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Simulation of Gene Regulatory Networks

Bernard Ycart∗ Frédéric Pont† Jean-Jacques Fournié‡

Abstract

This limited review is intended as an introduction to the fast growing subject of math-
ematical modelling of cell metabolism and its biochemical pathways, and more precisely
on pathways linked to apoptosis of cancerous cells. Some basic mathematical models of
chemical kinetics, with emphasis on stochastic models, are presented.
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1 Introduction

This is intented as an introduction to the rapidly growing literature on the mathematical mod-
elling of biochemical pathways. This subject links several, quite different areas of research.
Depending on viewpoints, relevant articles can be found in Biology, Chemistry, Mathemat-
ics, or Informatics journals. Rather than seeking a hopeless exhaustivity, we have tried to
illustrate some of the current approaches by a few recent references.

Inside the huge domain of biochemistry, we have focused on cell metabolism and its
biochemical pathways, and more precisely on pathways linked to apoptosis of cancerous cells.
On the other hand, mathematical modelling in genomics has used many different techniques,
among which we chose to restrict our study to dynamic equations, insisting on stochastic
models.

The paper is organized as follows. In the next section we shall review a few articles on
biochemical pathways, enlighting the use of modelling and in silico experiments. Section 3
presents the basic mathematical models of chemical kinetics, with emphasis on stochastic
models. Section 4 deals with the computer simulation of stochastic models, with emphasis
on Gillespie’s algorithm. Computer integration aspects are treated in section 5.

2 Biochemical pathways

In the ever growing literature on cell metabolism and biochemical pathways, we have selected
a few references dealing with the targeting of regulatory pathways, in particular apoptosis
pathways, and their mathematical modelling. The global human metabolic map has been
reconstructed accounting for the functions of 1496 ORF’s, 2004 proteins, 2766 metabolites,
and 3311 metabolic and transport reactions [24]. A good review on apoptosis pathways is
given by Elmore [26].
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Among the most recent advances, Folger et al. [30] announce a genome-scaled network
model of cancer metabolism that they validate by predicting 52 cytostatic drug targets.
Shaughnessy et al. [80] describe a way of artificially regulating MAP kinase cascades.

Clarke et al. [14] use statistical model checking for analysing t-cell receptor signalling
pathways.

Studies linking biochemical pathways to cancer outcomes include that of Chuang et al.
[13] and Taylor et al. [100].

Devun et al. [23] have recently identified a “mitochondrial permeability transition pore-
dependent pathway to selective cell death”. Teams who have used apoptosis pathways for
cancer therapy include Chu and Chen [12], Ghobrial et al. [34], Speirs et al. [98]. A
success obtained by combining Haem oxygenase with fumarate hydratase has recently been
announced by Frezza et al. [31]. Yosef et al. [107] address the problem of optimizing gene
networks, with application to apoptosis.

The ultimate goal to systematically predict through mathematical modelling, possible
gene targets that could induce cancerous cell apoptosis has been pursued by several teams
among which Legewie et al. [63], Ryu et al. [90], Huber et al. [51].

3 Mathematical models

Many mathematical models have been applied to genomics. The interested reader is referred
to Shmulevitch and Dougherty’s book [97] or the reviews by de Jong [16], Goutsias and
Lee [44], Karlebach and Shamir [56]. Here we will focus exclusively onto the most classical
dynamic models which are those of chemical kinetics. The mathematical developments date
back to the first half of the twentieth century (see the historical section of [74]), and are
presented in many textbooks, in particular those of van Kampen [103], Ethier and Kurtz
[27], Gardiner [32], Wilkinson [104], or Kolokoltsov [60]. A short and clear introduction has
been written by Higham [49], from which we shall borrow the terminology regarding the main
three “chemical equations”. As examples, we shall use the simplest historic models of Yule
[108] and Michaelis-Menten [75, 54].

At the basis of the theory, modelling assumptions are made to ensure that the only
quantities of interest be the number of molecules of each type of reactant simultaneously
present: constant volume, well stirred medium, space homogeneity. As remarked by Higham
[49] section 9.3, these hypotheses could be questioned when applied in the biological context
of the living cell. Nevertheless, they are usually considered as unavoidable, and the models
have been theoretically established on a very firm physical and chemical base: see for instance
Gillespie [37].

A chemical reaction system is made of a certain number n of reactants (or chemical
species), and another number m of reactions destroying or producing molecules of them. The
n-dimensional state vector X(t) keeps track of the quantities of each species simultaneously
present at time t: its i-th entry counts how many molecules of species i are in the solution
at time t. According to the scale of time and numbers, three different models are considered.

1. Microscopic scale: the vector X(t) is a stochastic process with birth-and-death dynam-
ics: reactions take place one at a time at random instants and modify X(t) by a few
units added or substracted from some coordinates. The probabilities of all possible
states are the solution of the Chapmann-Kolmogorov equations for the Markov process
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{X(t)}. That system of Ordinary Differential Equations (ODE’s) is called the Chemical
Master Equation.

2. Mesoscopic scale: when rescaling time and space, the Markov jump process {X(t)}
converges to a continuous real-valued diffusion process, solution of a system of Stochastic
Differential Equations (SDE’s), called the Chemical Langevin Equation.

3. Macroscopic scale: when stochastic fluctuations are neglected, the quantities of molecu-
les are viewed as derivable functions of time, solution of a system of ODE’s, called the
Reaction Rate Equations.

The Chemical Master Equation can be explicitly solved only in exceedingly simple, mostly ir-
relevant cases, such as the Yule model that we shall treat below (other examples are reviewed
by McQuarrie in section III of [74]). The alternative approach is to simulate trajectories of
X(t) through Gillespie’s algorithm, that we shall examine in more detail in the next section.
As pointed out in section 6 of Higham [49], the so called “tau-leaping” method, which is the
usual way of accelerating the algorithm, can be viewed as an approximate solution to the
Chemical Langevin Equation. On the theoretical side, convergence of birth-and-death dy-
namics to diffusion processes has been proved by Kurtz at the end of the 70’s: chapter 10 of
[27] gives a complete theoretical treatment of diffusion processes in chemical kinetics. Thus,
from the modelling point of view, it can be considered that the microscopic and mesoscopic
scales are not essentially different: discrepancies come from the mathematical or algorithmic
treatment. The real opposition is between stochastic (microscopic and mesoscopic scales)
and deterministic (macroscopic scale) modelling. It has been discussed at length in many
references, see for instance Chen et al. [11], Goutsias [43], Liang and Qian [66], Qian [81] or
Shahrezaei and Swain [95]. The main reason why stochastic is usually preferred to determin-
istic for gene regulatory networks lies in the order of magnitude of the numbers of molecules
involved. The proteins produced by mRNA can usually be counted by a few hundreds per
second, far short from Avogadro’s number (6.02 1023) which is the scale at which deterministic
models work.

We shall now introduce the main concepts of mathematical kinetics models, illustrating
them on the two basic examples of the Yule and Michaelis-Menten models. The effect of
reactions on species is usually described by symbolic equations of the type A + B −→ C,
meaning that each time the reaction takes place or fires, one molecule of A and one molecule
of B combine to form one molecule of C. For mathematical purposes, it is convenient to
encode the effect of each reaction by two vectors of integers, called the stoichiometric vectors
(from the Greek meaning “measure of elements”). To the j-th reaction correspond vectors
ν−

j and ν+
j . Their entries are as follows.

• ν−
j (i) is the number of molecules of species i that are destroyed by reaction j,

• ν+
j (i) is the number of molecules of species i that are produced by reaction j.

For instance reaction A + B −→ C will be translated by two 3-dimensional vectors, with
entries indexed by A B and C.

ν− =




1
1
0


 and ν+ =




0
0
1



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The Yule model is a very basic population model used for instance in the case of bacte-
ria population growth. Formally, it could be assimilated to a chemical equation with only
one reactant: A −→ 2A (one bacteria becomes two when the reaction/meiosis fires). The
stoichiometric vectors only have one entry: ν− = 1 and ν+ = 2.

The Michaelis-Menten equations involve four species:

• a substrate S

• an enzyme E

• a complex C

• a product P

Here are the three equations and the corresponding stoichiometric vectors, indexed by
S, E, C, P in that order.

1. S + E −→ C: ν−
1 =




1
1
0
0


, ν+

1 =




0
0
1
0


.

2. C −→ S + E, ν−
2 =




0
0
1
0


, ν+

2 =




1
1
0
0


.

3. C −→ E + P , ν−
3 =




0
0
1
0


, ν+

3 =




0
1
0
1


.

Some textbooks use the more compact stoichiometric matrix that summarizes in its columns
the vectors above. Here is that matrix for the Michaelis-Menten model.

1 2 3

−1 +1 0 S
−1 +1 +1 E
+1 −1 −1 C

0 0 +1 P

There are two reasons to prefer the vectors ν+ and ν−. One is that the matrix looses
information when the same species appears on both sides of the equation (as in the Yule
model). The other is that the propensities, to be defined later, depend only on the ν−

j ’s and

not on the ν+
j ’s.

Regarding the mathematical expression of the different models, we shall follow the intro-
duction of Ball et al. [3]. For the stochastic version of Michaelis-Menten dynamics, see Qian
[82], Sanft et al. [91] and Higham [49]. Once the stoichiometry of the system is known, the
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evolution of the state vector only depends on successive reaction firings. Denote by Rj(t) the
number of times reaction j fires between 0 and t. Then:

X(t) = X(0) +
m∑

j=1

Rj(t)(ν
+
j − ν−

j ) .

The {Rj(t)}’s are counting processes, whose instantaneous rates are called the propensities.
Intuitively, during an interval of time [t, t + δt] short enough to ensure that only one reaction
will fire in that interval, the probability that reaction j fires should be proportional to the
duration δt. The proportionality coefficient is the instantaneous rate of Rj(t). Assuming the
system is well stirred, all molecules are equally likely to be at any location at any time. So
the probability that all molecules required for reaction j meet, should be proportional to the
number of ways of finding these molecules together. Let x be the vector of integers giving
the number of molecules of each species. The propensity of reaction j when the state vector
is x is:

λj(x) = κj

N

N
∑

i
ν−

j
(i)

∏

i

ν−
j (i)!

(
x

ν−
j (1) . . . ν−

j (n)

)
,

where N is a scaling parameter, usually taken to be the volume of the system multiplied by
Avogadro’s number, and κj is a constant, depending only on the reaction (including of course
temperature conditions). Rather than detailing the general formula above, we shall make its
meaning clear on simple examples, involving only 2 species A and B, for which the number
of molecules are denoted by a and b.

• A −→ · · · : λj(x) = κj a

• 2A −→ · · · : λj(x) = κj
1
N

a(a− 1)

• A + B −→ · · · : λj(x) = κj
1
N

ab

• 2A + 3B −→ · · · : λj(x) = κj
1

N4 a(a− 1) b(b − 1)(b− 2)

Using propensities, the counting processes {Rj(t)} can be written as:

Rj(t) = Yj

(∫ t

0
λj(X(s)) ds

)
,

where the Yj are independent unit Poisson processes. Hence the Stochastic Integral Equation
(SIE) defining X:

X(t) = X(0) +
m∑

j=1

Yj

(∫ t

0
λj(X(s)) ds

)
(ν+

j − ν−
j ) . (SIE)

The Chemical Master Equation (CME) is the forward Chapmann-Kolmogorov equation cor-
responding to the Markov process {X(t)}. It is a linear system of ODE’s where the unknowns
are the probabilities for X(t) to be in each possible state and the propensities are the coeffi-
cients.

d

dt
P[X(t) = x] = −



∑

j

λj(x)


P[X(t) = x]

+
∑

j

λj(x− ν+
j + ν−

j )P[X(t) = x− ν+
j + ν−

j ] .
(CME)
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Here is the CME for the Yule model A −→ 2A, denoting by pn(t) the probability that n
molecules of A are present at time t.

dpn(t)

dt
= −κnpn(t) + κ(n− 1)pn−1(t) .

It is a well know fact that this equation admits an explicit solution: given an initial number of
molecules of n0, the number of molecules at time t follows the negative binomial distribution
with parameters n0 and e−κt:

pn(t) =

(
n− 1

n0 − 1

)
e−κn0t(1− e−κt)n−n0 .

The expectation of that distribution is n0eκt, and its variance is n0(1− e−κt)e2κt. As already
mentioned, cases like this one are very rare and no explicit solution to the CME exists in
general.

We shall now introduce the renormalization that leads to the Chemical Langevin Equation.
Let x be a value of the state vector (counting molecules of each species). If N is the volume
multiplied by Avogadro’s number, then c = 1

N
x is the vector of concentrations (expressed

in moles per unit volume). If the coordinates of x are large, then the propensities can be
expressed asymptotically as follows:

λj(x) ≃ Nκj

∏

i

c(i)ν−
j

(i) .

Hence we can define “macroscopic” propensities as:

λ̃j(c) = κj

∏

i

c(i)ν
−
j

(i) .

Recall the SIE defining X, and divide both members by N :

X(t)

N
=

X(0)

N
+

m∑

j=1

1

N
Yj

(∫ t

0
λj(X(s)) ds

)
(ν+

j − ν−
j ) .

Replacing X by the concentration vector C = 1
N

X gives:

C(t) = C(0) +
m∑

j=1

1

N
Yj

(∫ t

0
Nλ̃j(C(s)) ds

)
(ν+

j − ν−
j ) .

Now the central limit theorem describes the asymptotics for the unit Poisson process (random
counting with an average count of 1 per time unit). At (large) time Nu the process reaches
Nu on average with fluctuations of order

√
N described by a standard Brownian motion.

lim
n→+∞

Y (Nu)−Nu√
N

= W (u) ,

where Y is a unit Poisson process, W is the standard Brownian motion and the limit is
understood in distribution. So for each reaction j, we can replace Yj(Nu) by Nu +

√
NW (u)

and get the approximation:

1

N
Yj

(∫ t

0
Nλ̃j(C(s)) ds

)
≃
∫ t

0
λ̃j(C(s)) ds +

1√
N

Wj

(∫ t

0
λ̃j(C(s)) ds

)
.
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The definition of C(t) at mesoscopic scale will thus be:

C(t) = C(0) +



∫ t

0

∑

j

λ̃j(C(s))(ν+
j − ν−

j ) ds




+
1√
N



∑

j

Wj

(∫ t

0
λ̃j(C(s)) ds

)
(ν+

j − ν−
j )


 .

This diffusion process is a solution to the following SDE, called Chemical Langevin Equation
(CLE).

dC(t) =



∑

j

λ̃j(C(s))(ν+
j − ν−

j )


 dt

+
1√
N



∑

j

√
λ̃j(C(s))(ν+

j − ν−
j ) dWj


 .

(CLE)

By neglecting the stochastic term in the CLE, we get the classical Reaction Rate Equation
(RRE).

d

dt
C(t) =

∑

j

λ̃j(C(s))(ν+
j − ν−

j ) . (RRE)

When the first member of the RRE vanishes, there remains a system of algebraic equations,
relatively easy to solve, at least numerically. Its solution (which is a solution to the RRE con-
stant in time) is called a steady state, or chemical equilibrium. Not all systems admit a steady
state, but general conditions of existence have been found: see Feinberg [28]. Stiefenhofer
[99], Thomson and Gudawardena [101, 102] study a theoretical approach to the system of
algebraic equations involved in the computation of steady states in the context of biochemical
systems.

As an illustration, we give below the CLE of our two examples. For the Yule model:

da(t) = κa(t) dt +
√

κa(t) dW

Notice that in this case, the RRE da(t) = κa(t)dt gives a(t) = a(0)eκt, in accordance with the
expectation of X(t) given above. This is a particular case: the expectation of the distribution
solving the CME or the CLE is not the solution of the RRE in general. The relations between
different types of models has been analyzed by Gillespie et al. [41].

Here are the macroscopic propensities for the Michaelis-Menten model.

1. S + E −→ C: λ̃1 = κ1s(t)e(t),

2. C −→ S + E: λ̃2 = κ2c(t),

3. C −→ E + P : λ̃3 = κ3c(t).
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Here is the CLE:

ds(t) =
(
− κ1s(t)e(t) + κ2c(t)

)
dt

+
1√
N

(
−
√

κ1s(t)e(t) dW1 +
√

κ2c(t) dW2

)

de(t) =
(
− κ1s(t)e(t) + κ2c(t) + κ3c(t)

)
dt

+
1√
N

(
−
√

κ1s(t)e(t) dW1 +
√

κ2c(t) dW2 +
√

κ3c(t) dW3

)

dc(t) =
(

+ κ1s(t)e(t)− κ2c(t)− κ3c(t)
)

dt

+
1√
N

(√
κ1s(t)e(t) dW1 −

√
κ2c(t) dW2 −

√
κ3c(t) dW3

)

dp(t) =
(
κ3c(t)

)
dt

+
1√
N

(√
κ3c(t) dW3

)
.

Even knowing that mathematical models have been established long ago on very sound
theoretical grounds, one must remain aware of two major issues. The first one is the combina-
torics of reaction systems involved in gene regulatory networks. The complete cell metabolism
involves reactants and reactions by the tens of thousands. No computer program can solve so
large systems of equations, deterministic or stochastic. In order to find shortcuts that limit
the amount of calculations required, many different approaches have been tempted. Ball et
al. [3] propose to take into account the very different scales of times at which reactions fire,
and distinguish the slower components of a system from the faster. In the same vein, Gout-
sias [42] eliminates the effect of the faster reactions by using steady states. Grognard et al.
[45] replace the essentially non linear models by piece-wise linear approximations, for which
explicit solutions can be computed. Using the same technique, Ropers et al. [89] announce
interesting stability results. Among many others, Mallavarapu et al. [69] use modularity to
divide a full scale model into more tractable components. This approach consists of con-
sidering one module of interest, while assuming that the rest of the system has reached a
steady state. Gunawardena [46] gives a graph-theoretical basis to modularity. De Jong and
Page [19] consider steady states in the context of piece-wise linear approximations. Rao and
Arkin [88] and McNamara et al. [73] couple the simulation of the CME with steady states
approximations. Ramaswamy et al. [86] study the stochastic fluctuations around the steady
state.

The other important issue is the estimation of parameters. The models presented in the
previous section are based on the propensity functions, parametrized by the reaction contants
κj . Estimating these constants is not an easy task. In the slighty different context of viral
dynamics, Miao et al. [77] have recently reviewed the different approaches to that problem,
called identifiability. The most obvious technique, already used by Michaelis and Menten
(see [54]), is regression analysis on experimental data: see Jaqaman and Danuser [53] for a
general review. Batt et al. [4] or de Jong and Ropers [20] propose alternative approaches
to parametric estimation. Even in cases where only raw estimates of the reaction constants
were known, some encouraging results show that approximated simulations can still account
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at least qualitatively for experimental results: see Gutenkunst et al. [47] or Ropers et al.
[89].

4 Stochastic Simulation Algorithms

As already pointed out, there exists a structural reason to prefer stochastic models to de-
terministic ones for gene regulatory network modelling. For that reason, and also because
numerical solvers for ODE’s are well know and implemented in all mathematical softwares,
we shall not present them here. Solutions to the stochastic models (either the CME or the
CLE) can only be obtained through Monte-Carlo methods, i.e. by simulating the stochastic
processes under consideration. The basic method of simulation is Gillespie’s algorithm, also
called Stochastic Simulation Algorithm in some references. Proposed in the context of chem-
ical reactions by Gillespie [35, 36], it is a particular case of the general method for simulating
Markov Jump Processes in continuous time through their imbedded Markov chain. The basic
version simulates a trajectory of the state vector X(t) by translating the SIE introduced in
the previous section:

X(t) = X(0) +
m∑

j=1

Yj

(∫ t

0
λj(X(s)) ds

)
(ν+

j − ν−
j ) . (SIE)

It should be understood as follows. At any time s, all m reactions have independent firing
times, that of reaction j being exponentially distributed with parameter λj(X(s)). The
next reaction will fire after a time which is the minimum of these random variables. From
elementary properties of exponential random variables, it can be deduced that:

1. the next firing will occur after a random time, exponentially distributed with parameter

λ•(X(s)) =
m∑

j=1

λj(X(s)).

2. it will be the firing of reaction j with probability
λj(X(s))

λ•(X(s))
.

The two elementary steps above are easily simulated. Any programming language has a Ran-

dom function. Successive calls of that function output sequences of pseudo-random numbers
that can be considered as realizations of independent random variables, uniformly distributed
on the interval [0, 1]. Using Random, the two elementary steps of the simulation are easily
programmed.

1. Knowing λ, to simulate a random variable exponentially distributed with parameter λ,
output − log(Random)/λ.

2. Knowing p1, . . . , pm, to simulate a random index j with probability pj,

(a) compute cumulated probabilities qj = p1 + · · ·+ pj

(b) compare Random to the qj’s

(c) if Random is in the interval [qj−1, qj], output j.

9



When reaction j fires, the state vector X(s) is incremented using the stoichiometric vectors
ν−

j and ν+
j . The pseudo-code of the Gillespie Algorithm can be written as follows.

Initialize

Time scale T ←− 0
State vector X ←− X(0)

Repeat

Compute propensities λj(X) for j = 1, . . . , m
Sum them to get λ•(X)
Compute random delay: S ←− − log(Random)/λ•(X)

Compute probabilities: pj =
λj(X(s))

λ•(X(s))
Among all reactions, choose reaction j with probability pj

Update

Time scale: T ←− T + S
State vector: X ←− X + ν+

j − ν−
j

Until end of simulation

Higham [49] provides a Matlab implementation of that algorithm. However, several reasons
make it quite inefficient.

• Billions of steps should be simulated to get a trajectory comparable to experimental
results. Even though each one of these steps is relatively cheap, the computer time
required for a full scale simulation is prohibitive.

• Even with an arithmetic coprocessor, the log function required to compute the random
delay between firings is more expensive than additions and multiplication. Using it at
each step is time consuming, and essentially useless: from the central limit theorem, it
is known that a sum of independent random variables is asymptotically distributed as a
normal variable with same expectation and variance. The expectation of an exponential
with parameter λ is 1

λ
and its variance is 1

λ2 . It is much more efficient to cumulate at
each step 1

λ
and 1

λ2 , then update the time scale only at regular intervals (say after 104

firings), with a normal variable.

• If the number of reactions is large (which is the case of gene regulatory networks),
choosing a reaction with a given probability can be expensive. A lot of computer time
is lost in updating probabilities and cumulating them. Moreover, comparing Random to
the cumulated probabilities results in many useless tests, especially when the pi’s have
very different orders of magnitude. A lot of computer time can be saved by ranking the
p′

is in decreasing order. But this can be efficient only when the same probability vector
is used many times.

• At each step, the state vector is updated by a random vector which is equal to ν+
j − ν−

j

with probability pj. But again the central limit theorem can be used. After a large
number of steps, the state vector has been updated by a sum of independent random
variables, the expectation and variance of which can be cumulated to simulate a normal
approximation only at the end of the loop.

• Updating the state vector and the propensities at each step is also time consuming and
relatively inefficient, because when the numbers of molecules are large, changing them
by a few units does not essentially modify the results.
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The remarks above where made long ago and lead to the so called tau-leaping method (dis-
cussed by Gillespie himself in [38]) that consists of considering propensities as constant for a
certain (relatively large) interval of time τ , and updating the state vector by a normal random
variable only after that time τ . In the pseudo-code below, we fixed a number of firings L
instead of fixing a time interval τ , but the difference is not essential. We shall not detail the
simulation code for normal distributions, which is routine. We call Normal(E, V ) a function
simulating normally distributed random variables with vector expectation E and covariance
matrix V .

Initialize

Time scale T ←− 0
State vector X ←− X(0)
Iterations number L

Repeat

Compute propensities λj(X) for j = 1, . . . , m
Sum them to get λ•(X)
Compute expectation and variance of time increment

Etime ←− Etime + L/λ•(X)
Vtime ←− Vtime + L/λ•(X)2

Compute probabilities: pj =
λj(X(s))

λ•(X(s))
Compute expectation and covariance of state vector increments

Estate ←−
∑

j pj(ν
+
j − ν−

j )

Vstate ←−
∑

j pj(ν
+
j − ν−

j −Estate)(ν+
j − ν−

j − Estate)t

Multiply by loop length

Estate ←− L× Estate

Vstate ←− L× Vstate

Update time scale: T ←− T + Normal(Etime, Vtime)
Update state vector: X ←− X + Normal(Estate, Vstate)

Until end of simulation

As pointed out by Higham [49] the tau-leaping method matches the Euler-Maruyama scheme
for the Chemical Langevin Equation:

dC(t) =




∑

j

λ̃j(C(s))(ν+
j − ν−

j )



 dt

+
1√
N




∑

j

√
λ̃j(C(s))(ν+

j − ν−
j ) dWj



 .

(CLE)

It is a well know fact that the Euler-Maruyama scheme, like the Euler scheme for ODE’s,
tends to be numerically unstable. At the expense of a slight increase in computer time, one
gets a better precision by using instead the Heun scheme. The book by Kloeden and Platen
[59] is the indispensable reference on numerical schemes for SDE’s.

Improvements on the Stochastic Simulation algorithms have generated many works, and
Gillespie and his co-authors have been very active: Liu et al. [65] give a review of existing
methods; Cao et al. [8] investigate numerical stability of leaping methods; Gillespie et al.
[39, 40] address the problem of accelerating the simulation when propensities have very differ-
ent orders of magnitudes. In [41, 105], the approximations to the Michaelis-Menten equations
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are discussed, and the gain in computer time of leaping is evaluated. The same problem of
multiple time scales has also been adressed by Ball et al. [3], Haseltine and Rawlings [48],
Liu and Vanden-Eijden [67], McColluma et al. [72]. Other improvements include Bruck and
Gibson’s [7] study on simulation of large systems, and the works by Ramaswamy and his
co-authors [83, 84, 85] on partial propensity. Elf and Ehrenberger [25] replace simulation
by an evaluation of fluctuations around the solution of the RRE using linear noise approx-
imations. Zhou et al. [110] have applied a stochastic algorithm to coupled reactions with
delays. Recently, Zeron and Santillan [109] published a numerical study of a gene network
with negative feedback regulation, including the stability of steady state.

5 Computer integration

The “Virtual Cell” of Gunawardena et al. in Harvard or de Jong [17] in Grenoble, is still a
beautiful dream; yet significant steps toward its realization have been made.

Regarding biochemical pathways, the process of knowledge accumulation and sharing has
long been very lively. The “Pathway Resource List”, or “PathGuide” [1] currently lists more
than 400 databases on biological pathways and molecular interaction, most of them freely
accessible. Examples include BiGG [93] MetaCyc and BioCyc [10], KEGG [55], TRANSPATH
[61], BioCyc [62], Reactome [71], PANTHER [76], PID [92]. Several databases now come
with integrated environments that offer different vizualisations, like Cytoscape [96], or even
simulate the archived models, like BioModels [64] or Expasy [33]. Kitano [57] or Huang et
al. [50] review computational tools available in Systems Biology.

In the accumulation process, the standardization issue was raised very early. In 2000,
Bader and Hogue [2] had already proposed BIND, a data specification adapted to pathways.
In 2005, Cary et al. [9] listed 170 existing databases and called for standard exchange formats
to successfully integrate data on a large scale. These were already under development, and
they integrate standard programming tools for the simulation and treatment of gene networks
and pathways: BioPAX [22] SBML [52], CellML [78], Biolingua [70]. Other programming
toolboxes include COBRA [5], GNA [18], PATIKA [21], and DIZZY [87], the latest being
more focused on stochastic simulation.

Together with software realizations, informatics theoretical researches attempted a formal-
ization of languages and investigation procedures. Fisher and Henzinger [29] call “Executable
Biology” that research area constructing computational models of biological systems. Kitano
[58] proposes a graphical notation for biochemical networks. Danos and Laneve [15] invent
an abstract language for formal proteins. Berthoumieux et al. [6] study the identification of
network models though incomplete high throughput datasets. For testing and experimenting
purposes, Lok and Brent [68] construct an automatic generation tool for cellular reaction
networks. Monteiro et al. [79] propose a service oriented architecture for integrated treat-
ment of networks. Schultz et al. [94] discuss the clustering of computational models based
on semantic annotations. Yamamoto et al. [106] have developped an Artificial Intelligence
system, SOLAR, that includes reasonning tools for biological inference on pathways.
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