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Mostapha Benhenda
October 9, 2013

Abstract

We construct a smooth Gaussian-Kronecker diffeomorphism 7', on T x [0, 1N,
where [0, 1T is the Hilbert cube. To obtain this diffeomorphism, we adapt a con-
struction by De La Rue [6], which uses transformations of the planar Brownian
motion.

1 Introduction

We define Gaussian dynamical systems. We rely on [8]. Let y a finite symmetric
measure on the circle T. A dynamical system (Q, A, P, U) is Gaussian of spectral
measure y if there exists a real centred Gaussian process (X)) ez satisfying:

1. for any integer p, X, = X o U?,
2. BX,,peZ)y=A
. _ (1 2intg-py
3. for any integers p, g, E[X,X,] = fo eI dy(t)

Giving y determines all the properties of this system. In particular, U is ergodic
if and only if y is non-atomic, and in this case, U is even weak mixing (see [5]). The
entropy of U is zero or infinite, depending on whether or not 7 is singular with respect
to Lebesgue measure (see [7]).

We recall that K C T is a Kronecker set if any continuous function f : K — T is
the uniform limit on K of a sequence of functions f, : x = j,x, where j, is an integer.

In the case where vy is non-atomic and concentrated on K U (% — K), where K is a
Kronecker set of [0, 1/2[, we say that the Gaussian dynamical system of spectral mea-
sure vy is a Gaussian-Kronecker transformation [10]. A Kronecker set always has zero
Lebesgue measure, so a Gaussian-Kronecker transformation always has zero entropy.

Gaussian-Kronecker transformations have remarkable properties: they have simple
spectrum L?, for any p > 1 (see [5, 14]). Moreover, they satisfy the Weak Closure
Theorem [17]: any P-preserving transformation S commuting with 7 is a weak limit of
powers of T'. We can find a sequence of integers j, such that for any A € A,

P(S 'AAT 7 A) =, 1o O

Lastly, they satisfy the spectral stability property: any system that is spectrally
isomorphic to a Gaussian-Kronecker is actually metrically isomorphic to it.

In [15, 16], Katok raised the problem of the construction of a Gaussian-Kronecker
transformation that is smooth. In this paper, we give a construction of this kind:



Theorem 1.1. There exists T € Diff**(T x [0, 11N, Leb) that is Gaussian-Kronecker:

Remark 1.2. Moreover, as in [6], we can get T non-loosely Bernoulli. This gives an-
other example of a smooth non-loosely Bernoulli diffeomorphism, besides the example
we constructed in [4]. However, contrary to [4], our construction here does not easily
generalize to an uncountable family of pairwise non-Kakutani equivalent diffeomor-
phisms.

To show this theorem, we provide a smooth version of a transformation constructed
by Thierry De La Rue [6]. He constructed a Gaussian-Kronecker and non-loosely
Bernoulli transformation using a method of approximation by periodic transformations
of the trajectory of the planar Brownian motion.

This adaptation to the smooth case is made using the method of approximation
by successive conjugacies, introduced by Anosov and Katok in [1]. More precisely,
we generalize our construction of a smooth ergodic diffeomorphism of the annulus
T x [0, 1] that is equal to a rotation S, on the boundary, but that is metrically iso-
morphic to a rotation Ry of the circle, such that @ # +. In our generalization, we
construct a sequence of smooth periodic diffeomorphisms of T X [0, 11N, where [0, 1TV
is the Hilbert cube, such that each one is metrically isomorphic to an increasingly large
family of mutually independent periodic rotations of the circle with different angles.
The limit angles of these rotations will provide the Kronecker spectrum of the limit
diffeomorphism.

We need to carry the construction on T X [0, 11N, instead of T x [0, 1], because
in order to ensure the smooth convergence of the sequence of smooth periodic dif-
feomorphisms, we need a space of infinite dimensions (see page 30 for details). This
framework is new with respect to known Anosov-Katok constructions.

1.1 Definitions

Let Diff> (M, p) be the class of smooth diffeomorphisms of M preserving the Lebesgue
measure y. For B € Diff*(M, 1) and j € N*, let D/B be the j™ derivative of B if j > 0,
and the —j derivative of B~ if j < 0. For x € M, let |D’/B(x)| be the norm of D/B(x)
at x. We denote ||Bllx = maxo«)ji<k maxyep |D/B(x)|.

A finite measurable partition & of a measured manifold (N, v) is the equivalence
class of a finite set & of disjoint measurable subsets of N whose union is N, modulo
sets of v-measure zero. In most of this paper, we do not distinguish a partition & with
its equivalent class £ modulo sets of v-measure zero. In these cases, both are denoted
&. Moreover, all partitions considered in this paper are representatives of a finite mea-
surable partition.

A partition ¢’ is subordinate to a partition ¢ if any element of ¢ is a union of ele-
ments of £, modulo sets of v-measure zero. In this case, if B(¢) denotes the completed
algebra generated by &, then B(¢) c B(£’). The inclusion map i : B(€) — B(£') will
be denoted & < &’. This notation also means that & is subordinate to £. A sequence
of partitions &, is monotonic if for any n, &, — &,.1. These definitions and properties
are independent of the choice of the representatives & and &’ of the equivalence classes
Eand &.

A measure-preserving bijective bimeasurable map T : (M, u;,B81) = (Ma, uz, B)
induces an isomorphism of measure algebras, still denoted T : (u;, B1) — (12, B7). If
&1, & are partitions, and if 8; = B(£)) and B, = B(&,), we denote T @ &1 — & this
induced isomorphism of measure algebras. If M| = M, yu; = yp and By = B,, then T



is a measure-preserving transformation. Its induced isomorphism is an automorphism
(see [12, p.43] and [18]).

A metric isomorphism L of measure-preserving transformations 7 : (My, i1, B1) —
My, 11, 81), Ty - (M, un, By) = (M>, 11, B,) is a measure-preserving bijective bimea-
surable map L : (M, u;,81) — (Ma,u,B;) such that LT) = T,L a.e. For con-
venience, when the measure is the Lebesgue measure and the algebra is the Bore-
lian algebra, we omit to mention the measures and algebras, and we simply say that
L: (M, T)) » (M, T,) is a metric isomorphism.

Let £ be a measurable partition and & a representative of this equivalent class mod-
ulo sets of u-measure zero. For x € M, we denote £(x) the element of the partition &
such that x € £(x). A sequences of partitions &, of measurable sets generates if there is
a set of full measure F such that for any x € F,

)= F( )&
n>1

This property of generation is independent of the choice of the representatives &, of
the equivalent class &, and therefore, we will say that the sequence of measurable par-
titions £, generates. Let M/& denote the equivalent class of the algebra generated by &,
modulo sets of u-measure zero. M/¢ is independent of the choice of the representative
£ of the equivalent class &. If T : M, — M, is a measure-preserving map such that
T()) = & p-almost everywhere, we can define a quotient map: 7'/&; : M/&) — M/&,.

Let M = T x [0, 1TN. We consider the periodic flow S, defined by:

S;: Tx[0, 11N — T x [0, 1IN
(s,x) > (t+s mod1,x)

For a,b € T', let [a, b[ be the positively oriented circular sector between a and b, with
a included and b excluded.

ForI c Tor[0,1],andi € N, we denote (/); = Tx][0, 1]x...x[0, 1]xIX[0, 1]X.....,
where I is located at the i position. { c Tifi =0,7 c[0,1]ifi>1).

For i # i, we denote (I); X (I")y = (I); N (I")y.

By [11, p. 157], the infinite Cartesian product of the one-dimensional Lebesgue
measure defines a probability measure y on M, still called Lebesgue measure.

A sequence T, of u-preserving maps weakly converges to T if, for any measurable
set E, u(T,EAE) — 0, where AAB=(A—-B)U(B-A).

let E be the set of bijections f of Tx[O0, 11N, such that £((x)ien) = (Fu(X1, -ovs Xn), Xns 1 -.)
with f,, a smooth diffeomorphism of T x [0, 1]" for some integer n. The smooth dis-
tance on finite-dimensional smooth diffeomorphisms extends to E: d(f, g) = d(f,, g&x)
(we take n to be the maximum of the integers n(f) and n(g) associated with f and g
respectively). The completion of E for d is denoted Diff (T x [0, 1]N). It corresponds
to the set of smooth diffeomorphisms of T X [0, 11N, and extends the finite-dimensional
notion of smooth diffeomorphisms.

1.2 Transformations of the planar Brownian motion

We use the representation of a Gaussian dynamical system as a geometric transforma-
tion of the trajectory of the planar Brownian motion, developed in [7]. We denote by
(Q, A, P) the canonical space of the planar Brownian motion issued from 0, on the time
interval [0, 1]:



1. Q= C(O)([O, 1], C) is the space of continuous maps from [0, 1] to C, that cancels
in 0.

2. P is the Wiener measure on £,

3. Ais the Borelian sigma-algebra, completed for PP.

For w € Q, and 0 < u < 1, we denote by B,(w) the position of the trajectory w at
time u.

If o is a probability measure on [0, 1] concentrated in a finite number of points
a; < .. < a; of respective weights my, ..., m;, we define a transformation U, of Q,
preserving P, by the following: for any k = 1, ....¢, uy = Z';zl m;, and ug = 0. We cut
the trajectory w in ¢ pieces, corresponding to time intervals [u;_1,ux],1 < k < ¢, then
we perform a rotation of angle a; on the k”-piece. U, w is the trajectory obtained by
gluing the rotated pieces. Thus, for u € [u;, u;1],

B,oUy= ) &"*(B, — B, )+ (B, —B,)

J

k=1

Suppose, moreover, that @; = 5—”b,l,i, with p, and b, ; integers relatively prime with
the integer g,. Let U, = U,,. Let also

I I+1

Cnil = {w € Q/ arg(Bu,-H(w) - Bu,(w)) € [_, }

qn qn

and £,; = {¢piss 1 = 0,....q, — 1}. £, is a partition stable by U,,, the £, ;,i = 0, ..., 1, —
1 are mutually independent, and (U, ,, {»,;) 1s metrically isomorphic to (R, ., &),
2 qn 1

where R, . is the circle rotation of angle %b,,,i, and &, is the partition of the circle T
4n ” n

defined by &, = {[q—ln, 1;'—1 [ ,1=0,...,q,—1}. This metric isomorphism is the basis of our
construction.

Now, if o is a non-atomic probability measure on [0, 1], we can define U, as he
limit of a sequence of transformations U,,, where the measures o, are concentrated
on a finite number of points converging sufficiently well towards o. For any u € [0, 1],
and any p € Z, we have:

U
B,o U’ = f ¥ PVS) gB
0

where ¥ (s) = inf{x € [0, 1]/0([0, x]) > s}.

Moreover, if o is concentrated on [0, 1/2], then (Q, A, P, U, ) is a Gaussian dy-
namical system of spectral measure y, where 7y is the symmetric probability measure
on [-1/2,1/2], defined by

1
Y(A) =5 (@(AN[0.1/2]) + o(-AN [0, 1/2]))

The underlying real Gaussian process is given by Xy = Re(B)) [7].

As a corollary, if o is non-atomic on [0, 1], then U, is ergodic (and even weak
mixing), and if, moreover, o is singular with respect to Lebesgue measure, then U,
has zero entropy.



1.3 Basic steps of the proof

The metric isomorphism is obtained as the limit of isomorphisms of finite algebras. We
use the lemma [1, p.18]:

Lemma 1.3. Let M| and M, be Lebesgue spaces and let fff) (i = 1,2) be monotonic and
generating sequences of finite measurable partitions of M;. Let T,Si) be automorphisms
of M; such that T,(li)ffli) = ,(f) and T,(,i) — T9 in the weak topology. Suppose there are
metric isomorphisms L, : M, /§,(11) - M, /.ffzz) such that

LTV 1EY = TP 1€PL,

and

Lt = &2
then (M, Ty) and (M, T») are metrically isomorphic.

Said otherwise, if we have generating sequences of partitions and sequences of
automorphisms T,g’) weakly converging towards T, and if, for any integer n, the fol-
lowing diagram commutes:

L
1 " 2 2
i () —>g? 1o

!

M b .0
§n+l n+l

then (M, Ty) and (M, T») are metrically isomorphic.

The proof of theorem 1.1 is in two steps. In the first step (lemma 1.4), we determine
sufficient conditions such that there exists sequences of finite partitions and automor-
phisms satisfying the assumptions of lemma 1.3 with M, = Q, M, = M = T x [0, 1]V,
T,(,l) =U,, T,(,z) = T,, where T, is a smooth diffeomorphism, and such that the limit T
in the smooth topology of the sequence T, is smooth.

In the second step (lemma 1.5), we construct sequences of integers satisfying the
conditions of the first step.

Lemma 1.4. There exists an explicit family of integers Ry(n) > n, Ry, R3, such that,
if there exist increasing sequences of integers ty, Pn, qn, @@ [t,), by (i’ [t,) € N*, i’ =
0,....t, — 1, and sequences s,(i' [t,) € Z*, ' = 0, ..., t, — 1 such that, for any integer n,
anyi’ =0,...,t, — 1,

~

. (temporal monotonicity) t,+1 = 2R (1nst)y

2. (primality) a,(I' /)by (7" [1y) = $a(’ [ta)gn = 1.

3. (monotonicity) q, divides q,+1.

4. (isomorphism) q, divides a,.1(i/ty+1) — a, (' /1), fori = i’t"ﬁ‘, s (T + 1)% - 1.
5. (convergence of the diffeomorphism, generation, Kronecker)

fn+l_l

< /R, [n e [ )
i=0

Pn+1 _ &
qn+1 qn

0<




then there exists a smooth ergodic measure-preserving diffeomorphism T of M
that is a Gaussian transformation. Moreover, if

6. (Kronecker) the translation of T" of vector % (b,(0/t,), ..., b, ((t, — 1)/1t,)) has a
fundamental domain of diameter smaller than 1/n,

then T is a Gaussian-Kronecker.

Lemma 1.5. For any n > 1, there exists increasing sequences of integers
by Pus Gn> @' 11,), b, (' /1) € N*, i' = 0, ...,1, — 1, and sequences s,(i'|t,) € Z,
" =0,...,t, — 1 satisfying the assumptions of lemma 1.4.

We divide the proof of lemma 1.4 in three main parts. In the first part of the proof,
we construct a sequence of monotonic and generating partitions of €, called £;°, which
is stabilized by the transformation U,. To that end, we use assumptions 1,2, 3,4 and 5.
In the second part of the proof, we elaborate sufficient conditions on B,, € Dift™(M, p),
so that if 7, = B,'S u B, weakly converges towards an automorphism 7', then there
exists a metric isomoi’nphism between (Q, U,P) and (M, T,u). To that end, we apply
lemma 1.3: we construct a monotonous and generating sequence of partitions &, of
M and a sequence of isomorphisms K : Q/° — M/EY, such that KU, = T,K°

and K77 | o = K. In the construction of this isomorphism, assumption 4 is important.
Moreover, elements of &,° must be chosen in a way that ensures the monotonicity of
the sequence K°. This condition of monotonicity induces combinatorial constraints on
the elements of the partition &;°.

In the third part of the proof, we construct diffeomorphisms T, = B,'S m B, on M
stabilizing £,°, obtained by successive conjugations from the rotation S . InqiSarticular,

4n
in this part, we use smooth quasi-permutations, introduced in [4].

1.4 Construction of suitable sequences of integers: proof of lemma
1.5

Lemma 1.6. There exist increasing sequences of integers ty, Pn, qu, an(’ [1,), by (@' [t,) €
N, i =0,...t, — 1, and sequences s,(i'/t,) € Z*, i’ = 0,....,t, — 1, satisfying the
assumptions of lemma 1.4.

Proof. We construct these sequences by induction. Let ty = py = go = 1, bo(0/ty) =
50(0/10) = 1, a0(0/19) = 2. Suppose we have defined 1, p, gi, ar(i’ /1), bi (@ /1), sk /1),
satisfying the assumptions of lemma 1.4, up to the rank k = n, and let us define

Ii+1s Pn+1s9n+1, An+1 (i/tn+1 )’ bn+l (i/tn+l )a Sn+1 (i/tn+l )
We can define 7, = 2R0baniy et

b(n) = (bn(o/tn), ooy bn((tn - 1)/tn))

b(n) = (ba(0/12), v bu(0/1), bp(1 /1), vvos Ba(1 /1), s (= 1)/ 1), e B (0 = 1) /1))

= (Bn(o/tlﬁl)’ ooy Z;n((trwl - 1)/tn+1))

where each b, (i/t,) is repeated 7, /t, times.
To get conditions 5, 6, as in [1, 3], we seek b(n + 1) of the form:



b(n +1) = guv(n+ 1) + (eps1qn + Db(n)

where v(n + 1) € Z'"! and e, € N.. )

Let b, = [0, bu(i’ /t). Since ged({Bu(0/tns1)s ooos b((tns1—1)/tns1)} = 2ed(bn(0/8y), ... ba((tu—
1)/t,)}) = 1, then we can apply a result in [3, section 1.3.2]: there exists v(n+ 1) € Z"+!
and e, € IN, there exists R4(n, b(n)) such that:

v + DIl < R4(n, by,)

€nt1 < R4(n, bn)

and such that the translation flow of T+ of vector b(n + 1) has a fundamental
domain B(n) ¢ T"~! x {0} of diameter smaller than 1/(2n). Therefore, for any
Gn+1 = Rs(n, b(n)) for some Rs(n, b(n)), and any p,.; such that gcd(py+1, gne1) = 1,
the translation of T+ of vector %b(n + 1) has a fundamental domain of diameter
smaller than 1/n. Hence condition 6.
We write:
v(n+1) = (vu11(0/t041), ooy Var1 (g1 = D/ tn41))

Let
Sn+l(i/tn+1) = Sn(i’/tn) + an(i’/tn)[vn+l(i/tn+l) + en+lbn(i,/tn)]

Let
ﬂll+1(i/tn+1) = bn(i,/tn) + qn[vn+1(i/tn+1) + en+1bn(i’/tn)]

Letd,.1 > Ry (n, gy, bpy1) be an integer, let

tn+]_1
Cn+l(i/tn+l) = dpr1Sp41(/tas1) 1_[ :un+l(k/tn+1)
k=0,k+i
and let
tn+1*1
qn+1 = qn I+ dn+1 l_[ ,un+1(k/tn+1)
k=0

Notice that g, is independent of i (it is important to obtain condition 2). Let

Anr1 (/1) = an(@ /1) + @uCpa1 (i/th41)

Thus, assumption 4 is also satisfied.
We show assumption 2 at rank n + 1. We have:

ap+1 (i/tn+1 )bn+l (i/tn+1) = (an(i,/tn) + gnCn+1 (i/tn+l)) (ann+l (i/tn-H) + (en+l%1 + l)bn(l,/tn))

=1+ qn [sn(i//tn) + en+l(1 + sn(i//tn)Qn) + an(i,/tn)vn+l(i/tn+l)

+Cn+l(i/tn+l) (Qilvn+l (i/tn+l) + (en+IQn + l)bn(l,/tn))]

=1+ qn [sn(i,/tn) + an(i,/tn)(en+lbn(i,/tn) + Vn+1(i/tn+1))



Iy —1

+dn+1sn+l(i/tn+l) 1_[ /Jn+l(k/tn+1) (ann+l(i/tn+l) + (en+lQH + l)bn(l’/tn)):i
k=0,k#i

tys—1

1_[ Mn+1 (k/thrl)]]

=1+ qn Ianrl(i/thrl) {1 + dps1
k=0,k+i

=1+ Sn+1(i/tn+1)Qn+1

Hence assumption 2 at rank  + 1. O

1.4.1 Proof that T is Kronecker
First, we show:

Lemma 1.7. Let

L, (_) = | 22 i f1), P20 1) +
4n qn

ngn
and
f=1
L=({JLu /)
n>1 i’=0
If the translation 22b(n) of the T'-torus has a fundamental domain of diameter

smaller than 1/n, then L is a Kronecker set.

Proof. We adapt the proof of [6, p.6]. We must show that for any f : L — T continu-
ous, for any € > 0, there exists k € Z such that

sup |f(x) — kx| <€

x€L

We fix n > 1 and first, we suppose that f is constant on each interval L, (;—) and

we denote 2,('/1,) = f(Lu(£)). Let 2’ /ta) = (za(0), ... 2((ts — 1)/1a)). Since the
translation ‘;ﬂb(n) of the T'-torus has a fundamental domain of diameter smaller than
1/n, then there exists 0 < k < g, — 1 such that

1

K2 bn) - ul < ~
an n

Therefore, forany 0 < i < g, — 1,

n, . 1

KL b7 1) = 20 1)) < ~

4dn n
Letxe LandO0<i{ <t,—1suchthatxe L, (;—) We have:

<

'x - &blz(i//tn)
dn

ng

Therefore,

1
+_
ng, n

lkx = fQOl = lkx = z(i" /1,)] <

kx — k22b, (i /1,
q

n

. 'k?bna'/m @) <



o= 0 < > (1)

Now, we suppose f : L — T is any continuous map. Let € > 0. L is compact, so
by Heine’s theorem, f is uniformly continuous. There exists > 0 such that for any
x,y € L, if |x — y| < n, we have:

If(x) = fO < €/2 2

We fix n > max (4/€,1/n). Let f, : L — T such that for any i’ = 0, ...,t, — 1, any
ye L, /t,), ) = f(%b,,(i'/t,,)). By relation (1), there exists 0 < k < g, such that
forany x € L,

kx— ful < =
n

Let x € L and let i’ such that x € L,(i’/t,). Since f, is constant on L,(i’/t,), we
have:

lkx = fOI < Tkx = fu(Ol + 1fa(xX) = fO] = [kx = (O] + [ fa(x) = f(2)

k- fQOl < 2 +
n

f(?mwmﬁ—ﬂm

Since

Ix—g%AW%NS

n n

By estimation (2), we conclude:

lkx — f(x)| < % +e/2<¢€

Corollary 1.8. For a suitable choice of R, in lemma 1.4, T is Gaussian-Kronecker.

Proof. We must show that the limit o~ of o, in the weak topology is non-atomic, and
that supp(o) c L. Let € > 0. Since t, — +o0, then for n sufficiently large, for any
x € T, sup,cp 0n(x) < €. Therefore, o is non-atomic.n To show that the support of o
is included in L, let:

S0,y =1} — {0,...t, -1}

i — i’s.t.és#d';l
Letn e N. Forany i € {0, ..., #,+1 — 1}, we have:
“”%mmm—&mmwm=@ﬂ—&ﬁMWMo
n+l1 qn qn+1 n

Therefore, for any m > 0, any i € {0, ..., #,,+,, — 1}, and for a suitable choice of R; in
lemma 1.4,



m—1
B i i) = B2 (70 1) Z(” red p’”") Dusicrt (£ i)

qn+m qn =0 qn+k+1 qn+k

n

Z(p"” )bk+1(f QUADEE

o \dk+1

Therefore, for any integers n, m, 5 I busm(i/tyim) € L, = U’” L,(i'/t,).
Therefore, supp(op+m) C Ly,. Since L, is closed, then supp(a') c L, for any n, and
so supp(o) C L.
|

2 Partitions of Q = C7([0,1],C)
The aim of this section is to show the following proposition:

Proposition 2.1. Ifassumptions 1, 2, 3, 4, 5, of lemma 1.4 hold, there exists measurable
partitions ({,’,"),po n<m Of Q, such that (' is stable by U,, and such that at m fixed, for
n<m ' — Moreover, there exists an isomorphism Q' : {, — (' commuting
with U,.

Moreover, at n fixed, () converges as m — +oco towards a partition {,°, stable by
U,. Moreover, the sequence ({;)n>0 is monotonous and generates.

n+1

A natural partition stabilized by U, is given by ¢, = \/"’ o {ni» Where:

gn,i = {Cn,i,l’l = 09 s qn — l}
with

[+1

qn }

In order to apply lemma 1.3, we need a monotonous and generating sequence of
partitions. In lemma 2.13, we show that ¢,, generates. However, £, is not monotonous,
because for any integers k, i, 1, I,

it = {w € Q/ arg(Bu,, (@) - By(w)) € [qi

{w e/ arg(BLJri(a)) - (a))) el i } ¢ {w eQ/ arg(Bm(w) —BL(w)) €
n " Ipyl An+1 n n
Therefore, as in [1, 3], we "monotonize" £,. This "monotonization" is performed
in two steps: in the first step, we construct a partition "*! stable by U, and such
that ™! < ¢,,; (lemma 2.2). We also need that most elements of {"*! have a size
controlled independently of g, 1, to ensure the smooth convergence of T, towards 7.
In the second step, we iterate this procedure, so as to obtain a partition ¢)', such
that ' < £, . Atm fixed, forn < m, ' — £ ,. We take the limit m — +co. This
gives a monotonous partition ¢;° stable by U,, (corollary 2.12). This procedure is the
same as in [1, 3]. Since ¢, generates (lemma 2.13), then ¢,° too (corollary 2.15).

To show proposition 2.1, we need some notations and auxiliary transformations.
We slightly modify those introduced by De La Rue [8, p. 395].

10
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Let 6 = arg By, and let G, D transformations of Q defined by

B,oG = V2B

B,oD = «/E(B%l - B))

Since, by scaling, B, o G and B, o D are Brownian motions, then G and D are
IP-preserving. Moreover, G~ (A) and D! (A) are independent.

LetI' = G, D, and for any n € IN, I'" is the set of words of length n on the alphabet
I'. Let6g = 800G, 0p = oD, Bg = B;oG, Bp = By oD, and having defined the random
variables 0y and By for W € I, we let Ogw = Oy o G, Opyw = Oy o D, Bgw = By o G,
Bpw = Bw o D. Thus, we obtain families of random variables 6y and By defined by
induction.

For n € N, we denote A, = B(Ow, W € ") and B,, = V|_ Ay, B = V; A For
any finite measurable partition N' = {Ny, ..., N,}, g € N*, let

i
Cn (E,N,) = {we0/arg(By () - B () € N

and let A,(N) = {c, (z—in,N,),i =0,..,2"-1,1 = 0,..,qg — 1}. In particular, if
Np=l/q,(+1)/ql, let

and let A, (q) = {cy (£, 1),i=0,...2" = 1,1=0,...g = 1}, Bu(q) = VI_yAu(g)-

Let ¢, such that #, = 2%. Let also

I 1+1

cn( d l):{weQ/arg(Bm(w)—Bf(w))e -,
21 o q

217 g

¢: I - g k=0,..20 -1}

20'n >

A
a..ay Z?:l 24‘71—“5)
Let
[ 1+1 . »
Awp(q) = Barg (B¢(W)+ﬁ - B¢(w>+y]++m) € 7 7 JA0=0,..,9-1,j=0,.,2" -1

Bwp(q) = ViegAwk(q)

In particular, we have:

Ap1(q) = Acp(@) V App(q)

The main step in the proof is the following proposition:

Proposition 2.2. If assumptions 1, 2, 3, 4, 5, of lemma 1.4 hold, then for any n > 0,
there exists a measurable partition {;‘” — (u11 of Q, stable by U, there exists QZ“ :
Ly — Y isomorphism such that:

1. Forany c € £,, P(cAQ"'¢) < zn;'n'

2. oy, = U, 0.

11



3. Elements of {"*! are given by relation (5).

Proof of proposition 2.2. First, we need the lemma:

Lemma 2.3. For any p > 0,q > 0, P-almost surely,

E|[ Bl (@)] = E[BwiBy, ()]

Proof. The word W is fixed. For u € [0, 1], let B, = V2WI(B_u_, 4w) — Bsw))- By scal-

2IWl
ing, B;, is another Brownian motion issued from 0, and we have: B| = \/WBW. Let
¢ = arg B}, and forn € N, we denote A',(q) = B (60}, € [I/q. (I + D)/ql.1=0,...q — 1, W €T")
and 8B',(q) = Vi_oA'«(q). We have Ay, = A, By, = B’),. Therefore, it suffices to
show, P-almost surely:

E[B|A ,(q)] = E[BIB ,(q)]

‘We show that [E [Bllﬂp(q)] =E [Bllﬂp(q)] P-almost surely. Let

up = B|[ELBIIB,0)] - EIBIA@I |

We show that for any integer p > 0, u, = 0. Since = Ag(q) = Bo(q), then ug = 0.
It suffices to show that u,.; = u,. We follow the method of the proof of relation (15)
in [8, p.397]. We have:

uper = E|[E[By1Byn1 @) - E[By1Ap1(@)] + E[B - B1B,1@)] - E[B: - B, |ﬂ,,+1<q>]\2]

Upii = E B [E[B1 0 GIB,1(@)| ~ E[B1 0 GlA,.1(q)] + E[B1 0 DIB,1(9)] — BBy 0 D|ﬂp+1(q>]12]

For any complex numbers a, b, [a + b|> = |a*> + b + ab + ab, where 7 denotes the
conjugate of the complex number z. Therefore,

Upe1 = %]E “IE [Bi © GIB,.1(9)] ~E[Bi o Glﬂ,,+1(q)]12 +[E[B o DIB,i@)] - E[B1 0 Dlﬂp+1(q)]|2]

+%IE [(IE |B1 © GIB,11(@)| - E[B1 0 GIA.1(9)]) (JE |B1 © DIB,.1(9)] - E[Bi 0 D|ﬂp+1<q>])]

+ 5| (E[B o G181 @)] - E[B o 61ty @)]) (B[ B1 0 D181 0)] - BB 0 DI, )|

Now, we apply the claim:

Claim 2.4. Let X a random variable on (Q, A, P), and G, H sigma-algebras such that
B(X, H) and G are independent. We have, a.e.:

E[XIG v H] = E[XIH]

12



Proof. We reproduce the proof of [13]. We need to show that
E[X | 8(G UH)] = E[X | H],

that is, we need to show that IE[X | #] can serve as the conditional expectation of X
given B(G U ‘H), i.e. show that

e E[X | H]is B(G U H)-measurable,
e E[X | H] is integrable,
o [[EIX|H]dP= [ XdPforall A e B(GUH).

The first two are obvious. For the third, let us note that (note that by linearity, we
can assume that X is non-negative)

B(QU?{)BAHI]E[XWH]dIP
A

and

B(QU(H)BAHfXdIP
A

are two measures defined on B(G U H) with equal total mass being E[X]. Hence, it
is enough to show that the two measures are identical on some N-stable generator of
B(G U H). Here, we use that

{ANB|A€@G, Be Hj}

is indeed a N-stable generator of B(G U H). Therefore, it suffices to show that
f ]E[X|7{]d]P=f XdP, AeG,BeH
ANB ANB

This is true, because since G and H are independent,

E [1ansEIX | HI] = E[141E[X | H]] = E[14]E[15E[X | H]]

By the defining property of conditional expectation, E[1gE[X | H]] = E[15X].
Moreover, 15X € B(X, H), which is independent of G by assumption. Therefore,

E[14nsE[X | H]] = E[14]E[15X] = E[1415X] = f XdP
ANB

]

We have that Ay.1(q) = Ac,p(q) V Ap,(q) and Byi(q) = Ba,p(q) V Bp,y().
Moreover, the sigma-algebra B(Bg, Bg,,(q)) is independent of Bp ,(q).

Indeed, B(Bg, Bs,,(q)) C B(B%pl -B.,i=0, .n2P7 — 1) and

Bpp(g) C B(B;;T?l - Bzip»i =271 .,2P — 1), and these two sigma-algebras are in-
dependent, because the Brownian motion has mutually independent increments. Like-
wise, B(Bp, Bp,,(q)) is independent of B ,(g). Therefore, by claim 2.4, we get:

w1 = 3E|[E[B1 o G156, 0)] - E[B o 616 (0]

13



+|E[B1 o DIBp ()] - E[B1 0 Dma,p(q)]]z]

+5E |(E[B1 2 G1B6,(@)] - E[B1 < Giie,,(@)]) (E[B1 © DISin, (@] - E[B1 = Do, @)

+%]E [(113 |B1 © GIBa ,(9)| - E[B1 0 Gmc,,,(q)]) (E[B) o DIBg,(q)| - E[B) o DmD,,,(q)])]
Since B¢ p(q) and Bp ,(q) are independent, we get:
1 2
et = 3E|[E[B1 0 GI86,(@)] - E[B1 0 Glt6,(a)|

+|E[B1 o DIBp ()] - E[B1 0 Dlﬂa,p(q)]ﬂ

Since Ag,,(q) = G‘l(.?{,,(q)) and B; ), = G‘I(Bp(q)), and since G is measure-
preserving, we obtain:

E HJE |B1 © GIBc ,(9)] - E[B1 0 Glﬂc,p(q)]ﬂ

-E “IE [B1 © GIG™(8,(q))] - E[B; 0 GlG‘l(ﬂp(q»]ﬂ

- E|[E[Bi18,0)] - E[B17,()]

"o G] =E “]E |B118,(9)] - E [Bllﬂp(q)”z] =up

Since D is also measure-preserving, we can do the same for the right-hand side of
the equation and therefore, u,.1 = u,,.
O

Lemma 2.5. Let ji, — +00 and ry — +oo two sequences of positive integers. We have:
+00
\/ B (r) = B
k=0

Proof. Since ry, — +oo, then for any 7 > 0, u > 0, A, = /{2 A(rp).
Since j; — +oo, there exists ko(¢) such that for any k > kg, jix > t. Moreover, for
any t < ji, Al(re) € B, (ri). Therefore,

+00 +00 +00
A=\ A c\/ B0 M B5,(1)

k=ko k=ko
Therefore,
+00 +00
Bo=\/Ac\/Bim)
=0 k=0

14



Lemma 2.6. Almost surely, we have:

E [Bw|ﬂw,k(qﬁ)] —kotco Bw

Proof. By scaling, as in lemma 2.3, it suffices to show that a.s.,

E|[Bi|AGS)| —kose0 Bi

Theorem 3.2 in [8, p.395] implies that |By]| is \/Zj Ai-measurable. Therefore,
. ~ B -B -
B, = |B|e!®eB is B,,-measurable (indeed, [8] introduces § = arg( i 1) and A, =

B
2
BOw, W eT"), B, = \/1_o Ar. . y
Since 6 = 6 + 1 — 05, then 8 is A;-measurable, and we have B, C \/ZI} Ap).
Therefore,

E[B:|B] = B
Let B, = Bi(q}). By lemma 2.5, \/{%) B, = B.,. Moreover, since g5 is divided by

n
q’,;, then B, , C B, and B, is a filtration. Therefore, E[B;|8,] is a closed martingale,

and almost surely,
E[B/18;] =t-+00 E[B118x]

Since, by lemma 2.3, E[B|B;] = E[Bllﬂk(qﬁ)], and since [E[B|B] = Bi, we

conclude that, almost surely
E [B] |~7{k(qﬁ):| k—+00 Bl
O

Let Q, N be two measurable partitions. The safe zone of N with respect to Q is

defined by:
S@QN)={PeN/AQ€Q,PC 0}
For k > 0 integer, let

¢ =1jlgk, G+ DIgLj=0,.gh - 1}

Let
2k_1

Sua' ) = ({are (B - B ) € 56 M)

t=0

Lemma 2.6 gives the following corollary:

Corollary 2.7. For any € > 0, any n > 0, there exists ko(€,n) such that for any k > ky,
for any finite measurable partition N of T such that Leb(S (¢, N)) > 1 — €/2%, we
have:

P(E[B|[A:(N)]-Bi|<np)=1-¢€

15



Proof. By lemma 2.6, since convergence almost sure implies convergence in probabil-
ity, then for any € > 0, any n > 0, there exists ko(€, 77) such that for any k > ko,

IP(|IE |B11A")] - Bl‘ < n) >1-¢

Moreover, if
[E[BilA(gH] - B1| <

then

[E[E[B1A")] - BA)]| < E|[E[BiA)] - B Iec)| < 7
Moreover, if

E|[E[B117(q")]1AN) | = E|Bi| A"

then

IE[BiAN)] - Bil < [E[BIAN)] - E[E [ BilA(¢")]| |7 ||+[E [ Bule@h)] - B1| < 21
Moreover,
S(¢" N)  {E[E[BilAG)] 1AM | = E|BiIA("))
Indeed, let

v: Q@ — S N)
QO —» {PeN/PcCQ}

The map v is surjective. Let C be the partition generating Ax(¢*). Elements Q € C
are of the form:

%1
0= ore(ps - 5,) < 0)
with Q; € ¢*. We have:
E[B;10]
L nE[BIAG] = D) =55 Lo
QeA(G")
Moreover,
2k—1
0n8ua' N = () {ae (B - B, ) € v@))
=0 ok o

which is A, (N)-measurable. Therefore,

S(¢", N)  {E[B[BilA()] 17N | = E[BIIA(g"))

Moreover,

16



P(Sk(g" N)) 2 e

Therefore,
P ([E [B1|A(N)] = B1| < 2n)

> P ({|IE [Bllﬂk(q")] - Bl| < n} N {]E [1E [Bllﬂk(qk)] Iﬂk(N)] - E [Blmk(qk)]})

> IP({‘]E [B,lﬂk(q")] - Bl' < 77} n Sk(quN))

Therefore,

P(E[Bi|AN)] - Bl <2n) > 1 - 2¢

]

Corollary 2.8. For any € > 0, any /2 > n > 0, there exists ko(€, n) such that for any
k > ko, any finite partition N of T such that Leb (S (-, N)) >1-¢€/2k,

P (jJarg (B [Bi|AN)]) - arg(By)| <) > 1 - €
Proof. We need the claim:

Claim 2.9. For any z € C such that |z — 1| < 1, we have:
. 2
|z — 1| = |sin(arg z)| > ;Iargzl

Proof. 1f |z — 1| < 1 then |argz| < m/2 and so |sin(argz)| > %|argz|. For the other
estimate, we write z = re'. Since (r — cos 6)* > 0, then

> +1—-sin’6—2rcos6 >0
r*cos? 0+ 1 —2rcosf + 1 sin® 0 > sin’ @
(rcosf—1)% + (rsin6)? > (sin 6)°
|z — 1] > | sin(arg )|
Let € > 0. There exists g(¢) > 0 such that

P(Bilzg(e) 21-€
Let /2 >n > 0 and ko = ko (e, @) in corollary 2.7. If |B;| > g(e) and if

2
IE [B/|A(N)] - Byl < gff)”

then

17



< 28(n < 2 <1

E[BIAMN] _ |
T By T onw

B

By claim 2.9, we get:

2' (E[Blmk(/v)])‘ 2
= larg| —————=]) < =n
Bl T
Therefore,
|arg (E [B{|A(N)]) - arg(B))| < 1
Therefore,

2
P (Jarg (E [Bi|A(N)]) - arg(B))| < 1) > IP({|BI| > ()} N (IE[BIlAN)] - By < %E)”}

By corollary 2.7, we get:

P (Jarg (E [B\ [ AN)]) - arg(B)| < n) 2 1 —€e—e=1-2¢
O

Corollary 2.10. For any 0 < € < 1/(2qy), there exists k(e, t,, g,) such that for any
1=0,..,q,— 1, for any W € T, for any finite measurable partition N such that

Leb(S(q" N)) > 1~ 2—‘1

1 1
]P((arg By € [i, [+ [)A(argE[BWIﬂmk(N)] € i, [+ D) <e
qn  qn qn  Y4n

Proof. More generally, corollary 2.8 holds for any By . Let k(e, t,, g,) = maxy, -, ko(e, €, W).
We have:

I
)

1\ I [+1
) n(argIE[BWka(N)]e q_

[ [+1 [ 1+1
P[(arg By € [—, * DA(arg]E[BWIﬂWk(N)] € [q—, ;
[ 1+1

n Yqn
) N (arg]E[BWIﬂW,k(N)] € [q

"

I 1+1
= ]P((arg By €| —,
qn  n

1
]P[(argBW € [i, L+

[ 1+1
)ﬁ(argIE[BWL?IW,/{(N)]e PR

qn qn

I I+
<P|largBy € |—,
n  qn

N (iarg By —argE [BWIﬂWk(N)” < E)]

|
)C

n n

[+1
qn

[ 1+1
arg By € q_ p

N (iarg By —arg E [Bwlﬂwk(N)” < e)]

+P ) N (arg]E [Bw|Awx(N)] € [qi

+2P Harg By — arg E [By|Awx(N)]| > 6]

18



Moreover, since € < 1/(2g,) then:

I I+1]\° 1 1+1
(arg By € [q—, p ) ﬂ(arg]E[Bwlﬂwk(N)] € [q—, )ﬁ<|arg By —arg E [Bwlﬂwk(N)” < e)
( [ 1 [l+1 I+1 D
ClargBy € |-€e+ —,—| U S +€
4qn qn qn qn
Therefore,

I 1+1]\ I I+1
]P((arg By € [q_ ) N (arg]E [BwlAwr(N)] € [— p )ﬂ (|arg By —argE [Bw|ﬂwk(N)]| < e))
<2e
Likewise,
I I+1

(( [l 1+1
P|(arg By € | —,
qn

n

) N (arg]E [Bw|£7lwk(N)] S [CI_’

n n

) N (|arg By —argE [BW|-7lW,k(N)]| < 5))

<2e

Therefore,

>

]P((argBW . [i’ [+ 1[)A(ng[BW|ﬂwk(N)] € [ "

I 1+1
dn  4n n

)

Lete = ——. By corollary 2.10, we can fix ko(n, g,,t,) such that for any / =

2tg;
0,...,qg.—1,We I, for any finite measurable partition N such that Leb (S (q"“, N ))
1- 2%0, we have:

\%

I I1+1 [ 1+1
]P((arg By €|—, * DA(arg]E[BWIﬂka(N)] € [—, *
qn Qn qil qn

1
3
)) : Z"Wfa" )

Let

v \‘ qn+1 J
n+l = | .
th ki

2h22m4 11, g5 gy

For g,+, sufficiently large, v,,; > 1. By Euclidean division, we can write:

Gn+1
— = Vi1 Yn+1 T Pn+l (4)

n

with 0 < Pr+r1l < Vptl.
Let

Y | Vn+l .
N;H—l :{_+.] “ +Nj,.]:0’~'-9yll+1,y:Oa~-~,qn_1}
qn qn+1

with N] = [0’ Vn+1/4n+1[» for J = O’ ceos Y+l 19 and Ny,ﬁl = [0,pn+1/‘1n+1 [
We have: Leb (S (g’ N,’f“)) > 1 — 55 and therefore, estimate (3) holds for N;*!.
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When g, varies, the partition N, ,’1’“ varies, but ky must remain fixed independently
of gn+1, and this is why we need a uniform estimate on all partitions N sufficiently
refined. If we could take qf,“ dividing ¢,+1, a non-uniform estimate in corollary 2.10

would be enough.
Forany[=0,...,q,— 1, W e I', let
I 1+1

qn

!
el (¢(W)’ q_) _ {w € Q/ arg B [ Bw|Aws,(Ni )] (w) € [q } (5)

Let

n+1 _ n+l i =0 _
Grgowy =1Cn (BW), g R s n — 1
is a partition of Q, because it is the pre-image of a partition of T.

n+1

The set g’n!(b(W)
Foranyi=0,....t,51 =1, ji =0,...;¥41, 7 =0, ..., g, — 1, let

) Yi ] Vi+l 4 Nji}

n

i ; %
E( A "H):{weﬂ/arg(Bw(w)—Bi(w) €+
il qn qn+1 I+l In+1 n qn+1
), i=0,..,t41—1, are mutually independent. For any i’ =
M_L)7

A7 + jl._V"”

The setsé(r s
n+1 " Gn qn+1 . . A .
0’ "'7tl’l - 17 Y = ryl'/’nli-zl9ryl'/’nli-:|+l5 -",’Y(l’/_'_l)"%l_i)? J = (‘]i/%’]i/%‘#l’ (2] ‘](i/+1)

let
I+l 1
i/ Y Vsl Iy i i Vel
. + ~ . +
Lr, "_): ( iy )
Iy qn qn+1 P i1 Gn qn+1
bt
Let
Intl Tntl
n 9.] € {05'"7yn+1} n }

—,l + 'M),ye {0,...,q, — 1}

P’ = {e(
In qn dn+1
The partition P(i’) is finite and B(P(")) = Awx,(N). Therefore,

E[By1,
Byl > (arg BByl 1.

arg]E[BWI?IW,kO(N,Z‘”)] = arg[ Z “Ple) e] =
e€P(i") ¢ eeP(i’)

(we can check that the right-hand term satisfies the characteristic property of con-

ditional expectation)

Fori’ =0,..,t,-1,1=0,....,q, — 1, let
i, l . n+l 'nt1
Elr o) {0 €10, = 15 510, oyt 5/
[ 1+1
arg(]E[(Bm —Bi)l vy D €|—, } (6)
in in e(gvaﬂm) qn 4qn
Therefore,
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l n+
alem. = | e (¢(W), 2, jv_l) o
B G DEE(6(W), L) n  qn+l

Moreover, since N,Z‘“ — {[k/qn1, (k+ 1)/ qne1l,k =0, ..., gus1 — 1},

then Awy, (N™1) € B(L,+1), and therefore, %}W) < Ll

Lemma 2.11. Let

n+1 . n+1
Q;:,T/;(W) D Lnow) - éﬁ,;(w)
W), ) = W), 1)

n+1

We have: (W)

— n+1 ; ;
U, = Uniggon Qv pwy- Moreover, is measure-preserving.

}

n+1
(W)~ llnow)

Proof. We have:
I I+1

[
Un Qi (Cn(@(W), =) = { Un(w)/ arg B[ Bl A, (N )] () € | —,
¢ qn n qn

}

[+1
qn

I 1+1
= {w e Q/argE [Bwlﬂwko(N;‘”)] oU, \(w) € PR

= {w € Q/ arg E [By o Uy U, (Aya, (N2 (@) € [qi

}

Moreover, since R 1 (N"*1) = N™*!_then U,(Awxr, (N*1)) = Az, (N™1). On the
other hand,

By oU' = e iibp,

Therefore,

l
Un Qi) (cn (¢<W>, —))

n

_ {w € O arg E [ Byl (N} @) € [pnbn(as(vv)) o L @) 1+ 1[}

4n qn qn qn

. ( oy, P @) L )

qn qn
On the other hand,

! uba(@W) 1
0%t U (000 1)) = €5t o s, 22000, L)

b (W) . !
= (¢<W), b @) —) = U, Q0 (cn (¢(W>, —))
4n 4dn qn

Finally, ZT])I(W) is measure-preserving: indeed, let U, be the transformation defined

like U,, but with p, = b,(¢(W)) = 1 (we use U, instead of U, in order not to use the
assumption ged(p,b,(¢(W)), g,) = 1). We have:
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Srotw = {0 (e @W),0)),1= 0, .o q, — 1]

Since, like U, U, is measure-preserving, then all the elements of n+l  have the

n.¢(W)
same measure. Therefore,
n+1 i — i — L
Plc,™ |o(W), = — =Plc,|p(W),
4dn dn dn
Therefore, QZ}';(W) is measure-preserving. O

-1
To conclude, we let £;*! = /17" £}, and
i

1.
ol 4 - o

! =1y 1 I 1 [
o (O,q—‘;)ﬁ...ﬂcn(—t” q—) -0 (cn(o,qg))n...mQ:t”,, (cn(—rn ,

By independence of the §Z+j and by lemma 2.11, £"*!, stable by U,, and Q"' :

£y — " is a measure-preserving isomorphism such that Q"*'U, = U,Q"!.
Moreover, since, by estimation (3) and definition (5), we have, forany i = 0, ..., ¢, —

1,1=0,..,g,— 1,
i i 1
]P(Cn (i’_)Acz+1 (i,_)) S —t
In qn Iy qn 2”t,1q,;’

and since, for any A,A’, B, B’ € Q,
P((ANA)YABN B)) < P(AAB) + P(A’AB’)

then we have, for any c € ¢,

P(cAQ"*'¢) <

n
2"qy
O

From here, the rest of the proof is analogous to [3, section 2], except lemma 2.13.

Corollary 2.12. If assumptions 1, 2, 3, 4 and 5 of lemma 1.4 hold, at n fixed, there
exists measurable partitions ({')n>0n<m Of Q, such that ) is stable by U,, and such
that at m fixed, forn <m, .| < {'. Moreover, at n fixed, {}' converges to a partition
£y as m — +oo, such that {;° is monotonous and stable by U,,.

Proof. For m > n, let

or=on .o (8)

and let ' = Q)/(&). Forn < m -1, " < . Moreover, ;' is stable by

U,: we recall that b(n) = (b,(0/t,), ...,b,((t, — 1)/t,). Let U, be defined as U,, but

by taking p, = 1. Since b(p + 1)/q, = b(p)/q, mod Z for any p > n, and since g,

divides ¢, then %b(p)/qp = b(p)/gn = b(n)/q, mod Z by assumption 4. Since U,,
p+1 p+1

commutes with Q)"", then U, = %I_J » also commutes with Q)"", and therefore, U,

also commutes with Q1 = Qr*'Q"*2..Q™ | Therefore, U, = U}" commutes with Q%
and stabilizes ).
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We show that (£))")>n is a Cauchy sequence for the metric on measurable partitions.
For any fixed n, n < m, we have:

d@gy.ory= ) P(aragnten) = > P(QMOAQT 01(0)
o€y Cc€Ly
For ¢ € ¢,, O'(c) C &y, SO we can write:
ey =|Je
iel(c)
Im

with ¢; € {,. By volume conservation of the map Q' |I(c)| = g,
by applying proposition 2.2,

In

/q.. Therefore,

]P(QZ%C)AQ%HQT(C)) = ]P( U cAQ™! [ U Ci]] - ]p[ U c,-A[ U Q%+1Ci)]

iel(c) iel(c) iel(c) iel(c)

< Z clAQm+l qu 1

m tm
i€l(c) 2

Therefore,

agy,orty = > P(QOAQE O0) < 5

C€Ly

Dlarart < 2,, )

m>n
Therefore, ({)m>, is a Cauchy sequence. Let £,° its limit. Let O} the limit of Q).
Now, we show that £° is monotonous. Let n > 0 and € > 0. Let m > n such that
A, &) < €/2and d( .47 ) < €/2. Let ¢, (k) € £, and ¢’ (k) = O;7(cq(k)) €
£>, where k = (é,i),i =0,.,t—land [ = 0,..,q, — 1. Let m > n such that
P (" (k)Acy (k) < €/2.
Since ' < (™ ., we can write:

= | o

leL(k)

n+1°

Since d({T.,, {75 ,) < €/2, we have:

IP[U RO m(l)J D B0, ) < €2

leL(k) leL leL

Therefore,

P (c;;’(k)A U c;;‘;l(Z)] <P (c,‘;"(k)Acnm(k))HP[ nA (e, (l)]+]P [U oAl c;;‘;l(Z)]

leL leL leL leL

P [c;j’(k)A U c;j;l(l)J <€/2+0+€/2=¢

leL
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Since this estimate holds for any € > 0, we conclude that:

P [c;"(k)A g c;‘;l(l)] =0

leL

00

Therefore, £,° < £ . The proof that U, stabilizes £, is analogous.
Finally, let us show that ({;°),>0 generates:

Lemma 2.13. ({,).>0 generates.

Proof. We need the lemma:

Lemma 2.14. Forany p >0, k=0, ...,27 — 1, we have, almost surely:

2P

]E[Bz%lgn] po+oo B k
Proof. By proceeding as in lemma 2.6, since g, divides ¢, , then for any W € I'»,

E|BwlAw, 1, (gn)]| = oo Bw
Moreover, B(Z,) = Ay (g,), and by applying claim 2.4, E [Bwlﬂl;l(qn)] =E [Bw|ﬂw,zg—z’p (qn)].

Therefore, we get:

E|[BwlZ,] = B[ BwlAy ()| = E|BwlAw, 1, (gn)] —nsres Bw

Since Byw) = 2. By, then we get lemma 2.14.

Wrel'? [(W)<p(W)
O

Let w, '’ € Q such that ¢,(w) = ¢,(v’), where ¢,(w) is the element of the partition
£, to which w belongs. Then almost surely, for any p > 0, k = 0, ...,27 — 1, we have:

E[B  15,](w) = E[B |£,](e)
By taking n — +oo, and applying lemma 2.14, we get:

k ,  k
w(z—p)zB;p(w)szkp(w)zw(z—p)

By continuity of w and «’, we conclude that w = w’.

Corollary 2.15. ({;°)n>0 generates.

Proof of corollary 2.15. Let G be a measurable set and let € > 0. There exists ny > 0
such that for any n > ny, there is a {,,-measurable set G, such that P (GAG,) < €. Let
I, the (finite) set of indices such that

G = | ealin)

in€l,

Let

0y G = Oy entin)

i,€l,
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By (9), Ysn (", C™1) -, 1 0. Therefore, there is an integer n; > ng such that
for any n > nj:

2, 2, (0 ebyc) < e

m2n cel,

Since for any ¢ € £,, Qic = c, then

P(07G,AG,) = P(07G,AQ,G,) < ) P(Q1G,AQLG,)

m>n
- Z Z P (00 (i) AQMen(in)) < Z Z P(Qr*'cAQlc) < e
m>n i,€l, m2n c€f,

Therefore, for any n > ny, u, (05°G,AG) < 2e. Hence the generation of £;°.

3 The metric isomorphism

This section is similar to [2, section 2], although the framework is more general. Our
aim is to elaborate sufficient conditions on B,, € Diff*(M, u), so that if T,, = B;lS m B,
qn

weakly converges towards an automorphism 7, then there exists a metric isomorphism
between (Q, U, P) and (M, T, w).

To that end, we use lemma 1.3: we construct a monotonous and generating se-
quence of partitions £° of M and a sequence of isomorphisms K& : T!/Z>° — M/EY,
such that K;°U, = T, K7 and K} . = K.

Forl=0,...,q,—1,let

An(O,i)z[i,H-l
qn dn  49n |9

l
Mo = {A,, (O, —),l =0,..,q9, — 1}
qn

Fori=1,..,t,-1,1=0,..,g,— 1, let
AN P+l P+l

e D2 A 2

t}’l ql‘l j:0 qn Qn qi‘l O qﬂ Qn 7

1l
Mot = {A,, (i, —),l =0, G - 1}
in th qn

Foranyi=0,..,%,—1,7, i is apartition of M stable by S = . Moreover, the family

qn

In—

M, & )1:0 is mutually independent. Letn, = V'

k=0,..,t,/ti—1 — 1, let

1 .
Ty, £ Forn>1, j=0,..t-1,

In . .
h"(t ]+k):]+t,,_1k

n—1
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The map h, : {0, .. -1} - {0,...,t, — 1} is bijective. It permutes coordinates
x;, 1 > 1, and "dlstrlbutes" them in order to make possible the construction of a dif-
feomorphlsm A, that simultaneously sends #, independent partitions 1, ; on #, other
independent partitions 17”” modulo a set of small measure. See the beginning of sec-
tion 4.3 for more explananons.

The following lemma gives the isomorphism from which we start:

Lemma 3.1. Fori =0,. — 1, let a,(i’'/1,) be relatively prime with q,, and let
Kn’;; : {y;; - 7, fut?)
i hu(t ) lan (' /1n)
a(f ) v o (e i)
K, i is ametric isomorphism such that K, U,M L= =SwukK, i.

an Iu

Corollary 3.2. Let

0B n e () o R (e (0.2 bl
(0.2 na (L, (60 (0. 2) 1 K (e (221, 2)

4n 4n

K, is a metric isomorphism such that K,U, = S m K,,.
qn
In other words, the following diagram commutes:

K,
U’IC§I14H>UHDS%

Proof of corollary 3.2. Since each K, . is surjective, then K, is also surjective. Be-

n

cause of the mutual independence of partitions, x| = Inal = glr. Therefore, K, is also
injective, and it is an isomorphism.
O

The following lemma combines corollary 3.2 with the facts that {,, < ¢, and
M = Nn+lt

Lemma 3.3. For any integers 0 < i < t, — 1 and i'ty11/ty <0 < (@’ + Dty /t,, let
an(@ [t0),ani1(i/10r1), Gn>qn+1 €N such that ng(an(i,/tn)v qn) = ng(an+l(i/tn+1), qn+1) =
1, such that g, divides g, and such that q, divides a,+1(i/t,+1) — a,(i’'/t,).

There exists a partition """ < 1n,.1 of M stable by S o, and there exists a
metric isomorphism K™ : 0 — g such that K™™' = Ky, and such that
Ky, =8 B K"Jrl There exists also a metric isomorphism C'1 : 5, — n™*! such that

ClSp = S C"! and K™ Q! = CK,. Said otherwise, we have the following

qn

commutative dlagram

Ky Sn
gn*>77n:> o

Un
Qn+l l l Cn+l
n
n+1

> it S
(’l T]n D %

|

K1
Lot — M
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Proof. We still give a proof, because the similarity with the corresponding lemma in [2]
may not be obvious (especially the fact that there are multiple coefficients b, 1 (i/,+1),
and because it allows to introduce some notations and objects that are useful in the
next section. Since gcd(a,+1(i/th+1),qn+1) = 1, then by corollary 3.2, K, is an iso-
morphism. Since ! < {,,1, we can define the isomorphism K*! = wrngt - Let
et = KN (). We have it <m0

It remains to show that K"*'U, = S @K”” (it automatically implies that 7"*!

stable by § 1, and that there is C™*! : 5, — 17! such that C"*1S . = S C'*1).
an an
Let K” (m andlet0<Il<gq,—1.

n+1|

Let ko(n qn>tn) be 'the integer defined by estimation (3). For 0 < i < #,,; — 1,
ji - O’ o Ynt s Vi = 0» e fn — 15 let

é( i Yi jAV"“):{weQ/arg( i1 (W) — B_i (w))€—+' Tl +N]} (10)

tn+1 4dn qn+1 fn+1 fn+1 n n+1

i \%
,”l“’”z{é(t 1 3]/' jiqmi) 0<i<tyn-1,j;=0,. ,yn+1,7i=0,---,61n—1}
n+ n n+

The set £ is not a partition, but by (7), we have:

B € B € B(Law) (11)

Moreover, for any W € I and t,,, = 2%1,, we have:

Vi+l

J i . Vn 1 i .
gy Ny = B({é( LYt ”) BW) < — <pW)+—,0< L4 j,
Intl qn Qn+l th+1 tn qn Gns1

On the one hand, for ;— < til < i%l’ i"=0,..,t,—1, we have:
n+ n

- i i . Vn+l - i . Vn+l i’
Int1 qn qn+1 tn+1 Qn qn+1 qn Iy
On the other hand, since
S TR i
e ,— + Ji = U Cn+1
Inel Gn qn+1 v Vel tn+1 qn+1
RaN + i n+ +.
In+1  9n In+1

then

] J ans1
Koo (6( s f‘v”+l))= U Anu{ P8 22 (M)]
4n qn+1 qn+1

tn+1 P v Vet In+1
€ L+ji LN,
dn+1 — dn n+1

Therefore,

. h . j’a 41 i -y
KMUH(E(I i j'vn+1))= U ta[a® 7 (f,,+1>+&bn(z_)an+l(_
tn+1 Qn 4n+1 7 % n+l N tn+1 Qn+l Qn tn

dpsl  dn tli n+ Ji
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Since we assumed that

1 . 1 .,
—Ap+1 (L) = —day (l—) mod 1
qn I+l qn 1

lan(l—)bn(l—) = i mod 1
ql’l tﬂ tﬂ qu

and

then we have:

Y (i) J'ne1 (7
Kn+lUn (E( : ,ﬁ +jivn+l)) = U An+l ”'H(l)’ n (f»m) " &
Insl qn qn+1 N In+l 4n+1 qn

” ) ,

J Yi 4 o: Vntl
ellyjntl 4N

net Can g i

i i v
gt 2 1)
n I+l qn qn+1

Therefore, by (11), we conclude:

e ;) senele i)
n n n n

]
We also let:
f( ’ ,ﬁ+j,-v””)=Kn+1(é( ’ ,ﬁ+j,~v”“)) (12)
Int1 qn qn+1 Inrl Gn qn+1
where & (ﬁ % + j,-;’;—i‘]) was defined in (10).

By iterating lemma 3.3, we get a corollary that is important for the construction of
the isomorphism:

Corollary 3.4. For any m > n, there are partitions n,) < 1", of M such that 17} is
stable by S m and there exists an isomorphism K)}' = {, — 1 such that K;'U, = § m K}
qn 4n

m o _ m

and K,% = Kn+1|;7;,"' . .
Said otherwise, the following diagram commutes:

m
n+l m
§11+l > 141

Proof. The proof is similar to the one found in [3]. m]

For any n fixed, the sequence of partitions (17))m>, must converge when m — +oo,
in order to obtain a full sequence of monotonic partitions. Moreover, the possible limit
sequence (i.e. a possible 77,°) must generate. Indeed, these assumptions are required
to apply lemma 1.3. However, none of these assumptions are satisfied, in general.
Therefore, to obtain these assumptions, we pull back the partition 7]’ by a suitable
smooth measure-preserving diffeomorphism B,,. The following lemma, already proved
in [3], gives the conditions that B,, must satisfy:

28



Lemma 3.5. Let B,, € Diff*(M, ). Let Api1 = Bni1 B,

1. IfAp1S o =S 1 Apst and if
qm qm

2 2 (A AC (@) < oo

m>0 ceny,

then for any fixed n, when m — +oo, the sequence of partitions £€" = B,'n"
converges. We denote &, the limit. The sequence &, is monotonous and T, =
B;,'S m B, stabilizes each £.

qn

2. If, moreover, the sequence &, = B;'(17,) generates, then so does £

By adding to lemma 3.5 the convergence of the sequence T),, we obtain the required
isomorphism:

Corollary 3.6. If both conditions 1. and 2. of lemma 3.5 hold, and if T, = B,'S Fn
weakly converges towards an automorphism T, then (Q, U, P) and (M, T, ) are metrl—
cally isomorphic.

Proof. The proof is the same as in [3].

4 The sequence of conjugacies

In order to construct a suitable smooth approximation A, of CZ“, we re-write and
approximate the partition 7"*!, so that most elements of the approximated partition
7+ consist of unions of medium-sized "cubes" with suitable properties.

These cubes need to be small enough in order to have a good approximation of 7/,
by 171, but they must be large enough to suitably control the norm of A, ;. Likewise,
elements of n,, are mostly decomposed into cubes of the same medium-size.

Thus, transforming 7, into 7*! consists of permuting these cubes. We construct
a smooth approximation of this permutation. For the vertical permutation along the
z coordinate, we apply a transformation developed in [1], [3], [2], based on fibred
rotations of the flow along z.

For horizontals permutations, along coordinates x;,i > 1, we apply and generalize
the method of "quasi-permutations” that we introduced in [4]. There is no rotation flow
along x;, so we displace cubes one by one.

The re-writing and approximation of 77*! has 3 steps: first (lemma 4.1), we re-
write elements of 77! using the "stacking phenomenon" presented in [2]. A priori,

n+1

F(l il, ko) consists of v "slices" of width 1/¢,+1, with v = v,,; or p,+;. However,
this fact does not ensure the convergence of 7, because it only implies that ||B,.|[; <
F(g,+1) for some fixed function F. In order to apply the reasoning above successfully,

we need a better estimate. Lemma 4.1 shows that "slices" of I (ﬁ 0) of width 1/g,+;

stack on each other, which gives b,,.(i/t,+1) connected components to I" (ﬁ, 0), each
having a width of order v/(g,+1bn+1(i/ts+1)). If we only consider slices for v = v,,1,
this will allow an estimate of the form ||B,.1|l; < F(gy, max; b,,1(i/ty+1)), for some
fixed function F, which will allow the convergence of T, by taking b,,,1(i/t,+1) small.

Second (lemma 4.4), we approximate 7"*! horizontally: along the coordinate x;,
elements of 77"“ are piecewise constant, with a thickness of 1/g,;. This would lead to
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a too large conjugacy, of order g,.;. Mostly, we make an approximation of thickness
Wat1/Gn+1, With wyy large.

The construction is carried on the infinite-dimensional Hilbert cube, instead of the
finite-dimensional annulus, as in previous constructions [1, 9, 3, 2, 4], because the
stacking phenomenon only allows to stack together ¢,/ f(g,) elements.

Therefore, if elements of the partition 7,,.; have a length negligible with respect to
1/gn+1, we cannot stack them to get a partition with elements of length negligible with
respect to ¢g,+1, which is a necessary condition for the smooth convergence with our
method.

In our case, the volume of an element of the intersection of 7,,; mutually indepen-
dent partitions of size g,.; each has a volume of l/q; +1- Therefore, in dimension d,
the maximum of the minimal length of an element of this partition is 1 /qi;dl. Since
t, — +oo, then at the limit, the dimension of the ambient space must be infinite. For
example, in dimension 2, for ¢ > 1 integer, let 17,,, be the partition defined by

k .
i)
qn qn qn

The partitions 7,,, ¢ > 1 are mutually independent and stable by S/, . However,
elements of 7,41, are 1/ qf;ll-periodic along the horizontal coordinate, so for ¢ > 2, we
cannot move them into elements of 7*! with a diffeomorphism having a norm smaller
than g,+1.

However, if, for example, we had to consider ¢ pairwise-independent partitions of
size gn+1, instead of mutually independent partitions, then we would be able to carry
the construction on the 2-dimensional annulus.

The broad idea is that the Anosov-Katok method does not allow the manipulation of
excessively "complicated" partitions, which have smaller components, because of the
constraint of smoothness. To manipulate simpler partitions, we increase the number of
dimensions of the partitions. We met the same problem in [4], where we considered
two-dimensional partitions, instead of the "one-dimensional" partitions from [1] (i.e.
the periodic transformation was metrically isomorphic to a cyclic permutation) in order
to avoid elements of the partition to be intertwined.

A tign = ) U [=+]=

—1_ _
g, —1g,—1 ( l |: J j+ 1
=0 o\ L4 an

4.1 Re-writing and approximation of the partition 77! by r"*!

Fori=0,...t, -1, let

tl‘l . .
Jnr1(hp (D) = {hn+l ( ;1 I+ k) =ha(D) + 6k k=0, b1 /1 — l}
The set {J,,+1(h,(0)),i =0, ..., 1, — 1} is a partition of {0, ..., #,.1 — 1}.
The following lemma, already proved in [2], shows how slices forming 7
on each other.

n+1

n+t stack

Lemma 4.1. Forv = v, or pp+1, let

-1
o1/ tue1,v) = {MJ

M1 (ifty1,v) = v —1— bn+1(i/tn+1)fn+1(i/tn+1,V)
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and for 0 < 1 < by (i/tys) — 1, let

k1 @/ tas1, L,v) = a1 i/t 1)v]

rn+1(i/tn+l’ l’ V) = lan+l (i/tl‘l+l) - an+l (i/tn+l W, V)
We have:

b (75 1

= (a1t Yhat) . Ve YhoorG) | .
F("—, O NI e U ==t o] +
Lnt1 qn qn+1 =0 n 0

a1}

In+1

hn+1 (l) /
Thaer @ ’

If jhpoiy = 0, e, yne1 — 1, then we let v = vy If jn,. ) = Yns1, we let v = pyq. If
0<I<my(i/ty1,v), we have:

. . . w1 (1 B, V) +1 . v
i hust )\ _ (kat @/t LY /1. 1) Tort Gt W)+ hur (D) Jj
Jhpe1 G (Rl + + U n+1
0

A )
tn+l qn+1 qn+1 =0 tn+l qdn+1

and if My 1(i/ty01,V) + 1 ST < by (i/t,41) — 10

I+l

. . . 1 (i a1 ,V) . .
~ Bt @)\ (st @ tnats LWV P, L)) o7 hur()
Jhysr @ A= + + U Apii | ——, —
" qn+1 qn+1 0

=0 Insl qn+1

Proof. The proof is the same as the corresponding lemma in [2, section 2].

WefixO0<i<t,;—1. Forn>1,let

bn+l(i/tn+])_1
RO/t )= ) RO a0/t v)
=0
with, if 0 < < myy1(i/ty41, v):

: . vl
O ST/ SSP AL TOT L/ FSN A0 W I vt Bl
qn+1 qn+1 qn+1

and if’/”n+1(i/tn+1’v) +1<1< bn+1(i/tn+1) -1

; . vl
R(n)’l(h,1+1(i)/ln+1, V) = {k,,+1(l/tn+1, Lv)v + Tnr1 (i/tas1, 1, v) + IO’ lb,,+1(i/tn+1)J D

qn+1 qn+1 qn+1
By abuse of notation, if j = 0,...,y,:1 — 1, we write R (h,,1(i)/tys1, j) to de-
note R (41 (i) /ts1, Vas1), and if j = y,u1, we write RO (1 (i)/tas1, J) to denote
R(n)’l(hn+l (i)/tn+l »pn+l)‘

Let € > 0, let b,y1 = Maxo<i<s,,,~1 bur1(i/t.11) and let:
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’
qn+1€;
Wnpel =

23n qtn Ins1 ol
n tll

(13)
Vns1qn) ™™ bpy1

where y,;; was defined in relation (4). For g, sufficiently large, by Euclidean
division, we can write:

dn+1 = Wnptllpt1 + /ln+1

with 0 < 4,41 < wp4 (in our construction, we can even take 4,.; = g,). Moreover,
Uni1 < Gni1/Wne1. We show the lemma:

Lemma 4.2. For any €; > 0, there exists an integer w,,, | > 0 such that
/
Wn+l

Z l/Rﬁ(n, tl’H—l ’ bn+l ) C]m E(/), 6{)
qn+1

and there exists a family of pairwise disjoint measurable sets Py c T, R, Jan-
invariant, such that:

/1(730)21—66

such that each set P, of Py is of the form x + [0, W) 1/ @ne1l, and such that for any
i<ty —1,any 0 < j < uyy, thereexists 0 <y < g, — 1,0 < k < yuu1,
<1< b1 (i/tysr) — 1, such that

X+

W/ . . k .
0, L”[ C (]W_“ + e + Kn1 +R(”)’l(i/tn+1,k))

qn+1 qn+1 qdn qn+1
Corollary 4.3. Let Py = Po U {[k/que1, (k + 1)/qnir [ [k/gns1, (k + 1)/gnir [ Po}. Po
is a partition of T such that for any ¢ € Py, forany 0 <i <t,1 — 1, any 0 < j < upyy,
there exists 0 <y < q,— 1,0 <k <yu1, 0 <1< byy1(i/the1) — 1, such that

cC (jWn+1 + Y + kvn+1

=+ RO/t k))
qn+1 dn  4n+l
Corollary 4.3 is immediate from lemma 4.2.

Proof of lemma 4.2. Fori=0,...,t,.1 — 1, j=0,...,u,41, let

P( i , jWn+1) _ {erHl + l + kvn+1
tn+l qn+1

= —= + R/, ),
qn+1 qn qn+1

l = 03 b bn+1(l/tn+1) - 19’)’ = 0’ L] 5]n - 13k = 0’ "'7yn+1}

P (4 [Mnss ) is a partition of T. In particular,

Leb (P(L, SWnr1 )) =1
tn+1

Ins1” Gnsl

qn+1
On the other hand, let

W _ \\ Qn+166 J
+1 =
" 3Mn-*—ll‘n+1qnbn+IQn+l
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On the other hand, by Euclidean division, we can write

qn+1 o , ’
q = Up1What + /ln+1
n

> 1/¢). Let

3 ’ ’ ’
with A <uw, ,andu

'/w/
P'(w') = {l AT Giy=0,ungu—1,7 = 0,...,u;+1}

4qn dn+1
with Gjr = [O,W:1+l/qn+1[ if j = 0,...,u:1+1 — 1, and G”;H = [0,/1:”1/(,],,“[. For
i=0,.,t1—1,7=0,.,u,y1 — 1, let

9. ) P I=) - P
A — Ufce P’ (W)/c c A}

@(i, j)(A) is the "projection” of A on the partition #£'(w’). Note that in general,
o(i, N(AU B) ¢ ¢, j)(A) U ¢, j)(B). Moreover, it is possible to have ¢(i, j)(A) = 0
for some A, if w/ | does not divide f,11(i/t:11,0ns1). Let

PN (;’ JWn+1 ) — U ¢(l, J)(A)

Inel  Gn+l .
67’(# s )
Intl” dn+l

and let

Uni1 tap1—1 . .
P// _ PH ( l JWn+1 )
- ’
. Lnel  Gnel

For A € 50(; f—') let

Ine1” G+l

w(i, DA = | JleePw)/ena+0)

We have: ¢(i, j)(A) € A C ¥(i, j)(A). At most, ¥ (i, j)(A) — ¢(i, j)(A) correspond to
2 elements of 9’(w’), because A is an interval. Therefore,

Leb(y(i, )(A) = ¢(i, (A)) < 2w),.1 /Gt

Therefore,

Leb(¢(i, )(A)) = u(A) = 2wy, 1 /Gniy

Note that this lower bound can be negative for some A.

Leb(w'(i,”ﬂ)): S Leb@G ANz Y LebA)-D /g

In+l qn+1 i v
AEP( i n1 AeP| - n+1 )
Int1” dn+l el dp+l

/7 i .W ’
Leb (P (_’ j;ﬂ)) >1- 2%1bn+lyn+lwn+1/q:1+l
Inel  Gn+l

Leb (P”) >1- 2un+ltn+1%1bn+lyn+lW,,1+1/Qn+l
Let

_ '/W/
P'(w') = {l D Gy =0, gu— 1 = 0yt — 1}
qn qn+1
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and let Py = P N P'(w').

Using our definition of w’

' 1> We have:

Leb (¢0) >1- 3un+ltn+Iann+lyn+lW;1+1/qn+l >1- E(/)

Let u(0) = {0, ..., |Pol — 1}. We write:
Po = {Po()), j € u(0)}

(Poo = {C(0), ..., C(IPol — D}

and
i(0) = {j € u(0)/Po(j) € Po}

Fori > 1, let #; = {Pi(j),j = 0,...,ttys1 — 1}, where Pi(j) = [jWns1/qus1.(j +
DWist /@[, and P; = P; U {Pi(ups1)} where Pi(ye1) = [tye1Wnst /gnir, 1] Py s a
partition of [0, 1]. We write:

(P = {C0),....C(Pi| = D}

We define u(i) = {0, ..., |Pi| — 1} and a(i) = {j € u(i)/C(j) € Pi}.
For J C N, let
M(J) = Xjeju(j)

u(J) = Xjesit(j)
and for m € u(J), m = (my, ..., myy), let
C(m) = Xjc;C(m;)
The following proposition gives horizontal approximation:

Proposition 4.4. There exists a partition 77;1"” cB(Cm),meu(0,...,t,p1 — 1)) such
that n™*" is stable by S » and
4qn

n

d(nz+1’ n;ln+1) < %

bl _ o=l il s
Moreover, n,'*" = Vi, nn”;’ , with
‘n+1 ‘n+1 i l
H=JA ——1,0=0,..,g, -1
i { " (tn CIn) o

[0 1 l
NG (t_, _) _ U (— +R<rn>) x C(m)
n 4n meu(J,+1(0)—-{0}) Gn 0

where, for any m, R is a fundamental domain of the circle rotation R.. For
4qn
1<i<t, -1,

and we have:

et (11
Ann+1 (i, _) = U U C(R (i), m)
th qn ipeu(0) meE(iy,i,l) "
where E(io, i,1) C u (i) and |E(io, i, )| is independent of iy.
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Proof. By (12) and lemma 4.1, for any 0 < jj < y,,41, 0 < yo < g,, — 1, we have:

-0 j
F(—, Jobnel E) = (—]OV”” + 2 ROty jo))
thel qdn+1 qn qn+1 qn 0

andfor 1 <i<t,;—1,0<j; <yu1,0 <y < g, — 1, we have:

. . Gnr1—1 . . . .

- v - ¢ v - o j+1

r(—’ Iy —7’) = ( L Sl 0 +R(n)(i/ln+1,ji)) X([ L.
el Gn+t qn 720 qn+1 qn+1 qn 0 qdn+1  9n+1

)

For 0 < jo < yu+1,0 <99 < g, — 1, let:

r/( 0 ’ JoVati + E) _ f(ﬂ, JoVn+1 + @)
Intl  Gn+l qn Invl Gnel qn

andfor1 <i<#,,1—-1,0<j;<y41,0<y; <¢q, -1, let:

F/(L,jivn+1 +ﬁ):
Tn+1 qn+1 qn

I" is a horizontal approximation of I". The sets I" (t# Jlwel 4 Vi l) and I (4 Jwe 4 Vi l)
n+l " qn+l qn Tnel Gn+1 qn

. PR ,

coincide, except on elements of the form ([ S [)0 X ([ S It

s , D located on their
| qn+1° qn+1 qn+1 " qn+1 i
boundaries. Therefore,

=~ 1 Jiv i 0 Jiva f 1 n :
4%f<%51+§%r(lﬁiﬂ+lﬁ%% +W“Pwmmm
n+1 n+l n

Invl  qn+l dn

(L@ﬂ+ﬁ&i+ﬁ+R@thm)x@U»
qn+1 qn+1 qn 0

J'eui)

qn+1 qn+1
Let
i+ 1
r (_h"(i’), Jnet l) - m"” r (hnﬂ(i)’ OV yhn+1(i))
1y qn+1 qn P I+l qn+1 qn
Insl  In
and

ot () 1\ (i)
st Yo

jeB(ia L) I

m ’qn

where £ (@, qi) was defined in (6).

By our choice of Wpy1 in (13), we have:

et (@) 1 ha(') 1 In 1 n 1
#(AnnJrl ( (l )’ —)AAZ+1 (ﬂ’ _)) < |N:Z+1|t,,+1/t/,_+lbn+l ( + w, +1) < :
t, qn ty qn 1, Gn+1 Gl 2nqr;,

(14

Moreover, A™! (;—, qi) is a fundamental domain of S ,,, because A+! (;—, ql ) isa
fundamental domain of Sy, .

By corollary 4.3, A;,”” (;—, qi) c B{C(m),m € u(J,+1(i"))}. Therefore, for any m €

u(J,11(0) — {0}), there exists R™ c B (P,) such that R™ is a fundamental domain of
the circle rotation R/, and such that:
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O 1) e xcom
In 4n meEy(l)

where Eo(l) C u(J,+1(0) — {0}).

n

A/n+1 (O L -

Fort,— 1> > 1, we have:

‘n h,(@) 1 b1 (i/tnr1)=1 tty41
s -y N U U

(rpeE(ii L) g igld L =0 j=0

n ’qn I+l T I Ing

FWael  Jivasl Vi . . . ,
(—"* + R<"*’>(hn+l<z>/rn+l,Jhw,@)) X (PG
qn+1 dn+1 qn 0

D1 (i/tne1)=1 sy

- U U U

jeE(h;x(i’) L) @) i i+l 1 I'=0 J' =0 meE(ys1 D). jny,y ol >J")

o’ dqn n T ipy n gyl

such that E(i, j;, I, j) C u(i), and |E(i, j;, I, j')| is independent of j’. Therefore,

A (_”"("') i) U U cum
fn qn J €u(0) meE(j i (i'),I')
where |E(j’,i’,1")| is independent of j’.
This completes the proof of proposition 4.4.

The rest of the paper is dedicated to the construction of the sequence of diffeo-
morphisms B, satisfying the conditions of lemma 3.5. First, we introduce definitions
and basic properties. Second, we define the diffeomorphism A,;; and we show that it
satisfies conditions of lemma 3.5.

4.2 Definitions and basic properties

For these definitions, we rely and elaborate on [11, p.155]. Let J € N. For any X Cc M,
we let X; = {(Xj)jgj/x € X}.

Aset E C M is a J-cylinder if, for any x,y € M such that forany j € J, x; = y;, we
donothave: (xe Eandy ¢ E)or (x ¢ E andy € F).

In other words, E is a J-cylinder if changing the coordinates of an index not in
J of a point x € E cannot remove x from E, nor insert it into E. The terminology
(2, (x)) jes)-cylinder is synonymous of {0, J}-cylinder.

For example, C(m) is a J-cylinder. A,(0/t,,1/q,) is a z-cylinder, and for i > 1,
A, (i/ty, 1/ gy) is a (z, x;)-cylinder.

Forany A ¢ M, Ag X ... X Ay X M1 X ... is a {0, ..., n}-cylinder.

We use the following claims:

Claim 4.5. If E is a J-cylinder and E’ is a J'-cylinder, then E U E’ and E N E’ are
J U J -cylinders.
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For example, A,(i/t,,1/q,) N A /10,1 ] q,) 1S a (2, x;, Xy )-cylinder.
For example, by proposition 4.4, for any [ = 0,...,¢q, — 1, A;l”“ (tg, i) is a J(0)-

4n
cylinder, and for i > 1, A7 (£, L) is a {0} U J(i)-cylinder.

A transformation F of M is a J-transformation if for any x ¢ J, and any x € M,
(F(x)); = x;. It means that at most, I transforms coordinates in J.

Claim 4.6. If F is a J-transformation and if c is a J'-cylinder such that JNJ =0,
then F(c) = c.

Proof. First, we show that F(c) C ¢. Let x € cand y = F(x). Since F is a J-
transformation, then y; = (F(x)); = x; for any j € J°, where J be the complementary
of Jin IN. Since J N J' = @ then J* C J. Therefore, for any j € J', y; = x;. Since c is
a J’'-cylinder, then y € c. Therefore, F(c) C c.
To show that ¢ ¢ F(c), we observe that F~! is also a J-transformation: if yj = Xxj,
then y; = (F~!(y)); for any j € J. Therefore, F~!(c) C ¢ and so ¢ C F(c).
O

Let (J')° be the complementary of J’ in N. A transformation F is J’'-dependent
if there exists J < J’ such that F is a J-transformation, and such that there exists
F : My — Mj such that for any x € M, x = (xj,xp,xp) with x; € M7, x; € M _j,
Xj» € My, we have:

F(xj,xp,xp) = (F(xj,xp), xp, xj)

Claim 4.7. If c is a J-cylinder and F is J'-dependent, then F(c) is a J U J'-cylinder:

Proof. First, observe that since F is J'-dependent, then F is J U J'-dependent. Let
x € M. We write x = (xj, xj, xj») with x; € My, x; € My _j, xj» € Mjuje. Since F is
J U J’-dependent, then there exists ' : My, — M,y such that:

F(xj,xp,xp) = (F(xj,xp),xj)

Let y € M such that (F(x)); = (F(y)), for any [ € J U J’. Then we also have:

F(xj,xp) = F(yiyy)
Letz = (y;,yj,xj). We have:

F2) = (F(y;,yp). xp) = (F(xj,xp), xj) = F(x)

Since F is injective (F is a transformation), then z = x. In particular, x; = y;.

If, moreover, F(x) € F(c), then x € ¢, because F is bijective. Since c is a J-cylinder,
then y € c¢. Therefore, F(y) € F(c).

Likewise, if F'(x) ¢ F(c), then F(y) ¢ F(c). Therefore, F(c)isa JUJ -cylinder. O

4.3 Construction of the sequence of conjugacies

In this section, we construct the sequence of diffeomorphisms A,.; of M. We write
Apit = Apsry, © ... 0 Ayyro. To simplify notations, we denote A instead of A, and
fori = 0,...,t, — 1, we denote A; instead of A,.10, and J(i) instead of J,,(i). First,
we construct Ag (lemma 4.9). Second, we construct A;, for i > 1 (lemma 4.11). The
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construction of A is different from the others A; because the partition 7, is different
from the others 7,,;.

The reason why we introduced the permutation of coordinates #,(i) appears here:
for example, if we took h,(i) = i, then for i > 1, it would be impossible to apply A;
without completely modifying the image of 7,9 by A,+10. If we took £,(i) such that
ho ({1, .ty — 1) N {1, ..., 1, — 1} = 0, then we cannot obtain generation.

On the other hand, with our choice of A, (i), we can compose the maps A; with no
problems, by using the notions and properties introduced in 4.2.

The aim of this subsection is to show the following proposition:

Proposition 4.8. For any 2qu ‘1 > € > 0, there exists A : M — M smooth measure-

preserving diffeomorphism such that:
1. AS. =S.1A
qn qn
2. There is a fixed function R\(n, t,+1,by41, qn, €) € N such that
”A”}’H-l S Rl(n’ Z‘VL+17 bn+l9 ‘In’ 6‘)

3. There exists E C M such that:
uM-E)<e

and foranyi=0,...,t, — 1,

A(E N A(i/12,0/q,)) = A(E) 0 A (i/1,,0/g,)
4. Aisa(z, xi,..., X,,—1)-transformation, (z, X1, ..., X;,,,—1)-dependent.

The construction of Ay is given by the following lemma:

v
Wil

Lemma 4.9. For any > € > 0, there exists Ag : M — M smooth measure-
preserving diffeomorphism such that:

1. AgS 1+ =8 1A
4qn 4qn
2. There is a fixed function Ry(n, tyi1, byi1, qn, €0) € N such that
lAollas1 < Ro(n, tus1, bpsis Gns €0)

3. There exists Eg C M such that:
H(M - Ep) < &

and.:

Ao (Eo N Ay(0/1,,0/¢,)) = A (0/2,,0/,) N Ao(Eo)
4. Ay is a (z, ty)-transformation, J(0)-dependent.

To show lemma 4.9, we use the decomposition of A,"*!(0/t,,0/q,) given in propo-
sition 4.4:
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Lemma 4.10. Let TI,HEO > 0. For any m € u(J(0)) — {0}, there exists Ao(m) €
Diff*>(M, w) such that:

1. We have: Ag(m)S 1 =S 1 Ag(m).
4qn qn
2. There is a fixed function R3(n, ty+1, byi1, qn, €0) € N such that

lAo(m)lln+1 < R3(1, tyst1s Dns1, Gns €0)

3. There exists Ey(m) C [0, 1/q,[oxC(m) such that:
w1 ([0, 1/g,[oxC(m) — Eo(m)) < € + €

and.:

Ao(m) (Eo(m) 0 ([0, 1/galoXC(m))) = ((R™)o X C(m)) N Ag(m)(Eo(m))

4. Ao(m) = Id on a € /2-neighbourhood of (C(m))°“.
5. Ao(m) is a (z, t,)-transformation, J(0)-dependent.

Proof of lemma 4.9. We define Ag by Ay = o,ens0)-(opAo(m), with Ag(m) having dis-
joint supports. Ap has the required properties.
[m]

Proof of lemma 4.10. By lemmas 3.3, 3.4 and by remark 3.6 in [2], which elaborates
on a construction found in [1] and [3], for any j < u,; — 1, m € a(J(0) — {0}), there
exists Ag(m) € Diff(T X [jWni1/qni1> (G + DWni1/qni1], Leby), there exists Eq(m) C
Po X [jWat1/qu+1> (G + DWps1/qn+1] such that

Leby (T X Wt /qus1s G+ DWart /guer] = Eo(m)) < €0 + €

and such that

Ao(m) (10, 1/guIXTjWas 1 /gue1. G+ DWast /i) 0 Eo(m))

= (R™ X [jwust /gusr. G + DWast /guer]) O Aolm)(Eo(m))

such that Ag(m) = Idona g/ 2-neighbourhood of the boundary of TX[ jw,,1/¢n+1, (j+
DWs1/gn+1], such that Sy, Ag(m) = Ag(m)S 1,,,, where S(z, x) = (z + 1, x) for (z,x) €
T X [jWn+1/qn+1, (G + DWyi1/gn+1], and such that

NAg(mM)lns1 < Rattns1, €)

Moreover, there exists a permutation o-(m) of P, such that

o (m) ([0, 1/g,[0) = R™ (15)

The permutation o-(m) stabilizes Py, and for any k € u(0),

Ao(m) (Po(k) X [jwas1 [Gns1> G+ DWart /gnia]) 0 Eo(m))
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= (Po(a(k)) X [jWas1 /gns15 ( + DWas1 /gns1]) 0 Ag(m)(Eo(m)) (16)

We can extend Ay(m) to a smooth measure-preserving diffeomorphism of T x [0, 1]
equal to identity out of T X [jwy11/qu+1, (J + DWni1/qn+1]. We write:

Ao(m)(z, x,,) = (Ag(m)o(z, x,), Ag(m)y, (2, X,))
Let ¢ : M@)oy — [0, 1] a smooth map such that:

llBll+1 < Rs(€o, Uns1) (17

such that ¢ = 1 on a &/2-neighbourhood of the boundary of C(m), inside C(m),
such that ¢ = 0 on a &/2-neighbourhood of (C(m))°. We choose the integer j such that
C(m) = ([j/un+1, (G + 1) /tty1])s, X C(m") for some m’. For x = (z, x;,, x") € M), let

Ao(m)(z, X1, x") = (Ao(m)o(z, X, )p(x) + (1 = (x))z, Ag(m)y, (2, x;,)$(x) + (1 — p(x))x;,, X7)

Properties 1,2,3,4 hold for Ag(m), because similar properties hold for Ay(m), and
because ¢ is independent of z, and bounded in estimation (5).
Property 5 is obtained by construction, the J(0)-dependence is due to ¢.

For t, — 1 > i > 1, the definition of A; is given by:

Lemma 4.11. Fort, — 1 > i > 1, for any ﬁ > ¢ > 0, there exists A; : M —> M
smooth measure-preserving diffeomorphism such that:
]. A,’SL :SLA,'.
qn 4qn

2. There exists a fixed function R¢(uy,+1, €9) € N such that
1Aillis1 < Re(ups1, €)

3. There exists E; C M such that:
U(M—-E)<e€+e¢

and.:

Ai (Ei 0 CJ5 (/1,01 a))) = AT (i, 0/ ) 0 AL
where C;fg Uis defined in lemma 4.12 (A is a smooth approximation of C;;‘g h).
4. A;is a J(i)-transformation, J(0) U J(i)-dependent.

The proof of lemma 4.11 is based on the following lemma:
Lemma 4.12. There exists a z-transformation Cn"a' 1, J(0)-dependent, measure-preserving,

S 1 -equivariant, such that:

qn

5" (A (0/tn, 1)) = AT (O/1,1/gn)

and
‘n+l  _
Cooig, = Aok,
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Proof. Let m € u(J(0) — {0}) and o(:m) be the permutation of #(0), given in (15) and
(16), extended to identity on the rest of u(0). Let C;’f& ! be the piecewise-linear, S/, -
equivariant, measure-preserving z-transformation, J(0)-dependent, such that for any
Po(j) € Po:
Cl3t  (Po(j))g X C(m) > (Po(a(m)(j))g X C(m)
We have:

‘n+l  _
C,oig, = Aok,
o

Lemma 4.13. Foranyi=1,...,t,— 1, there exists a J(i)-transformation t(i, m), J(0) U

J(i)-dependent, measure-preserving, S 1 -equivariant, such that, for anyl = 0, ...,q, —
qn

1:

A (/11 q0) = T(im) (C5" (A (0/1,1/q0)))

Moreover, the J(0)-dependence of 1(i,m) only depends on u(J(0)), and for any
(ig, m) € u(J(0)), 7()(ip, m) is a permutation of u(J(i)).

Proof. By the proof of lemma 4.12, for any (iy, m) € u(J(0)), we have:

Cs Y (Clig, m)) = C(or(m)(io), m)
On the other hand,
AnGiltnlign = | ) ) Clo,m)
ioeu(0) m’'€E(i,iy,l)

with E(i, iy, ) C u ({i}) and |E(i, ip, ])| independent of i.
Since C(iy, m’) = UmeU(J(O)_{Q})C(iO, m’, m) then

AGltig =) ) | Clom'm)

ioeu(0) m’ €E(i,io,l) meu(J(0)—{0})

Therefore,

it Aatmtign =) ) U cemo,mm
io€u(0) m’'€E(i,ip,l) meu(J(0)—{0})

=UJ U U cemim,m
io€u(0) meu(J(0)—{0}) m’€E(i,L,ig,m)

with |E(i, I, iy, m)| independent of iy, m. Let ij, = o-(m)(ip). We get:

Upy1—1

'n+1 . .
o' Gatittign =) [ ) Clpm'm)
#h=0 meu(J(O)~(0)) m’€E (.o (m) (iy).m)

with E(i, , O'(m)‘l(ig)), m) C u({i}). Since for any m’ € u ({i}),
C(ip, m") = Upeusiy-1iyyClio, m’, m)

then
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'n+1 . .
Crgt Wttt tign = | ) L) Clo.m',m)
ioeu(0) meu(J(0)—{0}) m’€E’ (i,l,ip,m)

with E’(i, [, iy, m) € u(J(i)) and |E’(i, 1, iy, m)| independent of iy, m.
On the other hand, by proposition 4.4,

A Gftign = ) () Clom)

ioeu(0) m’ €F(i.l,io)

where F(i, 1, iy) c u(J(i)) and |F(i, [, iy)| is independent of iy.
Therefore,

artim gy =) ) | Clom'm)
io€u(0) m’'€F(i,Lip) meu(J(0)-{0})

-J U U chonm.m
ipeu(0) meu(J(0)—{0}) m’€F(i,Lip)

For iy € u(0) such that Py(ip) C [0, 1/g,l, let 7(i, , iy, m) be a permutation of u(J(7))
such that

(i, L, io, m)(E" (i, 1, i, m)) = F(i, 1, io)

Since the z-coordinate is on T, we can consider iy mod u,,; on the z-coordinate.
We have:

S LA ity 1 gn) = A i/t (L+ 1)/ )

qn

On the other hand, since P is stable by the circle rotation Ry, , then:

"n+l /o .
soartmtian= ) ) U CRiglonm' m
io€u(0) m’€F(i,1,ip) meu(J(0)—{0})

-J U ) clo,m',m
ioeu(0) m’€F(i,l,R -4, (ip)) meu(J(0)—-{0})

Therefore, F(i, [, R_1,4,(i0)) = F(i,I + 1, ).
Likewise, E’(i, [, R_1/q,(i0), m) = E’(i, [+1, iy, m). Therefore, we can extend 7(i, [, iy, m)
to any iy € u(0) by 7(i, [, R_1/4,(i0), m) = 7(i, [ + 1, iy, m). We have:

A G tign = ) L) Clo.m'm)
io€u(0) meu(J(0)—{0}) m’et(E’ (i,l,ip.m))

Aty =) | L) Clott, L ig, myom’), m)
ip€u(0) meu(J(0)—{0}) m’€E’ (i,l,iy,m)

This completes the definition of 7(i, m).
[m}

We make a smooth approximation of 7. To that end, we use the following lemma,
which generalizes a proposition in [4]:
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Lemma 4.14. Forany J,J' Cc N, JNJ' =0, |J'| = 2, for any permutation o of u(J"),
for any 0 < € < 1/Quyt1), for any m € u(J), there exists E,(m) C C(m) such that
u(C(m) — E,(m)) < €, there exists a J'-transformation A(o), JU J'-dependent, smooth,
measure-preserving, such that for any m’ € u(J’):

A(@)(C(m,m")) N Ey(m) = C(m, o (m")) N E(m)
and:
o There exists A(o) = Id on a €/2-neighbourhood of (C(m))°.

o There exists a fixed function Ry(uny1, €, €)) € N such that

A@his1 < Reuner, €101+ 11, ) €)

Proof. By composition, we can suppose |J’| = 2, and o is the transposition one
one coordinate: o (i, j) = (i’,j). By [4], there exists A(c) : (C(j))y — (C()))y
smooth, measure-preserving diffeomorphism, and there exists E,(j) € (C(j)), such
that u((C(j))y —+ (j)) < €, and for any (x,y) € (C(}j)),,

A(0)(x,y) N Ex()) = 0(x,y)
and here exists a fixed function Rg(u,1, €) € IN such that
”A(O-)”nJrl < RS(unJrls E)

From there, the rest of the proof is analogous to the proof of lemma 4.10, using a
smooth plateau function ¢.
[m]

Proof of lemma 4.11. We let A; = o,cns0)A(T(m)) with 7(i, m) coming from lemma
4.13, and A(7(i, m)) coming from lemma 4.14 with J = J(0), J" = J().
O

Proof of proposition 4.8. WeletA = A, _j o...0A; o Ay. Conditions 1,2 hold because
they hold for any A;. Condition 4 holds because the {J(i),i = O,...,#, — 1} partition
{0, ..., t,+1 — 1}. To show condition 3, let:

E=EyNn(A)) "E)N..0 (A, 2...A0) (E; 1)

For any i, we take 0 < ¢ = €/t,. We have: u(M — E) < e. We also have:

A(E N A0/12,0/qn)) = A(NizoEi) N A(Eg N Ay(0/1,0/45))

= A(Niz0ED) N Ay,-1..A1Ao(Eo N An(0/1,,0/ 1))

By lemma 4.9, we get:
A(E 0 A0/1,0/41)) = A(Dizo Ei) 0 Ay, 1. A1 (Ao(Eo) 0 A+ (0/1,0/q))

= A(E) N Ay, -1.-A1 (A1(0/12,0/4,))

43



Foranyi=1,...,t,—1, A; is a J(i)-transformation. On the other hand, A;”“(O/tn, 0/q,)
is a J(0)-cylinder, and J(i) N J(0) = 0. By claim 4.6,

Ai (A1 (0/14.0/g0)) = A(0/1,,0/g,)
Therefore,
A(E N Ay (0/1,,0/g2)) = ACE) N A (0/1,,0/ )
Hence proposition 4.8 fori = 0. Let#, — 1 > i > 1. Since
ooty = Aok
and since E C Ej, then

Ao (E 0 A(i/10,0/g,)) = Ao(E) 0 C1" (An(if 0, 0/4,))

The map C;fg !'is J(0)-dependent and A, (i/t,,0/q,) is a (z, x;)-cylinder. Therefore,
by claim 4.7, C;f(;" (A,(i/t,,0/qy)) is a J(0) U {i}-cylinder.

Let j ¢ {0, i}. Since A(j) is a J(j)-transformation and J(j) N {J(0) U {i}} = 0, then
by claim 4.6,

A (Crg (A2 0/n))) = 5" (An(i/ 0, 0/ )

Therefore,

AiAio1..Ag (E 0 Ay(i/tn, 0/q0)) = Ai.. Ao(E) 0 A; (C15" (Ani/1a,0/q0)))
Moreover, A;_;...Ag (E) C E;. Therefore, by proposition 4.11,

AiAi1 Ao (E 0 Ay (i/1,0/ ) = Aio A(E) 0 A (i1, 0/4,)

Likewise, A"*1(i/t,,0/q,) is a {0} U J(i)-cylinder and for any j ¢ {0, i}, {{0}UJ()}N
J(j) = 0. Therefore, by claim 4.6,

A (A1, 0/g0)) = A (i/1,0/gn)

Therefore,

A (E N An(l./tm O/Qn)) = At,,—ln-AO (E N An(i/tna O/Qn)) = A(E) N A;1n+1(i/tm O/Qn)

]

4.4 Generation of ¢, and convergence of the sequence of diffeomor-
phisms

By combining lemma 3.5, in order to complete the proof of lemma 1.4, it remains to
show that &, generates, that T, = B;,'S m B, converges in the smooth topology. The
qn

limit 7 of T, is ergodic because it is isomorphic to an ergodic transformation (De La
Rue’s transformation is ergodic).
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4.4.1 Generation of &,
Lemma 4.15. &, generates.

Proof. Let p > 0 and for x,y € M, let d,(x,y) = maXogi<p |x; — yil. Forany V C M, let
the p-diameter of V be d,(V) = SUP, yey dp(x,y). We use the lemma:

Lemma 4.16. Let V,, C M be a sequence of subsets such that there exists r, — +o0
such that d,, (V) =n5+00 0. For any k > 0, 0,54V, is at most a singleton.

Proof. Letk > 0and x,y € N5 V,. Let M > 0 and ng such that for any n > ng, r, > M.
For n > ng, we have: dy(x,y) < d, (x,y) — 0. Therefore, x; = y; fori = 0, ..., M for
any M and therefore, x = y.

O

The diffeomorphism A,,,,,, acts as a permutation, and in particular, it is an isome-
try. On the other hand, elements of 7, are of the form xf”;d’l i/ gn+1, Gi+ D/ qne Dis

for j; =0, ..., gu+1 — 1. Therefore, for q,+1 > Ro(n, ty+1, but1,qn, €), for any ¢ € n,41,

n+1

1
-1 /.
dy,., (An+l(c mA}l+1(En+l)) < 27| Bl

In particular,
iy (B 0 Avor(Ena) < 5
n+1 n+l n n = on
Let x € M and ¢, (x) be the element of 7, to which x belongs. Let
G(x) =) B, (calBa(x))

n>1

Let

F={J)B.Li(ED

k>1 n>k

We have u(E,) < 1/2%, and B, is measure-preserving. Therefore, by the Borel-
Cantelli lemma, pu(F) = 1. We show that for any x € F, G(x) N F is a singleton. For
any x € F, x € G(x) N F, and therefore, #(G(x) N F) > 1. On the other hand,

G N F =B, ED () B, caBao)) < ([ ) BiLi(En) 0 B, (ca(Balx))

k>1 n>k n>0 k>1 n>k

Let V,(c) = B;'(c N A,(E,). We have:
G N F | () ValeaBux)
k>1 n>k

By lemma 4.16, for any integer k, (,;5x Va(c,(Bn(x))) is at most a singleton. More-
over, (i Vau(cn(B,(x))) is an increasing sequence of sets for the inclusion. Therefore,

() VatenBa )

k>1 n>k

is at most a singleton, and G(x) N F = {x}. It shows that &, generates.
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4.4.2 Convergence

To complete the proof of lemma 1.4 for M = [0, 119! x T, we need to show the
convergence of T, = B,'S ZJB,,. By the Cauchy criterion, it suffices to show that
Sins0 du(Tyy1, Ty) converges. ”We combine the estimation of B,;; and the assumption
of closeness between p,1/gn+1 and p,/q, of lemma 1.4. We recall the lemma [9,
p-1812]:

Lemma 4.17. Let k € IN. There is a constant C(k,d) such that, for any h € Dif(T x
[0, 1191, @y, @ € R, we have:

di(hS o, h™" 1S o, h7") < Ck, DRI |y =

Since T, and T4 are (z, x1, ..., X;,,, )-transformations and (z, xi, ..., X;,,, )-dependent,
they can be seen as diffeomorphisms of T X [0, 1]1~1, Moreover, T, = B;lS mB, =
4qn
B;LS %B,,H. Therefore, we obtain, for a fixed sequence R7(n, b1, gn, th+1) (that de-
pends on n and on the dimension d):

- - Pnt1 P

AuTre1s Ta) = du(B L1y S st Bt Bty e Buet) < Cln 1 bulIBrallf 2o = 2
n+ " n+1 n

Pnv1 P
< R7(n7 bn+1sqn’tn+1) e
n+l1 qn

For some choice of the sequence R|(n, by,+1, Gn, t,+1) in lemma 1.4, this last estimate
guarantees the convergence of T, in the smooth topology.
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Erratum: lemma 2.3 page 12 is false, because in page 13, we do not have:

Bp1(q@) = Bs.p(q) V Bpp(q)

Instead, we have:

Bpi1(q@) = B p(q) V Bp p(q) V argBi(q)

However, I still think that the main theorem is true, by using the fact that 8,(g,)
generates, i.e. by applying Corollaire 3.3 page 54 of de la Rue’s PhD thesis, and by
considering more general partitions of T x [0, 1]V of this form:

" =

0
hn.1 1
(ad-hoc parameters...)

Nevertheless, due to lack of time and suitable job perspectives, I am unable to write
the details.

I would like to thank Thierry De la Rue for mentioning this mistake.



