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This limited review is intended as an introduction to the fast growing subject of mathematical modelling of cell metabolism and its biochemical pathways, and more precisely on pathways linked to apoptosis of cancerous cells. Some basic mathematical models of chemical kinetics, with emphasis on stochastic models, are presented.

Introduction

This is intented as an introduction to the rapidly growing literature on the mathematical modelling of biochemical pathways. This subject links several, quite different areas of research. Depending on viewpoints, relevant articles can be found in Biology, Chemistry, Mathematics, or Informatics journals. Rather than seeking a hopeless exhaustivity, we have tried to illustrate some of the current approaches by a few recent references.

Inside the huge domain of biochemistry, we have focused on cell metabolism and its biochemical pathways, and more precisely on pathways linked to apoptosis of cancerous cells. On the other hand, mathematical modelling in genomics has used many different techniques, among which we chose to restrict our study to dynamic equations, insisting on stochastic models.

The paper is organized as follows. In the next section we shall review a few articles on biochemical pathways, enlighting the use of modelling and in silico experiments. Section 3 presents the basic mathematical models of chemical kinetics, with emphasis on stochastic models. Section 4 deals with the computer simulation of stochastic models, with emphasis on Gillespie's algorithm. Computer integration aspects are treated in section 5.

Biochemical pathways

In the ever growing literature on cell metabolism and biochemical pathways, we have selected a few references dealing with the targeting of regulatory pathways, in particular apoptosis pathways, and their mathematical modelling. The global human metabolic map has been reconstructed accounting for the functions of 1496 ORF's, 2004 proteins, 2766 metabolites, and 3311 metabolic and transport reactions [START_REF] Duarte | Global reconstruction of the human metabolic network based on genomic and bibliomic data[END_REF]. A good review on apoptosis pathways is given by Elmore [START_REF] Elmore | Apoptosis: a review of programmed cell death[END_REF]. 1 Among the most recent advances, Folger et al. [START_REF] Folger | Predicting selective drug targets in cancer through metabolic networks[END_REF] announce a genome-scaled network model of cancer metabolism that they validate by predicting 52 cytostatic drug targets. Shaughnessy et al. [START_REF] O'shaughnessy | Tunable signal processing in synthetic MAP kinase cascades[END_REF] describe a way of artificially regulating MAP kinase cascades.

Clarke et al. [START_REF] Clarke | Statistical model checking in biolab: Applications to the automated analysis of t-cell receptor signalling pathway[END_REF] use statistical model checking for analysing t-cell receptor signalling pathways.

Studies linking biochemical pathways to cancer outcomes include that of Chuang et al. [START_REF] Chuang | Network based classification of breast cancer metastasis[END_REF] and Taylor et al. [START_REF] Taylor | Dynamic modularity in interaction networks predicts breast cancer outcome[END_REF].

Devun et al. [START_REF] Devun | Ubiquinone analogs: a mitochondrial permeability transition pore-dependent pathway to selective cell death[END_REF] have recently identified a "mitochondrial permeability transition poredependent pathway to selective cell death". Teams who have used apoptosis pathways for cancer therapy include Chu and Chen [START_REF] Chu | Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets[END_REF], Ghobrial et al. [START_REF] Ghobrial | Targeting apoptosis pathways in cancer therapy[END_REF], Speirs et al. [START_REF] Speirs | Harnessing the cell death pathway for targeted cancer treatment[END_REF]. A success obtained by combining Haem oxygenase with fumarate hydratase has recently been announced by Frezza et al. [START_REF] Frezza | Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase[END_REF]. Yosef et al. [START_REF] Yosef | Toward accurate reconstruction of functional protein networks[END_REF] address the problem of optimizing gene networks, with application to apoptosis.

The ultimate goal to systematically predict through mathematical modelling, possible gene targets that could induce cancerous cell apoptosis has been pursued by several teams among which Legewie et al. [START_REF] Legewie | Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability[END_REF], Ryu et al. [START_REF] Ryu | Mathematical modeling of the formation of apoptosome in intrinsic pathway of apoptosis[END_REF], Huber et al. [START_REF] Huber | Mathematical modelling of the mitochondrial apoptosis pathway[END_REF].

Mathematical models

Many mathematical models have been applied to genomics. The interested reader is referred to Shmulevitch and Dougherty's book [START_REF] Shmulevitch | Genomic signal processing[END_REF] or the reviews by de Jong [START_REF] Jong | Modeling and simulation of genetic regulatory systems: a literature review[END_REF], Goutsias and Lee [START_REF] Goutsias | Computational and experimental approaches for modeling gene regulatory networks[END_REF], Karlebach and Shamir [START_REF] Karlebach | Modelling and analysis of gene regulatory networks[END_REF]. Here we will focus exclusively onto the most classical dynamic models which are those of chemical kinetics. The mathematical developments date back to the first half of the twentieth century (see the historical section of [START_REF] Mcquarrie | Stochastic approach to chemical kinetics[END_REF]), and are presented in many textbooks, in particular those of van Kampen [START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF], Ethier and Kurtz [START_REF] Ethier | Markov processes: characterization and convergence[END_REF], Gardiner [START_REF] Gardiner | Handbook of stochastic methods for physics, chemistry and the natural sciences[END_REF], Wilkinson [START_REF] Wilkinson | Stochastic modelling for systems biology[END_REF], or Kolokoltsov [START_REF] Kolokoltsov | Nonlinear Markov processes and kinetic Equations[END_REF]. A short and clear introduction has been written by Higham [START_REF] Higham | Modeling and simulating chemical reactions[END_REF], from which we shall borrow the terminology regarding the main three "chemical equations". As examples, we shall use the simplest historic models of Yule [START_REF] Yule | A mathematical theory of evolution, based on the conclusions of Dr[END_REF] and Michaelis-Menten [START_REF] Menten | Die Kinetic der Invertinwirkung[END_REF][START_REF] Johnson | The original Michaelis constant: translation of the 1913 Michaelis-Menten paper[END_REF].

At the basis of the theory, modelling assumptions are made to ensure that the only quantities of interest be the number of molecules of each type of reactant simultaneously present: constant volume, well stirred medium, space homogeneity. As remarked by Higham [START_REF] Higham | Modeling and simulating chemical reactions[END_REF] section 9.3, these hypotheses could be questioned when applied in the biological context of the living cell. Nevertheless, they are usually considered as unavoidable, and the models have been theoretically established on a very firm physical and chemical base: see for instance Gillespie [START_REF] Gillespie | A rigourous derivation of the chemical master equation[END_REF]. A chemical reaction system is made of a certain number n of reactants (or chemical species), and another number m of reactions destroying or producing molecules of them. The n-dimensional state vector X(t) keeps track of the quantities of each species simultaneously present at time t: its i-th entry counts how many molecules of species i are in the solution at time t. According to the scale of time and numbers, three different models are considered.

1. Microscopic scale: the vector X(t) is a stochastic process with birth-and-death dynamics: reactions take place one at a time at random instants and modify X(t) by a few units added or substracted from some coordinates. The probabilities of all possible states are the solution of the Chapmann-Kolmogorov equations for the Markov process [START_REF] Mcquarrie | Stochastic approach to chemical kinetics[END_REF]). The alternative approach is to simulate trajectories of X(t) through Gillespie's algorithm, that we shall examine in more detail in the next section. As pointed out in section 6 of Higham [START_REF] Higham | Modeling and simulating chemical reactions[END_REF], the so called "tau-leaping" method, which is the usual way of accelerating the algorithm, can be viewed as an approximate solution to the Chemical Langevin Equation. On the theoretical side, convergence of birth-and-death dynamics to diffusion processes has been proved by Kurtz at the end of the 70's: chapter 10 of [START_REF] Ethier | Markov processes: characterization and convergence[END_REF] gives a complete theoretical treatment of diffusion processes in chemical kinetics. Thus, from the modelling point of view, it can be considered that the microscopic and mesoscopic scales are not essentially different: discrepancies come from the mathematical or algorithmic treatment. The real opposition is between stochastic (microscopic and mesoscopic scales) and deterministic (macroscopic scale) modelling. It has been discussed at length in many references, see for instance Chen et al. [START_REF] Chen | Classic and contemporary approaches to modeling biochemical reactions[END_REF], Goutsias [START_REF] Goutsias | Classical versus stochastic kinetics modeling of biochemical reaction systems[END_REF], Liang and Qian [START_REF] Liang | Computational cellular dynamics based on the cheical master equation: a challenge for understanding complexity[END_REF], Qian [START_REF] Qian | The mathematical theory of molecular motor movement and chemomechanical energy transduction[END_REF] or Shahrezaei and Swain [START_REF] Shahrezaei | The stochastic nature of biochemical networks[END_REF]. The main reason why stochastic is usually preferred to deterministic for gene regulatory networks lies in the order of magnitude of the numbers of molecules involved. The proteins produced by mRNA can usually be counted by a few hundreds per second, far short from Avogadro's number (6.02 10 23 ) which is the scale at which deterministic models work.

We shall now introduce the main concepts of mathematical kinetics models, illustrating them on the two basic examples of the Yule and Michaelis-Menten models. The effect of reactions on species is usually described by symbolic equations of the type A + B -→ C, meaning that each time the reaction takes place or fires, one molecule of A and one molecule of B combine to form one molecule of C. For mathematical purposes, it is convenient to encode the effect of each reaction by two vectors of integers, called the stoichiometric vectors (from the Greek meaning "measure of elements"). To the j-th reaction correspond vectors ν - j and ν + j . Their entries are as follows.

• ν - j (i) is the number of molecules of species i that are destroyed by reaction j,

• ν + j (i)
is the number of molecules of species i that are produced by reaction j.

For instance reaction A + B -→ C will be translated by two 3-dimensional vectors, with entries indexed by A B and C.

ν -=    1 1 0    and ν + =    0 0 1   
The Yule model is a very basic population model used for instance in the case of bacteria population growth. Formally, it could be assimilated to a chemical equation with only one reactant: A -→ 2A (one bacteria becomes two when the reaction/meiosis fires). The stoichiometric vectors only have one entry: ν -= 1 and ν + = 2.

The Michaelis-Menten equations involve four species:

• a substrate S • an enzyme E • a complex C • a product P
Here are the three equations and the corresponding stoichiometric vectors, indexed by S, E, C, P in that order.

1. S + E -→ C: ν - 1 =      1 1 0 0      , ν + 1 =      0 0 1 0      . 2. C -→ S + E, ν - 2 =      0 0 1 0      , ν + 2 =      1 1 0 0      . 3. C -→ E + P , ν - 3 =      0 0 1 0      , ν + 3 =      0 1 0 1     
. Some textbooks use the more compact stoichiometric matrix that summarizes in its columns the vectors above. Here is that matrix for the Michaelis-Menten model.

1 2 3 -1 +1 0 S -1 +1 +1 E +1 -1 -1 C 0 0 +1 P
There are two reasons to prefer the vectors ν + and ν -. One is that the matrix looses information when the same species appears on both sides of the equation (as in the Yule model). The other is that the propensities, to be defined later, depend only on the ν - j 's and not on the ν + j 's. Regarding the mathematical expression of the different models, we shall follow the introduction of Ball et al. [START_REF] Ball | Asymptotic analysis of multiscale approximations to reaction networks[END_REF]. For the stochastic version of Michaelis-Menten dynamics, see Qian [START_REF] Qian | Single molecule enzymology: stochastic michelis-menten kinetics[END_REF], Sanft et al. [START_REF] Sanft | Legitimacy of the stochastic michaelismenten approximation[END_REF] and Higham [START_REF] Higham | Modeling and simulating chemical reactions[END_REF]. Once the stoichiometry of the system is known, the evolution of the state vector only depends on successive reaction firings. Denote by R j (t) the number of times reaction j fires between 0 and t. Then:

X(t) = X(0) + m j=1 R j (t)(ν + j -ν - j ) .
The {R j (t)}'s are counting processes, whose instantaneous rates are called the propensities.

Intuitively, during an interval of time [t, t + δt] short enough to ensure that only one reaction will fire in that interval, the probability that reaction j fires should be proportional to the duration δt. The proportionality coefficient is the instantaneous rate of R j (t). Assuming the system is well stirred, all molecules are equally likely to be at any location at any time. So the probability that all molecules required for reaction j meet, should be proportional to the number of ways of finding these molecules together. Let x be the vector of integers giving the number of molecules of each species. The propensity of reaction j when the state vector is x is:

λ j (x) = κ j N N i ν - j (i) i ν - j (i)! x ν - j (1) . . . ν - j (n) ,
where N is a scaling parameter, usually taken to be the volume of the system multiplied by Avogadro's number, and κ j is a constant, depending only on the reaction (including of course temperature conditions). Rather than detailing the general formula above, we shall make its meaning clear on simple examples, involving only 2 species A and B, for which the number of molecules are denoted by a and b.

• A -→ • • • : λ j (x) = κ j a • 2A -→ • • • : λ j (x) = κ j 1 N a(a -1) • A + B -→ • • • : λ j (x) = κ j 1 N ab • 2A + 3B -→ • • • : λ j (x) = κ j 1 N 4 a(a -1) b(b -1)(b -2)
Using propensities, the counting processes {R j (t)} can be written as:

R j (t) = Y j t 0 λ j (X(s)) ds ,
where the Y j are independent unit Poisson processes. Hence the Stochastic Integral Equation (SIE) defining X:

X(t) = X(0) + m j=1 Y j t 0 λ j (X(s)) ds (ν + j -ν - j ) . (SIE)
The Chemical Master Equation (CME) is the forward Chapmann-Kolmogorov equation corresponding to the Markov process {X(t)}. It is a linear system of ODE's where the unknowns are the probabilities for X(t) to be in each possible state and the propensities are the coefficients.

d dt P[X(t) = x] = -   j λ j (x)   P[X(t) = x] + j λ j (x -ν + j + ν - j ) P[X(t) = x -ν + j + ν - j ] . (CME)
Here is the CME for the Yule model A -→ 2A, denoting by p n (t) the probability that n molecules of A are present at time t.

dp n (t) dt = -κnp n (t) + κ(n -1)p n-1 (t) .
It is a well know fact that this equation admits an explicit solution: given an initial number of molecules of n 0 , the number of molecules at time t follows the negative binomial distribution with parameters n 0 and e -κt :

p n (t) = n -1 n 0 -1 e -κn 0 t (1 -e -κt ) n-n 0 .
The expectation of that distribution is n 0 e κt , and its variance is n 0 (1 -e -κt )e 2κt . As already mentioned, cases like this one are very rare and no explicit solution to the CME exists in general.

We shall now introduce the renormalization that leads to the Chemical Langevin Equation.

Let x be a value of the state vector (counting molecules of each species). If N is the volume multiplied by Avogadro's number, then c = 1 N x is the vector of concentrations (expressed in moles per unit volume). If the coordinates of x are large, then the propensities can be expressed asymptotically as follows:

λ j (x) ≃ N κ j i c(i) ν - j (i) .
Hence we can define "macroscopic" propensities as:

λ j (c) = κ j i c(i) ν - j (i) .
Recall the SIE defining X, and divide both members by N :

X(t) N = X(0) N + m j=1 1 N Y j t 0 λ j (X(s)) ds (ν + j -ν - j ) .
Replacing X by the concentration vector C = 1 N X gives:

C(t) = C(0) + m j=1 1 N Y j t 0 N λ j (C(s)) ds (ν + j -ν - j ) .
Now the central limit theorem describes the asymptotics for the unit Poisson process (random counting with an average count of 1 per time unit). At (large) time N u the process reaches N u on average with fluctuations of order √ N described by a standard Brownian motion.

lim n→+∞ Y (N u) -N u √ N = W (u) ,
where Y is a unit Poisson process, W is the standard Brownian motion and the limit is understood in distribution. So for each reaction j, we can replace Y j (N u) by N u + √ N W (u) and get the approximation:

1 N Y j t 0 N λ j (C(s)) ds ≃ t 0 λ j (C(s)) ds + 1 √ N W j t 0 λ j (C(s)) ds .
The definition of C(t) at mesoscopic scale will thus be:

C(t) = C(0) +   t 0 j λ j (C(s))(ν + j -ν - j ) ds   + 1 √ N   j W j t 0 λ j (C(s)) ds (ν + j -ν - j )   .
This diffusion process is a solution to the following SDE, called Chemical Langevin Equation (CLE).

dC(t) =   j λ j (C(s))(ν + j -ν - j )   dt + 1 √ N   j λ j (C(s))(ν + j -ν - j ) dW j   .
(CLE)

By neglecting the stochastic term in the CLE, we get the classical Reaction Rate Equation

(RRE). d dt C(t) = j λ j (C(s))(ν + j -ν - j ) . (RRE)
When the first member of the RRE vanishes, there remains a system of algebraic equations, relatively easy to solve, at least numerically. Its solution (which is a solution to the RRE constant in time) is called a steady state, or chemical equilibrium. Not all systems admit a steady state, but general conditions of existence have been found: see Feinberg [START_REF] Feinberg | The existence and uniqueness of steady states for a class of chemical reaction networks[END_REF]. Stiefenhofer [START_REF] Stiefenhofer | Quasi-steady-state approximation for chemical reaction networks[END_REF], Thomson and Gudawardena [START_REF] Thomson | The rational parametrization theorem for multisite post-translational modification systems[END_REF][START_REF] Thomson | Unlimited multistability in multisite phophorylation systems[END_REF] study a theoretical approach to the system of algebraic equations involved in the computation of steady states in the context of biochemical systems.

As an illustration, we give below the CLE of our two examples. For the Yule model:

da(t) = κa(t) dt + κa(t) dW
Notice that in this case, the RRE da(t) = κa(t)dt gives a(t) = a(0)e κt , in accordance with the expectation of X(t) given above. This is a particular case: the expectation of the distribution solving the CME or the CLE is not the solution of the RRE in general. The relations between different types of models has been analyzed by Gillespie et al. [START_REF] Gillespie | The subtle business of model reduction for stochastic chemical kinetics[END_REF].

Here are the macroscopic propensities for the Michaelis-Menten model.

1. S + E -→ C: λ 1 = κ 1 s(t)e(t), 2. C -→ S + E: λ 2 = κ 2 c(t), 3. C -→ E + P : λ 3 = κ 3 c(t).
Here is the CLE:

ds(t) = -κ 1 s(t)e(t) + κ 2 c(t) dt + 1 √ N -κ 1 s(t)e(t) dW 1 + κ 2 c(t) dW 2 de(t) = -κ 1 s(t)e(t) + κ 2 c(t) + κ 3 c(t) dt + 1 √ N -κ 1 s(t)e(t) dW 1 + κ 2 c(t) dW 2 + κ 3 c(t) dW 3 dc(t) = + κ 1 s(t)e(t) -κ 2 c(t) -κ 3 c(t) dt + 1 √ N κ 1 s(t)e(t) dW 1 -κ 2 c(t) dW 2 -κ 3 c(t) dW 3 dp(t) = κ 3 c(t) dt + 1 √ N κ 3 c(t) dW 3 .
Even knowing that mathematical models have been established long ago on very sound theoretical grounds, one must remain aware of two major issues. The first one is the combinatorics of reaction systems involved in gene regulatory networks. The complete cell metabolism involves reactants and reactions by the tens of thousands. No computer program can solve so large systems of equations, deterministic or stochastic. In order to find shortcuts that limit the amount of calculations required, many different approaches have been tempted. Ball et al. [START_REF] Ball | Asymptotic analysis of multiscale approximations to reaction networks[END_REF] propose to take into account the very different scales of times at which reactions fire, and distinguish the slower components of a system from the faster. In the same vein, Goutsias [START_REF] Goutsias | Quasi-equilibrium approximation of fast reaction kinetics in stochastic biochemical systems[END_REF] eliminates the effect of the faster reactions by using steady states. Grognard et al. [START_REF] Grognard | Piecewise-linear models of genetic regulatory networks: theory and example[END_REF] replace the essentially non linear models by piece-wise linear approximations, for which explicit solutions can be computed. Using the same technique, Ropers et al. [START_REF] Ropers | Model reduction using piecewise linear approximations preserves dynamic properties of the carbon starvation response in Escherichia Coli[END_REF] announce interesting stability results. Among many others, Mallavarapu et al. [START_REF] Mallavarapu | Programming with models: modularity and abstraction provide powerful capabilities for systems biology[END_REF] use modularity to divide a full scale model into more tractable components. This approach consists of considering one module of interest, while assuming that the rest of the system has reached a steady state. Gunawardena [START_REF] Gunawardena | A linear elimination framework for nonlinear biochemical systems[END_REF] gives a graph-theoretical basis to modularity. De Jong and Page [START_REF] Jong | Search for steady states of piecewise-linear differential equation models of genetic regulatory networks[END_REF] consider steady states in the context of piece-wise linear approximations. Rao and Arkin [START_REF] Rao | Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm[END_REF] and McNamara et al. [START_REF] Mcnamara | Stochastic chemical kinetics and the total quasi-steady-state assumption: Application to the stochastic simulation algorithm and chemical master equation[END_REF] couple the simulation of the CME with steady states approximations. Ramaswamy et al. [START_REF] Ramaswamy | Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks[END_REF] study the stochastic fluctuations around the steady state.

The other important issue is the estimation of parameters. The models presented in the previous section are based on the propensity functions, parametrized by the reaction contants κ j . Estimating these constants is not an easy task. In the slighty different context of viral dynamics, Miao et al. [START_REF] Miao | On identifiability of nonlinear ODE models and applications in viral dynamics[END_REF] have recently reviewed the different approaches to that problem, called identifiability. The most obvious technique, already used by Michaelis and Menten (see [START_REF] Johnson | The original Michaelis constant: translation of the 1913 Michaelis-Menten paper[END_REF]), is regression analysis on experimental data: see Jaqaman and Danuser [START_REF] Jaqaman | Linking data to models: data regression[END_REF] for a general review. Batt et al. [START_REF] Batt | Efficient parameter search for qualitative models of regulatory networks using symbolic model checking[END_REF] or de Jong and Ropers [START_REF] Jong | Strategies for dealing with incomplete information in the modeling of molecular interaction networks[END_REF] propose alternative approaches to parametric estimation. Even in cases where only raw estimates of the reaction constants were known, some encouraging results show that approximated simulations can still account at least qualitatively for experimental results: see Gutenkunst et al. [START_REF] Gutenkunst | Universally sloppy parameter sensitivities in systems biology models[END_REF] or Ropers et al. [START_REF] Ropers | Model reduction using piecewise linear approximations preserves dynamic properties of the carbon starvation response in Escherichia Coli[END_REF].

Stochastic Simulation Algorithms

As already pointed out, there exists a structural reason to prefer stochastic models to deterministic ones for gene regulatory network modelling. For that reason, and also because numerical solvers for ODE's are well know and implemented in all mathematical softwares, we shall not present them here. Solutions to the stochastic models (either the CME or the CLE) can only be obtained through Monte-Carlo methods, i.e. by simulating the stochastic processes under consideration. The basic method of simulation is Gillespie's algorithm, also called Stochastic Simulation Algorithm in some references. Proposed in the context of chemical reactions by Gillespie [START_REF] Gillespie | A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[END_REF][START_REF] Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF], it is a particular case of the general method for simulating Markov Jump Processes in continuous time through their imbedded Markov chain. The basic version simulates a trajectory of the state vector X(t) by translating the SIE introduced in the previous section:

X(t) = X(0) + m j=1 Y j t 0 λ j (X(s)) ds (ν + j -ν - j ) . (SIE)
It should be understood as follows. At any time s, all m reactions have independent firing times, that of reaction j being exponentially distributed with parameter λ j (X(s)). The next reaction will fire after a time which is the minimum of these random variables. From elementary properties of exponential random variables, it can be deduced that:

1. the next firing will occur after a random time, exponentially distributed with parameter

λ • (X(s)) = m j=1
λ j (X(s)).

2. it will be the firing of reaction j with probability λ j (X(s)) λ • (X(s)) .

The two elementary steps above are easily simulated. Any programming language has a Random function. Successive calls of that function output sequences of pseudo-random numbers that can be considered as realizations of independent random variables, uniformly distributed on the interval [0, 1]. Using Random, the two elementary steps of the simulation are easily programmed.

1. Knowing λ, to simulate a random variable exponentially distributed with parameter λ, output -log(Random)/λ.

2. Knowing p 1 , . . . , p m , to simulate a random index j with probability p j , (a) compute cumulated probabilities

q j = p 1 + • • • + p j (b) compare Random to the q j 's (c) if Random is in the interval [q j-1 , q j ], output j.
When reaction j fires, the state vector X(s) is incremented using the stoichiometric vectors ν - j and ν + j . The pseudo-code of the Gillespie Algorithm can be written as follows. Initialize Time scale T ←-0 State vector X ←-X(0) Repeat Compute propensities λ j (X) for j = 1, . . . , m Sum them to get λ • (X) Compute random delay: S ←--log(Random)/λ • (X)

Compute probabilities: p j = λ j (X(s)) λ • (X(s)) Among all reactions, choose reaction j with probability p j Update Time scale:

T ←-T + S State vector: X ←-X + ν + j -ν - j
Until end of simulation Higham [START_REF] Higham | Modeling and simulating chemical reactions[END_REF] provides a Matlab implementation of that algorithm. However, several reasons make it quite inefficient.

• Billions of steps should be simulated to get a trajectory comparable to experimental results. Even though each one of these steps is relatively cheap, the computer time required for a full scale simulation is prohibitive.

• Even with an arithmetic coprocessor, the log function required to compute the random delay between firings is more expensive than additions and multiplication. Using it at each step is time consuming, and essentially useless: from the central limit theorem, it is known that a sum of independent random variables is asymptotically distributed as a normal variable with same expectation and variance. The expectation of an exponential with parameter λ is 1 λ and its variance is 1 λ 2 . It is much more efficient to cumulate at each step 1 λ and 1 λ 2 , then update the time scale only at regular intervals (say after 10 4 firings), with a normal variable.

• If the number of reactions is large (which is the case of gene regulatory networks), choosing a reaction with a given probability can be expensive. A lot of computer time is lost in updating probabilities and cumulating them. Moreover, comparing Random to the cumulated probabilities results in many useless tests, especially when the p i 's have very different orders of magnitude. A lot of computer time can be saved by ranking the p ′ i s in decreasing order. But this can be efficient only when the same probability vector is used many times.

• At each step, the state vector is updated by a random vector which is equal to ν + j -ν - j with probability p j . But again the central limit theorem can be used. After a large number of steps, the state vector has been updated by a sum of independent random variables, the expectation and variance of which can be cumulated to simulate a normal approximation only at the end of the loop.

• Updating the state vector and the propensities at each step is also time consuming and relatively inefficient, because when the numbers of molecules are large, changing them by a few units does not essentially modify the results.

The remarks above where made long ago and lead to the so called tau-leaping method (discussed by Gillespie himself in [START_REF] Gillespie | Approximate accelerated stochastic simulation of chemically reacting systems[END_REF]) that consists of considering propensities as constant for a certain (relatively large) interval of time τ , and updating the state vector by a normal random variable only after that time τ . In the pseudo-code below, we fixed a number of firings L instead of fixing a time interval τ , but the difference is not essential. We shall not detail the simulation code for normal distributions, which is routine. We call Normal(E, V ) a function simulating normally distributed random variables with vector expectation E and covariance matrix V .

Initialize Time scale T ←-0 State vector X ←-X(0) Iterations number L Repeat
Compute propensities λ j (X) for j = 1, . . . , m Sum them to get λ • (X) Compute expectation and variance of time increment

E time ←-E time + L/λ • (X) V time ←-V time + L/λ • (X) 2
Compute probabilities: p j = λ j (X(s)) λ • (X(s)) Compute expectation and covariance of state vector increments

E state ←-j p j (ν + j -ν - j ) V state ←-j p j (ν + j -ν - j -E state )(ν + j -ν - j -E state ) t Multiply by loop length E state ←-L × E state V state ←-L × V state Update time scale: T ←-T + Normal(E time , V time ) Update state vector: X ←-X + Normal(E state , V state )

Until end of simulation

As pointed out by Higham [START_REF] Higham | Modeling and simulating chemical reactions[END_REF] the tau-leaping method matches the Euler-Maruyama scheme for the Chemical Langevin Equation:

dC(t) =   j λ j (C(s))(ν + j -ν - j )   dt + 1 √ N   j λ j (C(s))(ν + j -ν - j ) dW j   . (CLE)
It is a well know fact that the Euler-Maruyama scheme, like the Euler scheme for ODE's, tends to be numerically unstable. At the expense of a slight increase in computer time, one gets a better precision by using instead the Heun scheme. The book by Kloeden and Platen [START_REF] Kloeden | Numerical solution of SDE through computer experiment[END_REF] is the indispensable reference on numerical schemes for SDE's.

Improvements on the Stochastic Simulation algorithms have generated many works, and Gillespie and his co-authors have been very active: Liu et al. [START_REF] Li | Algorithms and software for stochastic simulation of biochemical reacting systems[END_REF] give a review of existing methods; Cao et al. [START_REF] Cao | The numerical stability of leaping methods for stochastic simulation of chemically reacting systems[END_REF] investigate numerical stability of leaping methods; Gillespie et al. [START_REF] Gillespie | Multicale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems[END_REF][START_REF] Gillespie | The slow-scale stochastic simulation algorithm[END_REF] address the problem of accelerating the simulation when propensities have very different orders of magnitudes. In [START_REF] Gillespie | The subtle business of model reduction for stochastic chemical kinetics[END_REF][START_REF] Wu | Michelis-menten speeds up tau-leaping under a wide range of conditions[END_REF], the approximations to the Michaelis-Menten equations are discussed, and the gain in computer time of leaping is evaluated. The same problem of multiple time scales has also been adressed by Ball et al. [START_REF] Ball | Asymptotic analysis of multiscale approximations to reaction networks[END_REF], Haseltine and Rawlings [START_REF] Haseltine | Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics[END_REF], Liu and Vanden-Eijden [START_REF] Liu | Nested stochastic simulation algorithm for chemical kinetics systems with disparate rates[END_REF], McColluma et al. [START_REF] Mccolluma | The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior[END_REF]. Other improvements include Bruck and Gibson's [START_REF] Bruck | Efficient exact stochastic simulation of chemical systems with many species and many channels[END_REF] study on simulation of large systems, and the works by Ramaswamy and his co-authors [START_REF] Ramaswamy | A new class of highly efficient exact simulation algorithms for chemical reaction networks[END_REF][START_REF] Ramaswamy | A partial-propensity variant of the compositionrejection stochastic simulation algorithm for chemical reaction networks[END_REF][START_REF] Ramaswamy | A partial-propensity formulation of the stochastic simulation algorithm for chemical rection networks with delays[END_REF] on partial propensity. Elf and Ehrenberger [START_REF] Elf | Fast evaluation of fluctuations in biochemical networks with the linear noise approximation[END_REF] replace simulation by an evaluation of fluctuations around the solution of the RRE using linear noise approximations. Zhou et al. [START_REF] Zhou | Accelerated stochastic simulation algorithm for coupled chemical reactions with delays[END_REF] have applied a stochastic algorithm to coupled reactions with delays. Recently, Zeron and Santillan [START_REF] Zeron | Numerical solution of the chemical master equation: uniqueness and stability of the stationary distribution for chemical networks, and mRNA bursting in a gene network with negative feedback regulation[END_REF] published a numerical study of a gene network with negative feedback regulation, including the stability of steady state.

Computer integration

The "Virtual Cell" of Gunawardena et al. in Harvard or de Jong [START_REF] Jong | Vers la cellule virtuelle[END_REF] in Grenoble, is still a beautiful dream; yet significant steps toward its realization have been made.

Regarding biochemical pathways, the process of knowledge accumulation and sharing has long been very lively. The "Pathway Resource List", or "PathGuide" [START_REF] Bader | Pathguide: a pathway resource list[END_REF] currently lists more than 400 databases on biological pathways and molecular interaction, most of them freely accessible. Examples include BiGG [START_REF] Schellenberger | BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions[END_REF] MetaCyc and BioCyc [START_REF] Caspi | The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases[END_REF], KEGG [START_REF] Kanehisha | The KEGG resource for deciphering the genome[END_REF], TRANSPATH [START_REF] Krull | TRANSPATH: an information resource for storing and vizualing pathways and their pathological aberrations[END_REF], BioCyc [START_REF] Krummenacker | Querying and computing with BioCyc databases[END_REF], Reactome [START_REF] Matthews | Reactome knowledgebase of human biological pathways and processes[END_REF], PANTHER [START_REF] Mi | The PANTHER database of protein families, subfamilies, functions and pathways[END_REF], PID [START_REF] Schaefer | PID: the Pathway Interaction Database[END_REF]. Several databases now come with integrated environments that offer different vizualisations, like Cytoscape [START_REF] Shannon | Cytoscape: a software environment for integrated models of biomolecular interaction networks[END_REF], or even simulate the archived models, like BioModels [START_REF] Li | BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models[END_REF] or Expasy [START_REF] Gasteiger | ExPaSy: The proteomics server for in-depth protein knowledge and analysis[END_REF]. Kitano [57] or Huang et al. [START_REF] Huang | Bioinformatics enrichment tolls: paths toward the comprehensive functional analysis of large gene lists[END_REF] review computational tools available in Systems Biology.

In the accumulation process, the standardization issue was raised very early. In 2000, Bader and Hogue [START_REF] Bader | BIND -a data specification for storing and describing biomolecular interactions, molecular complexes and pathways[END_REF] had already proposed BIND, a data specification adapted to pathways. In 2005, Cary et al. [START_REF] Cary | Pathway information for systems biology[END_REF] listed 170 existing databases and called for standard exchange formats to successfully integrate data on a large scale. These were already under development, and they integrate standard programming tools for the simulation and treatment of gene networks and pathways: BioPAX [START_REF] Demir | The BioPAX community standard for pathway data sharing[END_REF] SBML [START_REF] Hucka | Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project[END_REF], CellML [START_REF] Miller | An overview of the CellML API and its implementations[END_REF], Biolingua [START_REF] Massar | Biolingua: a programmable knowledge environment for biologists[END_REF]. Other programming toolboxes include COBRA [START_REF] Becker | Quantitative prediction of cellular metabolism with constraint based models: the COBRA toolbox[END_REF], GNA [START_REF] Jong | Genetic Network Analyser: qualitative simulation of genetic regulatory networks[END_REF], PATIKA [START_REF] Demir | PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways[END_REF], and DIZZY [START_REF] Ramsey | DIZZY: stochastic simulation of large-scale genetic regulatory networks[END_REF], the latest being more focused on stochastic simulation.

Together with software realizations, informatics theoretical researches attempted a formalization of languages and investigation procedures. Fisher and Henzinger [START_REF] Fisher | Executable cell biology[END_REF] call "Executable Biology" that research area constructing computational models of biological systems. Kitano [START_REF] Kitano | A graphical notation for biochemical networks[END_REF] proposes a graphical notation for biochemical networks. Danos and Laneve [START_REF] Danos | Formal molecular biology[END_REF] invent an abstract language for formal proteins. Berthoumieux et al. [START_REF] Berthoumieux | Identification of metabolic network models from incomplete high-throughput datasets[END_REF] study the identification of network models though incomplete high throughput datasets. For testing and experimenting purposes, Lok and Brent [START_REF] Lok | Automatic generation of cellular reaction networks with moleculizer 1.0[END_REF] construct an automatic generation tool for cellular reaction networks. Monteiro et al. [START_REF] Monteiro | A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks[END_REF] propose a service oriented architecture for integrated treatment of networks. Schultz et al. [START_REF] Schulz | Retrieval, alignment and clustering of computational models based on semantic annotations[END_REF] discuss the clustering of computational models based on semantic annotations. Yamamoto et al. [START_REF] Yamamoto | Integrating abduction and induction in biological inference using CF-induction[END_REF] have developped an Artificial Intelligence system, SOLAR, that includes reasonning tools for biological inference on pathways.