t

0

|k|2(∂tV̂ )(t′, k)BΛ(t− t′, k) dt′, (19)
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where

BΛ(t, k) =
1

π2|k|2×

×
∫

|p+k/2|6Λ
|p−k/2|6Λ

cos(t(E(p+ k/2) + E(p− k/2)))

E(p+ k/2) + E(p− k/2)

(
1− 1 + (p+ k/2) · (p− k/2)

E(p+ k/2)E(p− k/2)

)
dp.

This formula is a time-dependent generalization of the function B0
Λ defined in [5, Eq.

(80)], which was rigorously studied in [5, Appendix A] but already present in [7]. The

relation between these two functions is just

∀k ∈ R
3, B0

Λ(k) = BΛ(0, k).

It is proved in [5] that B0
Λ(0) is logarithmically divergent: B0

Λ(0) ∼ 2
3π

log Λ as Λ →
+∞, which leads to a charge renormalization formula [5, Eq. (28)]. In our case,

this logarithmic divergence actually disappears as soon as t 6= 0 and it a posteriori

justifies the decomposition in (19):

Lemma 5. There exists a universal constant C > 0 such that we have

|BΛ(t, k)| 6 C(1 + | log(|t|E(k))|), (20)

for all Λ > 0, for all t 6= 0, and for all k ∈ R3.

Proof. Notice that BΛ(t, k) is an even function of t, so we may assume t > 0 in the

following. Using the same change of variables as in [5, Appendix A], one finds the

formula

BΛ(t, k) =
|k|
2π

∫ ZΛ(|k|)

0

cos(t(2E(Λ)− |k|z))
E(Λ)− |k|z/2 (z − z2/3) dz

+
1

π

∫ ZΛ(|k|)

0

cos

(
2t√
1− z2

√
1 +

|k|2
4

(1− z2)

)
z2 − z4/3

(1− z2)(1 + |k|2(1− z2)/4)
dz,

with

ZΛ(r) =
E(Λ)− E(Λ− r)

r
.

The function BΛ(t, ·) is supported in the ball B(0, 2Λ), and for all 0 6 r 6 2Λ, one has

0 6 ZΛ(r) 6 1. Furthermore, for all 0 6 z 6 ZΛ(r), one has E(Λ)−|k|z/2 > E(Λ)/2.

Hence, we obtain
∣∣∣∣∣
|k|
2π

∫ ZΛ(|k|)

0

cos(t(2E(Λ)− |k|z))
E(Λ)− |k|z/2 (z − z2/3) dz

∣∣∣∣∣ 6 C
|k|

E(Λ)
ZΛ(|k|) 6 C.
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To estimate the second term of BΛ(t, k), which we denote by I, we make the change

of variables u = 1√
1−z2

, which leads to

I =
1

3π

∫ R

1

cos

(
2tu

√
1 +

|k|2
4u2

)
√
u2 − 1

1 + 2u2

u2

du

u2 + |k|2/4 ,

with R = (1− ZΛ(|k|))−1/2. First, we have
∣∣∣∣∣
1

3π

∫ R

1

cos

(
2tu

√
1 +

|k|2
4u2

) √
u2 − 1

u2

du

u2 + |k|2/4

∣∣∣∣∣ 6 C

∫ ∞

1

du

u(u2 + |k|2/4)

6 Cmin

(
1,

1

|k|

)
.

Then, using that |
√
u2 − 1− u| 6 1/(2u) for all u > 1, we obtain

∣∣∣∣∣
2

3π

∫ R

1

cos

(
2tu

√
1 +

|k|2
4u2

)
(
√
u2 − 1− u)

du

u2 + |k|2/4

∣∣∣∣∣ 6 C

∫ ∞

1

du

u(u2 + |k|2/4)

= Cmin

(
1,

1

|k|

)
.

Hence,

|I| 6 C +

∣∣∣∣∣
2

3π

∫ R

1

cos

(
2tu

√
1 +

|k|2
4u2

)
u du

u2 + |k|2/4

∣∣∣∣∣ .

Performing the change of variables v =
√

u2 + |k|2/4, we obtain

∫ R

1

cos

(
2tu

√
1 +

|k|2
4u2

)
u du

u2 + |k|2/4 =

∫ √
R2+|k|2/4

E(k/2)

cos(2tv)

v
dv

=

∫ t
√

R2+|k|2/4

tE(k/2)

cos(2v)

v
dv.

Assume first tE(k/2) 6 1. We distinguish two cases: if t
√

R2 + |k|2/4 6 1, then
∣∣∣∣∣

∫ t
√

R2+|k|2/4

tE(k/2)

cos(2v)

v
dv

∣∣∣∣∣ 6
∫ 1

tE(k/2)

dv

v
= | log(tE(k/2))|.

Else, if t
√

R2 + |k|2/4 > 1, we have
∣∣∣∣∣

∫ t
√

R2+|k|2/4

tE(k/2)

cos(2v)

v
dv

∣∣∣∣∣ 6
∫ 1

tE(k/2)

dv

v
+

∣∣∣∣∣

∫ t
√

R2+|k|2/4

1

cos(2v)

v
dv

∣∣∣∣∣
6 C + | log(tE(k/2))|.
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On the other hand, if tE(k/2) > 1, then
∣∣∣∣∣

∫ t
√

R2+|k|2/4

tE(k/2)

cos(2v)

v
dv

∣∣∣∣∣ 6 C.

In any case, we get
∣∣∣∣∣

∫ t
√

R2+|k|2/4

tE(k/2)

cos(2v)

v
dv

∣∣∣∣∣ 6 C(1 + | log(tE(k))|).

�

Remark 5.1. With the same changes of variables, one can easily show that for each

t 6= 0 and k ∈ R3 fixed, BΛ(t, k) has a limit as Λ → +∞, which is

lim
Λ→+∞

BΛ(t, k) =
2

3π

∫ ∞

|t|E(k/2)

cos(2v)

v
dv

+
1

3π

∫ ∞

1

cos

(
2tu

√
1 +

|k|2
4u2

)[√
u2 − 1

u2
+ 2(

√
u2 − 1− u)

]
du

u2 + |k|2/4 .

This has to be compared with the situation at t = 0, where only limΛ→+∞(BΛ(0, 0)−
BΛ(0, k)) exists.

4.2. Discussion: time-dependent charge renormalization. In Equation (19),

we have isolated the logarithmic divergent term BΛ(0, k) which is independent of t.

The other term is actually uniformly bounded with respect to Λ, which suggests that

the limit Λ → +∞ of ρQ(t) is divergent. In order to control this divergence, we set

α = e2 the (bare) fine structure constant and fix α log Λ so that Λ → +∞ implies

α → 0. In the spirit of [8, 5, 6, 18], we expect this limit to be convergent. Let us now

explain the difficulties of rigorously proving this convergence. Consider the relation

(19). Then, for all t 6= 0 and for all k ∈ R3,

4πeρ̂Q1
(t, k) = −α|k|2V̂ (t, k)B0

Λ(0) + α|k|2V̂ (t, k)CΛ(|k|) + α|k|2V̂ (0, k)BΛ(t, k)

+ α

∫ t

0

|k|2(∂tV̂ )(s, k)BΛ(t− s, k) ds,

where CΛ(|k|) := B0
Λ(0)−B0

Λ(k). The function C has been studied in [6] and satisfies

the estimate

∀Λ > 1, ∀r > 0, 0 6 CΛ(r) 6 C log(2 + r2), (21)

for some universal constant C (in particular, independent of Λ). Combining the

estimates (20) and (21) and assuming that V̂ and ∂tV̂ are decaying rapidly enough,

one obtains the following convergence as α → 0 with α log Λ fixed, for fixed time

t 6= 0:

4πeρQ1
(t) ≃

(
2

3π
α log Λ

)
∆V,
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for instance in L2(R3). Assuming furthermore that 4π(ρQ(t) − ρQ1
(t)) ≃ 0 in the

same limit, we infer that V satisfies the following wave equation

∂2
t V −

(
1 +

2

3π
α log Λ

)
∆xV = 0, (22)

in the limit α → 0 with α log Λ fixed. We see from this formulation that this limit

leads to a renormalization of the propagation speed of the wave in the vacuum, very

much alike to the charge renormalization formula in the stationary case. Of course,

justifying all the steps leading to this limit is the hard part. In particular, in the spirit

of [18], one should begin with deriving a priori estimates on the solution (Q, V ) to (7),

for instance in the fixed point argument of the proof of Proposition 1. The typical a

priori estimate one would need is the existence of T > 0 and C > 0 depending only

on α and α log Λ such that

∀t ∈ [−T, T ], ‖ρQ(t)‖L2 + ‖V (t)‖H1 + ‖∂tV (t)‖L2 6 C. (23)

The time T built in the proof of Proposition 1 satisfies T → 0 as α → 0 with α log Λ

fixed, so that it does not imply (23). However, as shown by (19), one cannot expect

such a good estimate as (23) since ρQ1
(t) diverges as log Λ. One way to circumvent

this issue, in the spirit of [18], would be to use a fixed point argument on Q̃ := Q−Q1

which satisfies the equation

Q̃(t) = e−itD0

Q̃0e
itD0 − ie

∫ t

0

e−i(t−t′)D0

ΠΛ[V (t′), Q̃(t′)]ΠΛe
i(t−t′)D0

dt′ +Q2(t), (24)

where

Q2(t) := −ie

∫ t

0

e−i(t−t′)D0

ΠΛ[V (t′), Q1(t
′)]ΠΛe

i(t−t′)D0

dt′.

To build Q̃ by a fixed point argument, one needs estimates on Q2 and ρQ2
that

depend only on α and α log Λ, and one also needs to improve estimates as (11) to

control the second term in the right side of (24). We hope to come back to this

problem in the future.
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RETARDATION EFFECTS IN DIRAC’S VACUUM 17

[4] P. Gravejat, C. Hainzl, M. Lewin, and É. Séré, Construction of the Pauli–Villars-
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