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Some mathematical tools for the Lenski experiment

Bernard Ycart∗ Agnès Hamon† J. Gaffé‡ D. Schneider§

Abstract

The Lenski experiment is a long term daily reproduction of Escherichia coli, that has
evidenced phenotypic and genetic evolutions along the years. Some mathematical models,
that could be usefull in understanding the results of that experiment, are reviewed here:
stochastic and deterministic growth, mutation appearance and fixation, competition of
species.
Keywords: cell kinetics; branching processes; Luria-Delbrück distribution
MSC: 92D25

1 Introduction

This is primarily intended as a review of a very small part of the vast litterature on
mathematical models applied to population biology. The application that we have in
mind is the Lenski experiment (referred to as LE hereafter, see [4, 43, 64, 71, 72, 73]).
Here is a much simplified description (see Philippe et al. [64] for a more detailed account).
The ancestral strain was Escherichia Coli B. Twelve populations have been propagated
by daily serial transfer, using a 1:100 dilution, in the same defined environment, for
more than 40,000 generations. The growth medium supports a maximum of 5 × 107 cells
per mL; therefore the number of cells in each one of the twelve 10 mL vessels varies
daily from 5 × 106 to 5 × 108. Our main focus will be on modelling the appearance
and fixation of mutations along successive generations. The total number of mutational
events that have happened during the 40,000 generations in each population is estimated
at 3 × 109 ([64], p. 849). Our main question here is: how did some of the mutant
strains survive and eventually invade the population? We argue that only beneficial
mutations (i.e. increasing the fitness) can have survived the experimental process. Indeed
when a nonbeneficial mutation occurs a given day, the proportion of mutants in the
population remains extremely small, and therefore the chances that mutants survive the
1:100 sampling to the next day are very small. On the contrary, a strain carrying a
beneficial mutation survives if mutant cells can be found in sizeable amounts at the
moment of dilution. Provided the new strain survives the first day dilution, chances are
that its proportion in the global population will rapidly increase. When that proportion
is close to one, the initial strain has a high probability to be wiped out by daily dilution.
Our objective here is to provide a quantified basis to the above assertions.

Although our emphasis will mainly be on probability, we shall use some elementary
population dynamics, on which our basic references are Murray [58] and Kot [45]. The
stochastic tools used here, essentially discrete sampling and birth-and-death processes,
are presented in many excellent textbooks. For probability theory, Feller’s treatise (in
particular the second volume [22]) remains a good reference. Ross [68] and Tuckwell
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[77] are oriented towards applications in biology. The basic theory of continuous time
Markov processes is developed in Bharucha-Reid [11] and Çinlar [18]. Ethier & Kurtz
[20] give a more advanced treatment, in particular of asymptotics and convergence to
diffusion processes. Some textbooks, such as Gardiner [25] are particularly oriented to
applications. Being one of the founders of the theory, Bartlett [8, 9] emphasizes population
modelling. Moran [57] develops genetic applications. Some more recent textbooks have
been devoted to stochastic modelling in biology, such as Ewens [21] and Wilkinson [83];
Allen [2] and Durrett [17] are of particular interest to us. The course given on “Stochastic
Population Systems” by D. Dawson to the Summer School in probability at PIMS-UBC
in 2009 covers all the material that we shall use and much more. The lecture notes are
available on line1.

The paper is organized as follows. The daily sampling process will be examined
first, in section 2. Next, we shall review in section 3 some deterministic models for
the evolution of two competing populations (normal and mutant cells) in a constrained
environment. On a very simple model, it will shown that the final proportion of mutants
(i.e. before the next dilution) can be deduced from the initial proportion (i.e. right after
the previous dilution) and the two division rates of normal and mutant cells. Section
4 will be devoted to the stochastic counterpart of the deterministic models examined in
section 3. The emphasis will be on the convergence of stochastic to deterministic models.
Stochastic mutation models will be reviewed in section 5. There we shall focus on the first
appearance of mutations and the proportion of mutants at the end of the first day. All
models considered here are based on several parameters, among which at least individual
division rates and mutation probabilities. The question of estimating those parameters
is therefore crucial, and it will be reviewed in section 6.

2 Daily sampling

The problem of beneficial mutations being lost in populations with periodic bottlenecks
has been studied by Wahl and Gerrish [82]. Our aim here is to give a simple quantitative
evaluation of the survival of mutations from one day to the next. Recall that the maximal
capacity of the medium is nf = 5×108. At the end of each day, nf cells are present on the
population, out of which n0 = nf /100 are sampled. Assume that at the end of one day,
N normal cells and M = nf − N mutant cells are present. How many mutant cells will
remain after the 1:100 dilution? The simplest model assumes equiprobability: assuming
that the medium is homogeneous, each n0-sized sample has the same probability to be
chosen for the next day. Therefore the number of mutants surviving dilution follows the
hypergeometric distribution with parameters nf , M and n0. In other words, the chances
to find exactly n normal cells and m = n0 − n mutant cells after dilution are:

(

M
m

)(

N
n

)

(

nf

n0

) .

Since nf is large, and n0 is small compared to nf , the hypergeometric distribution can be
correctly approximated by the binomial with parameters n0 and p = M/nf (proportion
of mutants). As a consequence, the probability to find exactly m mutants is

(

M
m

)(

N
n

)

(

nf

n0

) ≃
(

n0

m

)

pm(1 − p)n0−n .

If p is large enough (say p > 10−4), the binomial distribution above can be approxi-
mated by a Gaussian, with expectation n0p and variance n0p(1 − p). In other words, the

1http://www.math.ubc.ca/ db5d/SummerSchool09/LectureNotes.html
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proportion p′ = m/n0 will be close to p, a 95% fluctuation interval being:

p ± 1.96

√

p(1 − p)√
n0

.

Since n0 = 5 106, one can express it differently by saying that with 98.73% probability,
p′ is at distance at most 5 × 10−4 of p.

However, if p is too small, the approximation above is no longer valid. A better
approximation is given by the Poisson distribution with parameter n0p:

(

M
m

)(

N
n

)

(

nf

n0

) ≃ e−n0p (n0p)m

m!
.

We should like to emphasize here that when M is small (a few units), chances that
all mutant cells disappear after dilution are high. Indeed, the probability that no mutant
cell remains is:

(

N
n0

)

(

nf

n0

) ≃ e−n0M/nf ≃ 1 − M

100
.

For instance, if M = 10 mutant cells are present, there is a 90% probability that they
will all disappear after dilution. From the 100-fold increase, one can evaluate the daily
number of generations from a given cell to be of order 6 (26 = 64) to 7 (27 = 128). The
table below gives the values of the probability of disappearance for each value of M = 2d,
d (the number of generations) ranging from 0 to 8. Numerical calculations (from the
exact hypergeometric distribution) were obtained through R [67].

divisions 0 1 2 3 4 5 6 7 8
cells 1 2 4 8 16 32 64 128 256
proba of disappearance 0.99 0.98 0.96 0.92 0.85 0.72 0.53 0.28 0.08

3 Deterministic growth models

The simplest deterministic model, that of exponential growth, is named after Malthus
[53]:

dN(t)
dt

= νN(t) ,

where N(t) denotes the number of cells at time t, and ν is the individual division rate
(IDR) of each cell. That model had been considered long before Malthus, in particular
by Euler. What Malthus actually discussed in 1798 was precisely the growth limitation
due to lack of resources.

It may safely be pronounced, therefore, that population, when unchecked, goes
on doubling itself every twenty-five years, or increases in a geometrical ratio.
The rate according to which the productions of the earth may be supposed
to increase, it will not be easy to determine. Of this, however, we may be
perfectly certain, that the ratio of their increase must be totally of a different
nature from the ratio of the increase of population.

Quetelet was the first one to propose to account for growth limitations by substracting a
quadratic correction term to the differential equation above, in 1836 (see [66] p. 288).

La population tend à croître selon une progression géométrique.
La résistance, ou la somme des obstacles à son développement, est, toutes
choses égales d’ailleurs, comme le carré de la vitesse avec laquelle la population
tend à croître.
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Two years later, Verhulst [79] discussed various other limitating terms and compared the
models so obtained to experimental data. The model with a quadratic limitation is now
known as Verhulst model, or else logistic model.

dN(t)
dt

= νN(t)
(

1 − N(t)
nf

)

,

where nf is the maximal population sustained by the environment. The model was
generalized to several species competing in the same environment by Lotka [50] in 1925,
and Volterra [80] in 1926. Volterra discussed the different models in a course given in
1928 to the newly founded Institut Henri Poincaré. The lecture notes “Lessons on the
mathematical theory of the struggle for life” [81], to which we shall refer, appeared in
1931. Soon after, Lotka and Volterra predictions were confronted to experimental data
coming from all sorts of different contexts, in particular by Gause [26].

Here are the first lines of Volterra [81], from section 1.1 entitled “Deux espèces se
disputant la même nourriture”.

Supposons que, avec une nourriture en quantité suffisante pour satisfaire com-
plètement la voracité de ces êtres, il y ait des coefficients d’accroissement
positifs et constants ε1, ε2. Si nous nous plaçons maintenant dans le cas réel
d’espèces vivant dans un milieu délimité, la nourriture diminuera quand les
nombres N1, N2 des individus des deux espèces augmenteront et cela fera
baisser la valeur des coefficients d’accroissement. Si l’on représente la nour-
riture dévorée par unité de temps par F (N1, N2) fonction nulle avec N1, N2

ensemble, tendant vers l’infini avec chacune des variables et fonction crois-
sante de chacune d’elles, il sera assez naturel de prendre comme coefficients
d’accroissement

ε1 − γ1F (N1, N2) , ε2 − γ2F (N1, N2) ,

γ1, γ2 étant des constantes positives correspondant aux deux espèces et à leurs
besoins respectifs de nourriture.
D’où le système différentiel traduisant le développement des espèces.

dN1

dt
= [ε1 − γ1F (N1, N2)]N1 ,

dN2

dt
= [ε2 − γ2F (N1, N2)]N1 . (1)

Maintenant se pose le problème mathématique d’étudier les intégrales N1, N2

de ce système, avec des valeurs initiales N0
1 , N0

2 positives pour t = t0.
On peut démontrer que pour tout intervalle fini (t0, T ) il y a une solution
unique, de deux fonctions continues, restant comprises entre deux nombres
positifs, le plus grand ne dépendant pas de l’extrémité T de l’intervalle (c’est-
à-dire que N1, N2 restent bornés).
Étudions ce qui arrive quand le temps s’écoule indéfiniment. En transcrivant
(1) sous la forme

d log N1

dt
= ε1 − γ1F (N1, N2) ,

d log N2

dt
= ε2 − γ2F (N1, N2) , (1’)

il vient par combinaison

γ2
d log N1

dt
− γ1

d log N2

dt
= ε1γ2 − ε2γ1 ,

puis
Nγ2

1

Nγ1

2

=
(N0

1 )γ2

(N0
2 )γ1

e(ε1γ2−ε2γ1)(t−t0) . (2)
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Négligeons le cas infiniment peu probable où

ε1γ2 − ε2γ1 = 0

et supposons, en permutant au besoin les espèces, que

ε1γ2 − ε2γ1 > 0 ou
ε1

γ1
>

ε2

γ2
;

alors, d’après (2),

lim
t=∞

Nγ2

1

Nγ1

2

= +∞ . (3)

N1 restant borné, N2 tend donc vers 0.
Nous concluerons donc que la seconde espèce, celle de ε

γ le plus petit, s’épuise

et disparaît, tandis que la première subsiste.

More as an example than a realistic model, we shall consider a particular case of Volterra’s
system. Let us denote by N(t) the number of normal cells at time t, and by M(t) the
number of mutant cells. Let ν and µ be their respective IDR’s, and nf denote the
maximal capacity (total number of cells sustained by the medium). Our model, that we
shall call Volterra Model (VM) even though it is only a very particular case of (1) deemed
“infiniment peu probable” by Volterra, will be:















dN(t)
dt

= νN(t)
(

1 − N(t) + M(t)
nf

)

dM(t)
dt

= µM(t)
(

1 − N(t) + M(t)
nf

) (VM)

In other words, the growth of both normal and mutant cells is equally restricted, pro-
portionally to their sum. It stops when that sum reaches the maximal capacity nf . Of
course, the IDR’s ν and µ should be estimated, and we shall review estimation methods
in section 6. For the moment, we shall assume that the time scale has been set so that
ν = 1. Therefore µ = µ/ν can be viewed as the fitness of mutants, and we shall mainly
consider here the case µ > 1.

No explicit solution can be given to the system of differential equations (VM). How-
ever, it is quite easy to compute a numerical solution. Figure 1 plots typical trajectories
for N(t) and M(t), all starting from the same initial values N(0) = 0.9 × (5 × 106) and
M(0) = 0.1 × (5 × 106). The value of µ (the relative fitness of mutants) ranges from 1.2
to 2. All curves have the same logistic-type shape. They increase exponentially at first
(when the nutrient limitation is not yet significant), then converge asymptotically to a
limit value as t tends to +∞. The calculations show that the asymptotic value is reached
in practice for relatively small values of t. All numerical calculations and plots were made
through Scilab [14].

Let us denote by N(∞) and M(∞), the limits as t tends to infinity of N(t) and M(t).
They can be computed using Volterra’s method:







(N(∞))µ

(M(∞))ν
=

(N(0))µ

(M(0))ν

N(∞) + M(∞) = nf

Our main interest is in the evolution of the relative proportion of mutants at time t,
denoted by P (t):

P (t) =
M(t)

N(t) + M(t)
.
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Figure 1: Evolution in time of the numbers of normal and mutant cells in time in the Volterra
model. The initial proportion of mutants is 0.1. The IDR of normal cells is 1. That of mutant
cells is 1.2 (blue), 1.4 (green), 1.6 (light blue), 1.8 (red), 2 (purple).

Figure 2 shows the evolution in time of P (t), with the same values of the parameters as
before. Unlike the general case studied by Volterra, the two populations reach an equi-
librium where the proportion of mutants is not 1. Nevertheless the IDR of mutants being
larger than that of normal cells, P (t) increases in time. It converges to an asymptotic
value, denoted by P (∞). That “limit proportion of mutants” can be viewed as a function
both of the initial proportion P (0) and the fitness µ/ν. Figure 3 plots that function, for
small values of P (0) and fitnesses ranging from 1 to 5.

Consider a given strain of mutants with fitness µ > 1, and denote by fµ the (increasing)
function that maps P (0) onto P (∞). Say that the mutation has taken place on day 0,
and denote by P0 the (small but positive) proportion of mutant cells at the end of day
0. After dilution, the proportion of mutant cells at the beginning of day 1 will be a
random variable with expectation P0 (see the discussion in section 2). Provided it is
non null, at the end of day 1 the new proportion will be the image by fµ of the initial
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Figure 2: Evolution in time of the proportion of mutant cells in time in the Volterra model.
The initial proportion of mutants is 0.1. The IDR of normal cells is 1. That of mutant cells
is 1.2 (blue), 1.4 (green), 1.6 (light blue), 1.8 (red), 2 (purple).

one. Dilution transforms it in another random variable P1 with expectation fµ(P0), and
so on. Denote by Pn the proportion of mutants at the beginning of day n. At the end
of day n, it will be fµ(Pn), then at the beginning of day n + 1, Pn+1 will be a new
random variable with expectation fµ(Pn). The sequence of random variables so defined
is a Markov chain, converging to 1 (mutants will eventually invade the whole population).
Using renewal theory techniques, the distribution of the (random) number of days before
complete invasion can be precisely estimated. The rapid growth of fµ (figure 3) makes it
quite likely that even starting at day 0 with a small proportion of mutants, the number of
days to complete invasion will be relatively small, conditionally of course to the fact that
mutants do not disappear upon dilution in the first days. An estimate for the number
of days until complete invasion can be obtained by iteratively applying fu, starting with
p0 = 1/n0 (a single mutant on day 0). The results are plotted on figure 4: with a relative
fitness of 1.2, it takes about 25 days for mutant cells to invade the population, whereas
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Figure 3: Limit proportion of mutant cells in the Volterra model (Z-axis, normal scale). The
initial proportion P (0), ranges from e−1 = 0.368 to e−10 = 4.5 × 10−5 (X-axis, log-scale).
The 50 fitnesses are linearly spaced between 1 and 5 (Y-axis, normal scale).

with a relative fitness of 2, it takes 5 days.

Symmetrically, the same techniques will show that for a nonbeneficial mutation (µ 6

1), there are very little chances that the mutation will survive day 2, even if it survives
dilution on day 1.

A more sophisticated model, adapted to the context of bacterial growth experiments,
was introduced by Herbert, Ellsworth & Telling, and independenty by Powell in 1956
(see [65, 33], and references therein). A description is given in chapter 12 of Kot [45].
The model takes into account the nutrient, and follows the evolution of bacterial cells as
a Michaelis-Menten enzymatic reaction (see [36] for a historical account of Michaelis &
Menten’s original paper). To the number of normal and mutant cells N(t) and M(t), one
adds the substrate (nutrient) concentration S(t). The model, that we shall call (somewhat
arbitrarily) Powell Model or PM is given by the following system of differential equations
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Figure 4: Daily evolution for the proportion of mutant cells. The initial proportion is 1/(5 106)
at the beginning of day 0. The IDR of normal cells is 1. That of mutant cells is 1.2 (blue),
1.4 (green), 1.6 (light blue), 1.8 (red), 2 (purple).

(see Kot [45], system (12.16) p. 205).































dS(t)
dt

= D(Si − S(t)) − 1
yn

νS(t)N(t)
kn + S(t)

− 1
ym

µS(t)N(t)
km + S(t)

dN(t)
dt

=
νS(t)N(t)
kn + S(t)

− DN(t)

dM(t)
dt

=
µS(t)M(t)
km + S(t)

− DN(t)

(PM)

The parameters are the following.

• ν, µ: the IDR’s of normal and mutant cells,

• yn, ym: the yield coefficients of normal and mutant cells (consumption of substrate
by bacteria per unit of time),
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• kn, km: the half-saturation constants of normal and mutant cells,

• D: the dilution,

• Si: the inflowing substrate concentration.

In our case, one can consider that Si = 0 for each single day. Besides being closer to the
experimental reality, the PM has another interesting feature. In the VM we considered
that the evolutionary advantage of the mutants translated only into a faster division rate.
It might also yield a higher consumption of nutrients, which would even accelerate the
invasion. A mathematical study of the PM is no more difficult than for the VM; but it
would require estimates for 7 parameters instead of 3. Nevertheless, we believe that the
qualitative conclusions that were drawn from the VM would still remain true for the PM;
they are summarized below.

1. nonbeneficial mutations disappear over a few days, through the effect of daily dilu-
tion

2. beneficial mutations, if the strain survives dilution on the first day, have a high
probability to invade the full population, and eventually to eliminate normal cells,
after at most a few tens of days.

3. On a single day, two competing strains of bacteria increase at different rates, accord-
ing to their relative fitnesses; their populations eventually stabilize to asymptotic
values, the relative proportion of the fittest being strictly larger at the end of the
day than at the beginning.

We also wish to point out that the models above can be easily extended to more than 2
competing species. As a common feature, the generalizations will obey the principle of

competitive exclusion (see section 3.5 of Murray [58]): in the long term, the fittest species
eliminates the others.

The fixation along successive generations of beneficial mutations has been discussed
in many references and textbooks. Papp et al. [63] recently wrote an interesting review
on systems-biology approaches to genomic evolution. Lang et al. [48] propose a thorough
experimental study in different strains of yeast. Campos & Wahl [12, 13] discuss the
effect of population bottlenecks. Hermisson & Pfaffelhuber [32] study genetic hitchhiking
under recurrent mutations.

4 Stochastic growth models

The probabilistic modelling of population growth started in 1925 with Yule [84]. Such
an early date is somewhat misleading. The burst of the theory took place in a few years
around 1950 with such important contributors as Bartlett [5, 6, 7], Harris [31, 10] and
Kendall [39, 40, 41]. More references and a perspective on the early historical development
can be found in the discussion following Armitage’s presentation to the Royal Statistical
Society [3], the chairman being Bartlett. Kendall [41] gives another useful early review. Of
course the same material has since appeared in many textbooks, starting with Bartlett’s
[8, 9] (see also Bharucha-Reid [11]). Since the 1950’s, stochastic population models have
remained a lively subject: see e.g. Pakes [62] for a more recent review. Aldous [1] gives
an interesting perpective relating Yule’s founding paper to present researches.

The basic hypothesis of all models is that all bacteria behave independently in the
same manner; of course this should be understood in the stochastic sense: the times at
which all bacteria divide are independent and identically distributed random variables.
The common distribution function of these random times will be denoted by F . The two
simplest particular cases are:

• deterministic: F (t) = I[t0,+∞)(t) (the division time is fixed and equal to t0).
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• Markovian: F (t) = (1 − e−νt)I[0,+∞)(t) (the division time is exponentially dis-
tributed with parameter ν).

These are the cases where an explicit mathematical treatment is easily feasible, and we
shall focus on the second one. More general families of distributions have been considered,
including Gamma distributions (see Kendall [39, 41] for a discussion and comparison with
experimental data).

When a division occurs, the cell that divides is turned into a random number of new
bacteria, each having a fresh division date. Let ϕ be the generating function of the
random number of “children” produced at division time:

ϕ(z) = E[zK ] =
+∞
∑

k=0

zk
P[K = k] ,

where K is the random number of children at any division. Even though we shall be
concerned exclusively by the deterministic case K ≡ 2 (or ϕ = z2), let us mention that
the general case is the basis of the famous Galton-Watson model of branching processes.
Notice also that K can be null, which corresponds to a death.

Generating functions of integer valued random variables will be used extensively in
what follows. Let us recall the following basic properties:

1. If two random variables N and M are independent, then the generating function of
N + M is the product of the generating functions of N and M .

2. The generating function of N has a k-th left derivative at z = 1 if and only if E[Nk]
exists. In that case,

lim
z→1−

dE[zN ]
dz

= E[N(N − 1) · · · (N − k + 1)] .

The basic object of interest is the number of bacteria alive at time t, when one single cell
is present at time 0; its generating function will be denoted by G(z, t).

G(z, t) =
+∞
∑

n=0

zn
P[Nt = n | N0 = 1] ,

where Nt denotes the (random) number of bacteria living at time t, under the hypothesis
that N0 ≡ 1. The function G is related to F and ϕ through the Bellman-Harris integral

equation (see [10]).

G(z, t) =
(

∫ t

0

ϕ(G(z, t − s)) dF (s)
)

+ z(1 − F (t)) . (BH)

Even though we shall not provide a rigorous proof, giving an intuitive interpretation of
that equation can still be useful for future developments. Let us argue as follows. The
distribution function F (t) is the probability that the division of the initial cell has taken
place no later than t; 1 − F (t) is the probability it has occurred after t, dF (s) is the
probability that it occurs between s and s + ds. If at time t the division has not occurred
(probability (1 − F (t))) then the number of bacteria is still equal to 1, and its generating
function is z: this accounts for the second part of the right hand side, z(1 − F (t)).
Suppose now that a division has occurred at some time s between 0 and t (in [s, s + ds]
with probability dF (s)). Assume it leads to k new cells, each starting a new lineage.
Since all lineages develop with identical rules, the population at time t, stemming from
one lineage which started at time s, will have generating function G(z, t − s). The total
number will be the sum of all k lineages, which are supposed to be independent: its
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generating function will be the k-th power Gk(z, t − s). Now since k cells are produced
with probability P[K = k], the generating function at time t becomes

+∞
∑

k=0

Gk(z, t − s)P[K = k] = ϕ(G(z, t − s)) .

This accounts for the first term in the (BH) equation.

As a particular case, when F (t) = (1−eνt)I[0,+∞)(t) (exponential distribution, Marko-
vian case), and K ≡ 2 (ϕ(z) = z2), the Bellman-Harris equation (BH) becomes:

G(z, t) =
(

∫ t

0

G2(z, t − s)νe−νs ds

)

+ ze−νt .

Inside the integral, change t − s into u:

G(z, t) =
(

e−νt

∫ t

0

G2(z, u)νeνu du

)

+ ze−νt .

or else:

G(z, t)eνt =
(

∫ t

0

G2(z, u)νeνu du

)

+ z .

The derivative in time is:

∂G(z, t)
∂t

eνt + G(z, t)(νeνt) = G2(z, t)(νeνt) .

Simplifying by eνt and rearranging terms, leads to the following differential equation.

∂G(z, t)
∂t

= ν(G2(z, t) − G(z, t)) . (DE)

The solution to (DE) for G(z, 0) = z is easily computed:

G(z, t) =
e−νtz

1 − (1 − e−νt)z
.

This is the generating function of the geometric distribution with parameter p = e−νt. In
other terms, for all n > 1, the probability that n bacteria are alive at time t is:

P[Nt = n] = e−νt(1 − e−νt)n−1 .

The first two moments of Nt are:

E[Nt] =
1
p

= eνt and Var[Nt] =
1 − p

p2
= e2νt − eνt .

The Markov process {Nt , t > 0} is one of the simplest examples of a birth-and-death
process (actually a “pure birth” process). It is usually named after Yule (from [84]),
who derived the geometric distribution of Nt. Furry [24] introduced the same process in
another context. Novozhilov et al. [59] give a very simple presentation of birth-and-death
processes used in biology.

In the LE, the number of bacteria varies from n0 = 5 × 106 to nf = 5 × 108. So
it is legitimate to consider large number approximations. If n0 bacteria are initially
present, their lineages evolve independently, according to the distribution that has just
been described: at each time t, the total population is distributed as the sum of n0

independent random variables, each following the geometric distribution with parameter
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e−νt, that is a Pascal distribution with parameters n0 and e−νt. If n0 is large, it can be
approximated by a Gaussian (normal) distribution with same mean and variance, i.e.:

E[Nt] =
n0

p
= n0eνt and Var[Nt] = n0

1 − p

p2
= n0e2νt − n0eνt .

Observe that for n0 large, the standard-deviation is small compared to the expectation:

E[Nt] =
n0

p
= n0eνt and

√

Var[Nt] ≃
√

n0e2νt =
E[Nt]√

n0
.

Therefore, as a first approximation, the population is expected to grow deterministically,
as n0eνt.

The Yule process is the stochastic counterpart of the deterministic exponential growth
model. Let us denote by N(t) and n(t) the respective numbers of cells in the stochastic
model and in the deterministic one. The deterministic model is specified by an ordinary
differential equation.

dn(t)
dt

= ν n(t) ,

or equivalently by the integral equation

n(t) = n0 +
∫ t

0

ν n(s) ds .

The basis of the stochastic model is a random time scale, specified by a Poisson process.
Let {Y (t) , t > 0} be a unit Poisson process: Y has jumps of size 1 at successive instants,
separated by exponentially distributed durations with expectation 1. The stochastic
process N(t) can be defined by the following integral equation, which is the stochastic
counterpart of the deterministic one.

N(t) = n0 + Y

(
∫ t

0

νN(s) ds

)

.

The distribution at time t of N(t) is the solution of a system of ordinary differential equa-
tions, the Chapmann-Kolmogorov equations (also called the Chemical Master Equation

in the context of kinetics). Denoting by pn(t) the probability that N(t) = n, the equation
for n > 0 is:

dpn(t)
dt

= −νnpn(t) + ν(n − 1)pn−1(t) .

As we have seen, that system has an explicit solution. However, it is a very particular
case and no explicit solution can be hoped for in more general situations. Also, the fact
that the expectation of N(t) is exactly equal to the deterministic solution n(t) is quite
rare. What is general however, is the large number approximation that was explained
above. We shall rewrite it in a way that can be easily generalized. Its foundation is the
long term approximation for the Poisson process Y . At (large) time n0u, Y (n0u) equals
n0u on average, with fluctuations of order

√
n0, described by a Brownian motion.

lim
n→+∞

Y (n0u) − n0u√
n0

= W (u) ,

where Y is a unit Poisson process, W is the standard Brownian motion and the limit is
understood in distribution. Consider now the integral equation defining N(t) and divide
both members by n0.

N(t)
n0

= 1 +
1
n0

Y

(
∫ t

0

νN(s) ds

)

.
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Denote by U(t) the ratio N(t)
n0

.

U(t) = 1 +
1
n0

Y

(
∫ t

0

νn0U(s) ds

)

.

Approximating Y (n0u) by n0u +
√

n0W (u):

U(t) ≃ 1 +
∫ t

0

νU(s) ds +
1√
n0

W

(
∫ s

0

νU(s) ds

)

.

The diffusion process U is the solution of a Stochastic Differential Equation (called the
Chemical Langevin Equation in kinetics)

dU(t) = νU(t) dt +
1√
n0

√

νU(t) dW (t) .

Of course for very large n0, the diffusion term vanishes and the equation becomes the
deterministic differential equation (the Reaction Rate Equation in kinetics).

What we have just seen on the example of the Yule process is an illustration of a very
general modelling principle. Three different scales can be considered.

1. Microcopic scale: stochastic jump process with discrete state space. The random
fluctuations are governed by Poisson processes;

2. Mesoscopic scale: stochastic diffusion process with continous state space. The ran-
dom fluctuations are governed by Brownian motions;

3. Macroscopic scale: deterministic function of time, solution of a differential system
of equations.

The three scales are coherent in the sense that each scale is a large number approximation
of the previous one.

In order to illustrate the three scales principle, we shall introduce here a microscopic
model of competition between normal and mutant cells, matching the Volterra model
studied in section 3. Let N(t) and M(t) still denote the numbers of normal and mutant
cells. At each division, one of the two counts increases by one unit. When (N(t), M(t)) =
(n, m), the respective rates of increase of normal and mutant cells are:

ρ(n, m) = νn

(

1 − n + m

nf

)

and σ(n, m) = µm

(

1 − n + m

nf

)

.

We shall call this model competitive process (CP). A loose description of the CP can be
given as follows.

1. When n normal and m mutant cells are present, the next division will occur after
a random time, following the exponential distribution with parameter ρ(n, m) +
σ(n, m).

2. Upon next division,

(a) with probability ρ(n,m)
ρ(n,m)+σ(n,m) , N(t) will increase by 1, M(t) remaining un-

changed.
(b) with probability σ(n,m)

ρ(n,m)+σ(n,m) , M(t) will increase by 1, N(t) remaining un-
changed.

The formal description uses two independent unit Poisson processes, Y1 and Y2.














N(t) = N(0) + Y1

(
∫ t

0

ρ(N(s), M(s)) ds

)

M(t) = M(0) + Y2

(
∫ t

0

σ(N(s), M(s)) ds

) (CP)
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Let p0 be the initial proportion of mutant molecules, so that N(0) = n0(1 − p0) and
M(0) = n0p0. Assuming that n0 is large, we reproduce the diffusion approximation
scheme that was exposed above for the Yule process. Dividing both equations by n0,
then setting

U(t) =
N(t)
n0

and V (t) =
M(t)

n0
,

one gets:















U(t) = 1 − p0 +
1
n0

Y1

(
∫ t

0

νn0U(s)
(

1 − n0

nf
(U(s) + V (s))

)

ds

)

V (t) = p0 +
1
n0

Y2

(
∫ t

0

µn0V (s)
(

1 − n0

nf
(U(s) + V (s)

)

ds

)

Replace now Y1(n0u) and Y2(n0v) by:

n0u +
√

n0W1(u) and n0v +
√

n0W2(v) ,

where W1 and W2 are two independent standard Brownian motions. The CM becomes:



















































U(t) ≃ 1 − p0 +
∫ t

0

νU(s)
(

1 − n0

nf
(U(s) + V (s)

)

ds

+
1√
n0

W1

(
∫ t

0

U(s)
(

1 − n0

nf
(U(s) + V (s)

)

ds

)

V (t) ≃ p0 +
∫ t

0

µV (s)
(

1 − n0

nf
(U(s) + V (s)

)

ds

+
1√
n0

W2

(
∫ t

0

V (s)
(

1 − n0

nf
(U(s) + V (s)

)

ds

)

Thus the stochastic process (U, V ) is a bidimensional diffusion, solution to the following
stochastic differential equations.























































dU(t) = νU(t)
(

1 − n0

nf
(U(t) + V (t)

)

dt

+
1√
n0

√

U(t)
(

1 − n0

nf
(U(t) + V (t))

)

dW1(t)

dV (t) = µV (t)
(

1 − n0

nf
(U(t) + V (t)

)

dt

+
1√
n0

√

µV (t)
(

1 − n0

nf
(U(t) + V (t))

)

dW2(t)

This is the mesoscopic scale model. Of course, by neglecting the diffusion term in 1√
n0

,
one gets the deterministic (or macroscopic) Volterra model of section 3.

How should one choose among the three modelling scales? Figure 5 shows a simulation
of 10 trajectories of the CM, for n0 = 5 × 103 and nf = 5 × 104, the relative fitness of
mutants being 1.6. On the same graphics, the trajectory of the deterministic Volterra
model has been superposed. As can be observed, the dispersion of random trajectories
around the deterministic ones is small. For the more realistic values of n0 = 5 × 106

and nf = 5 × 108, the random trajectories would be almost undistinguishable from the
deterministic ones. However, this is only true for a relatively large value of p0. If only
a few mutant cells were initially present, stochastic models would certainly give more
reliable results than the deterministic one.
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Figure 5: Ten trajectories of the stochastic competition model for the numbers of normal
(green) and mutant cells (blue). The trajectory of the corresponding deterministic model is
plotted in black. The initial and final numbers of cells are n0 = 5 × 103 and nf = 5 × 104.
The initial proportion of mutant cells is 0.1. The IDR’s of normal and mutant cells are 1 and
1.6.

Once again, our intention in proposing that very simple model, was to illustrate the
possible treatments rather than imposing it as the most realistic. More sophisticated
logistic-type stochastic models were proposed long ago: see Novozhilov [59] and section
6.8 p. 242 of Allen [2]. Logistic growth processes have been the object of several mathe-
matical studies, in particular by Tan & Piantadosi [76], or more recently by Lambert [47].
Refinements include for instance spatial random dispersal [78] or local regulation [19].

5 Mutation models

The history of mutation models is as long as that of stochastic growth processes, since
estimates of mutation probabilities were already present in Yule’s founding paper [84].
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However, it really started with Luria and Delbrück experiments [51]. Interestingly enough,
they used the same Escherichia Coli B as the LE. Their idea was to introduce a virus that
killed most bacteria, except those having acquired resistance by mutation. This allowed
them to count mutant bacteria. Repeating the experiment, they estimated the distri-
bution of the (random) number of mutants. The data seemed to indicate a distribution
with a much heavier tail than expected: most counts had very few mutant cells, but in a
sizeable proportion of the counts, they found a relative high number of mutants. In view
of our discussion in section 2, that feature is crucial for the survival of mutations through
daily sampling in the LE. Indeed we have shown that mutations have good chances to
survive daily dilution, only when they are carried by sufficiently many cells. Luria and
Delbrück used a very simple deterministic model, assuming that cell counts doubled at
each multiple of a given fixed period. Nevertheless, that model allowed them to derive an
asymptotic distribution of the number of mutants, that showed indeed a heavy tail behav-
ior. Other models were later consider, in particular by Lea & Coulson [49], Harris [31],
Bartlett [5, 6], Kendall [40, 41], and Armitage [3]. Mandelbrot [54] proposed a general
proof for the convergence to the Luria-Delbrück distribution. More recently, the impor-
tance of that distribution for the treatment of mutation experimental data has stemmed
further researches such as [69, 52, 38]. The Luria-Delbrück distribution is known only
through its generating function and no close form exists for its probabilities. However an
efficient recursive formula permits to calculate them explicitly. Pakes [61] gives an easy
derivation of that formula. An example of generalization is given by Dewanji et al. [16].
Presently, the most active author on the subject is Zheng; he wrote a useful mathematical
review in [85]. Historical reviews include Sarkar [69] and Zheng [88].

The objective of this section is to present Bartlett’s derivation of the Luria-Delbrück
distribution under the following modelling assumptions (see [6], [3], p. 37, [9], section 4.31
p. 124, and more recently Zheng [87]).

1. At time 0 a homogeneous population of n0 “normal” cells is given (n0 is large);

2. normal cells divide at a constant rate ν;

3. when a division occurs:

(a) with probability 1 − p two normal cells are produced,
(b) with probability p one normal and one mutant cells are produced,

(the mutation probability p is small);

4. mutant cells divide at a constant rate µ;

5. any other mutation than normal to mutant is excluded;

6. all random events (divisions and mutations) are mutually independent.

Let G denote the bivariate generating function for the numbers of normal and mutant
cells, starting with a single normal cell at time 0.

G(z, y, t) =
+∞
∑

n=0

+∞
∑

m=0

znym
P[N(t) = n , M(t) = m | N(0) = 1 , M(0) = 0] .

If the population starts with a single mutant cell, only mutant cells can be produced later,
and there is no need to consider a bivariate generating function. We shall denote by H
the generating fonction of the number of mutant cells, starting with a single mutant cell
at t = 0.

H(y, t) =
+∞
∑

m=0

ym
P[M(t) = m | M(0) = 1] .

Its calculation from the Bellman-Harris equation was already exposed in section 4.

H(y, t) =
ye−µt

1 − y + ye−µt
.
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The generating functions G and H are related through another Bellman-Harris equation.

G(z, y, t) =
(

∫ t

0

(

(1 − p)G2(z, y, t − s)

+p G(z, y, t − s)H(y, t − s)
)

νe−νs ds
)

+ ze−νt .

(BH2)

The justification of (BH2) is quite similar to that of (BH), given in section 4. The initial
normal cell divides at a time which is exponentially distributed with parameter ν. At time
t, it may not have divided yet (with probability e−νt), and the generating function is still
z. If it divides at some time s between 0 and t (in [s, s + ds] with probability νe−νsds), it
turns either into 2 normal cells with probability 1 − p, or into a normal and a mutant cell
with probability p. The two new cells start independent lineages of their own, accounted
for by G2(z, y, t − s) if two normal cells are produced, and by G(z, y, t − s)H(y, t − s) if
one normal and one mutant are produced. As in section 4, (BH2) can be transformed
into an ordinary differential equation.

∂G(z, y, t)
∂t

= ν((1 − p)G2(z, y, t) + p G(z, y, t)H(y, t) − G(z, y, t)) . (DE2)

This is a linear first order equation in the inverse G−1(z, y, t):

∂G−1(z, y, t)
∂t

= ν(p − 1) + νG−1(z, y, t)(1 − p H(y, t)) .

Replacing H(y, t) by its explicit expression, the general solution to the homogeneous
equation is found to be proportional to:

eνt(1 − y + ye−µt)p ν
µ .

Using the initial value G(z, y, 0) = z,

G−1(z, y, t) = eνt(1 − y + ye−µt)p ν
µ

(

1
z

+ ν(p − 1)
∫ t

0

e−νs(1 − y + ye−µs)−p ν
µ ds

)

.

When µ = ν, the primitive can be explicitly calculated. This is the only case considered
by Bartlett.

∫ t

0

e−νs(1 − y + ye−νs)−p ds =
1

(1 − p)νy

(

1 − (1 − y + ye−νt)1−p
)

.

Hence Bartlett’s explicit expression:

G−1(z, y, t) =
(1 − y + ye−νt)p

e−νtz
+

(1 − y + ye−νt)
ye−νt

− (1 − y + ye−νt)p

ye−νt
.

This gives the generating function of both counts, starting with one normal cell. The
generating function of mutant cells alone is obtained by setting z = 1 in the expression
above. The generating function of mutant cells, starting with n0 normal cells is the n0

th

power:

Gn0 (1, y, t) =
(

(1 − y + ye−νt)p

e−νt
+

(1 − y + ye−νt)
ye−νt

− (1 − y + ye−νt)p

ye−νt

)−n0

.

We want an asymptotic value for this expression, as p tends to 0, n0 and t to +∞. Let
us replace the two terms in (1 − y + ye−νt)p by their order 1 expansion:

(1 − y + ye−νt)p = 1 + p log(1 − y + ye−νt) + o(p) .
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Remember also that t is large, so that:

log(1 − y + ye−νt) = log(1 − y) + O(e−νt)

One gets:

Gn0 (1, y, t) =
(

1 + p
y − 1
ye−νt

log(1 − y) + o(p) + pO(e−νt)
)−n0

The non-trivial limit is obtained as as p tends to 0, n0 and t to +∞, in such a way that

lim n0 p eνt = α ,

where α is a positive real number. Then:

lim Gn0 (1, y, t) = exp
(

α
1 − y

y
log(1 − y)

)

= (1 − y)α 1−y
y .

The Luria-Delbrück distribution with parameter α is defined as the probability distribu-
tion on integers with generating function:

gα(y) = (1 − y)α 1−y

y .

The function gα has no left derivative at y = 1: the Luria-Delbrück distribution has no
moment of any order. Denote by pn the corresponding probabilities:

gα(y) =
+∞
∑

m=0

pm ym .

The first value is obtained for y = 0: p0 = e−α. There is no explicit expression for pm as
a function of m. An equivalent as m tends to infinity is pm ∼ α

m2 . The exact values can
be numerically computed through the recursive formula:

pm =
α

m

m−1
∑

i=0

pi

n − i + 1
.

See Ma et al. [52], Pakes [61], and Kemp [38] for simple derivations of the main results
on the pn’s. As an example, the table below gives some values for the probability than
more than 50 mutant cells remain, for different values of α.

α 1 2 3 4 5 6 7 8 9 10
P[X > 50] 0.021 0.045 0.072 0.102 0.136 0.172 0.213 0.256 0.302 0.349

As expected from a heavy tail distribution, there are quite reasonable chances to get
sizeable amounts of mutant cells.

How about the Lenski experiment? As we have seen, the initial number of normal
cells in any of the twelve 10 mL vessels is 5 × 106. Let us take n0 = 6 × 107. For the
mutation probability, Philippe et al. [64] give p = 5 × 10−10 per base pair. This is
sensibly lower than the value given by Kendall [41], who simply says that the mutation
probability is lesser than 10−7. As we have seen in section 4, eνt is the expected number
of cells stemming from one initial cell. In the LE, the daily increase is 100-fold. So we
shall retain eνt = 102. The parameter for the Luria-Delbrück distribution is:

α = n0 p eνt = 3 .

For the Luria-Delbrück distribution with parameter 3, the probability to get no mutant
cells is p0 = 0.05. The probability to get more than 100 mutant cells is 0.034.
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The asymptotics of the number of mutants in the general case µ 6= ν is discussed
by Jaeger and Sarkar [34]. To the best of our knowledge, no derivation from Bartlett’s
model with µ 6= ν has been made. However, we do not think it would change by much the
conclusions. If µ > ν (beneficial mutation), mutant cells will multiply faster on average,
(thus be more numerous) than predicted by the Luria-Delbrück distribution. In other
words, the Luria-Delbrück distribution function is an upper bound for the distribution
function of the number of mutant cells in the general case. The heavy tail property can
only be reinforced.

The Bartlett model that was exposed here is not unique. Luria-Delbrück distributions
can be obtained through other models, including the earlier deterministic growth model
of Lea and Coulson [49] (see Zheng’s review [85]). It has been extended to other types of
non-Markovian growth models by Dewandji et al. [16].

6 Parameter estimation

Gause [26], in the introduction to his section “On the mechanism of competition in yeast
cells”, cites early 30’s publications while making quite clear statements on the relation
between experimental data and mathematical models. We could not say it better.

No mathematical theories can be accepted by biologists without a most careful
experimental verification. We can but agree with the following remarks made
in Nature (H. T. H. P. ’31) concerning the mathematical theory of the struggle
for existence developed by Vito Volterra: “This work is connected with Prof.
Volterra’s researches on integro-differential equations and their applications to
mechanics. In view of the simplifying hypothesis adopted, the results are not
likely to be accepted by biologists until they have been confirmed experimen-
tally, but this work has as yet scarcely begun.” First of all, very reasonable
doubts may arise whether the equations of the struggle for existence given in
the preceding chapter express the essence of the processes of competition, or
whether they are merely empirical expressions. everybody remembers the at-
tempt to study from a purely formalistic viewpoint the phenomena of heredity
by calculating the likeness between ancestors and descendants. This method
did not give the means of penetrating into the mechanism of the correspond-
ing processes and was consequently entirely abandoned. In order to dissipate
these doubts and to show that the above-given equations actually express the
mechanism of competition, we shall now turn to an experimental analysis of a
comparatively simple case. It has been possible to measure directly the factors
regulating the struggle for existence in this case, and thus to verify some of
the mathematical theories.
Generally speaking, biologists usually have to deal with empirical equations.
The essence of such equations is admirably expressed in the following words
of Raymond Pearl (’30): “The worker in practically any branch of science is
more or less frequently confronted with this sort of problem: he has a series
of observations in which there is clear evidence of a certain orderliness, on the
one hand, and evident fluctuations from that order, on the other hand. What
he obviously wishes to do. . . is to emphasize the orderliness and minimize the
fluctuations about it. . . He would like an expression, exact if possible, or, fail-
ing that, approximate, of the law if there be one. This means a mathematical
expression of the functional relation between the variables. . .
“It should be made clear at the start that there is, unfortunately, no methods
known to mathematics which will tell anyone in advance of the trial what
is either the correct or even the best mathematical function with which to
graduate a particular set of data. The choice of the proper mathematical
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function is essentially, at its very best, only a combination of good judgment
and good luck. In this realm, as in every other, good judgment depends in
the main only upon extensive experience. What we call good luck in this
sort of connection has also about the same basis. The experienced person in
this branch of applied mathematics knows at a glance what general class of
mathematical expression will take a course, when plotted, on the whole like
that followed by the observations. He furthermore knows that by putting as
many constants into his equation as there are observations in the data he can
make his curve hit all the observed points exactly, but in so doing will have
defeated the very purpose with which he started, which was to emphasize the
law (if any) and minimize the fluctuations, because actually if he does what has
been described he emphasizes the fluctuations and probably loses completely
any chance of discovering a law.
“Of mathematical functions involving a small number of constants there are
but relatively few. . . In short, we live in a world which appears to be organized
in accordance with relatively few and relatively simple mathematical functions.
Which of these one will choose in starting off to fit empirically a group of
observations depends fundamentally, as has been said, only on good judgment
and experience. There is no higher guide” (pp. 407-408).

The mathematical models that have been presented so far have no predictive value, until
they have been confronted to experimental data. The parameters should be estimated,
the data have to be adjusted, and the goodness-of-fit must be tested. The adjustment
of population models to bacteria growth experiments has been the object of countless
publications, of which we have retained a few among the most recent.

Miao et al. [56] give an interesting review of parameter estimation methods for de-
terministic models. The general methods for adjusting models are presented by Jaqaman
and Danuser in [35]. Gutenkunst et al. [29] argue on sloppy parameter sensitivity in
systems biology models. All models have at least in common growth rates and mutation
probabilities, as parameters to be estimated from the data. Although most references
focus on mutation rates, the estimation of growth rates was recently studied by Maruvka
et al. [55]. Mutation rates can be estimated by adjusting observed number of mutants in
bacterial growth experiments. The method is usually referred to as fluctuation analysis.
It has been presented in many references, including Koch [44], Sarkar et al. [70], Stewart
et al. [75], Jones et al. [37]. Dedicated softwares were made available by Zheng [86] and
Hall et al. [30]. Several refinements in the use of the Luria-Delbrück probabilities have
been proposed, in particular by Kepler & Oprea [42, 60].

The estimation of mutation rates was studied as early as 1974 by Crump & Hoel [15].
The quality of mutation rates estimates is discussed by Stewart [74]. Different estimation
methods are presented by Foster [23]. Improvements have been proposed by Koziol [46],
and by Gerrish [27]. Grant et al. [28] made a case study on Mycobacterium tubercolosis.

7 Conclusion

The few classics of mathematical modelling that have been reviewed here are hoped to
be of some potential use in the description of different aspects of the Lenski experiment.
As already said, none of them has any scientific validity as long as they have not been
confronted to real data. However, the models share some common qualitative features
that are summarized here for comparison with actual observations. Instead of categorizing
the models according to mathematical coherence as we did before, we will summarize their
predictions on four different questions about the LE.

1. Day 0: Which number of cells can carry a given mutation that was not present the
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previous day?

All existing models use asymptotics as the initial number of cells is large and the
probability of mutations is low. The random number of new mutants follows a
heavy-tailed distribution of which the Luria-Delbrück distribution is a prototype.
This means that with a reasonable probability, sizeable amounts of mutants can be
present at the end of any given day.

2. Night 0: What are the chances that a mutation having appeared on day 0 disappears

through dilution?

Since the daily sampling eliminates each day 99% of the cells, mutants present
in small quantities have high chances to disappear. In particular, non-beneficial
mutations do not survive. Beneficial mutations carried by enough cells (at least a
few tens), have good chances to be represented the next days.

3. Day 1: If two different strains of cells are present at the beginning of a given day,

what will their proportion be at the end of the day?

If a beneficial mutation is carried by a certain proportion of the population, even a
weak one, that proportion will gradually increase along the day with the multipli-
cation of cells. So with high probability, the initial proportion will be larger on the
next day.

4. Day N: How many days will it take before a beneficial mutation is carried by all

cells in the population?

The initial proportion of day N + 1 is an increasing function of that of the previous
day. The better the fitness of mutants, the steeper that function. When the initial
proportion of mutants is already strong, there is a high probability that the less
fit cells will be wiped out by the next daily sampling. The invasion of the full
population will take from a few days to a month.
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