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ABSTRACT 

Aircraft pollutant emissions are an important part of sources of pollution that directly or indirectly affect human health 
and ecosystems. This research suggests an Artificial Neural Network model to determine the healthy risk level around 
Soekarno Hatta International Airport-Cengkareng Indonesia. This ANN modeling is a flexible method, which enables to 
recognize highly complex non-linear correlations. The network was trained with real measurement data and updated 
with new measurements, enhancing its quality and making it the ideal method for this research. Measurements of air- 
craft pollutant emissions are carried out with the aim to be used as input data and to validate the developed model. The 
obtained results concerned the improved ANN architecture model based on pollutant emissions as input variables. ANN 
model processes variables—hidden layers—and gives an output variable corresponding to a healthy risk level. This 
model is characterized by a 4-10-1 scheme. Based on ANN criteria, the best validation performance is achieved at ep- 
och 28 from 34 epochs with the Mean Squared Error (MSE) of 9 × 10−3. The correlation between targets and outputs is 
confirmed. It validated a close relationship between targets and outputs. The network output errors value approaches 
zero. Further research is needed with the aim to enlarge the scheme of the ANN model by increasing its input variables. 
This is one of the major key defining environmental capacities of an airport that should be applied by Indonesian airport 
authorities. These would institute policies to manage or reduce pollutant emissions considering population and income 
growth to be socially positive.  
 
Keywords: Aircraft; Pollutant Emissions; Artificial Neural Network; Healthy Risk Level 

1. Introduction 

The continuing growth in air traffic and increasing public 
awareness have made environmental considerations one 
of the most critical aspects of commercial aviation. It is 
generally accepted that significant improvements to the 
environmental acceptability of aircraft will be needed if 
the long-term growth of air transport is to be sustained. 
This is an open issue. The release of exhaust gasses in 
the atmosphere is the second major environmental issue 
associated with commercial airliners. The expected dou- 
bling of the fleet in the next twenty years will certainly 
exacerbate the issue: the contribution of aviation is ex- 
pected to increase by factor of 1.6 to 10, depending on 
the fuel use scenario. Being conscious of this problem,  

engine manufacturers have developed low-emission 
combustors, and made them available as options. These 
combustors have been adopted by airlines operating in 
European airports with strict emissions controls, in Swe- 
den and Switzerland, for example. Significant progress has 
been made with some individual pollutants rather than 
with others. Aircraft emissions have also declined over 
time when consider the emissions from transporting one 
passenger one mile. Current emissions regulations have 
focused on local air quality in the vicinity of airports and 
the research will also focus on the local impact of Avia- 
tion [1,2]. Emissions released during cruise in the upper 
atmosphere are recognized as an important issue with 
potentially severe long-term environmental consequences, 
and ICAO is actively seeking support for regulating them  
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as well. Operations of aircraft are usually divided into two 
main parts [3]: The Landing-Take-off (LTO) cycle which 
includes all activities near the airport that take place below 
the altitude of 3000 feet (914 m). This therefore includes 
taxi-in and out, take-off, climb-out and approach-landing.  

Cruise is defined as an activity that takes place at alti- 
tude above 3000 feet (914 m). No upper limit altitude is 
given. Cruise includes climb from the end of climb-out in 
the LTO cycle to the cruise altitude, cruise, and descent 
from cruise altitudes to the start of LTO operations of 
landing. Emissions from aircraft originate from fuel 
burned in aircraft engines [3]. Aircraft jet engines pro- 
duce carbon dioxide (CO2), water vapor (H2O), Nitrogen 
Oxides (NOx), Carbon Monoxide (CO), Oxides of sulfur 
(SOx), unburned or partially combusted hydrocarbons 
(also known as volatile organic compounds (VOC), par- 
ticulates and other trace compounds [4]. A small subset 
of the VOCs and particulates are considered hazardous 
air pollutants (HAPs).   

Aircraft engine emissions are roughly composed of 
about 70% CO2, a little less than 30% H2O, and less than 
1% each of NOx, CO, SOx, VOC, particulates, and other 
trace components including HAPs. Aircraft emissions, 
depending on whether they occur near the ground or at 
altitude, are primarily considered local air quality pol- 
lutants or greenhouse gases [4,5]. Water in the aircraft 
exhaust at altitude may have a greenhouse effect, and 
occasionally this water produces contrails, which also 
may have a greenhouse effect. About 10% of aircraft 
emissions of all types, except hydrocarbons and CO [6], 
are produced during airport ground level operations and 
during landing and takeoff. The bulk of aircraft emis- 
sions (90%) occur at higher altitudes [4,7]. For hydro- 
carbons and CO, the split is closer to 30% ground level 
emissions and 70% at higher altitudes. Aircraft is not the 
only source of aviation emissions. Airport access and 
ground support vehicles produce similar emissions. Such 
vehicles include traffic to and from the airport, ground 
equipment that services aircraft, and shuttle buses and 
vans serving passengers.  

Other emissions sources at the airport include auxiliary 
power units providing electricity and air conditioning to 
aircraft parked at airport terminal gates, stationary airport 
power sources, and construction equipment operating on 
the airport [4,8]. Emission from Combustion Processes 
CO2—Carbon dioxide is the product of complete com- 
bustion of hydrocarbon fuels like gasoline, jet fuel, and 
diesel. Carbon in fuel combines with oxygen in the air to 
produce CO2. H2O-Water vapor is the other product of 
complete combustion as hydrogen in the fuel combines 
with oxygen in the air to produce H2O. NOx—Nitrogen 
oxides are produced when air passes through high tem- 
perature/high pressure combustion and nitrogen and 

oxygen present in the air combine to form NOx [4,5,8,9]. 
HC-Hydrocarbons are emitted due to incomplete fuel 
combustion [6]. They are also referred to as volatile or- 
ganic compounds (VOCs). Many VOCs are also hazard- 
ous air pollutants. CO-Carbon monoxide is formed due to 
the incomplete combustion of the carbon in the fuel. 
SOx-Sulfur oxides are produced when small quantities of 
sulfur, present in essentially all hydrocarbon fuels, com- 
bine with oxygen from the air during combustion [4,8].  

Particulates—small particles that form as a result of 
incomplete combustion, and are small enough to be in-
haled, are referred to as particulates. Particulates can be 
solid or liquid. Ozone—O3 is not emitted directly into the 
air but is formed by the reaction of VOCs and NOx in the 
presence of heat and sunlight [5,9]. Ozone forms readily 
in the atmosphere and is the primary constituent of smog. 
For this reason it is an important consideration in the 
environmental impact of aviation [4,8]. Compared to 
other sources, aviation emissions are a relatively small 
contributor to air quality concerns both with regard to 
local air quality and greenhouse gas emissions. While 
small, however, aviation emissions cannot be ignored 
[4,8]. Emissions will be dependent on the fuel type, air- 
craft type, engine type, engine load and flying altitude. 
Two types fuel are used. Gasoline is used in small piston 
engines aircraft only. Most aircraft run on kerosene and 
the bulk of fuel used for aviation is kerosene. In general, 
there exist two types of engines: reciprocating piston 
engines and gas turbines [1-3,10-14].  

Most emissions originate from the first category which 
covers the scheduled flights of ordinary aircraft. The 
ICAO is a United Nations intergovernmental body re- 
sponsible for worldwide planning, implementation, and 
coordination of civil aviation. ICAO sets emission stan- 
dards for jet engines. These are the basis of FAA’s air- 
craft engine performance certification standards, estab- 
lished through EPA regulations. Currently ICAO has 
covered three approaches to quantifying aircraft engine 
emissions: two in detail and one in overview: Simple 
Approach, Advanced Approach and Sophisticated Ap- 
proach [1,2,11-13,15,16]:  
 Simple Approach is the least complicated approach, 

requires the minimum amount of data, and provides 
the highest level of uncertainty often resulting in an 
over estimate of aircraft emissions. This approach 
considers the emission pollutant of NOx, CO, HC, 
SO2, CO2.  

 Advanced Approach reflects an increased level of 
refinement regarding aircraft types, EI calculations 
and TIM. This approach considers the emission pol- 
lutant of NOx, CO, HC, SO2.  

 Sophisticated Approach which is provided in over-
view, will be further developed in an update of this 
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out and approach). Additionally there is a pre-processor 
which intersects profile trajectories with runway space 
blocks (Figure 1). 

guidance [1, 2,11,12] and is expected to best reflect 
actual aircraft emissions.  

2. Calculation Method 
2.2. Thrust-Based Emission Calculator Calculation method is built following seven complemen- 

tary and necessary steps.  The Thrust-Based Emission Calculator (TBEC) is a Mi- 
crosoft Access application which has been specially de- 
veloped for Sourdine II [18] in order to calculate aircraft 
emissions resulting from the different SII procedures. It 
uses the ICAO Engine Exhaust Emissions Data Bank, 
which provides, for a large series of engine types, fuel 
flow (kg/s) and emission indices (g/kg of fuel) at four 
specific engine power settings (from idle to full take-off 
power). The overall principle of TBEC consists of calcu- 
lating (by interpolations) emission levels, based on the 
actual thrust along the vertical fixed-point profiles asso- 
ciated to the SII procedures. To calculate emission levels 
of different pollutants, it is necessary to have fuel flow 
information along the flight profiles. It was originally 
planned to approximate these by interpolations on input 
thrust values, as the ICAO databank provides fuel flow  

2.1. Runway Emission Method [1,2,11-13,17] 

For each hour get Aircraft Type, Runway and Arrival/ 
Departure flag from movements table. From aircraft table 
get for each aircraft Arrival Profile ID, Departure Profile 
ID, Engine ID and Engine Count. Based on Runway and 
Profile ID get profile segment data (Time-in-mode and 
Mode) from runway space table. From engine table get 
Engine Emission Indices based on Engine ID and Mode 
(takeoff-TO), climb-out (CL) or approach (AP). For each 
segment calculate emissions and add runway space block 
totals. Store each block total in hourly emissions table 
(hr_emis). Runway emissions include also runway roll 
emissions (takeoff roll and landing roll) and emissions 
released in the vertical plane above the runway (climb- 
 

 

Figure 1. Runway emission calculation [1,2,11-13].   
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data associated to specific power settings. However, the 
International Civil Aviation Organization Committee on 
Aviation Environmental Protection (CAEP)’s Modeling 
Working Group (WG2) considered that estimating fuel 
flow based on thrust was unsatisfactory without having a 
greater knowledge of individual aircraft/engine perform- 
ance parameters, data that is not yet readily available. 
Consequently, realistic fuel flow data have been supplied 
by Airbus for all the studied SII procedures (along with 
the baseline procedures) and for the eight Airbus aircraft. 
These fuel flow data have been incorporated, as an addi- 
tional parameter. Based on the fuel flow and thrust val- 
ues along the flight profiles, TBEC calculates total fuel 
burn (a straight forward process), and emission levels of 
different pollutants. Calculation of arrival emissions 
stops at touchdown since the fuel-flow data available 
stop at that point. Reverse thrust emissions are not taken 
into account. These would vary as a function of the 
landing speed of the aircraft, which is very slightly 
higher in the Sourdine II procedures than the baseline 
due to the different landing configurations used. TBEC 
inputs: TBEC calculates fuel burn and emission levels 
for the fixed-point profiles of the SII flight profile data- 
base, which include the additional fuel flow parameter 
(Airbus aircraft only). These input fixed-point profiles 
provide altitude (ft), speed (kts), corrected net thrust (lbs) 
and fuel flow (kg/s) as a function of the ground distance 
(ft) from brake release (for departures), or to touchdown 
(for arrivals).  

For a given flight profile, TBEC calculates total fuel 
burn and total emissions (in kgs) of the following com- 
ponents: HC, CO, NOx, SO2, CO2, H2O, VOC, total or- 
ganic gases (TOG). VOC are Acetaldehyde, Acrolein, 
POM16PAH, POM7PAH, Styrene. TOG are Formalde- 
hyde, Propianaldehyde, Toluene, Xylene, 1-3Butadiene, 
Benzene, Ethylbenzene. The calculation of total fuel burn 
is a straight forward process: it is obtained by the time 
integration of the input fuel flow data along the profile. 
HC, CO and NOx are obtained by linear interpolations in 
the ICAO databank, using as input data the corrected net 
thrust and the fuel flow on the successive segments of the 
profile. CO2, SO2 and H2O emissions are proportional to 
fuel burn (or fuel flow), and are obtained using emission 
coefficients (kg/kg fuel flow, or g/kg fuel flow for SO2). 
The VOC and TOG emissions are obtained in a similar 
way from the calculated emissions of HC. All these 
emission coefficients are independent of the engine type. 
Calculation principle: The flight profile is defined by a 
series of small segments, each segment being defined by 
two consecutive points of the fixed-point profile. The 
overall calculation principle consists of estimating the 
fuel burn and emission levels produced by each segment, 
and summing them (over the flight profile) to obtain the 

total fuel burn and emissions of each pollutant. 

2.3. Fuel Burn 

The fuel burn on a trajectory segment FBseg is calculated 
as follows:  

seg seg segFB T FF   

where 
 ∆Tseg is the duration (in seconds) of the flight segment. 

∆Tseg is calculated using the distance between the two 
end-points of the segment, divided by the average 
speed of the aircraft on the segment;  

 FFseg is the average fuel flow on the segment (kg/s), 
calculated using the input fuel flow values at the two 
end-points of the segment.  

2.4. HC, CO and NOx 

The ICAO Engine Exhaust Emissions Data Bank pro- 
vides emission indices (g/kg fuel flow) at four different 
power setting levels, namely: Take-Off, Climb-Out, Ap- 
proach, and Idle. These four power states correspond to 
a%age of Foo, the maximum engine thrust available for 
take-off under normal operating conditions at ISA sea 
level static conditions. By definition, the four tabulated 
power settings correspond respectively to 100%, 85%, 
30% and 7% of Foo (Similar to ALAQS [17]. The emis- 
sions of HC, CO and NOx on a segment are calculated 
through a linear interpolation between the above tabu- 
lated emission data. The different steps of the process are 
described below. The Emission Indices EI (Pi) of each 
pollutant provided by the ICAO data bank at the four 
power settings are converted into segment-specific emis- 
sion flow EFseg (Pi) as follows:  

   seg i i segEF P EI P FF   

where 
 EFseg (Pi) is the emission flow for the segment associ- 

ated to power setting Pi (in g/s). Pi is one of the tabu- 
lated engine power settings for which emission indi- 
ces are provided in the data bank (7%, 30%, 85% or 
100%). EI (Pi) is the emission indices associated to 
power setting Pi (in g/kg of fuel). FFseg is the average 
fuel flow on the segment (in kg/s), calculated using 
the input fuel flow values at the two end-points of the 
segment. The segment-specific power setting pa- 
rameter Pseg, at which the emission levels will be in- 
terpolated, is approximated as follows:  

seg
seg

CNT
P 1

MaxStaticThrust
  00  

where 
 Pseg is the segment-specific power setting (%); 
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 CNTseg is the average corrected net thrust (lb) on the 
segment, calculated using the input CNT values at the 
two end-points of the segment; 

 MaxStaticThrust is the available engine-specific 
maximum sea level static thrust.   

The emission level of a given pollutant on the segment 
ELseg is expressed as:  

 

    

seg seg seg i

seg i
seg i 1 seg i

i 1 i

EL T EL P

P P
EF P EF P

P P 



   


 

   

 

where 
 ELseg is the emission level of the pollutant produced 

on the segment (g); 
 ∆Tseg is the duration (in seconds) of the flight segment. 

∆Tseg is calculated using the distance between the two 
end-points of the segment, divided by the average 
speed of the aircraft on the segment;  

 Pseg is the segment-specific power setting (%); 
 Pi and Pi + 1 are the two tabulated power setting values 

bounding Pseg (%); 
 EFseg (Pi) and EFseg (Pi + 1) are the emission flow val- 

ues (g/s) associated to Pi and Pi + 1.  

2.5. CO2, SO2, H2O 

Those emission levels are directly proportional to the 
calculated fuel burn and are estimated using the follow- 
ing emission coefficients:  

 
Component Emission coefficient 

CO2 3.149 (kg/kg fuel) 

SO2 0.84 (g/kg fuel) 

H2O 1.23 (kg/kg fuel) 

 
Limitations/validity: The first limitation of TBEC is 

that it does not take into account the variation of the 
emission indices with altitude due to temperature and 
pressure changes. Indeed, the ICAO databank provides 
emission indices for ISA conditions; these are, however, 
assumed to be valid for altitudes below 3000 ft.  

A sophisticated method has to be developed; it would 
allow the modeling of the effects of non-ISA temperature 
and pressure conditions at the airport. Another limitation 
is due to the assumption that emission indices vary line- 
arly with the thrust level, which is obviously not the case 
in real life. It would also be necessary to model non-lin- 
ear variations between thrust settings in the ICAO data- 
bank. The method to be developed will be able to calcu- 
late the power setting parameter required to perform in- 

terpolations. Further investigation of this point is re- 
quired.  

2.6. Time-in-Mode Calculations 

The duration of the approach and climb out modes de- 
pends largely on the mixing height selected. EPA guid- 
ance provides approach and climb out times for a default 
mixing height of 3000 feet, and a procedure for adjusting 
these times for different mixing heights. The adjustments 
are calculated using the following equations:  

adj dflt

Mixing Height 500
TIM TIM

3000 500
Climb out :

    
 

adj dflt

Mixing H
Approa

eight
TIM TIM

3000
ch :     

 

where TIMadj is the adjusted time-in-mode for approach 
or climb out, and TIMdflt is the default time-in-mode. 
Mixing height is by default given in feet. The equation 
for climb out assumes that 500 feet is the demarcation 
between the takeoff and climb out modes. Expressed in 
metric units, the approach and climb out adjustment 
equations are as follows:  

adj dflt

Mixing Height 152
TIM TIM

915 152
Climb out :

    
 

adj dflt

Mixing
Approac

Height
TIM TIM

9 5
h :

1
    

 

Default mixing height is 915 meters, with the demar- 
cation between approach and climb out modes at 152 
meters. Consistent with EPA guidance [4,8,19], a four- 
minute default approach time was assumed for this study.  

2.7. Emissions Calculation 

The weighted-average emission factor represents the av- 
erage emission factor per LTO cycle for all engine mod- 
els used on a particular type of aircraft. The weighted- 
average emission factor per 1000 pounds of fuel is cal- 
culated as follows:   

 
jNM

ijk mj imk
m 1

EF X EF


   

where EFimk is the emission factor for pollutant i, in 
pounds of pollutant per 1000 pounds of fuel (or kilo- 
grams pollutant per 1000 kilograms fuel), for engine 
model m and operating mode k. Xmj is the fraction of 
aircraft type j with engine model m; and NMj is the total 
number of engine models associated with aircraft type j. 
Note that, for a given aircraft type j, the sum of Xmj for 
all engine models associated with aircraft j is 1. Total 
emissions per LTO cycle for a given aircraft types are 
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craft type j. LTOj = the number of LTOs for aircraft type 
j. Total emissions for each aircraft type are then summed 
to yield total commercial exhaust emissions for the facil- 
ity as shown below:  

calculated using the following equation:  

jk
ij jk ijk j

FF
E TIM EF NE

1000
    

where TIMjk is the time in mode k (min) for aircraft type 
j. Fjk = fuel flow for mode k (lbs/min or kg/min) for each 
engine used on aircraft type j. EFijk = weighted-average 
emission factor for pollutant i, in pounds of pollutant per 
1000 pounds of fuel (kilograms pollutant per 1000 kilo- 
grams fuel), for aircraft type j in operating mode k. NEj is 
the number of engines on aircraft type j. Once the pre- 
ceding calculations are performed for each aircraft type, 
total emissions for that aircraft type are computed by 
multiplying the emissions for one LTO cycle by the 
number of LTO cycles at a given location:  

 i ijE E LTO  j

j

 

 
N

i ij
j 1

ET E LTO


   

where ETi is the total emissions for pollutant i from all 
aircraft types. Eij is the emissions of pollutant i from air- 
craft type j. LTOj is the number of LTOs for aircraft type 
j; and N the total number of aircraft types.  

Functional Flow-Emissions: Overall, the fundamental 
usage of EDMS [4,8,10] is to first perform an emissions 
inventory [20], after which the user can chose to continue 
to model the dispersion of the emitted pollutants calcu- 
lated. As shown in Figure 2, to perform an emissions 
inventory the user would follow the following steps:  
 Set up the study by adding scenarios and airports, and  where Eij is the total emissions for pollutant i from air-  

 

 

Figure 2. Functional flow.  
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choose which modeling options to use. 

 Define all emissions sources, including operational 
usage.  

 Define the airport layout if sequence modeling was 
selected.  

 Select a weather option: annual average or hourly 
(requires running AERMET).  

 Select Update Emissions Inventory. 
The simplest way to generate an emissions inventory 

and obtain a course estimate of the total annual emissions 
is to perform the first two steps, and use the ICAO/EPA 
default times in mode along with the default operational 
profiles, and the annual average weather from the EDMS 
airports database [3,4,8,10,19,20]. Doing so would only 
consider the total number of operations for the entire year 
without regard to when those operations occurred. If a 
more precise modeling of the aircraft taxi times using the 
Sequencing module is desired (required if dispersion will 
be performed), then the user must define the airport gates, 
taxiways, runways, taxi paths (how the taxiways and 
runways are used) and configurations (weather depend- 
ent runway usage). The resulting emissions values can be 
viewed by selecting Emissions Inventory on the View 
menu. These results can be printed by selecting Print 
under the File menu while viewing the emissions inven- 
tory.  

3. Artificial Neural Network Methodology 

Artificial neural networks are a very simplified version 
of real neural networks [21-24]. The human nervous sys- 
tem consists of 1011 to 1012 nerve cells and is able to 
carry out 1012 to 1013 “switching processes”—a complex- 
ity that cannot be rebuilt technically. Nevertheless, it is 
possible to understand the principles and to reconstruct a 
few cells that simulate the most important processes. In 
the year 1943, Warren McCulloch and Walter Pitts 
showed in their paper “A logical calculus of the ideas 
immanent in nervous activity” that even simple neural 
networks are able to calculate any arithmetic or logical 
function. 1957, Frank Rosenblatt et al. developed the 
first successful neuro-computer, the so-called “Mark 1 
perceptron”, which was able to recognize simple patterns. 
Neural networks on the base of back-propagation were 
developed in the early seventies and still are today the 
most popular networks [21-24].  

A neural network can be described as a “black box” to 
which no interference takes place and whose concrete 
behavior is invisible [22,23]. Summarized, there are three 
principal tasks the network has to fulfill (Figure 3):  

There are many types of ANN. Many new ones are 
being developed (or at least variations of existing ones). 
Networks based on supervised and unsupervised learning 
[22-25].  

 

Figure 3. The three principal tasks of a neuron. 
 

Supervised Learning: The network is supplied with a 
sequence of both input data and desired (target) output 
data network is thus told precisely by a “teacher” what 
should be emitted as output. The teacher can during the 
learning phase “tell” the network how well it performs 
(“reinforcement learning”) or what the correct behavior 
would have been (“fully supervised learning”) [22-25].  

Self-Organization or Unsupervised Learning: A 
training scheme in which the network is given only input 
data, network finds out about some of the properties of 
the data set , learns to reflect these properties in its output. 
E.g. the network learns some compressed representation 
of the data. This type of learning presents a biologically 
more plausible model of learning. What exactly these 
properties are, that the network can learn to recognise, 
depends on the particular network model and learning 
method [24,25].  

Networks based on Feedback and Feed-forward 
connections: The following shows some types in each 
category.  

Unsupervised Learning. 
Feedback Networks: 
1) Binary Adaptive Resonance Theory (ART1) 
2) Analog Adaptive Resonance Theory (ART2, 

ART2a)  
3) Discrete Hopfield (DH) 
4) Continuous Hopfield (CH) 
5) Discrete Bidirectional Associative Memory (BAM) 
6) Kohonen Self-organizing Map/Topology-preserving 

map (SOM/TPM) 
Feedforward-only Networks: 
1) Learning Matrix (LM) 
2) Sparse Distributed Associative Memory (SDM) 
3) Fuzzy Associative Memory (FAM) 
4) Counterprogation (CPN)-Supervised Learning 
5) Feedback Networks: 

 Brain-State-in-a-Box (BSB)-Fuzzy Congitive Map 
(FCM)  

 Boltzmann Machine (BM) 
 Backpropagation through time (BPTT) 

6) Feedforward-only Networks: 
 Perceptron-Adaline-Madaline 
 Backpropagation (BP)-Artmap 
 Learning Vector Quantization (LVQ) 
 Probabilistic Neural Network (PNN) 
 General Regression Neural Network (GRNN) 

Methodology: Training, Testing and Validation Data- 
set  

In the ANN methodology, the sample data is often 
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subdivided into training, validation, and test sets. The 
distinctions among these subsets are crucial. Ripley [26] 
defined the following:  

1) Training set: A set of examples used for learning 
that is to fit the parameters (weights) of the classifier.  

2) Validation set: A set of examples used to tune the 
parameters of a classifier, for example to choose the 
number of hidden units in a neural network.  

3) Test set: A set of examples used only to assess the 
performance (generalization) of a fully specified classi- 
fier.  

Neural networks are the only tools that fulfill all char- 
acteristics as shown in Table 1.  

Method for measurement, prediction and assessment 
of environmental problems such as aircraft pollutant 
emissions has been carried out. The use of certain meth- 

ods will require justification and reliability that must be 
demonstrated and proven. Various methods have been 
adopted for the assessment of aircraft annoyances.  

The use of different and separate methodology causes 
a wide variation in results and there are some lacks of 
information. Assessment methods show different ap- 
proaches with different levels of uncertainty as well. This 
uncertainty factor has seen from the value of the index 
that is different from any used method. Because of these 
problem and the recurrently exists no research activity on 
risk human impact from aircraft emissions near the air- 
port, it propose in this research to develop the model of 
aircraft impact by combining different inputs, in particu- 
lar concentration of pollutants (Figure 4) using Artificial 
Neural. 

Network to determine the healthy risk of people around 
 

Table 1. The advantages of neural networks.  

Characteristics 

Method Diffusive sampling 
measurements  

as input? 

High accuracy 
of results? 

Ability to  
incorporate the 
most important 

parameters? 

Easy to handle?
Short  

computing time? 

Update and  
enhancement 

possible? 

Dispersion Modeling  X     

Interpolation X   X X  

Interpolation with add 
variable 

X   X X  

Regression models X X X X   

Neural networks X X X X X X 

 

 
Summation and transfer function (processing element) 

Figure 4. The suggested ANN model.   
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the airport so we can manage the land use around the 
airport based on the healthy risk level. But the questions 
are how to combine pollutant and noise emission [15,16], 
which method that would be reliable to use for quantify- 
ing the pollutant and noise emissions, how about the ac- 
curacy and the uncertainty of model that would be reli- 
able, how about the balanced approach between eco- 
nomic, operational and environmental capacities, how far 
the zoning area of the pollutant and noise emission that 
affecting the people around airport, and what do we have 
as model to combine pollutant and noise emissions. 

Based on the problem, it will be carried out the re- 
search on how to develop model of aircraft pollutant and 
noise emissions, which is the most suitable approach to 
be used, both for the assessment of pollutant and noise 
emissions and also the combination of those methods of 
assessment. To validate the developed model, it applies 
the measurement of noise and pollutant emissions at 
Soekarno Hatta International Airport—Cengkareng Indo- 
nesia. 

The methodology will be used for assessing aircraft 
pollutant in this research is the ICAO methodology be- 
cause of emission factors used are based on engine certi- 
fication data in the ICAO Engine Exhaust Emission Da- 
tabank that contains data sets of thrust (engine perform- 
ance), fuel flow and emissions of components CO, NOx 
and SOx. Since ICAO has the approaches more widely 
used by various countries so that the concept of balanced 
approach will use for the assessment of Soekarno-Hatta 
International airport to assess the level of pollutant and 
noise emissions around airport with considering the fu- 
ture prospects of aircraft technologies.  

ANN modeling is a flexible method, which enables 
one to recognize highly complex non-linear correlations 
[22]. Statistical assumptions like normal distribution are 
not necessary, which makes them easy to handle in prin- 
ciple. The network can be trained with real measurement 
data and updated with new measurements, enhancing its 
quality and making it the ideal method for the purpose of 
this research.  

Data has been collected into two parts: Primary Data 
and Secondary Data. The Primary data consisted in noise 
and pollutant emissions measurement at Soekarno Hatta 
International Airport. The Secondary Data consist of 
Physical Data of airport, Air Traffic/Distribution of type 
of flight (time of flight/day) for one year, Topography 
Data and Weather Data. Emission and Dispersion of 
Modeling System (EDMS) has been carried out with 
concentration grid space 1 km2.  

Input variables:  
The new model ANN is used 1 layer input data with 

four input variables. Those input variables are noise level 
in decibel (dB) unit and concentration of pollutant emis- 

sions (CO, NOx, and SOx) in ug/m3 unit. Input element 
was obtained from EDMS calculate using air traffic data 
in the year 2009 and its extrapolation for 2012 at 
Soekarno Hatta Airport. 70% of the input data set is pre- 
sented to the network during training, so that the network 
can be adjusted according to its error.  

15% data are used to measure the network generaliza- 
tion and to halt the network when generalization stops 
improving. Remaining data performs testing of an inde- 
pendent measure of network performance during and 
after training. The training stops when gives a higher 
accuracy value with minimum training and testing errors.  

Processing variable:  
In process layer, proposed model used 1 hidden layer 

with 10 neurons which is the best architecture model 
ANN that obtain from tool ANN after several times 
process using sigmoid activation where the sigmoid ac- 
tivation function is the best performances in ANN. It can 
be described by the mathematical relationship  x1 1 e . 
Weight and Bias values is shown in Tables 2 and 3.  

Output variable:  
One layer for output layer was used to determine the 

healthy risk level as a target where the level has 5 healthy 
risks level that effect from aircraft noise and pollutant.  

The Levenberg-Marquadt (LM) training algorithm 
outperformed in this research by training the high dimen- 
sional data in 34 epochs with the time of 1 second. The 
performance measures and outcome of the network are 
depicted below.  

 
Number of Epochs 34 

Training (R) 0.97 

Testing (R) 0.95 

Validation (R) 0.95 

Mean Squared Error Less than 1% 

 
The error measures like Mean Squared Error (MSE) 

are recorded. MSE is the mean of the squared error be- 
tween the desired output and the actual output of the 
neural network. The MSE is computed as follows.  

 2P N

j 0 i ij0 ijd y
MSE

NP
 



 

 

where P is the number of output processing elements. 
N: the number of exemplars in the training data set; 
yij: the estimated network emissions output for exem- 

plar i at processing element j;  
dij the actual output for emissions exemplar i at proc- 

essing element j. In this research the obtained MSE value 
is less than 1% which was attained at 28th epoch. There 
are 3 criteria based on ANN validation that choose to     
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Table 2. Healthy risk level.  

Pollutant Emissions 
Risk Score Level 

CO (µg/m3) NOx (µg/m3) SOx (µg/m3) 

Noise (dB) Additional 
and not necessary input

#5 Hazardous >200 >200 >200 >85 

#4 Unhealthy 100 - 200 99.64 - 200 85.8 - 200 70 - 85 

#3 Moderate 50 - 100 50 - 99.64 50 - 85.8 60 - 70 

#2 Good 25 - 50 25 - 50 25 - 50 50 - 60 

#1 Healthy <25 <25 <25 <50 

 
Table 3. Network weights and bias values.  

Weights Bias 

Input Hidden (IW) 

 
CO NOx SOx 

Noise: 
additional index

Hidden Output 
(LW) 

 (b1) (b2) 

w1 0.1407 −0.35259 2.2921 −1.1287 1.2221 b1 2.1849 1.2555 

w2 −1.4491 −0.18607 −1.8873 −0.26701 1.1295 b2 2.0254  

w3 1.3516 2.9137 0.27905 0.89349 2.3592 B3 −2.8272  

w4 1.4867 −0.48544 −1.5046 −1.5885 −0.75403 b4 −1.1238  

w5 −1.2303 −0.84468 1.1476 1.0959 −3.8315 b5 0.73  

w6 0.93944 0.82249 −1.0546 2.368 −0.20789 b6 −2.4039  

w7 −0.37134 0.88173 −0.88702 −1.3128 −1.1142 b7 −0.28432  

w8 −0.18717 −1.8745 0.024024 5.5257 3.3151 b8 3.8534  

w9 −0.8133 1.2728 0.49045 1.2881 1.0377 b9 −2.834  

w10 1.4671 2.4003 0.22196 0.2502 −0.77638 b10 3.7339  

 
validate the proposed of new model. Criteria 1 (Figure 5) 
is based on performance, Criteria 2 (Figure 6) is based 
on Regression R Value and Criteria 3 (Figure 7) is based 
on networks output errors. All Criteria give a best result 
of proposed ANN network. In Criteria 1, best validation 
performance is achieved at epoch 28 from 34 epochs 
(Mean Squared Error is 0.0093521). The correlation 
(Criteria 2) between target and output is validated at R = 
0.95756, means there is a close relation between target 
and output. Criteria 3 show network output errors. The 
range error value is close to zero (−0.4 - 0.6). According 
to ANN Criteria it can be say that the proposed model is 
valid. All the results are shown in below.  

The example result of simulation for Soekarno Hatta 
Airport, taking into account 2012 air traffic, is given in 
the following table. Pollutants considered were CO, HC,  

 
Figure 5. Criteria 1.   
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Figure 6. Criteria 2. 

 

 
Figure 7. Criteria 3. 

 
NOx and SOx.  
 

ANN 
calculation 

CO (t/y) HC (t/y) NOx (t/y) SOx (t/y) 

Aircraft 3025261 137216 1640890 145823 

 
It corresponds to an increase by 6% of pollutant emis-

sions a year since 2009. 

4. Conclusions 

Neural network model has been performed to assess en- 

vironmental effects and impacts of air traffic on popula- 
tions leaving around Soekarno Hatta International Air- 
port-Cengkareng Indonesia. Assessment methods con- 
sisting of statistical analysis, internal criteria of the neu- 
ral network method proved the high quality of the model 
outputs. ANN was used with the best architecture model 
4-10-1. The suggested model has been validated by nu-  
merical processing and experimental date. In Criteria 1, 
best validation performance is achieved at epoch 28 
(Mean Squared Error is less than 1%). The correlation 
(Criteria 2) between target and output is validated at R = 
96%. There is a close relation between target and outputs. 
Criteria 3 show network output errors closed to zero. For 
this developed model, concentration grid area was 1 km2. 
The result map effect around this airport was a fine 
structure to be considered on the area of 308 km2.   

In addition, a sophisticated method has to be devel- 
oped; it would allow the modeling of the effects of non- 
ISA temperature and pressure conditions at the airport. 
Particular assumptions concerning linearity variation of 
emissions with the thrust level have to be avoided. Mod- 
eling of non-linear variations of thrust settings has to be 
improved. Further research is needed with the aim to 
enlarge the scheme of the ANN model by increasing its 
input variables and a refinement of the grid around air- 
port. This is one of the major key defining environmental 
capacities of an airport that should be applied by Indone- 
sian airport authorities and international airports. These 
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would institute policies to manage or reduce pollutant 
emissions considering population and income growth to 
be socially positive.  
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