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A smooth Gaussian-Kronecker diffeomorphism

Mostapha Benhenda

October 9, 2013

Abstract

We construct a smooth Gaussian-Kronecker diffeomorphism T , on �× [0, 1]�,
where [0, 1]� is the Hilbert cube. To obtain this diffeomorphism, we adapt a con-
struction by De La Rue [6], which uses transformations of the planar Brownian
motion.

1 Introduction
We define Gaussian dynamical systems. We rely on [8]. Let γ a finite symmetric
measure on the circle T. A dynamical system (Ω,A,�,U) is Gaussian of spectral
measure γ if there exists a real centred Gaussian process (Xp)p∈Z satisfying:

1. for any integer p, Xp = X0 ◦ U p,

2. B(Xp, p ∈ Z) = A

3. for any integers p, q, �[XpXq] =
∫ 1

0 e2iπ(q−p)t dγ(t)

Giving γ determines all the properties of this system. In particular, U is ergodic
if and only if γ is non-atomic, and in this case, U is even weak mixing (see [5]). The
entropy of U is zero or infinite, depending on whether or not γ is singular with respect
to Lebesgue measure (see [7]).

We recall that K ⊂ T is a Kronecker set if any continuous function f : K → T is
the uniform limit on K of a sequence of functions fp : x 7→ jpx, where jp is an integer.

In the case where γ is non-atomic and concentrated on K ∪ ( 1
2 − K), where K is a

Kronecker set of [0, 1/2[, we say that the Gaussian dynamical system of spectral mea-
sure γ is a Gaussian-Kronecker transformation [10]. A Kronecker set always has zero
Lebesgue measure, so a Gaussian-Kronecker transformation always has zero entropy.

Gaussian-Kronecker transformations have remarkable properties: they have simple
spectrum Lp, for any p ≥ 1 (see [5, 14]). Moreover, they satisfy the Weak Closure
Theorem [17]: any �-preserving transformation S commuting with T is a weak limit of
powers of T . We can find a sequence of integers jp such that for any A ∈ A,

�(S −1A∆T− jp A)→p→+∞ 0

Lastly, they satisfy the spectral stability property: any system that is spectrally
isomorphic to a Gaussian-Kronecker is actually metrically isomorphic to it.

In [15, 16], Katok raised the problem of the construction of a Gaussian-Kronecker
transformation that is smooth. In this paper, we give a construction of this kind:
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Theorem 1.1. There exists T ∈ Diff∞(� × [0, 1]�, Leb) that is Gaussian-Kronecker.

Remark 1.2. Moreover, as in [6], we can get T non-loosely Bernoulli. This gives an-
other example of a smooth non-loosely Bernoulli diffeomorphism, besides the example
we constructed in [4]. However, contrary to [4], our construction here does not easily
generalize to an uncountable family of pairwise non-Kakutani equivalent diffeomor-
phisms.

To show this theorem, we provide a smooth version of a transformation constructed
by Thierry De La Rue [6]. He constructed a Gaussian-Kronecker and non-loosely
Bernoulli transformation using a method of approximation by periodic transformations
of the trajectory of the planar Brownian motion.

This adaptation to the smooth case is made using the method of approximation
by successive conjugacies, introduced by Anosov and Katok in [1]. More precisely,
we generalize our construction of a smooth ergodic diffeomorphism of the annulus
� × [0, 1] that is equal to a rotation S α on the boundary, but that is metrically iso-
morphic to a rotation Rβ of the circle, such that α , ±β. In our generalization, we
construct a sequence of smooth periodic diffeomorphisms of �× [0, 1]�, where [0, 1]�

is the Hilbert cube, such that each one is metrically isomorphic to an increasingly large
family of mutually independent periodic rotations of the circle with different angles.
The limit angles of these rotations will provide the Kronecker spectrum of the limit
diffeomorphism.

We need to carry the construction on � × [0, 1]�, instead of � × [0, 1], because
in order to ensure the smooth convergence of the sequence of smooth periodic dif-
feomorphisms, we need a space of infinite dimensions (see page 30 for details). This
framework is new with respect to known Anosov-Katok constructions.

1.1 Definitions
Let Diff∞(M, µ) be the class of smooth diffeomorphisms of M preserving the Lebesgue
measure µ. For B ∈ Diff∞(M, µ) and j ∈ �∗, let D jB be the jth derivative of B if j > 0,
and the − jth derivative of B−1 if j < 0. For x ∈ M, let |D jB(x)| be the norm of D jB(x)
at x. We denote ‖B‖k = max0<| j|≤k maxx∈M |D jB(x)|.

A finite measurable partition ξ̄ of a measured manifold (N, ν) is the equivalence
class of a finite set ξ of disjoint measurable subsets of N whose union is N, modulo
sets of ν-measure zero. In most of this paper, we do not distinguish a partition ξ with
its equivalent class ξ̄ modulo sets of ν-measure zero. In these cases, both are denoted
ξ. Moreover, all partitions considered in this paper are representatives of a finite mea-
surable partition.

A partition ξ′ is subordinate to a partition ξ if any element of ξ is a union of ele-
ments of ξ′, modulo sets of ν-measure zero. In this case, if B(ξ) denotes the completed
algebra generated by ξ, then B(ξ) ⊂ B(ξ′). The inclusion map i : B(ξ) → B(ξ′) will
be denoted ξ ↪→ ξ′. This notation also means that ξ′ is subordinate to ξ. A sequence
of partitions ξn is monotonic if for any n, ξn ↪→ ξn+1. These definitions and properties
are independent of the choice of the representatives ξ and ξ′ of the equivalence classes
ξ̄ and ξ̄′.

A measure-preserving bijective bimeasurable map T : (M1, µ1,B1)→ (M2, µ2,B2)
induces an isomorphism of measure algebras, still denoted T : (µ1,B1) → (µ2,B2). If
ξ1, ξ2 are partitions, and if B1 = B(ξ1) and B2 = B(ξ2), we denote T : ξ1 → ξ2 this
induced isomorphism of measure algebras. If M1 = M2, µ1 = µ2 and B1 = B2, then T
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is a measure-preserving transformation. Its induced isomorphism is an automorphism
(see [12, p.43] and [18]).

A metric isomorphism L of measure-preserving transformations T1 : (M1, µ1,B1)→
(M1, µ1,B1), T2 : (M2, µ2,B2)→ (M2, µ2,B2) is a measure-preserving bijective bimea-
surable map L : (M1, µ1,B1) → (M2, µ2,B2) such that LT1 = T2L a.e. For con-
venience, when the measure is the Lebesgue measure and the algebra is the Bore-
lian algebra, we omit to mention the measures and algebras, and we simply say that
L : (M1,T1)→ (M2,T2) is a metric isomorphism.

Let ξ̄ be a measurable partition and ξ a representative of this equivalent class mod-
ulo sets of µ-measure zero. For x ∈ M, we denote ξ(x) the element of the partition ξ
such that x ∈ ξ(x). A sequences of partitions ξn of measurable sets generates if there is
a set of full measure F such that for any x ∈ F,

{x} = F
⋂
n≥1

ξn(x)

This property of generation is independent of the choice of the representatives ξn of
the equivalent class ξ̄n and therefore, we will say that the sequence of measurable par-
titions ξ̄n generates. Let M/ξ denote the equivalent class of the algebra generated by ξ,
modulo sets of µ-measure zero. M/ξ is independent of the choice of the representative
ξ of the equivalent class ξ̄. If T : M1 → M2 is a measure-preserving map such that
T (ξ1) = ξ2 µ-almost everywhere, we can define a quotient map: T/ξ1 : M/ξ1 → M/ξ2.

Let M = � × [0, 1]�. We consider the periodic flow S t defined by:

S t : � × [0, 1]� → � × [0, 1]�

(s, x) 7→ (t + s mod 1, x)

For a, b ∈ �1, let [a, b[ be the positively oriented circular sector between a and b, with
a included and b excluded.

For I ⊂ � or [0, 1], and i ∈ �, we denote (I)i = �×[0, 1]×...×[0, 1]×I×[0, 1]×.....,
where I is located at the ith position. (I ⊂ � if i = 0, I ⊂ [0, 1] if i ≥ 1).

For i , i′, we denote (I)i × (I′)i′ = (I)i ∩ (I′)i′ .
By [11, p. 157], the infinite Cartesian product of the one-dimensional Lebesgue

measure defines a probability measure µ on M, still called Lebesgue measure.
A sequence Tn of µ-preserving maps weakly converges to T if, for any measurable

set E, µ(TnE∆E)→ 0, where A∆B = (A − B) ∪ (B − A).
let E be the set of bijections f of�×[0, 1]�, such that f ((xi)i∈�) = ( fn(x1, ..., xn), xn+1, ..)

with fn a smooth diffeomorphism of � × [0, 1]n for some integer n. The smooth dis-
tance on finite-dimensional smooth diffeomorphisms extends to E: d( f , g) = d( fn, gn)
(we take n to be the maximum of the integers n( f ) and n(g) associated with f and g
respectively). The completion of E for d is denoted Diff∞(� × [0, 1]�). It corresponds
to the set of smooth diffeomorphisms of �× [0, 1]�, and extends the finite-dimensional
notion of smooth diffeomorphisms.

1.2 Transformations of the planar Brownian motion
We use the representation of a Gaussian dynamical system as a geometric transforma-
tion of the trajectory of the planar Brownian motion, developed in [7]. We denote by
(Ω,A,�) the canonical space of the planar Brownian motion issued from 0, on the time
interval [0, 1]:
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1. Ω = C0
0([0, 1],�) is the space of continuous maps from [0, 1] to C, that cancels

in 0.

2. � is the Wiener measure on Ω,

3. A is the Borelian sigma-algebra, completed for �.

For ω ∈ Ω, and 0 ≤ u ≤ 1, we denote by Bu(ω) the position of the trajectory ω at
time u.

If σ is a probability measure on [0, 1] concentrated in a finite number of points
α1 < ... < αt of respective weights m1, ...,mt, we define a transformation Uσ of Ω,
preserving �, by the following: for any k = 1, ..., t, uk =

∑k
j=1 m j, and u0 = 0. We cut

the trajectory ω in t pieces, corresponding to time intervals [uk−1, uk], 1 ≤ k ≤ t, then
we perform a rotation of angle αk on the kth-piece. Uσω is the trajectory obtained by
gluing the rotated pieces. Thus, for u ∈ [u j, u j+1],

Bu ◦ Uσ =

j∑
k=1

e2iπαk (Buk − Buk−1 ) + e2iπα j+1 (Bu − Bu j )

Suppose, moreover, that αi =
pn
qn

bn,i, with pn and bn,i integers relatively prime with
the integer qn. Let Un = Uσ. Let also

cn,i,l =

{
ω ∈ Ω/ arg(Bui+1 (ω) − Bui (ω)) ∈

[
l

qn
,

l + 1
qn

[}
and ζn,i =

{
cn,i,l, l = 0, ..., qn − 1

}
. ζn,i is a partition stable by Un, the ζn,i, i = 0, ..., tn−

1 are mutually independent, and (Un|ζn,i , ζn,i) is metrically isomorphic to (R pn
qn

bn,i
, ξn),

where R pn
qn

bn,i
is the circle rotation of angle pn

qn
bn,i, and ξn is the partition of the circle �

defined by ξn = {
[

l
qn
, l+1

qn

[
, l = 0, ..., qn−1}. This metric isomorphism is the basis of our

construction.
Now, if σ is a non-atomic probability measure on [0, 1], we can define Uσ as he

limit of a sequence of transformations Uσn , where the measures σn are concentrated
on a finite number of points converging sufficiently well towards σ. For any u ∈ [0, 1],
and any p ∈ �, we have:

Bu ◦ U p
σ =

∫ u

0
e2iπpψ(s) dBs

where ψ(s) = inf{x ∈ [0, 1]/σ([0, x]) ≥ s}.
Moreover, if σ is concentrated on [0, 1/2], then (Ω,A,�,Uσ) is a Gaussian dy-

namical system of spectral measure γ, where γ is the symmetric probability measure
on [−1/2, 1/2], defined by

γ(A) =
1
2

(σ(A ∩ [0, 1/2]) + σ(−A ∩ [0, 1/2]))

The underlying real Gaussian process is given by X0 = Re(B1) [7].
As a corollary, if σ is non-atomic on [0, 1], then Uσ is ergodic (and even weak

mixing), and if, moreover, σ is singular with respect to Lebesgue measure, then Uσ

has zero entropy.
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1.3 Basic steps of the proof
The metric isomorphism is obtained as the limit of isomorphisms of finite algebras. We
use the lemma [1, p.18]:

Lemma 1.3. Let M1 and M2 be Lebesgue spaces and let ξ(i)
n (i = 1, 2) be monotonic and

generating sequences of finite measurable partitions of Mi. Let T (i)
n be automorphisms

of Mi such that T (i)
n ξ

(i)
n = ξ(i)

n and T (i)
n → T (i) in the weak topology. Suppose there are

metric isomorphisms Ln : M1/ξ
(1)
n → M2/ξ

(2)
n such that

LnT (1)
n /ξ(1)

n = T (2)
n /ξ(2)

n Ln

and

Ln+1ξ
(1)
n = ξ(2)

n

then (M1,T1) and (M2,T2) are metrically isomorphic.

Said otherwise, if we have generating sequences of partitions and sequences of
automorphisms T (i)

n weakly converging towards T (i), and if, for any integer n, the fol-
lowing diagram commutes:

ξ(1)
nT (1)

n 55
Ln //

� _

��

ξ(2)
n T (2)

nii� _

��
ξ(1)

n+1
Ln+1 // ξ(2)

n+1

then (M1,T1) and (M2,T2) are metrically isomorphic.

The proof of theorem 1.1 is in two steps. In the first step (lemma 1.4), we determine
sufficient conditions such that there exists sequences of finite partitions and automor-
phisms satisfying the assumptions of lemma 1.3 with M1 = Ω, M2 = M = � × [0, 1]�,
T (1)

n = Un, T (2)
n = Tn, where Tn is a smooth diffeomorphism, and such that the limit T

in the smooth topology of the sequence Tn is smooth.
In the second step (lemma 1.5), we construct sequences of integers satisfying the

conditions of the first step.

Lemma 1.4. There exists an explicit family of integers R1(n) ≥ n,R2,R3, such that,
if there exist increasing sequences of integers tn, pn, qn, an(i′/tn), bn(i′/tn) ∈ �∗, i′ =

0, ..., tn − 1, and sequences sn(i′/tn) ∈ �∗, i′ = 0, ..., tn − 1 such that, for any integer n,
any i′ = 0, ..., tn − 1,

1. (temporal monotonicity) tn+1 = 2R2(n,qn,tn)tn.

2. (primality) an(i′/tn)bn(i′/tn) − sn(i′/tn)qn = 1.

3. (monotonicity) qn divides qn+1.

4. (isomorphism) qn divides an+1(i/tn+1)− an(i′/tn), for i = i′ tn+1
tn
, ..., (i′ + 1) tn+1

tn
− 1.

5. (convergence of the diffeomorphism, generation, Kronecker)

0 <
∣∣∣∣∣ pn+1

qn+1
−

pn

qn

∣∣∣∣∣ ≤ 1/R1

n, qn,

tn+1−1∏
i=0

bn+1(i/tn+1)
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then there exists a smooth ergodic measure-preserving diffeomorphism T of M
that is a Gaussian transformation. Moreover, if

6. (Kronecker) the translation of �tn of vector pn
qn

(bn(0/tn), ..., bn((tn − 1)/tn)) has a
fundamental domain of diameter smaller than 1/n,

then T is a Gaussian-Kronecker.

Lemma 1.5. For any n ≥ 1, there exists increasing sequences of integers
tn, pn, qn, an(i′/tn), bn(i′/tn) ∈ �∗, i′ = 0, ..., tn − 1, and sequences sn(i′/tn) ∈ �∗,

i′ = 0, ..., tn − 1 satisfying the assumptions of lemma 1.4.

We divide the proof of lemma 1.4 in three main parts. In the first part of the proof,
we construct a sequence of monotonic and generating partitions of Ω, called ζ∞n , which
is stabilized by the transformation Un. To that end, we use assumptions 1, 2, 3, 4 and 5.
In the second part of the proof, we elaborate sufficient conditions on Bn ∈ Diff∞(M, µ),
so that if Tn = B−1

n S pn
qn

Bn weakly converges towards an automorphism T , then there
exists a metric isomorphism between (Ω,U,�) and (M,T, µ). To that end, we apply
lemma 1.3: we construct a monotonous and generating sequence of partitions ξ∞n of
M and a sequence of isomorphisms K̄∞n : Ω/ζ∞n → M/ξ∞n , such that K̄∞n Un = TnK̄∞n
and K̄∞n+1|ζ∞n

= K̄∞n . In the construction of this isomorphism, assumption 4 is important.
Moreover, elements of ξ∞n must be chosen in a way that ensures the monotonicity of
the sequence K̄∞n . This condition of monotonicity induces combinatorial constraints on
the elements of the partition ξ∞n .

In the third part of the proof, we construct diffeomorphisms Tn = B−1
n S pn

qn
Bn on M

stabilizing ξ∞n , obtained by successive conjugations from the rotation S pn
qn

. In particular,
in this part, we use smooth quasi-permutations, introduced in [4].

1.4 Construction of suitable sequences of integers: proof of lemma
1.5

Lemma 1.6. There exist increasing sequences of integers tn, pn, qn, an(i′/tn), bn(i′/tn) ∈
�∗, i′ = 0, ..., tn − 1, and sequences sn(i′/tn) ∈ �∗, i′ = 0, ..., tn − 1, satisfying the
assumptions of lemma 1.4.

Proof. We construct these sequences by induction. Let t0 = p0 = q0 = 1, b0(0/t0) =

s0(0/t0) = 1, a0(0/t0) = 2. Suppose we have defined tk, pk, qk, ak(i′/tk), bk(i′/tk), sk(i′/tk),
satisfying the assumptions of lemma 1.4, up to the rank k = n, and let us define
tn+1, pn+1, qn+1, an+1(i/tn+1), bn+1(i/tn+1), sn+1(i/tn+1).

We can define tn+1 = 2R2(n,qn,tn)tn. Let

b(n) = (bn(0/tn), ..., bn((tn − 1)/tn))

b̃(n) = (bn(0/tn), ..., bn(0/tn), bn(1/tn), ..., bn(1/tn), ..., bn((tn − 1)/tn), ..., bn((tn − 1)/tn))

= (b̃n(0/tn+1), ..., b̃n((tn+1 − 1)/tn+1))

where each bn(i/tn) is repeated tn+1/tn times.
To get conditions 5, 6, as in [1, 3], we seek b(n + 1) of the form:
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b(n + 1) = qnv(n + 1) + (en+1qn + 1)b̃(n)

where v(n + 1) ∈ �tn+1 and en+1 ∈ �.
Let bn =

∏tn−1
i′=0 bn(i′/tn). Since gcd({b̃n(0/tn+1), ..., b̃n((tn+1−1)/tn+1)} = gcd({bn(0/tn), ..., bn((tn−

1)/tn)}) = 1, then we can apply a result in [3, section 1.3.2]: there exists v(n+1) ∈ �tn+1

and en+1 ∈ �, there exists R4(n, b(n)) such that:

‖v(n + 1)‖ ≤ R4(n, bn)

en+1 ≤ R4(n, bn)

and such that the translation flow of �tn+1 of vector b(n + 1) has a fundamental
domain B(n) ⊂ �tn+1−1 × {0} of diameter smaller than 1/(2n). Therefore, for any
qn+1 ≥ R5(n, b(n)) for some R5(n, b(n)), and any pn+1 such that gcd(pn+1, qn+1) = 1,
the translation of �tn+1 of vector pn+1

qn+1
b(n + 1) has a fundamental domain of diameter

smaller than 1/n. Hence condition 6.
We write:

v(n + 1) = (vn+1(0/tn+1), ..., vn+1((tn+1 − 1)/tn+1))

Let
sn+1(i/tn+1) = sn(i′/tn) + an(i′/tn)[vn+1(i/tn+1) + en+1bn(i′/tn)]

Let
µn+1(i/tn+1) = bn(i′/tn) + qn[vn+1(i/tn+1) + en+1bn(i′/tn)]

Let dn+1 ≥ R1 (n, qn, bn+1) be an integer, let

cn+1(i/tn+1) = dn+1sn+1(i/tn+1)
tn+1−1∏

k=0,k,i

µn+1(k/tn+1)

and let

qn+1 = qn

1 + dn+1

tn+1−1∏
k=0

µn+1(k/tn+1)


Notice that qn+1 is independent of i (it is important to obtain condition 2). Let

an+1(i/tn+1) = an(i′/tn) + qncn+1(i/tn+1)

Thus, assumption 4 is also satisfied.
We show assumption 2 at rank n + 1. We have:

an+1(i/tn+1)bn+1(i/tn+1) =
(
an(i′/tn) + qncn+1(i/tn+1)

) (
qnvn+1(i/tn+1) + (en+1qn + 1)bn(i′/tn)

)
= 1 + qn

[
sn(i′/tn) + en+1(1 + sn(i′/tn)qn) + an(i′/tn)vn+1(i/tn+1)

+cn+1(i/tn+1)
(
qnvn+1(i/tn+1) + (en+1qn + 1)bn(i′/tn)

)]
= 1 + qn

[
sn(i′/tn) + an(i′/tn)(en+1bn(i′/tn) + vn+1(i/tn+1))
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+dn+1sn+1(i/tn+1)
tn+1−1∏

k=0,k,i

µn+1(k/tn+1)
(
qnvn+1(i/tn+1) + (en+1qn + 1)bn(i′/tn)

)
= 1 + qn

sn+1(i/tn+1)

1 + dn+1

tn+1−1∏
k=0,k,i

µn+1(k/tn+1)




= 1 + sn+1(i/tn+1)qn+1

Hence assumption 2 at rank n + 1. �

1.4.1 Proof that T is Kronecker

First, we show:

Lemma 1.7. Let

Ln

(
i′

tn

)
=

[
pn

qn
bn(i′/tn),

pn

qn
bn(i′/tn) +

1
nqn

]
and

L =
⋂
n≥1

tn−1⋃
i′=0

Ln(i′/tn)

If the translation pn
qn

b(n) of the �tn -torus has a fundamental domain of diameter
smaller than 1/n, then L is a Kronecker set.

Proof. We adapt the proof of [6, p.6]. We must show that for any f : L → � continu-
ous, for any ε > 0, there exists k ∈ � such that

sup
x∈L
| f (x) − kx| ≤ ε

We fix n ≥ 1 and first, we suppose that f is constant on each interval Ln

(
i′
tn

)
, and

we denote zn(i′/tn) = f
(
Ln

(
i′
tn

))
. Let zn(i′/tn) = (zn(0), ..., zn((tn − 1)/tn)). Since the

translation pn
qn

b(n) of the �tn -torus has a fundamental domain of diameter smaller than
1/n, then there exists 0 ≤ k ≤ qn − 1 such that

|k
pn

qn
b(n) − u| ≤

1
n

Therefore, for any 0 ≤ i′ ≤ qn − 1,

|k
pn

qn
bn(i′/tn) − zn(i′/tn)| ≤

1
n

Let x ∈ L and 0 ≤ i′ ≤ tn − 1 such that x ∈ Ln

(
i′
tn

)
. We have:∣∣∣∣∣x − pn

qn
bn(i′/tn)

∣∣∣∣∣ ≤ 1
nqn

Therefore,

|kx− f (x)| = |kx− zn(i′/tn)| ≤
∣∣∣∣∣kx − k

pn

qn
bn(i′/tn)

∣∣∣∣∣ + ∣∣∣∣∣k pn

qn
bn(i′/tn) − zn(i′/tn)

∣∣∣∣∣ ≤ k
nqn

+
1
n
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|kx − f (x)| ≤
2
n

(1)

Now, we suppose f : L → � is any continuous map. Let ε > 0. L is compact, so
by Heine’s theorem, f is uniformly continuous. There exists η > 0 such that for any
x, y ∈ L, if |x − y| ≤ η, we have:

| f (x) − f (y)| ≤ ε/2 (2)

We fix n ≥ max (4/ε, 1/η). Let fn : L → � such that for any i′ = 0, ..., tn − 1, any
y ∈ Ln(i′/tn), fn(y) = f

(
pn
qn

bn(i′/tn)
)
. By relation (1), there exists 0 ≤ k ≤ qn such that

for any x ∈ L,

|kx − fn(x)| ≤
2
n

Let x ∈ L and let i′ such that x ∈ Ln(i′/tn). Since fn is constant on Ln(i′/tn), we
have:

|kx − f (x)| ≤ |kx − fn(x)| + | fn(x) − f (x)| = |kx − fn(x)| + | fn(x) − f (x)|

|kx − f (x)| ≤
2
n

+

∣∣∣∣∣∣ f
(

pn

qn
bn(i′/tn)

)
− f (x)

∣∣∣∣∣∣
Since

|x −
pn

qn
bn(i′/tn)| ≤

1
nqn
≤

1
n
≤ η

By estimation (2), we conclude:

|kx − f (x)| ≤
2
n

+ ε/2 ≤ ε

�

Corollary 1.8. For a suitable choice of R1 in lemma 1.4, T is Gaussian-Kronecker.

Proof. We must show that the limit σ of σn in the weak topology is non-atomic, and
that supp(σ) ⊂ L. Let ε > 0. Since tn → +∞, then for n sufficiently large, for any
x ∈ �, supx∈� σn(x) ≤ ε. Therefore, σ is non-atomic.n To show that the support of σ
is included in L, let:

f : {0, ..., tn+1 − 1} → {0, ..., tn − 1}
i 7→ i′ s.t. i′

tn
≤ i

tn+1
< i′+1

tn

Let n ∈ �. For any i ∈ {0, ..., tn+1 − 1}, we have:

pn+1

qn+1
bn+1(i/tn+1) −

pn

qn
bn( f (i)/tn) =

(
pn+1

qn+1
−

pn

qn

)
bn+1(i/tn+1)

Therefore, for any m ≥ 0, any i ∈ {0, ..., tn+m − 1}, and for a suitable choice of R1 in
lemma 1.4,

9



pn+m

qn+m
bn+m(i/tn+m) −

pn

qn
bn( f m(i)/tn) =

m−1∑
k=0

(
pn+k+1

qn+k+1
−

pn+k

qn+k

)
bn+k+1( f k(i)/tn+k+1)

≤

+∞∑
k=n

(
pk+1

qk+1
−

pk

qk

)
bk+1( f k(i)/tn+1) ≤

1
nqn

Therefore, for any integers n,m, pn+m
qn+m

bn+m(i/tn+m) ∈ Ln =
⋃tn−1

i′=0 Ln(i′/tn).
Therefore, supp(σn+m) ⊂ Ln. Since Ln is closed, then supp(σ) ⊂ Ln for any n, and

so supp(σ) ⊂ L.
�

2 Partitions of Ω = C0
0([0, 1],�)

The aim of this section is to show the following proposition:

Proposition 2.1. If assumptions 1, 2, 3, 4, 5, of lemma 1.4 hold, there exists measurable
partitions (ζm

n )n≥0,n<m of Ω, such that ζm
n is stable by Un, and such that at m fixed, for

n < m, ζm
n ↪→ ζm

n+1. Moreover, there exists an isomorphism Qm
n : ζn → ζm

n commuting
with Un.

Moreover, at n fixed, ζm
n converges as m → +∞ towards a partition ζ∞n , stable by

Un. Moreover, the sequence (ζ∞n )n≥0 is monotonous and generates.

A natural partition stabilized by Un is given by ζn = ∨
tn−1
i=0 ζn,i, where:

ζn,i =
{
cn,i,l, l = 0, ..., qn − 1

}
with

cn,i,l =

{
ω ∈ Ω/ arg(Bui+1 (ω) − Bui (ω)) ∈

[
l

qn
,

l + 1
qn

[}
In order to apply lemma 1.3, we need a monotonous and generating sequence of

partitions. In lemma 2.13, we show that ζn generates. However, ζn is not monotonous,
because for any integers k, i, l, l′,

{
ω ∈ Ω / arg

(
B k

tn
+ i+1

tn+1
(ω) − B k

tn
+ i

tn+1
(ω)

)
∈ I l

qn+1

}
1

{
ω ∈ Ω / arg

(
B k+1

tn
(ω) − B k

tn
(ω)

)
∈ I l′

qn

}
Therefore, as in [1, 3], we "monotonize" ζn. This "monotonization" is performed

in two steps: in the first step, we construct a partition ζn+1
n stable by Un and such

that ζn+1
n ↪→ ζn+1 (lemma 2.2). We also need that most elements of ζn+1

n have a size
controlled independently of qn+1, to ensure the smooth convergence of Tn towards T .

In the second step, we iterate this procedure, so as to obtain a partition ζm
n , such

that ζm
n ↪→ ζm . At m fixed, for n < m, ζm

n ↪→ ζm
n+1. We take the limit m → +∞. This

gives a monotonous partition ζ∞n stable by Un (corollary 2.12). This procedure is the
same as in [1, 3]. Since ζn generates (lemma 2.13), then ζ∞n too (corollary 2.15).

To show proposition 2.1, we need some notations and auxiliary transformations.
We slightly modify those introduced by De La Rue [8, p. 395].
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Let θ = arg B1, and let G,D transformations of Ω defined by

Bu ◦G =
√

2B u
2

Bu ◦ D =
√

2(B u+1
2
− B 1

2
)

Since, by scaling, Bu ◦ G and Bu ◦ D are Brownian motions, then G and D are
�-preserving. Moreover, G−1(A) and D−1(A) are independent.

Let Γ = G,D, and for any n ∈ �, Γn is the set of words of length n on the alphabet
Γ. Let θG = θ◦G, θD = θ◦D, BG = B1◦G, BD = B1◦D, and having defined the random
variables θW and BW for W ∈ Γn, we let θGW = θW ◦G, θDW = θW ◦ D, BGW = BW ◦G,
BDW = BW ◦ D. Thus, we obtain families of random variables θW and BW defined by
induction.

For n ∈ �, we denote An = B(θW ,W ∈ Γn) and Bn = ∨n
k=0Ak, B∞ = ∨+∞

k=0Ak. For
any finite measurable partition N = {N1, ...,Nq}, q ∈ �∗, let

cn

( i
2n ,Nl

)
=

{
ω ∈ Ω/ arg

(
B i+1

2n
(ω) − B i

2n
(ω)

)
∈ Nl

}
and let An(N) = {cn

(
i

2n ,Nl

)
, i = 0, ..., 2n − 1, l = 0, ..., q − 1}. In particular, if

Nl = [l/q, (l + 1)/q[, let

cn

(
i

2n ,
l
q

)
=

{
ω ∈ Ω/ arg

(
B i+1

2n
(ω) − B i

2n
(ω)

)
∈

[
l
q
,

l + 1
q

[}
and letAn(q) = {cn

(
i

2n ,
l
q

)
, i = 0, ..., 2n − 1, l = 0, ..., q − 1}, Bn(q) = ∨n

k=0Ak(q).
Let t′n such that tn = 2t′n . Let also

φ : Γt′n →
{

k
2t′n , k = 0, ..., 2t′n − 1

}
a1...at′n 7→

∑t′n
i=1

1ai=D

2t′n−(i+1)

Let

AW,p(q) = B

(
arg

(
Bφ(W)+ j+1

2p+|W |
− Bφ(W)+ j

2p+|W |

)
∈

[
l
q
,

l + 1
q

[
, l = 0, ..., q − 1, j = 0, ..., 2p − 1

)

BW,p(q) = ∨n
k=0AW,k(q)

In particular, we have:

Ap+1(q) = AG,p(q) ∨AD,p(q)

The main step in the proof is the following proposition:

Proposition 2.2. If assumptions 1, 2, 3, 4, 5, of lemma 1.4 hold, then for any n ≥ 0,
there exists a measurable partition ζn+1

n ↪→ ζn+1 of Ω, stable by Un, there exists Qn+1
n :

ζn → ζn+1
n isomorphism such that:

1. For any c ∈ ζn, �(c∆Qn+1
n c) ≤ 1

2nqtn
n

.

2. Qn+1
n Un = UnQn+1

n .
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3. Elements of ζn+1
n are given by relation (5).

Proof of proposition 2.2. First, we need the lemma:

Lemma 2.3. For any p ≥ 0,q > 0, �-almost surely,

�
[
BW |AW,p(q)

]
= �

[
BW |BW,p(q)

]
Proof. The word W is fixed. For u ∈ [0, 1], let B′u =

√
2|W |(B u

2|W |
+φ(W)−Bφ(W)). By scal-

ing, B′u is another Brownian motion issued from 0, and we have: B′1 =
√

2|W |BW . Let
θ′ = arg B′1, and for n ∈ �, we denoteA′n(q) = B

(
θ′W′ ∈ [l/q, (l + 1)/q[, l = 0, ..., q − 1,W ′ ∈ Γn

)
and B′n(q) = ∨n

k=0A
′
k(q). We have AW,p = A′p, BW,p = B′p. Therefore, it suffices to

show, �-almost surely:

�
[
B′1|A

′
p(q)

]
= �

[
B′1|B

′
p(q)

]
We show that �

[
B1|Ap(q)

]
= �

[
B1|Bp(q)

]
�-almost surely. Let

up = �

[∣∣∣�[B1|Bp(q)] − �[B1|Ap(q)]
∣∣∣2]

We show that for any integer p ≥ 0, up = 0. Since = A0(q) = B0(q), then u0 = 0.
It suffices to show that up+1 = up. We follow the method of the proof of relation (15)
in [8, p.397]. We have:

up+1 = �

[∣∣∣∣� [
B 1

2
|Bp+1(q)

]
− �

[
B 1

2
|Ap+1(q)

]
+ �

[
B1 − B 1

2
|Bp+1(q)

]
− �

[
B1 − B 1

2
|Ap+1(q)

]∣∣∣∣2]

up+1 = �

[
1
2

∣∣∣∣� [
B1 ◦G|Bp+1(q)

]
− �

[
B1 ◦G|Ap+1(q)

]
+ �

[
B1 ◦ D|Bp+1(q)

]
− �

[
B1 ◦ D|Ap+1(q)

]∣∣∣∣2]
For any complex numbers a, b, |a + b|2 = |a|2 + b2 + ab̄ + āb, where z̄ denotes the

conjugate of the complex number z. Therefore,

up+1 =
1
2
�

[∣∣∣∣� [
B1 ◦G|Bp+1(q)

]
− �

[
B1 ◦G|Ap+1(q)

]∣∣∣∣2 +
∣∣∣∣� [

B1 ◦ D|Bp+1(q)
]
− �

[
B1 ◦ D|Ap+1(q)

]∣∣∣∣2]

+
1
2
�

[(
�

[
B1 ◦G|Bp+1(q)

]
− �

[
B1 ◦G|Ap+1(q)

]) (
�

[
B1 ◦ D|Bp+1(q)

]
− �

[
B1 ◦ D|Ap+1(q)

])]

+
1
2
�

[(
�

[
B1 ◦G|Bp+1(q)

]
− �

[
B1 ◦G|Ap+1(q)

]) (
�

[
B1 ◦ D|Bp+1(q)

]
− �

[
B1 ◦ D|Ap+1(q)

])]
Now, we apply the claim:

Claim 2.4. Let X a random variable on (Ω,A,�), and G,H sigma-algebras such that
B(X,H) and G are independent. We have, a.e.:

�
[
X|G ∨ H

]
= �

[
X|H

]
12



Proof. We reproduce the proof of [13]. We need to show that

�[X | B(G ∪H)] = �[X | H],

that is, we need to show that �[X | H] can serve as the conditional expectation of X
given B(G ∪H), i.e. show that

• �[X | H] is B(G ∪H)-measurable,

• �[X | H] is integrable,

•
∫

A �[X | H] d� =
∫

A X d� for all A ∈ B(G ∪H).

The first two are obvious. For the third, let us note that (note that by linearity, we
can assume that X is non-negative)

B(G ∪H) 3 A 7→
∫

A
�[X | H] d�

and
B(G ∪H) 3 A 7→

∫
A

X d�

are two measures defined on B(G ∪ H) with equal total mass being �[X]. Hence, it
is enough to show that the two measures are identical on some ∩-stable generator of
B(G ∪H). Here, we use that

{A ∩ B | A ∈ G, B ∈ H}

is indeed a ∩-stable generator of B(G ∪H). Therefore, it suffices to show that∫
A∩B
�[X | H] d� =

∫
A∩B

X d�, A ∈ G, B ∈ H

This is true, because since G andH are independent,

�
[
1A∩B�[X | H]

]
= �

[
1A1B�[X | H]

]
= �[1A]�[1B�[X | H]]

By the defining property of conditional expectation, �[1B�[X | H]] = �[1BX].
Moreover, 1BX ∈ B(X,H), which is independent of G by assumption. Therefore,

�
[
1A∩B�[X | H]

]
= �[1A]�[1BX] = �[1A1BX] =

∫
A∩B

X d�

�

We have that Ap+1(q) = AG,p(q) ∨ AD,p(q) and Bp+1(q) = BG,p(q) ∨ BD,p(q).
Moreover, the sigma-algebra B(BG,BG,p(q)) is independent of BD,p(q).

Indeed, B(BG,BG,p(q)) ⊂ B(B i+1
2p
− B i

2p
, i = 0, ..., 2p−1 − 1) and

BD,p(q) ⊂ B(B i+1
2p
− B i

2p
, i = 2p−1, ..., 2p − 1), and these two sigma-algebras are in-

dependent, because the Brownian motion has mutually independent increments. Like-
wise, B(BD,BD,p(q)) is independent of BG,p(q). Therefore, by claim 2.4, we get:

up+1 =
1
2
�

[∣∣∣∣� [
B1 ◦G|BG,p(q)

]
− �

[
B1 ◦G|AG,p(q)

]∣∣∣∣2
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+
∣∣∣∣� [

B1 ◦ D|BD,p(q)
]
− �

[
B1 ◦ D|AD,p(q)

]∣∣∣∣2]

+
1
2
�

[(
�

[
B1 ◦G|BG,p(q)

]
− �

[
B1 ◦G|AG,p(q)

]) (
�

[
B1 ◦ D|BD,p(q)

]
− �

[
B1 ◦ D|AD,p(q)

])]

+
1
2
�

[(
�

[
B1 ◦G|BG,p(q)

]
− �

[
B1 ◦G|AG,p(q)

]) (
�

[
B1 ◦ D|BG,p(q)

]
− �

[
B1 ◦ D|AD,p(q)

])]
Since BG,p(q) and BD,p(q) are independent, we get:

up+1 =
1
2
�

[∣∣∣∣� [
B1 ◦G|BG,p(q)

]
− �

[
B1 ◦G|AG,p(q)

]∣∣∣∣2
+

∣∣∣∣� [
B1 ◦ D|BD,p(q)

]
− �

[
B1 ◦ D|AD,p(q)

]∣∣∣∣2]
Since AG,p(q) = G−1(Ap(q)) and BG,p = G−1(Bp(q)), and since G is measure-

preserving, we obtain:

�

[∣∣∣∣� [
B1 ◦G|BG,p(q)

]
− �

[
B1 ◦G|AG,p(q)

]∣∣∣∣2]
= �

[∣∣∣∣� [
B1 ◦G|G−1(Bp(q))

]
− �

[
B1 ◦G|G−1(Ap(q))

]∣∣∣∣2]

= �

[∣∣∣∣� [
B1|Bp(q)

]
− �

[
B1|Ap(q)

]∣∣∣∣2 ◦G
]

= �

[∣∣∣∣� [
B1|Bp(q)

]
− �

[
B1|Ap(q)

]∣∣∣∣2] = up

Since D is also measure-preserving, we can do the same for the right-hand side of
the equation and therefore, up+1 = up.

�

Lemma 2.5. Let jk → +∞ and rk → +∞ two sequences of positive integers. We have:

+∞∨
k=0

B jk (rk) = B∞

Proof. Since rk → +∞, then for any t ≥ 0, u ≥ 0,At =
∨+∞

k=uAt(rk).
Since jk → +∞, there exists k0(t) such that for any k ≥ k0, jk ≥ t. Moreover, for

any t ≤ jk,At(rk) ⊂ B jk (rk). Therefore,

At =

+∞∨
k=k0

At(rk) ⊂
+∞∨
k=k0

B jk (rk) ⊂
+∞∨
k=0

B jk (rk)

Therefore,

B∞ =

+∞∨
t=0

At ⊂

+∞∨
k=0

B jk (rk)

�

14



Lemma 2.6. Almost surely, we have:

�
[
BW |AW,k(qk

n)
]
→k→+∞ BW

Proof. By scaling, as in lemma 2.3, it suffices to show that a.s.,

�
[
B1|Ak(qk

n)
]
→k→+∞ B1

Theorem 3.2 in [8, p.395] implies that |B1| is
∨+∞

k=1Ak-measurable. Therefore,

B1 = |B1|ei arg B1 is B∞-measurable (indeed, [8] introduces θ̃ = arg
(

B 1
2
−B1

B 1
2

)
and Ãn =

B(θ̃W ,W ∈ Γn), B̃n =
∨n

k=0 Ãk.
Since θ̃ = θD + π − θG, then θ̃ isA1-measurable, and we have B̃n ⊂

∨n+1
k=1Ak).

Therefore,
�[B1|B∞] = B1

LetB′k = Bk(qk
n). By lemma 2.5,

∨+∞
k=0 B

′
k = B∞. Moreover, since qk+1

n is divided by
qk

n, then B′k+1 ⊂ B
′
k, and B′k is a filtration. Therefore, �[B1|B

′
k] is a closed martingale,

and almost surely,

�[B1|B
′
k]→k→+∞ �[B1|B∞]

Since, by lemma 2.3, �[B1|B
′
k] = �

[
B1|Ak(qk

n)
]
, and since �[B1|B∞] = B1, we

conclude that, almost surely

�
[
B1|Ak(qk

n)
]
→k→+∞ B1

�

Let Q,N be two measurable partitions. The safe zone of N with respect to Q is
defined by:

S (Q,N) = {P ∈ N/∃Q ∈ Q, P ⊂ Q}

For k ≥ 0 integer, let

qk = {[ j/qk
n, ( j + 1)/qk

n[, j = 0, ..., qk
n − 1}

Let

S k(qk,N) =

2k−1⋂
t=0

{
arg

(
B t+1

2k
− B t

2k

)
∈ S (qk,N)

}
Lemma 2.6 gives the following corollary:

Corollary 2.7. For any ε > 0, any η > 0, there exists k0(ε, η) such that for any k ≥ k0,
for any finite measurable partition N of � such that Leb(S (qk,N)) ≥ 1 − ε/2k, we
have:

� (|� [B1|Ak(N)] − B1| ≤ η) ≥ 1 − ε
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Proof. By lemma 2.6, since convergence almost sure implies convergence in probabil-
ity, then for any ε > 0, any η > 0, there exists k0(ε, η) such that for any k ≥ k0,

�

(∣∣∣∣� [
B1|Ak(qk)

]
− B1

∣∣∣∣ ≤ η) ≥ 1 − ε

Moreover, if ∣∣∣∣� [
B1|Ak(qk)

]
− B1

∣∣∣∣ ≤ η
then

∣∣∣∣� [
�

[
B1|Ak(qk)

]
− B1|Ak(N)

]∣∣∣∣ ≤ � [∣∣∣∣� [
B1|Ak(qk)

]
− B1

∣∣∣∣ |Ak(N)
]
≤ η

Moreover, if

�
[
�

[
B1|Ak(qk)

]
|Ak(N)

]
= �

[
B1|Ak(qk)

]
then

|� [B1|Ak(N)] − B1| ≤

∣∣∣∣� [B1|Ak(N)] − �
[
�

[
B1|Ak(qk)

]
|Ak(N)

]∣∣∣∣+∣∣∣∣� [
B1|Ak(qk)

]
− B1

∣∣∣∣ ≤ 2η

Moreover,

S (qk,N) ⊂
{
�

[
�

[
B1|Ak(qk)

]
|Ak(N)

]
= �

[
B1|Ak(qk)

]}
Indeed, let

ν : Q → S (qk,N)
Q 7→ {P ∈ N/P ⊂ Q}

The map ν is surjective. Let C be the partition generatingAk(qk). Elements Q ∈ C
are of the form:

Q =

2k−1⋂
j=0

{
arg

(
B j+1

2k
− B j

2k

)
∈ Q j

}
with Q j ∈ qk. We have:

1S k(qk ,N)�
[
B1|Ak(qk)

]
=

∑
Q∈Ak(qk)

�[B11Q]
�(Q)

1Q∩S k(qk ,N)

Moreover,

Q ∩ S k(qk,N) =

2k−1⋂
j=0

{
arg

(
B j+1

2k
− B j

2k

)
∈ ν(Q j)

}
which isAk(N)-measurable. Therefore,

S (qk,N) ⊂
{
�

[
�

[
B1|Ak(qk)

]
|Ak(N)

]
= �

[
B1|Ak(qk)

]}
Moreover,
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�
(
S k(qk,N)

)
≥ ε

Therefore,

� (|� [B1|Ak(N)] − B1| ≤ 2η)

≥ �

({∣∣∣∣� [
B1|Ak(qk)

]
− B1

∣∣∣∣ ≤ η} ∩ {
�

[
�

[
B1|Ak(qk)

]
|Ak(N)

]
= �

[
B1|Ak(qk)

]})
≥ �

({∣∣∣∣� [
B1|Ak(qk)

]
− B1

∣∣∣∣ ≤ η} ∩ S k(qk,N)
)

Therefore,

� (|� [B1|Ak(N)] − B1| ≤ 2η) ≥ 1 − 2ε

�

Corollary 2.8. For any ε > 0, any π/2 > η > 0, there exists k0(ε, η) such that for any
k ≥ k0, any finite partition N of � such that Leb

(
S (qk,N)

)
≥ 1 − ε/2k,

�
(∣∣∣arg (� [B1|Ak(N)]) − arg(B1)

∣∣∣ ≤ η) ≥ 1 − ε

Proof. We need the claim:

Claim 2.9. For any z ∈ � such that |z − 1| < 1, we have:

|z − 1| ≥ | sin(arg z)| ≥
2
π
| arg z|

Proof. If |z − 1| < 1 then | arg z| ≤ π/2 and so | sin(arg z)| ≥ 2
π
| arg z|. For the other

estimate, we write z = reiθ. Since (r − cos θ)2 ≥ 0, then

r2 + 1 − sin2 θ − 2r cos θ ≥ 0

r2 cos2 θ + 1 − 2r cos θ + r2 sin2 θ ≥ sin2 θ

(r cos θ − 1)2 + (r sin θ)2 ≥ (sin θ)2

|z − 1| ≥ | sin(arg z)|

�

Let ε > 0. There exists g(ε) > 0 such that

� (|B1| ≥ g(ε)) ≥ 1 − ε

Let π/2 > η > 0 and k0 = k0

(
ε, 2g(ε)η

π

)
in corollary 2.7. If |B1| ≥ g(ε) and if

|� [B1|Ak(N)] − B1| ≤
2g(ε)η
π

then
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∣∣∣∣∣� [B1|Ak(N)]
B1

− 1
∣∣∣∣∣ ≤ 2g(ε)η

π|B1|
≤

2η
π
< 1

By claim 2.9, we get:

2
π

∣∣∣∣∣∣arg
(
� [B1|Ak(N)]

B1

)∣∣∣∣∣∣ ≤ 2
π
η

Therefore, ∣∣∣arg (� [B1|Ak(N)]) − arg(B1)
∣∣∣ ≤ η

Therefore,

�
(∣∣∣arg (� [B1|Ak(N)]) − arg(B1)

∣∣∣ ≤ η) ≥ � (
{|B1| ≥ g(ε)} ∩ {|� [B1|Ak(N)] − B1| ≤

2g(ε)η
π
}

)
By corollary 2.7, we get:

�
(∣∣∣arg (� [B1|Ak(N)]) − arg(B1)

∣∣∣ ≤ η) ≥ 1 − ε − ε = 1 − 2ε

�

Corollary 2.10. For any 0 < ε < 1/(2qn), there exists k(ε, tn, qn) such that for any
l = 0, ..., qn − 1, for any W ∈ Γtn , for any finite measurable partition N such that

Leb
(
S (qk0 ,N)

)
≥ 1 −

ε

2k

�

((
arg BW ∈

[
l

qn
,

l + 1
qn

[)
∆

(
arg�

[
BW |AW,k(N)

]
∈

[
l

qn
,

l + 1
qn

[))
≤ ε

Proof. More generally, corollary 2.8 holds for any BW . Let k(ε, tn, qn) = maxW∈Γt′n k0(ε, ε,W).
We have:

�

[(
arg BW ∈

[
l

qn
,

l + 1
qn

[)
∆

(
arg�

[
BW |AW,k(N)

]
∈

[
l

qn
,

l + 1
qn

[))
= �

((
arg BW ∈

[
l

qn
,

l + 1
qn

[)c

∩

(
arg�

[
BW |AW,k(N)

]
∈

[
l

qn
,

l + 1
qn

[)]
+

�

[(
arg BW ∈

[
l

qn
,

l + 1
qn

[)
∩

(
arg�

[
BW |AW,k(N)

]
∈

[
l

qn
,

l + 1
qn

[)c]

≤ �

[(
arg BW ∈

[
l

qn
,

l + 1
qn

[)c

∩

(
arg�

[
BW |AW,k(N)

]
∈

[
l

qn
,

l + 1
qn

[)
∩

(∣∣∣arg BW − arg�
[
BW |AW,k(N)

]∣∣∣ < ε)]
+�

[(
arg BW ∈

[
l

qn
,

l + 1
qn

[)
∩

(
arg�

[
BW |AW,k(N)

]
∈

[
l

qn
,

l + 1
qn

[)c

∩
(∣∣∣arg BW − arg�

[
BW |AW,k(N)

]∣∣∣ < ε)]
+2�

[∣∣∣arg BW − arg�
[
BW |AW,k(N)

]∣∣∣ ≥ ε]
18



Moreover, since ε < 1/(2qn) then:

(
arg BW ∈

[
l

qn
,

l + 1
qn

[)c

∩

(
arg�

[
BW |AW,k(N)

]
∈

[
l

qn
,

l + 1
qn

[)
∩
(∣∣∣arg BW − arg�

[
BW |AW,k(N)

]∣∣∣ < ε)
⊂

(
arg BW ∈

[
−ε +

l
qn
,

l
qn

[
∪

[
l + 1
qn

,
l + 1
qn

+ ε

[)
Therefore,

�

((
arg BW ∈

[
l

qn
,

l + 1
qn

[)c

∩

(
arg�

[
BW |AW,k(N)

]
∈

[
l

qn
,

l + 1
qn

[)
∩

(∣∣∣arg BW − arg�
[
BW |AW,k(N)

]∣∣∣ < ε))
≤ 2ε

Likewise,

�

((
arg BW ∈

[
l

qn
,

l + 1
qn

[)
∩

(
arg�

[
BW |AW,k(N)

]
∈

[
l

qn
,

l + 1
qn

[)c

∩
(∣∣∣arg BW − arg�

[
BW |AW,k(N)

]∣∣∣ < ε))
≤ 2ε

Therefore,

�

((
arg BW ∈

[
l

qn
,

l + 1
qn

[)
∆

(
arg�

[
BW |AW,k(N)

]
∈

[
l

qn
,

l + 1
qn

[))
≤ 6ε

�

Let ε = 1
2ntnqtn

n
. By corollary 2.10, we can fix k0(n, qn, tn) such that for any l =

0, ..., qn − 1, W ∈ Γt′n , for any finite measurable partitionN such that Leb
(
S (qk0 ,N)

)
≥

1 − ε
2k0

, we have:

�

((
arg BW ∈

[
l

qn
,

l + 1
qn

[)
∆

(
arg�

[
BW |AW,k0 (N)

]
∈

[
l

qn
,

l + 1
qn

[))
≤

1
2ntnqtn

n
(3)

Let

vn+1 =

⌊
qn+1

2k0 22n+1tnqtn
n qk0

n

⌋
For qn+1 sufficiently large, vn+1 ≥ 1. By Euclidean division, we can write:

qn+1

qn
= vn+1yn+1 + ρn+1 (4)

with 0 ≤ ρn+1 < vn+1.
Let

Nn+1
n =

{
γ

qn
+ j

vn+1

qn+1
+ N j, j = 0, ..., yn+1, γ = 0, ..., qn − 1

}
with N j = [0, vn+1/qn+1[, for j = 0, ..., yn+1 − 1, and Nyn+1 = [0, ρn+1/qn+1[.
We have: Leb

(
S (qk0 ,Nn+1

n )
)
≥ 1 − ε

2k0
and therefore, estimate (3) holds for Nn+1

n .
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When qn+1 varies, the partitionNn+1
n varies, but k0 must remain fixed independently

of qn+1, and this is why we need a uniform estimate on all partitions N sufficiently
refined. If we could take qk0

n dividing qn+1, a non-uniform estimate in corollary 2.10
would be enough.

For any l = 0, ..., qn − 1, W ∈ Γt′n , let

cn+1
n

(
φ(W),

l
qn

)
=

{
ω ∈ Ω/ arg�

[
BW |AW,k0 (Nn+1

n )
]

(ω) ∈
[

l
qn
,

l + 1
qn

[}
(5)

Let

ζn+1
n,φ(W) =

{
cn+1

n

(
φ(W),

l
qn

)
, l = 0, ..., qn − 1

}
The set ζn+1

n,φ(W) is a partition of Ω, because it is the pre-image of a partition of �.
For any i = 0, ..., tn+1 − 1, ji = 0, ..., yn+1, γi = 0, ..., qn − 1, let

ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

)
=

{
ω ∈ Ω/ arg

(
B i+1

tn+1
(ω) − B i

tn+1
(ω)

)
∈
γi

qn
+ ji

vn+1

qn+1
+ N ji

}
The sets ẽ

(
i

tn+1
, γi

qn
+ ji

vn+1
qn+1

)
, i = 0, ..., tn+1−1, are mutually independent. For any i′ =

0, ..., tn − 1, γ = (γi′ tn+1
tn
, γi′ tn+1

tn
+1, ..., γ(i′+1) tn+1

tn
− 1

tn
), j = ( ji′ tn+1

tn
, ji′ tn+1

tn
+1, ..., j(i′+1) tn+1

tn
− 1

tn
),

let

e
(

i′

tn
,
γ

qn
+ j

vn+1

qn+1

)
=

i′+1
tn
− 1

tn+1⋂
i

tn+1
= i′

tn

ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

)
Let

P(i′) =

{
e
(

i′

tn
,
γ

qn
+ j

vn+1

qn+1

)
, γ ∈ {0, ..., qn − 1}

tn+1
tn , j ∈ {0, ..., yn+1}

tn+1
tn

}
The partition P(i′) is finite and B(P(i′)) = AW,k0 (N). Therefore,

arg�
[
BW |AW,k0 (Nn+1

n )
]

= arg

 ∑
e∈P(i′)

�[BW1e]
�(e)

1e

 =
∑

e∈P(i′)

(
arg�[BW1e]

)
1e

(we can check that the right-hand term satisfies the characteristic property of con-
ditional expectation)

For i′ = 0, ..., tn − 1, l = 0, ..., qn − 1, let

E
(

i′

tn
,

l
qn

)
=

{
(γ, j) ∈ {0, ..., qn − 1}

tn+1
tn × {0, ..., yn+1}

tn+1
tn /

arg
(
�

[(
B i′+1

tn
− B i′

tn

)
1

e
(

i′
tn
,
γ

qn
+ j vn+1

qn+1

)]) ∈ [
l

qn
,

l + 1
qn

[}
(6)

Therefore,
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cn+1
n (φ(W),

l
qn

) =
⋃

(γ, j)∈E
(
φ(W), l

qn

) e
(
φ(W),

γ

qn
+ j

vn+1

qn+1

)
(7)

Moreover, since Nn+1
n ↪→ {[k/qn+1, (k + 1)/qn+1[, k = 0, ..., qn+1 − 1},

thenAW,k0 (Nn+1
n ) ⊂ B(ζn+1), and therefore, ζn+1

n,φ(W) ↪→ ζn+1.

Lemma 2.11. Let

Qn+1
n,φ(W) : ζn,φ(W) → ζn+1

n,φ(W)
cn(φ(W), l

qn
) 7→ cn+1

n (φ(W), l
qn

)

We have: Qn+1
n,φ(W)Un|ζn,φ(W) = Un|ζn,φ(W) Q

n+1
n,φ(W). Moreover, Qn+1

n,φ(W) is measure-preserving.

Proof. We have:

UnQn+1
n,φ(W)(cn(φ(W),

l
qn

)) =

{
Un(ω)/ arg�

[
BW |AW,k0 (Nn+1

n )
]

(ω) ∈
[

l
qn
,

l + 1
qn

[}

=

{
ω ∈ Ω/ arg�

[
BW |AW,k0 (Nn+1

n )
]
◦ U−1

n (ω) ∈
[

l
qn
,

l + 1
qn

[}

=

{
ω ∈ Ω/ arg�

[
BW ◦ U−1

n |Un(AW,k0 (Nn+1
n ))

]
(ω) ∈

[
l

qn
,

l + 1
qn

[}
Moreover, since R 1

qn
(Nn+1

n ) = Nn+1
n , then Un(AW,k0 (Nn+1

n )) = AW,k0 (Nn+1
n ). On the

other hand,

BW ◦ U−1
n = e−i pn

qn
bn(φ(W))BW

Therefore,

UnQn+1
n,φ(W)

(
cn

(
φ(W),

l
qn

))

=

{
ω ∈ Ω/ arg�

[
BW |AW,k0 (Nn+1

n )
]

(ω) ∈
[

pnbn(φ(W))
qn

+
l

qn
,

pnbn(φ(W))
qn

+
l + 1
qn

[}

= cn

(
φ(W),

pnbn(φ(W))
qn

+
l

qn

)
On the other hand,

Qn+1
n,φ(W)Un

(
cn

(
φ(W),

l
qn

))
= Qn+1

n,φ(W)

(
cn

(
φ(W),

pnbn(φ(W))
qn

+
l

qn

))

= cn+1
n

(
φ(W),

pnbn(φ(W))
qn

+
l

qn

)
= UnQn+1

n,φ(W)

(
cn

(
φ(W),

l
qn

))
Finally, Qn+1

n,φ(W) is measure-preserving: indeed, let Ũn be the transformation defined
like Un, but with pn = bn(φ(W)) = 1 (we use Ũn instead of Un in order not to use the
assumption gcd(pnbn(φ(W)), qn) = 1). We have:
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ζn+1
n,φ(W) =

{
Ũ l

n

(
cn+1

n (φ(W), 0)
)
, l = 0, ..., qn − 1

}
Since, like Un, Ũn is measure-preserving, then all the elements of ζn+1

n,φ(W) have the
same measure. Therefore,

�

(
cn+1

n

(
φ(W),

l
qn

))
=

1
qn

= �

(
cn

(
φ(W),

l
qn

))
Therefore, Qn+1

n,φ(W) is measure-preserving. �

To conclude, we let ζn+1
n =

∨tn−1
i=0 ζn+1

n, i
tn

, and

Qn+1
n : ζn → ζn+1

n

cn

(
0, l0

qn

)
∩ ... ∩ cn

(
tn−1

tn
,

ltn−1

qn

)
7→ Qn+1

n,0

(
cn

(
0, l0

qn

))
∩ ... ∩ Qn+1

n, tn−1
tn

(
cn

(
tn−1

tn
,

ltn−1

qn

))
By independence of the ζn+1

n, i
tn

and by lemma 2.11, ζn+1
n , stable by Un, and Qn+1

n :

ζn → ζn+1
n is a measure-preserving isomorphism such that Qn+1

n Un = UnQn+1
n .

Moreover, since, by estimation (3) and definition (5), we have, for any i = 0, ..., tn−
1, l = 0, ..., qn − 1,

�

(
cn

(
i
tn
,

l
qn

)
∆cn+1

n

(
i
tn
,

l
qn

))
≤

1
2ntnqtn

n

and since, for any A, A′, B, B′ ∈ Ω,

�((A ∩ A′)∆(B ∩ B′)) ≤ �(A∆B) + �(A′∆B′)

then we have, for any c ∈ ζn,

�(c∆Qn+1
n c) ≤

1
2nqtn

n

�

From here, the rest of the proof is analogous to [3, section 2], except lemma 2.13.

Corollary 2.12. If assumptions 1, 2, 3, 4 and 5 of lemma 1.4 hold, at n fixed, there
exists measurable partitions (ζm

n )n≥0,n<m of Ω, such that ζm
n is stable by Un, and such

that at m fixed, for n < m, ζm
n+1 ↪→ ζm

n . Moreover, at n fixed, ζm
n converges to a partition

ζ∞n as m→ +∞, such that ζ∞n is monotonous and stable by Un.

Proof. For m > n, let

Qm
n = Qm

m−1...Q
n+1
n (8)

and let ζm
n = Qm

n (ζn). For n ≤ m − 1, ζm
n ↪→ ζm

n+1. Moreover, ζm
n is stable by

Un: we recall that b(n) = (bn(0/tn), ..., bn((tn − 1)/tn). Let Ūn be defined as Un, but
by taking pn = 1. Since b(p + 1)/qp = b(p)/qp mod � for any p ≥ n, and since qn

divides qp, then qp

qn
b(p)/qp = b(p)/qn = b(n)/qn mod � by assumption 4. Since Ūp

commutes with Qp+1
p , then Ūn =

qp

qn
Ūp also commutes with Qp+1

p , and therefore, Ūn

also commutes with Qm
n = Qn+1

n Qn+2
n+1...Q

m
m−1. Therefore, Un = Ū pn

n commutes with Qm
n ,

and stabilizes ζm
n .
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We show that (ζm
n )m≥n is a Cauchy sequence for the metric on measurable partitions.

For any fixed n, n < m, we have:

d(ζm
n , ζ

m+1
n ) =

∑
cm

n ∈ζ
m
n

�
(
cm

n ∆Qm+1
m (cm

n )
)

=
∑
c∈ζn

�
(
Qm

n (c)∆Qm+1
m Qm

n (c)
)

For c ∈ ζn, Qm
n (c) ⊂ ζm, so we can write:

Qm
n (c) =

⋃
i∈I(c)

ci

with ci ∈ ζm. By volume conservation of the map Qm
n , |I(c)| = qtm

m /q
tn
n . Therefore,

by applying proposition 2.2,

�
(
Qm

n (c)∆Qm+1
m Qm

n (c)
)

= �

⋃
i∈I(c)

ci∆Qm+1
m

⋃
i∈I(c)

ci


 = �

⋃
i∈I(c)

ci∆

⋃
i∈I(c)

Qm+1
m ci




≤
∑
i∈I(c)

�
(
ci∆Qm+1

m ci

)
≤

qtm
m

qtn
n

1
2mqtm

m

Therefore,

d(ζm
n , ζ

m+1
n ) =

∑
c∈ζn

�
(
Qm

n (c)∆Qm+1
m Qm

n (c)
)
≤

1
2m

∑
m≥n

d(ζm
n , ζ

m+1
n ) ≤

1
2n (9)

Therefore, (ζm
n )m≥n is a Cauchy sequence. Let ζ∞n its limit. Let Q∞n the limit of Qm

n .
Now, we show that ζ∞n is monotonous. Let n ≥ 0 and ε > 0. Let m > n such that

d(ζm
n , ζ

∞
n ) < ε/2 and d(ζm

n+1, ζ
∞
n+1) < ε/2. Let cn (k) ∈ ζn, and c∞n (k) = Q∞n (cn(k)) ∈

ζ∞n , where k = ( i
tn
, l

qn
), i = 0, ..., tn − 1 and l = 0, ..., qn − 1. Let m ≥ n such that

�
(
cm

n (k)∆c∞n (k)
)
≤ ε/2.

Since ζm
n ↪→ ζm

n+1, we can write:

cm
n (k) =

⋃
l∈L(k)

cm
n+1(l)

Since d(ζm
n+1, ζ

∞
n+1) < ε/2, we have:

�

 ⋃
l∈L(k)

cm
n+1(l)∆

⋃
l∈L

c∞n+1(l)

 ≤∑
l∈L

�
(
cm

n+1(l)∆c∞n+1(l)
)
≤ ε/2

Therefore,

�

c∞n (k)∆
⋃
l∈L

c∞n+1(l)

 ≤ � (
c∞n (k)∆cm

n (k)
)
+�

cm
n (k)∆

⋃
l∈L

cm
n+1(l)

+� ⋃
l∈L

cm
n+1(l)∆

⋃
l∈L

c∞n+1(l)


�

c∞n (k)∆
⋃
l∈L

c∞n+1(l)

 ≤ ε/2 + 0 + ε/2 = ε
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Since this estimate holds for any ε > 0, we conclude that:

�

c∞n (k)∆
⋃
l∈L

c∞n+1(l)

 = 0

Therefore, ζ∞n ↪→ ζ∞n+1. The proof that Un stabilizes ζ∞n is analogous.
Finally, let us show that (ζ∞n )n≥0 generates:

Lemma 2.13. (ζn)n≥0 generates.

Proof. We need the lemma:

Lemma 2.14. For any p ≥ 0, k = 0, ..., 2p − 1, we have, almost surely:

�[B k
2p
|ζn]→n→+∞ B k

2p

Proof. By proceeding as in lemma 2.6, since qn divides qn+1, then for any W ∈ Γt′p ,

�
[
BW |AW,t′n−t′p (qn)

]
→n→+∞ BW

Moreover,B(ζn) = At′n (qn), and by applying claim 2.4,�
[
BW |At′n (qn)

]
= �

[
BW |AW,t′n−t′p (qn)

]
.

Therefore, we get:

�
[
BW |ζn

]
= �

[
BW |At′n (qn)

]
= �

[
BW |AW,t′n−t′p (qn)

]
→n→+∞ BW

Since Bφ(W) =
∑

W′∈Γt′p /φ(W′)≤φ(W) BW′ , then we get lemma 2.14.
�

Let ω,ω′ ∈ Ω such that cn(ω) = cn(ω′), where cn(ω) is the element of the partition
ζn to which ω belongs. Then almost surely, for any p ≥ 0, k = 0, ..., 2p − 1, we have:

�[B k
2p
|ζn](ω) = �[B k

2p
|ζn](ω′)

By taking n→ +∞, and applying lemma 2.14, we get:

ω

(
k
2p

)
= B k

2p
(ω) = B k

2p
(ω′) = ω′

(
k
2p

)
By continuity of ω and ω′, we conclude that ω = ω′.

�

Corollary 2.15. (ζ∞n )n≥0 generates.

Proof of corollary 2.15. Let G be a measurable set and let ε > 0. There exists n0 ≥ 0
such that for any n ≥ n0, there is a ζn-measurable set Gn such that � (G∆Gn) ≤ ε. Let
In the (finite) set of indices such that

Gn =
⋃
in∈In

cn(in)

Let

Q∞n Gn =
⋃
in∈In

Q∞n cn(in)
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By (9),
∑

m≥n d(ζm
n , ζ

m+1
n )→n→+∞ 0. Therefore, there is an integer n1 > n0 such that

for any n ≥ n1: ∑
m≥n

∑
c∈ζn

µh

(
Qm+1

n c∆Qm
n c

)
≤ ε

Since for any c ∈ ζn, Qn
nc = c, then

�
(
Q∞n Gn∆Gn

)
= �

(
Q∞n Gn∆Qn

nGn
)
≤

∑
m≥n

�
(
Qm+1

n Gn∆Qm
n Gn

)
=

∑
m≥n

∑
in∈In

�
(
Qm+1

n cn(in)∆Qm
n cn(in)

)
≤

∑
m≥n

∑
c∈ζn

�
(
Qm+1

n c∆Qm
n c

)
≤ ε

Therefore, for any n ≥ n1, µh
(
Q∞n Gn∆G

)
≤ 2ε. Hence the generation of ζ∞n .

�

�

3 The metric isomorphism
This section is similar to [2, section 2], although the framework is more general. Our
aim is to elaborate sufficient conditions on Bn ∈ Diff∞(M, µ), so that if Tn = B−1

n S pn
qn

Bn

weakly converges towards an automorphism T , then there exists a metric isomorphism
between (Ω,U,�) and (M,T, µ).

To that end, we use lemma 1.3: we construct a monotonous and generating se-
quence of partitions ξ∞n of M and a sequence of isomorphisms K̄∞n : �1/ζ∞n → M/ξ∞n ,
such that K̄∞n Un = TnK̄∞n and K̄∞n+1|ζ∞n

= K̄∞n .
For l = 0, ..., qn − 1, let

∆n

(
0,

l
qn

)
=

[
l

qn
,

l + 1
qn

[
0

ηn,0 =

{
∆n

(
0,

l
qn

)
, l = 0, ..., qn − 1

}
For i = 1, ..., tn − 1, l = 0, ..., qn − 1, let

∆n

(
i
tn
,

l
qn

)
=

qn−1⋃
j=0

(
l

qn
+

[
j

qn
,

j + 1
qn

[)
0
×

[
j

qn
,

j + 1
qn

[
i

ηn, i
tn

=

{
∆n

(
i
tn
,

l
qn

)
, l = 0, ..., qn − 1

}
For any i = 0, ..., tn−1, ηn, i

tn
is a partition of M stable by S pn

qn
. Moreover, the family(

ηn, i
tn

)
i=0,...,tn−1

is mutually independent. Let ηn = ∨
tn−1
i=0 ηn, i

tn
. For n ≥ 1, j = 0, ..., tn−1,

k = 0, ..., tn/tn−1 − 1, let

hn

(
tn

tn−1
j + k

)
= j + tn−1k
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The map hn : {0, ..., tn − 1} → {0, ..., tn − 1} is bijective. It permutes coordinates
xi, i ≥ 1, and "distributes" them in order to make possible the construction of a dif-
feomorphism An+1 that simultaneously sends tn independent partitions ηn,i on tn other
independent partitions ηn+1

n,i , modulo a set of small measure. See the beginning of sec-
tion 4.3 for more explanations.

The following lemma gives the isomorphism from which we start:

Lemma 3.1. For i′ = 0, ..., tn − 1, let an(i′/tn) be relatively prime with qn, and let

Kn, i′
tn

: ζn, i′
tn

→ ηn, hn (i′)
tn

cn

(
i′
tn
, l

qn

)
7→ ∆n

(
hn(i′)

tn
, lan(i′/tn)

qn

)
Kn, i

tn
is a metric isomorphism such that Kn, i

tn
Un|ζn, i

tn
= S pn

qn
Kn, i

tn
.

Corollary 3.2. Let

Kn : ζn → ηn

cn

(
0, l0

qn

)
∩ ... ∩ cn

(
tn−1

tn
,

ltn−1

qn

)
7→ Kn,0

(
cn

(
0, l0

qn

))
∩ ... ∩ Kn, tn−1

tn

(
cn

(
tn−1

tn
,

ltn−1

qn

))
Kn is a metric isomorphism such that KnUn = S pn

qn
Kn.

In other words, the following diagram commutes:

ζnUn 88
Kn // ηn S pn

qngg

Proof of corollary 3.2. Since each Kn, i
tn

is surjective, then Kn is also surjective. Be-

cause of the mutual independence of partitions, |ζn| = |ηn| = qtn
n . Therefore, Kn is also

injective, and it is an isomorphism.
�

The following lemma combines corollary 3.2 with the facts that ζn ↪→ ζn+1 and
ηn ↪→ ηn+1:

Lemma 3.3. For any integers 0 ≤ i′ ≤ tn − 1 and i′tn+1/tn ≤ i < (i′ + 1)tn+1/tn, let
an(i′/tn),an+1(i/tn+1), qn, qn+1 ∈ � such that gcd(an(i′/tn), qn) = gcd(an+1(i/tn+1), qn+1) =

1, such that qn divides qn+1 and such that qn divides an+1(i/tn+1) − an(i′/tn).
There exists a partition ηn+1

n ↪→ ηn+1 of M stable by S pn
qn

, and there exists a
metric isomorphism Kn+1

n : ζn+1
n → ηn+1

n such that Kn+1
n = Kn+1|ζn and such that

Kn+1
n Un = S pn

qn
Kn+1

n . There exists also a metric isomorphism Cn+1
n : ηn → ηn+1

n such that
Cn+1

n S pn
qn

= S pn
qn

Cn+1
n and Kn+1

n Qn+1
n = Cn+1

n Kn. Said otherwise, we have the following
commutative diagram:

ζnUn 88
Kn //

Qn+1
n

��

ηn S pn
qngg

Cn+1
n

��
ζnUn 88

Kn+1
n //

� _

��

ηn+1
n

S pn
qnll� _

��
ζn+1

Kn+1 // ηn+1
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Proof. We still give a proof, because the similarity with the corresponding lemma in [2]
may not be obvious (especially the fact that there are multiple coefficients bn+1(i/tn+1),
and because it allows to introduce some notations and objects that are useful in the
next section. Since gcd(an+1(i/tn+1), qn+1) = 1, then by corollary 3.2, Kn+1 is an iso-
morphism. Since ζn+1

n ↪→ ζn+1, we can define the isomorphism Kn+1
n = Kn+1|ζn+1

n
. Let

ηn+1
n = Kn+1

n (ζn). We have ηn+1
n ↪→ ηn+1.

It remains to show that Kn+1
n Un = S pn

qn
Kn+1

n (it automatically implies that ηn+1
n is

stable by S pn
qn

, and that there is Cn+1
n : ηn → ηn+1

n such that Cn+1
n S pn

qn
= S pn

qn
Cn+1

n ).
Let Kn+1

n, i′
tn

= Kn+1|ζn+1
n, i

tn

and let 0 ≤ l ≤ qn − 1.

Let k0(n, qn, tn) be the integer defined by estimation (3). For 0 ≤ i ≤ tn+1 − 1,
ji = 0, ..., yn+1, γi = 0, ..., qn − 1, let

ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

)
=

{
ω ∈ Ω/ arg

(
B i+1

tn+1
(ω) − B i

tn+1
(ω)

)
∈
γi

qn
+ ji

vn+1

qn+1
+ N j

}
(10)

ζn+1,n
n =

{
ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

)
, 0 ≤ i ≤ tn+1 − 1, ji = 0, ..., yn+1, γi = 0, ..., qn − 1

}
The set ζn+1,n

n is not a partition, but by (7), we have:

B(ζn+1
n ) ⊂ B(ζn+1,n

n ) ⊂ B(ζn+1) (11)

Moreover, for any W ∈ Γt′n and tn+1 = 2k0 tn, we have:

AW,k0 (Nn+1
n ) = B

({
ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

)
, φ(W) ≤

i
tn+1

< φ(W) +
1
tn
, 0 ≤

γi

qn
+ ji

vn+1

qn+1
< 1

})
On the one hand, for i′

tn
≤ i

tn+1
< i′+1

tn
, i′ = 0, ..., tn − 1, we have:

Un

(
ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

))
= ẽ

(
i

tn+1
,
γi

qn
+ ji

vn+1

qn+1
+

pn

qn
bn

(
i′

tn

))
On the other hand, since

ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

)
=

⋃
j′

qn+1
∈
γi
qn

+ ji
vn+1
qn+1

+N ji

cn+1

(
i

tn+1
,

j′

qn+1

)
then

Kn+1

(
ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

))
=

⋃
j′

qn+1
∈
γi
qn

+ ji
vn+1
qn+1

+N ji

∆n+1

hn+1(i)
tn+1

,
j′an+1

(
i

tn+1

)
qn+1


Therefore,

Kn+1Un

(
ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

))
=

⋃
j′

qn+1
∈
γi
qn

+ ji
vn+1
qn+1

+N ji

∆n+1

hn+1(i)
tn+1

,
j′an+1

(
i

tn+1

)
qn+1

+
pn

qn
bn

(
i′

tn

)
an+1

(
i

tn+1

)
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Since we assumed that

1
qn

an+1

(
i

tn+1

)
=

1
qn

an

(
i′

tn

)
mod 1

and

1
qn

an

(
i′

tn

)
bn

(
i′

tn

)
=

1
qn

mod 1

then we have:

Kn+1Un

(
ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

))
=

⋃
j′

qn+1
∈
γi
qn

+ ji
vn+1
qn+1

+N ji

∆n+1

hn+1(i)
tn+1

,
j′an+1

(
i

tn+1

)
qn+1

+
pn

qn


= S pn

qn
Kn+1

(
ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

))
Therefore, by (11), we conclude:

Kn+1Un

(
cn+1

n

(
i′

tn
,

l
qn

))
= S pn

qn
Kn+1

(
cn+1

n

(
i′

tn
,

l
qn

))
�

We also let:

Γ̃

(
i

tn+1
,
γi

qn
+ ji

vn+1

qn+1

)
= Kn+1

(
ẽ
(

i
tn+1

,
γi

qn
+ ji

vn+1

qn+1

))
(12)

where ẽ
(

i
tn+1
, γi

qn
+ ji

vn+1
qn+1

)
was defined in (10).

By iterating lemma 3.3, we get a corollary that is important for the construction of
the isomorphism:

Corollary 3.4. For any m > n, there are partitions ηm
n ↪→ ηm

n+1 of M such that ηm
n is

stable by S pn
qn

and there exists an isomorphism Km
n : ζn → ηm

n such that Km
n Un = S pn

qn
Km

n

and Km
n = Km

n+1|ηm
n
.

Said otherwise, the following diagram commutes:

ζm
nUn 77

Km
n //

� _

��

ηm
n

S pn
qnhh� _

��
ζn+1

Km
n+1 // ηm

n+1

Proof. The proof is similar to the one found in [3]. �

For any n fixed, the sequence of partitions (ηm
n )m≥n must converge when m → +∞,

in order to obtain a full sequence of monotonic partitions. Moreover, the possible limit
sequence (i.e. a possible η∞n ) must generate. Indeed, these assumptions are required
to apply lemma 1.3. However, none of these assumptions are satisfied, in general.
Therefore, to obtain these assumptions, we pull back the partition ηm

n by a suitable
smooth measure-preserving diffeomorphism Bm. The following lemma, already proved
in [3], gives the conditions that Bm must satisfy:
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Lemma 3.5. Let Bm ∈ Diff∞(M, µ). Let Am+1 = Bm+1B−1
m .

1. If Am+1S 1
qm

= S 1
qm

Am+1 and if∑
m≥0

∑
c∈ηm

µ
(
Am+1(c)∆Cm+1

m (c)
)
< +∞

then for any fixed n, when m → +∞, the sequence of partitions ξm
n = B−1

m ηm
n

converges. We denote ξ∞n the limit. The sequence ξ∞n is monotonous and Tn =

B−1
n S pn

qn
Bn stabilizes each ξ∞n .

2. If, moreover, the sequence ξn = B−1
n (ηn) generates, then so does ξ∞n .

By adding to lemma 3.5 the convergence of the sequence Tn, we obtain the required
isomorphism:

Corollary 3.6. If both conditions 1. and 2. of lemma 3.5 hold, and if Tn = B−1
n S pn

qn
Bn

weakly converges towards an automorphism T, then (Ω,U,�) and (M,T, µ) are metri-
cally isomorphic.

Proof. The proof is the same as in [3].
�

4 The sequence of conjugacies
In order to construct a suitable smooth approximation An+1 of Cn+1

n , we re-write and
approximate the partition ηn+1

n , so that most elements of the approximated partition
η
′n+1
n consist of unions of medium-sized "cubes" with suitable properties.

These cubes need to be small enough in order to have a good approximation of ηn+1
n

by η
′n+1
n , but they must be large enough to suitably control the norm of An+1. Likewise,

elements of ηn are mostly decomposed into cubes of the same medium-size.
Thus, transforming ηn into η

′n+1
n consists of permuting these cubes. We construct

a smooth approximation of this permutation. For the vertical permutation along the
z coordinate, we apply a transformation developed in [1], [3], [2], based on fibred
rotations of the flow along z.

For horizontals permutations, along coordinates xi, i ≥ 1, we apply and generalize
the method of "quasi-permutations" that we introduced in [4]. There is no rotation flow
along xi, so we displace cubes one by one.

The re-writing and approximation of ηn+1
n has 3 steps: first (lemma 4.1), we re-

write elements of ηn+1
n using the "stacking phenomenon" presented in [2]. A priori,

Γ

(
i

tn+1
, j

qk0
n

)
consists of v "slices" of width 1/qn+1, with v = vn+1 or ρn+1. However,

this fact does not ensure the convergence of Tn, because it only implies that ‖Bn+1‖ j ≤

F(qn+1) for some fixed function F. In order to apply the reasoning above successfully,
we need a better estimate. Lemma 4.1 shows that "slices" of Γ

(
i

tn+1
, 0

)
of width 1/qn+1

stack on each other, which gives bn+1(i/tn+1) connected components to Γ
(

i
tn+1
, 0

)
, each

having a width of order v/(qn+1bn+1(i/tn+1)). If we only consider slices for v = vn+1,
this will allow an estimate of the form ‖Bn+1‖ j ≤ F(qn,maxi bn+1(i/tn+1)), for some
fixed function F, which will allow the convergence of Tn, by taking bn+1(i/tn+1) small.

Second (lemma 4.4), we approximate ηn+1
n horizontally: along the coordinate xi,

elements of ηn+1
n are piecewise constant, with a thickness of 1/qn+1. This would lead to
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a too large conjugacy, of order qn+1. Mostly, we make an approximation of thickness
wn+1/qn+1, with wn+1 large.

The construction is carried on the infinite-dimensional Hilbert cube, instead of the
finite-dimensional annulus, as in previous constructions [1, 9, 3, 2, 4], because the
stacking phenomenon only allows to stack together qn+1/ f (qn) elements.

Therefore, if elements of the partition ηn+1 have a length negligible with respect to
1/qn+1, we cannot stack them to get a partition with elements of length negligible with
respect to qn+1, which is a necessary condition for the smooth convergence with our
method.

In our case, the volume of an element of the intersection of tn+1 mutually indepen-
dent partitions of size qn+1 each has a volume of 1/qt

n+1. Therefore, in dimension d,
the maximum of the minimal length of an element of this partition is 1/qt−d

n+1. Since
tn → +∞, then at the limit, the dimension of the ambient space must be infinite. For
example, in dimension 2, for t ≥ 1 integer, let ηn,t be the partition defined by

∆n(t, l/qn) =

qt−1
n −1⋃
k=0

qn−1⋃
j=0

(
l

qn
+

[
j

qn
,

j + 1
qn

[)
×

(
k

qt−1
n

+

[
j

qt
n
,

j + 1
qt

n

[)
The partitions ηn,t, t ≥ 1 are mutually independent and stable by S 1/qn . However,

elements of ηn+1,t are 1/qt−1
n+1-periodic along the horizontal coordinate, so for t ≥ 2, we

cannot move them into elements of ηn+1
n with a diffeomorphism having a norm smaller

than qn+1.
However, if, for example, we had to consider t pairwise-independent partitions of

size qn+1, instead of mutually independent partitions, then we would be able to carry
the construction on the 2-dimensional annulus.

The broad idea is that the Anosov-Katok method does not allow the manipulation of
excessively "complicated" partitions, which have smaller components, because of the
constraint of smoothness. To manipulate simpler partitions, we increase the number of
dimensions of the partitions. We met the same problem in [4], where we considered
two-dimensional partitions, instead of the "one-dimensional" partitions from [1] (i.e.
the periodic transformation was metrically isomorphic to a cyclic permutation) in order
to avoid elements of the partition to be intertwined.

4.1 Re-writing and approximation of the partition ηn+1
n by η′n+1

n

For i = 0, ..., tn − 1, let

Jn+1(hn(i)) =

{
hn+1

(
tn+1

tn
i + k

)
= hn(i) + tnk, k = 0, ..., tn+1/tn − 1

}
The set {Jn+1(hn(i)), i = 0, ..., tn − 1} is a partition of {0, ..., tn+1 − 1}.
The following lemma, already proved in [2], shows how slices forming ηn+1

n stack
on each other.

Lemma 4.1. For v = vn+1 or ρn+1, let

fn+1(i/tn+1, v) =

⌊
v − 1

bn+1(i/tn+1)

⌋
mn+1(i/tn+1, v) = v − 1 − bn+1(i/tn+1) fn+1(i/tn+1, v)
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and for 0 ≤ l ≤ bn+1(i/tn+1) − 1, let

kn+1(i/tn+1, l, v) = blan+1(i/tn+1)vc

rn+1(i/tn+1, l, v) = lan+1(i/tn+1) − vkn+1(i/tn+1, l, v)

We have:

Γ̃

(
hn+1(i)

tn+1
,
γhn+1(i)

qn
+ jhn+1(i)

vn+1

qn+1

)
=

bn+1

(
i

tn+1

)
−1⋃

l=0

(
γhn+1(i)

qn
+ jhn+1(i)

)
0

+ Γ̃ jhn+1(i)

(
hn+1(i)

tn+1
, l
)

If jhn+1(i) = 0, ..., yn+1 − 1, then we let v = vn+1. If jhn+1(i) = yn+1, we let v = ρn+1. If
0 ≤ l ≤ mn+1(i/tn+1, v), we have:

Γ̃ jhn+1(i)

(
hn+1(i)

tn+1
, l
)

=

(
kn+1(i/tn+1, l, v)v

qn+1
+

rn+1(i/tn+1, l, v)
qn+1

)
0
+

fn+1(i/tn+1,v)+1⋃
j′=0

∆n+1

(
hn+1(i)

tn+1
,

j′

qn+1

)
and if mn+1(i/tn+1, v) + 1 ≤ l ≤ bn+1(i/tn+1) − 1:

Γ̃ jhn+1(i)

(
hn+1(i)

tn+1
, l
)

=

(
kn+1(i/tn+1, l, v)v

qn+1
+

rn+1(i/tn+1, l, v)
qn+1

)
0
+

fn+1(i/tn+1,v)⋃
j′=0

∆n+1

(
hn+1(i)

tn+1
,

j′

qn+1

)
Proof. The proof is the same as the corresponding lemma in [2, section 2].

�

We fix 0 ≤ i ≤ tn+1 − 1. For n ≥ 1, let

R(n)(hn+1(i)/tn+1, v) =

bn+1(i/tn+1)−1⋃
l=0

R(n),l(hn+1(i)/tn+1, v)

with, if 0 ≤ l ≤ mn+1(i/tn+1, v):

R(n),l(hn+1(i)/tn+1, v) =

kn+1(i/tn+1, l, v)v
qn+1

+
rn+1(i/tn+1, l, v)

qn+1
+

0,
⌊

v−1
bn+1(i/tn+1)

⌋
+ 1

qn+1




and if mn+1(i/tn+1, v) + 1 ≤ l ≤ bn+1(i/tn+1) − 1:

R(n),l(hn+1(i)/tn+1, v) =

kn+1(i/tn+1, l, v)v
qn+1

+
rn+1(i/tn+1, l, v)

qn+1
+

0,
⌊

v−1
bn+1(i/tn+1)

⌋
qn+1




By abuse of notation, if j = 0, ..., yn+1 − 1, we write R(n),l(hn+1(i)/tn+1, j) to de-
note R(n),l(hn+1(i)/tn+1, vn+1), and if j = yn+1, we write R(n),l(hn+1(i)/tn+1, j) to denote
R(n),l(hn+1(i)/tn+1, ρn+1).

Let ε′1 > 0, let bn+1 = max0≤i≤tn+1−1 bn+1(i/tn+1) and let:
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wn+1 =

 qn+1ε
′
1

23nqtn
n

tn+1
tn

(yn+1qn)
tn+1

tn bn+1

 (13)

where yn+1 was defined in relation (4). For qn+1 sufficiently large, by Euclidean
division, we can write:

qn+1 = wn+1un+1 + λn+1

with 0 ≤ λn+1 < wn+1 (in our construction, we can even take λn+1 = qn). Moreover,
un+1 ≤ qn+1/wn+1. We show the lemma:

Lemma 4.2. For any ε′0 > 0, there exists an integer w′n+1 ≥ 0 such that

w′n+1

qn+1
≥ 1/R6(n, tn+1, bn+1, qn, ε

′
0, ε
′
1)

and there exists a family of pairwise disjoint measurable sets P̄0 ⊂ �, R1/qn -
invariant, such that:

µ
(
P̄0

)
≥ 1 − ε′0

such that each set Px of P̄0 is of the form x + [0,w′n+1/qn+1[, and such that for any
0 ≤ i ≤ tn+1 − 1, any 0 ≤ j ≤ un+1, there exists 0 ≤ γ ≤ qn − 1, 0 ≤ k ≤ yn+1,
0 ≤ l ≤ bn+1(i/tn+1) − 1, such that

x +

[
0,

w′n+1

qn+1

[
⊂

(
jwn+1

qn+1
+
γ

qn
+

kvn+1

qn+1
+ R(n),l(i/tn+1, k)

)
Corollary 4.3. Let P0 = P̄0 ∪ {[k/qn+1, (k + 1)/qn+1[, [k/qn+1, (k + 1)/qn+1[1 P̄0}. P0
is a partition of � such that for any c ∈ P0, for any 0 ≤ i ≤ tn+1 − 1, any 0 ≤ j ≤ un+1,
there exists 0 ≤ γ ≤ qn − 1, 0 ≤ k ≤ yn+1, 0 ≤ l ≤ bn+1(i/tn+1) − 1, such that

c ⊂
(

jwn+1

qn+1
+
γ

qn
+

kvn+1

qn+1
+ R(n),l(i/tn+1, k)

)
Corollary 4.3 is immediate from lemma 4.2.

Proof of lemma 4.2. For i = 0, ..., tn+1 − 1, j = 0, ..., un+1, let

P

(
i

tn+1
,

jwn+1

qn+1

)
=

{
jwn+1

qn+1
+
γ

qn
+

kvn+1

qn+1
+ R(n),l(i/tn+1, k),

l = 0, ..., bn+1(i/tn+1) − 1, γ = 0, ..., qn − 1, k = 0, ..., yn+1}

P
(

i
tn+1
, jwn+1

qn+1

)
is a partition of �. In particular,

Leb
(
P

(
i

tn+1
,

jwn+1

qn+1

))
= 1

On the other hand, let

w′n+1 =

⌊
qn+1ε

′
0

3un+1tn+1qnbn+1qn+1

⌋

32



On the other hand, by Euclidean division, we can write

qn+1

qn
= u′n+1w′n+1 + λ′n+1

with λ′n+1 ≤ u′n+1, and u′n+1 ≥ 1/ε′0. Let

P′(w′) =

{
γ

qn
+

j′w′n+1

qn+1
+ G j′ , γ = 0, ..., qn − 1, j′ = 0, ..., u′n+1

}
with G j′ = [0,w′n+1/qn+1[ if j′ = 0, ..., u′n+1 − 1, and Gu′n+1

= [0, λ′n+1/qn+1[. For
i = 0, ..., tn+1 − 1, j = 0, ..., un+1 − 1, let

φ(i, j) : P
(

i
tn+1
, jwn+1

qn+1

)
→ P′(w′)

A 7→
⋃
{c ∈ P′(w′)/c ⊂ A}

φ(i, j)(A) is the "projection" of A on the partition P′(w′). Note that in general,
φ(i, j)(A ∪ B) 1 φ(i, j)(A) ∪ φ(i, j)(B). Moreover, it is possible to have φ(i, j)(A) = ∅

for some A, if w′n+1 does not divide fn+1(i/tn+1, ρn+1). Let

P′′
(

i
tn+1

,
jwn+1

qn+1

)
=

⋃
A∈P

(
i

tn+1
,

jwn+1
qn+1

) φ(i, j)(A)

and let

P′′ =

un+1⋂
j=0

tn+1−1⋂
i=0

P′′
(

i
tn+1

,
jwn+1

qn+1

)
For A ∈ P

(
i

tn+1
, jwn+1

qn+1

)
, let

ψ(i, j)(A) =
⋃
{c ∈ P′(w′)/c ∩ A , ∅}

We have: φ(i, j)(A) ⊂ A ⊂ ψ(i, j)(A). At most, ψ(i, j)(A) − φ(i, j)(A) correspond to
2 elements of P′(w′), because A is an interval. Therefore,

Leb(ψ(i, j)(A) − φ(i, j)(A)) ≤ 2w′n+1/qn+1

Therefore,

Leb(φ(i, j)(A)) ≥ µ(A) − 2w′n+1/qn+1

Note that this lower bound can be negative for some A.

Leb
(
P′′

(
i

tn+1
,

jwn+1

qn+1

))
=

∑
A∈P

(
i

tn+1
,

jwn+1
qn+1

) Leb (φ(i, j)(A)) ≥
∑

A∈P
(

i
tn+1

,
jwn+1
qn+1

) Leb(A)−2w′n+1/qn+1

Leb
(
P′′

(
i

tn+1
,

jwn+1

qn+1

))
≥ 1 − 2qnbn+1yn+1w′n+1/qn+1

Leb
(
P′′

)
≥ 1 − 2un+1tn+1qnbn+1yn+1w′n+1/qn+1

Let

P̄′(w′) =

{
γ

qn
+

j′w′n+1

qn+1
+ G j′ , γ = 0, ..., qn − 1, j′ = 0, ..., u′n+1 − 1

}
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and let P̄0 = P′′ ∩ P̄′(w′).
Using our definition of w′n+1, we have:

Leb
(
P̄0

)
≥ 1 − 3un+1tn+1qnbn+1yn+1w′n+1/qn+1 ≥ 1 − ε′0

�

Let u(0) = {0, ..., |P0| − 1}. We write:

P0 = {P0( j), j ∈ u(0)}

(P0)0 = {C(0), ...,C(|P0| − 1)}

and
ū(0) = { j ∈ u(0)/P0( j) ∈ P̄0}

For i ≥ 1, let P̄i = {Pi( j), j = 0, ..., un+1 − 1}, where Pi( j) = [ jwn+1/qn+1, ( j +

1)wn+1/qn+1[, and Pi = P̄i ∪ {Pi(un+1)} where Pi(un+1) = [un+1wn+1/qn+1, 1]. Pi is a
partition of [0, 1]. We write:

(Pi)i = {C(0), ...,C(|Pi| − 1)}

We define u(i) = {0, ..., |Pi| − 1} and ū(i) = { j ∈ u(i)/C( j) ∈ P̄i}.
For J ⊂ �, let

u(J) = × j∈Ju( j)

ū(J) = × j∈J ū( j)

and for m ∈ u(J), m = (m1, ...,m|J|), let

C(m) = × j∈JC(m j)

The following proposition gives horizontal approximation:

Proposition 4.4. There exists a partition η
′n+1
n ⊂ B (C(m),m ∈ u ({0, ..., tn+1 − 1})) such

that η
′n+1
n is stable by S pn

qn
and

d
(
ηn+1

n , η
′n+1
n

)
≤

1
2n

Moreover, η
′n+1
n = ∨

tn−1
i=0 η

′n+1
n,i , with

η
′n+1
n,i =

{
∆
′n+1
n

(
i
tn
,

l
qn

)
, l = 0, ..., qn − 1

}
and we have:

∆
′n+1
n

(
0
tn
,

l
qn

)
=

⋃
m∈u(Jn+1(0)−{0})

(
l

qn
+ R(m)

)
0
×C(m)

where, for any m, R(m) is a fundamental domain of the circle rotation R 1
qn

. For
1 ≤ i ≤ tn − 1,

∆
′n+1
n

(
i
tn
,

l
qn

)
=

⋃
i0∈u(0)

⋃
m∈E(i0,i,l)

C(R l
qn

(i0),m)

where E(i0, i, l) ⊂ u (i) and |E(i0, i, l)| is independent of i0.
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Proof. By (12) and lemma 4.1, for any 0 ≤ j0 ≤ yn+1, 0 ≤ γ0 ≤ qn − 1, we have:

Γ̃

(
0

tn+1
,

j0vn+1

qn+1
+
γ0

qn

)
=

(
j0vn+1

qn+1
+
γ0

qn
+ R(n)(0/tn+1, j0)

)
0

and for 1 ≤ i ≤ tn+1 − 1, 0 ≤ ji ≤ yn+1, 0 ≤ γi ≤ qn − 1, we have:

Γ̃

(
i

tn+1
,

jivn+1

qn+1
+
γi

qn

)
=

qn+1−1⋃
j′=0

(
j′

qn+1
+

jivn+1

qn+1
+
γi

qn
+ R(n)(i/tn+1, ji)

)
0
×

([
j′

qn+1
,

j′ + 1
qn+1

[)
i

For 0 ≤ j0 ≤ yn+1, 0 ≤ γ0 ≤ qn − 1, let:

Γ′
(

0
tn+1

,
j0vn+1

qn+1
+
γ0

qn

)
= Γ̃

(
0

tn+1
,

j0vn+1

qn+1
+
γ0

qn

)
and for 1 ≤ i ≤ tn+1 − 1, 0 ≤ ji ≤ yn+1, 0 ≤ γi ≤ qn − 1, let:

Γ′
(

i
tn+1

,
jivn+1

qn+1
+
γi

qn

)
=

⋃
j′∈u(i)

(
j′wn+1

qn+1
+

jivn+1

qn+1
+
γi

qn
+ R

′(n)(i/tn+1, ji)
)

0
×

(
P( j′)

)
i

Γ′ is a horizontal approximation of Γ̃. The sets Γ̃
(

i
tn+1
, jivn+1

qn+1
+

γi
qn
, l
)

and Γ′
(

i
tn+1
, jivn+1

qn+1
+

γi
qn
, l
)

coincide, except on elements of the form
([

j′

qn+1
, j′+1

qn+1

[)
0
×

([
j′

qn+1
, j′+1

qn+1

[)
i

located on their
boundaries. Therefore,

µ

(
Γ̃

(
i

tn+1
,

jivn+1

qn+1
+
γi

qn

)
∆Γ′

(
i

tn+1
,

jivn+1

qn+1
+
γi

qn
, l
))
≤

(
1

qn+1
+

wn+1

qn+1

)
bn+1(i/tn+1)

Let

Γ′
(

hn(i′)
tn

,
jvn+1

qn+1
+
γ

qn

)
=

i′+1
tn
− 1

tn+1⋂
i

tn+1
= i′

tn

Γ′
(

hn+1(i)
tn+1

,
jhn+1(i)vn+1

qn+1
+
γhn+1(i)

qn

)

and

∆
′n+1
n

(
hn(i′)

tn
,

l
qn

)
=

⋃
j∈E

(
hn (i′ )

tn
, l

qn

) Γ′
(

hn(i′)
tn

,
j

qk0
n

)

where E
(

hn(i′)
tn
, l

qn

)
was defined in (6).

By our choice of wn+1 in (13), we have:

µ

(
∆
′n+1
n

(
hn(i′)

tn
,

l
qn

)
∆∆n+1

n

(
hn(i′)

tn
,

l
qn

))
≤ |Nn+1

n |tn+1/tn tn+1

tn
bn+1

(
1

qn+1
+

wn+1

qn+1

)
≤

1
2nqtn

n
(14)

Moreover, ∆
′n+1
n

(
i′
tn
, l

qn

)
is a fundamental domain of S 1/qn , because ∆n+1

n

(
i′
tn
, l

qn

)
is a

fundamental domain of S 1/qn .
By corollary 4.3, ∆

′n+1
n

(
i′
tn
, l

qn

)
⊂ B {C(m),m ∈ u(Jn+1(i′))}. Therefore, for any m ∈

u(Jn+1(0) − {0}), there exists R(m) ⊂ B (P0) such that R(m) is a fundamental domain of
the circle rotation R1/qn and such that:
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∆
′n+1
n

(
0
tn
,

l
qn

)
=

⋃
m∈E0(l)

(
R(m)

)
0
×C(m)

where E0(l) ⊂ u(Jn+1(0) − {0}).

For tn − 1 ≥ i′ ≥ 1, we have:

∆
′n+1
n

(
hn(i′)

tn
,

l
qn

)
=

⋃
(γ, j)∈E

(
hn (i′ )

tn
, l

qn

)
⋂

i′
tn
≤ i

tn+1
≤ i′+1

tn
− 1

tn+1

bn+1(i/tn+1)−1⋃
l′=0

un+1⋃
j′=0(

j′wn+1

qn+1
+

jivn+1

qn+1
+
γi

qn
+ R(n,l′)(hn+1(i)/tn+1, jhn+1(i))

)
0
×

(
P( j′)

)
hn+1(i)

=
⋃

j∈E
(

hn (i′)
tn

, l
qn

)
⋂

hn(i′ )
tn
≤ i

tn+1
≤ i′+1

tn
− 1

tn+1

bn+1(i/tn+1)−1⋃
l′=0

un+1⋃
j′=0

⋃
m∈E(hn+1(i), jhn+1(i),l′, j′)

C( j′,m)

such that E(i, ji, l′, j′) ⊂ u(i), and |E(i, ji, l′, j′)| is independent of j′. Therefore,

∆
′n+1
n

(
hn(i′)

tn
,

l
qn

)
=

⋃
j′∈u(0)

⋃
m∈E( j′,hn(i′),l′)

C( j′,m)

where |E( j′, i′, l′)| is independent of j′.
This completes the proof of proposition 4.4.

�

The rest of the paper is dedicated to the construction of the sequence of diffeo-
morphisms Bn satisfying the conditions of lemma 3.5. First, we introduce definitions
and basic properties. Second, we define the diffeomorphism An+1 and we show that it
satisfies conditions of lemma 3.5.

4.2 Definitions and basic properties
For these definitions, we rely and elaborate on [11, p.155]. Let J ⊂ �. For any X ⊂ M,
we let XJ = {(x j) j∈J/x ∈ X}.

A set E ⊂ M is a J-cylinder if, for any x, y ∈ M such that for any j ∈ J, x j = y j, we
do not have: (x ∈ E and y < E) or (x < E and y ∈ E).

In other words, E is a J-cylinder if changing the coordinates of an index not in
J of a point x ∈ E cannot remove x from E, nor insert it into E. The terminology
(z, (x j) j∈J)-cylinder is synonymous of {0, J}-cylinder.

For example, C(m) is a J-cylinder. ∆n(0/tn, l/qn) is a z-cylinder, and for i ≥ 1,
∆n(i/tn, l/qn) is a (z, xi)-cylinder.

For any A ⊂ M, A0 × ... × An × Mn+1 × ... is a {0, ..., n}-cylinder.
We use the following claims:

Claim 4.5. If E is a J-cylinder and E′ is a J′-cylinder, then E ∪ E′ and E ∩ E′ are
J ∪ J′-cylinders.
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For example, ∆n(i/tn, l/qn) ∩ ∆n(i′/tn, l′/qn) is a (z, xi, xi′ )-cylinder.
For example, by proposition 4.4, for any l = 0, ..., qn − 1, ∆

′n+1
n

(
0
tn
, l

qn

)
is a J(0)-

cylinder, and for i ≥ 1, ∆
′n+1
n

(
i
tn
, l

qn

)
is a {0} ∪ J(i)-cylinder.

A transformation F of M is a J-transformation if for any x < J, and any x ∈ M,
(F(x)) j = x j. It means that at most, F transforms coordinates in J.

Claim 4.6. If F is a J-transformation and if c is a J′-cylinder such that J ∩ J′ = ∅ ,
then F(c) = c.

Proof. First, we show that F(c) ⊂ c. Let x ∈ c and y = F(x). Since F is a J-
transformation, then y j = (F(x)) j = x j for any j ∈ Jc, where Jc be the complementary
of J in �. Since J ∩ J′ = ∅ then J′ ⊂ Jc. Therefore, for any j ∈ J′, y j = x j. Since c is
a J′-cylinder, then y ∈ c. Therefore, F(c) ⊂ c.

To show that c ⊂ F(c), we observe that F−1 is also a J-transformation: if y j = x j,
then y j = (F−1(y)) j for any j ∈ Jc. Therefore, F−1(c) ⊂ c and so c ⊂ F(c).

�

Let (J′)c be the complementary of J′ in �. A transformation F is J′-dependent
if there exists J̄ ⊂ J′ such that F is a J̄-transformation, and such that there exists
F̃ : MJ′ → MJ̄ such that for any x ∈ M, x = (x j, x j′ , x j′′ ) with x j ∈ MJ̄ , x j′ ∈ MJ′−J̄ ,
x j′′ ∈ M(J′)c , we have:

F(x j, x j′ , x j′′ ) = (F̃(x j, x j′ ), x j′ , x j′′ )

Claim 4.7. If c is a J-cylinder and F is J′-dependent, then F(c) is a J ∪ J′-cylinder.

Proof. First, observe that since F is J′-dependent, then F is J ∪ J′-dependent. Let
x ∈ M. We write x = (x j, x j′ , x j′′ ) with x j ∈ MJ̄ , x j′ ∈ MJ′−J̄ , x j′′ ∈ M(J∪J′)c . Since F is
J ∪ J′-dependent, then there exists F̃ : MJ∪J′ → MJ∪J′ such that:

F(x j, x j′ , x j′′ ) = (F̃(x j, x j′ ), x j′′ )

Let y ∈ M such that (F(x))l = (F(y))l for any l ∈ J ∪ J′. Then we also have:

F̃(x j, x j′ ) = F̃(y j, y j′ )

Let z = (y j, y j′ , x j′′ ). We have:

F(z) = (F̃(y j, y j′ ), x j′′ ) = (F̃(x j, x j′ ), x j′′ ) = F(x)

Since F is injective (F is a transformation), then z = x. In particular, x j = y j.
If, moreover, F(x) ∈ F(c), then x ∈ c, because F is bijective. Since c is a J-cylinder,

then y ∈ c. Therefore, F(y) ∈ F(c).
Likewise, if F(x) < F(c), then F(y) < F(c). Therefore, F(c) is a J∪ J′-cylinder. �

4.3 Construction of the sequence of conjugacies
In this section, we construct the sequence of diffeomorphisms An+1 of M. We write
An+1 = An+1,tn ◦ ... ◦ An+1,0. To simplify notations, we denote A instead of An+1, and
for i = 0, ..., tn − 1, we denote Ai instead of An+1,0, and J(i) instead of Jn+1(i). First,
we construct A0 (lemma 4.9). Second, we construct Ai, for i ≥ 1 (lemma 4.11). The
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construction of A0 is different from the others Ai because the partition ηn,0 is different
from the others ηn,i.

The reason why we introduced the permutation of coordinates hn(i) appears here:
for example, if we took hn(i) = i, then for i ≥ 1, it would be impossible to apply Ai

without completely modifying the image of ηn,0 by An+1,0. If we took hn(i) such that
hn+1({1, ..., tn − 1}) ∩ {1, ..., tn − 1} = ∅, then we cannot obtain generation.

On the other hand, with our choice of hn(i), we can compose the maps Ai with no
problems, by using the notions and properties introduced in 4.2.

The aim of this subsection is to show the following proposition:

Proposition 4.8. For any w′n+1
2qn+1

> ε > 0, there exists A : M → M smooth measure-
preserving diffeomorphism such that:

1. AS 1
qn

= S 1
qn

A.

2. There is a fixed function R1(n, tn+1, bn+1, qn, ε) ∈ � such that

‖A‖n+1 ≤ R1(n, tn+1, bn+1, qn, ε)

3. There exists E ⊂ M such that:

µ (M − E) ≤ ε

and for any i = 0, ..., tn − 1,

A (E ∩ ∆n(i/tn, 0/qn)) = A(E) ∩ ∆
′n+1
n (i/tn, 0/qn)

4. A is a (z, x1, ..., xtn+1−1)-transformation, (z, x1, ..., xtn+1−1)-dependent.

The construction of A0 is given by the following lemma:

Lemma 4.9. For any w′n+1
2qn+1

> ε0 > 0, there exists A0 : M → M smooth measure-
preserving diffeomorphism such that:

1. A0S 1
qn

= S 1
qn

A0.

2. There is a fixed function R2(n, tn+1, bn+1, qn, ε0) ∈ � such that

‖A0‖n+1 ≤ R2(n, tn+1, bn+1, qn, ε0)

3. There exists E0 ⊂ M such that:

µ (M − E0) ≤ ε0

and:

A0 (E0 ∩ ∆n(0/tn, 0/qn)) = ∆
′n+1
n (0/tn, 0/qn) ∩ A0(E0)

4. A0 is a (z, tn)-transformation, J(0)-dependent.

To show lemma 4.9, we use the decomposition of ∆
′n+1
n (0/tn, 0/qn) given in propo-

sition 4.4:
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Lemma 4.10. Let 1
2un+1

ε0 > 0. For any m ∈ ū(J(0)) − {0}, there exists A0(m) ∈
Diff∞(M, µ) such that:

1. We have: A0(m)S 1
qn

= S 1
qn

A0(m).

2. There is a fixed function R3(n, tn+1, bn+1, qn, ε0) ∈ � such that

‖A0(m)‖n+1 ≤ R3(n, tn+1, bn+1, qn, ε0)

3. There exists E0(m) ⊂ [0, 1/qn[0×C(m) such that:

µ ([0, 1/qn[0×C(m) − E0(m)) ≤ ε0 + ε′0

and:

A0(m) (E0(m) ∩ ([0, 1/qn[0×C(m))) =
(
(R(m))0 ×C(m)

)
∩ A0(m)(E0(m))

4. A0(m) = Id on a ε0/2-neighbourhood of (C(m))c.

5. A0(m) is a (z, tn)-transformation, J(0)-dependent.

Proof of lemma 4.9. We define A0 by A0 = ◦m∈ū(J(0)−{0})A0(m), with A0(m) having dis-
joint supports. A0 has the required properties.

�

Proof of lemma 4.10. By lemmas 3.3, 3.4 and by remark 3.6 in [2], which elaborates
on a construction found in [1] and [3], for any j ≤ un+1 − 1, m ∈ ū(J(0) − {0}), there
exists Ā0(m) ∈ Diff∞(� × [ jwn+1/qn+1, ( j + 1)wn+1/qn+1], Leb2), there exists Ē0(m) ⊂
P̄0 × [ jwn+1/qn+1, ( j + 1)wn+1/qn+1] such that

Leb2

(
� × [ jwn+1/qn+1, ( j + 1)wn+1/qn+1] − Ē0(m)

)
≤ ε0 + ε′0

and such that

Ā0(m)
(
([0, 1/qn[×[ jwn+1/qn+1, ( j + 1)wn+1/qn+1]) ∩ Ē0(m)

)
=

(
R(m) × [ jwn+1/qn+1, ( j + 1)wn+1/qn+1]

)
∩ Ā0(m)(Ē0(m))

such that Ā0(m) = Id on a ε0/2-neighbourhood of the boundary of�×[ jwn+1/qn+1, ( j+
1)wn+1/qn+1], such that S̄ 1/qn Ā0(m) = Ā0(m)S̄ 1/qn , where S̄ t(z, x) = (z + t, x) for (z, x) ∈
� × [ jwn+1/qn+1, ( j + 1)wn+1/qn+1], and such that

‖Ā0(m)‖n+1 ≤ R4(un+1, ε0)

Moreover, there exists a permutation σ(m) of P̄0 such that

σ(m) ([0, 1/qn[0) = R(m) (15)

The permutation σ(m) stabilizes P̄0, and for any k ∈ ū(0),

Ā0(m)
(
(P0(k) × [ jwn+1/qn+1, ( j + 1)wn+1/qn+1]) ∩ Ē0(m)

)
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= (P0(σ(k)) × [ jwn+1/qn+1, ( j + 1)wn+1/qn+1]) ∩ Ā0(m)(Ē0(m)) (16)

We can extend Ā0(m) to a smooth measure-preserving diffeomorphism of �× [0, 1]
equal to identity out of � × [ jwn+1/qn+1, ( j + 1)wn+1/qn+1]. We write:

Ā0(m)(z, xtn ) = (Ā0(m)0(z, xtn ), Ā0(m)tn (z, xtn ))

Let φ : MJ(0)−{0} → [0, 1] a smooth map such that:

‖φ‖n+1 ≤ R5(ε0, un+1) (17)

such that φ = 1 on a ε0/2-neighbourhood of the boundary of C(m), inside C(m),
such that φ = 0 on a ε0/2-neighbourhood of (C(m))c. We choose the integer j such that
C(m) = ([ j/un+1, ( j + 1)/un+1[)tn ×C(m′) for some m′. For x = (z, xtn , x

′) ∈ MJ(0), let

A0(m)(z, xtn , x
′) = (Ā0(m)0(z, xtn )φ(x)+ (1−φ(x))z, Ā0(m)tn (z, xtn )φ(x)+ (1−φ(x))xtn , x

′)

Properties 1,2,3,4 hold for A0(m), because similar properties hold for Ā0(m), and
because φ is independent of z, and bounded in estimation (5).

Property 5 is obtained by construction, the J(0)-dependence is due to φ.
�

For tn − 1 ≥ i ≥ 1, the definition of Ai is given by:

Lemma 4.11. For tn − 1 ≥ i ≥ 1, for any 1
2un+1

> εi > 0, there exists Ai : M → M
smooth measure-preserving diffeomorphism such that:

1. AiS 1
qn

= S 1
qn

Ai.

2. There exists a fixed function R6(un+1, ε0) ∈ � such that

‖Ai‖n+1 ≤ R6(un+1, εi)

3. There exists Ei ⊂ M such that:

µ (M − Ei) ≤ εi + ε′1

and:

Ai

(
Ei ∩C

′n+1
n,0 (∆n(i/tn, 0/qn))

)
= ∆

′n+1
n (i/tn, 0/qn) ∩ Ai(Ei)

where C
′n+1
n,0 is defined in lemma 4.12 (A0 is a smooth approximation of C

′n+1
n,0 ).

4. Ai is a J(i)-transformation, J(0) ∪ J(i)-dependent.

The proof of lemma 4.11 is based on the following lemma:

Lemma 4.12. There exists a z-transformation C
′n+1
n,0 , J(0)-dependent, measure-preserving,

S 1
qn

-equivariant, such that:

C
′n+1
n,0 (∆n (0/tn, l/qn)) = ∆

′n+1
n (0/tn, l/qn)

and
C
′n+1
n,0|E0

= A0|E0
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Proof. Let m ∈ u (J(0) − {0}) and σ(m) be the permutation of ū(0), given in (15) and
(16), extended to identity on the rest of u(0). Let C

′n+1
n,0 be the piecewise-linear, S 1/qn -

equivariant, measure-preserving z-transformation, J(0)-dependent, such that for any
P0( j) ∈ P0:

C
′n+1
n,0 : (P0( j))0 ×C(m) 7→ (P0(σ(m)( j)))0 ×C(m)

We have:

C
′n+1
n,0|E0

= A0|E0

�

Lemma 4.13. For any i = 1, ..., tn − 1, there exists a J(i)-transformation τ(i,m), J(0)∪
J(i)-dependent, measure-preserving, S 1

qn
-equivariant, such that, for any l = 0, ..., qn −

1:

∆
′n+1
n (i/tn, l/qn) = τ(i,m)

(
C
′n+1
n,0 (∆n (0/tn, l/qn))

)
Moreover, the J(0)-dependence of τ(i,m) only depends on u(J(0)), and for any

(i0,m) ∈ u(J(0)), τ(i)(i0,m) is a permutation of u(J(i)).

Proof. By the proof of lemma 4.12, for any (i0,m) ∈ u(J(0)), we have:

C
′n+1
n,0 (C(i0,m)) = C(σ(m)(i0),m)

On the other hand,

∆n (i/tn, l/qn) =
⋃

i0∈u(0)

⋃
m′∈E(i,i0,l)

C(i0,m′)

with E(i, i0, l) ⊂ u ({i}) and |E(i, i0, l)| independent of i0.
Since C(i0,m′) = ∪m∈u(J(0)−{0})C(i0,m′,m) then

∆n (i/tn, l/qn) =
⋃

i0∈u(0)

⋃
m′∈E(i,i0,l)

⋃
m∈u(J(0)−{0})

C(i0,m′,m)

Therefore,

C
′n+1
n,0 (∆n (i/tn, l/qn)) =

⋃
i0∈u(0)

⋃
m′∈E(i,i0,l)

⋃
m∈u(J(0)−{0})

C(σ(m)(i0),m′,m)

=
⋃

i0∈u(0)

⋃
m∈u(J(0)−{0})

⋃
m′∈E(i,l,i0,m)

C(σ(m)(i0),m′,m)

with |E(i, l, i0,m)| independent of i0,m. Let i′0 = σ(m)(i0). We get:

C
′n+1
n,0 (∆n (i/tn, l/qn)) =

un+1−1⋃
i′0=0

⋃
m∈u(J(0)−{0})

⋃
m′∈E(i,l,σ(m)−1(i′0),m)

C(i′0,m
′,m)

with E(i, l, σ(m)−1(i′0),m) ⊂ u({i}). Since for any m′ ∈ u ({i}),

C(i0,m′) = ∪m∈u(J(i)−{i})C(i0,m′,m)

then
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C
′n+1
n,0 (∆n (i/tn, l/qn)) =

⋃
i0∈u(0)

⋃
m∈u(J(0)−{0})

⋃
m′∈E′(i,l,i0,m)

C(i0,m′,m)

with E′(i, l, i0,m) ⊂ u(J(i)) and |E′(i, l, i0,m)| independent of i0,m.
On the other hand, by proposition 4.4,

∆
′n+1
n (i/tn, l/qn) =

⋃
i0∈u(0)

⋃
m′∈F(i,l,i0)

C(i0,m′)

where F(i, l, i0) ⊂ u(J(i)) and |F(i, l, i0)| is independent of i0.
Therefore,

∆
′n+1
n (i/tn, l/qn) =

⋃
i0∈u(0)

⋃
m′∈F(i,l,i0)

⋃
m∈u(J(0)−{0})

C(i0,m′,m)

=
⋃

i0∈u(0)

⋃
m∈u(J(0)−{0})

⋃
m′∈F(i,l,i0)

C(i0,m′,m)

For i0 ∈ u(0) such that P0(i0) ⊂ [0, 1/qn[, let τ(i, l, i0,m) be a permutation of u(J(i))
such that

τ(i, l, i0,m)(E′(i, l, i0,m)) = F(i, l, i0)

Since the z-coordinate is on �, we can consider i0 mod un+1 on the z-coordinate.
We have:

S 1
qn

∆
′n+1
n (i/tn, l/qn) = ∆

′n+1
n (i/tn, (l + 1)/qn)

On the other hand, since P0 is stable by the circle rotation R1/qn , then:

S 1
qn

∆
′n+1
n (i/tn, l/qn) =

⋃
i0∈u(0)

⋃
m′∈F(i,l,i0)

⋃
m∈u(J(0)−{0})

C(R1/qn (i0),m′,m)

=
⋃

i0∈u(0)

⋃
m′∈F(i,l,R−1/qn (i0))

⋃
m∈u(J(0)−{0})

C(i0,m′,m)

Therefore, F(i, l,R−1/qn (i0)) = F(i, l + 1, i0).
Likewise, E′(i, l,R−1/qn (i0),m) = E′(i, l+1, i0,m). Therefore, we can extend τ(i, l, i0,m)

to any i0 ∈ u(0) by τ(i, l,R−1/qn (i0),m) = τ(i, l + 1, i0,m). We have:

∆
′n+1
n (i/tn, l/qn) =

⋃
i0∈u(0)

⋃
m∈u(J(0)−{0})

⋃
m′∈τ(E′(i,l,i0,m))

C(i0,m′,m)

∆
′n+1
n (i/tn, l/qn) =

⋃
i0∈u(0)

⋃
m∈u(J(0)−{0})

⋃
m′∈E′(i,l,i0,m)

C(i0, τ(i, l, i0,m)(m′),m)

This completes the definition of τ(i,m).
�

We make a smooth approximation of τ. To that end, we use the following lemma,
which generalizes a proposition in [4]:
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Lemma 4.14. For any J, J′ ⊂ �, J ∩ J′ = ∅, |J′| ≥ 2, for any permutation σ of ū(J′),
for any 0 < ε < 1/(2un+1), for any m ∈ ū(J), there exists Eσ(m) ⊂ C(m) such that
µ(C(m)−Eσ(m)) ≤ ε, there exists a J′-transformation A(σ), J∪ J′-dependent, smooth,
measure-preserving, such that for any m′ ∈ u(J′):

A(σ)(C(m,m′)) ∩ Eσ(m) = C(m, σ(m′)) ∩ Eσ(m)

and:

• There exists A(σ) = Id on a ε/2-neighbourhood of (C(m))c.

• There exists a fixed function R7(un+1, ε0, ε
′
0) ∈ � such that

‖A(σ)‖n+1 ≤ R7(un+1, ε, |J| + |J′|,
∑

i

εi)

Proof. By composition, we can suppose |J′| = 2, and σ is the transposition one
one coordinate: σ(i, j) = (i′, j). By [4], there exists Ā(σ) : (C( j))J′ → (C( j))J′

smooth, measure-preserving diffeomorphism, and there exists Eσ( j) ⊂ (C( j))J′ such
that µ((C( j))J′ −σ ( j)) ≤ ε, and for any (x, y) ∈ (C( j))J′ ,

Ā(σ)(x, y) ∩ Eσ( j) = σ(x, y)

and here exists a fixed function R8(un+1, ε0) ∈ � such that

‖A(σ)‖n+1 ≤ R8(un+1, ε)

From there, the rest of the proof is analogous to the proof of lemma 4.10, using a
smooth plateau function φ.

�

Proof of lemma 4.11. We let Ai = ◦m∈ū(J(0))A(τ(m)) with τ(i,m) coming from lemma
4.13, and A(τ(i,m)) coming from lemma 4.14 with J = J(0), J′ = J(i).

�

Proof of proposition 4.8. We let A = Atn−1 ◦ ... ◦ A1 ◦ A0. Conditions 1,2 hold because
they hold for any Ai. Condition 4 holds because the {J(i), i = 0, ..., tn − 1} partition
{0, ..., tn+1 − 1}. To show condition 3, let:

E = E0 ∩ (A0)−1(E1) ∩ ... ∩ (Atn−2...A0)−1(Etn−1)

For any i, we take 0 < εi = ε/tn. We have: µ(M − E) ≤ ε. We also have:

A (E ∩ ∆n(0/tn, 0/qn)) = A(∩i,0Ei) ∩ A(E0 ∩ ∆n(0/tn, 0/qn))

= A(∩i,0Ei) ∩ Atn−1...A1A0(E0 ∩ ∆n(0/tn, 0/qn))

By lemma 4.9, we get:

A (E ∩ ∆n(0/tn, 0/qn)) = A(∩i,0Ei) ∩ Atn−1...A1

(
A0(E0) ∩ ∆

′n+1
n (0/tn, 0/qn)

)
= A(E) ∩ Atn−1...A1

(
∆
′n+1
n (0/tn, 0/qn)

)
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For any i = 1, ..., tn−1, Ai is a J(i)-transformation. On the other hand, ∆
′n+1
n (0/tn, 0/qn)

is a J(0)-cylinder, and J(i) ∩ J(0) = ∅. By claim 4.6,

Ai

(
∆
′n+1
n (0/tn, 0/qn)

)
= ∆

′n+1
n (0/tn, 0/qn)

Therefore,

A (E ∩ ∆n(0/tn, 0/qn)) = A(E) ∩ ∆
′n+1
n (0/tn, 0/qn)

Hence proposition 4.8 for i = 0. Let tn − 1 ≥ i ≥ 1. Since

C
′n+1
n,0|E0

= A0|E0

and since E ⊂ E0, then

A0 (E ∩ ∆n(i/tn, 0/qn)) = A0(E) ∩C
′n+1
n,0 (∆n(i/tn, 0/qn))

The map C
′n+1
n,0 is J(0)-dependent and ∆n(i/tn, 0/qn) is a (z, xi)-cylinder. Therefore,

by claim 4.7, C
′n+1
n,0 (∆n(i/tn, 0/qn)) is a J(0) ∪ {i}-cylinder.

Let j < {0, i}. Since A( j) is a J( j)-transformation and J( j) ∩ {J(0) ∪ {i}} = ∅, then
by claim 4.6,

A j

(
C
′n+1
n,0 (∆n(i/tn, 0/qn))

)
= C

′n+1
n,0 (∆n(i/tn, 0/qn))

Therefore,

AiAi−1...A0 (E ∩ ∆n(i/tn, 0/qn)) = Ai...A0(E) ∩ Ai

(
C
′n+1
n,0 (∆n(i/tn, 0/qn))

)
Moreover, Ai−1...A0 (E) ⊂ Ei. Therefore, by proposition 4.11,

AiAi−1...A0 (E ∩ ∆n(i/tn, 0/qn)) = Ai...A0(E) ∩ ∆
′n+1
n (i/tn, 0/qn)

Likewise, ∆
′n+1
n (i/tn, 0/qn) is a {0}∪ J(i)-cylinder and for any j < {0, i}, {{0}∪ J(i)}∩

J( j) = ∅. Therefore, by claim 4.6,

A j

(
∆
′n+1
n (i/tn, 0/qn)

)
= ∆

′n+1
n (i/tn, 0/qn)

Therefore,

A (E ∩ ∆n(i/tn, 0/qn)) = Atn−1...A0 (E ∩ ∆n(i/tn, 0/qn)) = A(E) ∩ ∆
′n+1
n (i/tn, 0/qn)

�

4.4 Generation of ξn and convergence of the sequence of diffeomor-
phisms

By combining lemma 3.5, in order to complete the proof of lemma 1.4, it remains to
show that ξn generates, that Tn = B−1

n S pn
qn

Bn converges in the smooth topology. The
limit T of Tn is ergodic because it is isomorphic to an ergodic transformation (De La
Rue’s transformation is ergodic).
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4.4.1 Generation of ξn

Lemma 4.15. ξn generates.

Proof. Let p ≥ 0 and for x, y ∈ M, let dp(x, y) = max0≤i≤p |xi − yi|. For any V ⊂ M, let
the p-diameter of V be dp(V) = supx,y∈V dp(x, y). We use the lemma:

Lemma 4.16. Let Vn ⊂ M be a sequence of subsets such that there exists rn → +∞

such that drn (Vn)→n→+∞ 0. For any k ≥ 0, ∩n≥kVn is at most a singleton.

Proof. Let k ≥ 0 and x, y ∈ ∩n≥kVn. Let M ≥ 0 and n0 such that for any n ≥ n0, rn ≥ M.
For n ≥ n0, we have: dM(x, y) ≤ drn (x, y) → 0. Therefore, xi = yi for i = 0, ...,M for
any M and therefore, x = y.

�

The diffeomorphism An+1|En+1 acts as a permutation, and in particular, it is an isome-
try. On the other hand, elements of ηn+1 are of the form ×tn+1−1

i=0 ([ ji/qn+1, ( ji +1)/qn+1[)i,
for ji = 0, ..., qn+1 − 1. Therefore, for qn+1 ≥ R9(n, tn+1, bn+1, qn, ε), for any c ∈ ηn+1,

dtn+1

(
A−1

n+1(c ∩ An+1(En+1)
)
≤

1
2n‖Bn‖1

In particular,

dtn+1

(
B−1

n+1(c ∩ An+1(En+1)
)
≤

1
2n

Let x ∈ M and cn(x) be the element of ηn to which x belongs. Let

G(x) =
⋂
n≥1

B−1
n (cn(Bn(x)))

Let
F =

⋃
k≥1

⋂
n≥k

B−1
n−1(En)

We have µ(En) ≤ 1/2n, and Bn is measure-preserving. Therefore, by the Borel-
Cantelli lemma, µ(F) = 1. We show that for any x ∈ F, G(x) ∩ F is a singleton. For
any x ∈ F, x ∈ G(x) ∩ F, and therefore, #(G(x) ∩ F) ≥ 1. On the other hand,

G(x) ∩ F =
⋃
k≥1

⋂
n≥k

B−1
n (En)

⋂
n≥0

B−1
n (cn(Bn(x))) ⊂

⋃
k≥1

⋂
n≥k

B−1
n−1(En) ∩ B−1

n (cn(Bn(x)))

Let Vn(c) = B−1
n (c ∩ An(En). We have:

G(x) ∩ F ⊂
⋃
k≥1

⋂
n≥k

Vn(cn(Bn(x)))

By lemma 4.16, for any integer k,
⋂

n≥k Vn(cn(Bn(x))) is at most a singleton. More-
over,

⋂
n≥k Vn(cn(Bn(x))) is an increasing sequence of sets for the inclusion. Therefore,⋃

k≥1

⋂
n≥k

Vn(cn(Bn(x)))

is at most a singleton, and G(x) ∩ F = {x}. It shows that ξn generates.
�
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4.4.2 Convergence

To complete the proof of lemma 1.4 for M = [0, 1]d−1 × �, we need to show the
convergence of Tn = B−1

n S pn
qn

Bn. By the Cauchy criterion, it suffices to show that∑
n≥0 dn(Tn+1,Tn) converges. We combine the estimation of Bn+1 and the assumption

of closeness between pn+1/qn+1 and pn/qn of lemma 1.4. We recall the lemma [9,
p.1812]:

Lemma 4.17. Let k ∈ �. There is a constant C(k, d) such that, for any h ∈ Diff(� ×
[0, 1]d−1), α1, α2 ∈ �, we have:

dk(hS α1 h−1, hS α2 h−1) ≤ C(k, d)‖h‖k+1
k+1|α1 − α2|

Since Tn and Tn+1 are (z, x1, ..., xtn+1 )-transformations and (z, x1, ..., xtn+1 )-dependent,
they can be seen as diffeomorphisms of � × [0, 1]tn+1−1. Moreover, Tn = B−1

n S pn
qn

Bn =

B−1
n+1S pn

qn
Bn+1. Therefore, we obtain, for a fixed sequence R7(n, bn+1, qn, tn+1) (that de-

pends on n and on the dimension d):

dn(Tn+1,Tn) = dn(B−1
n+1S pn+1

qn+1
Bn+1, B−1

n+1S pn
qn

Bn+1) ≤ C(n + 1, tn+1)‖Bn+1‖
n+1
n+1

∣∣∣∣∣ pn+1

qn+1
−

pn

qn

∣∣∣∣∣
≤ R7(n, bn+1, qn, tn+1)

∣∣∣∣∣ pn+1

qn+1
−

pn

qn

∣∣∣∣∣
For some choice of the sequence R1(n, bn+1, qn, tn+1) in lemma 1.4, this last estimate

guarantees the convergence of Tn in the smooth topology.
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Erratum: lemma 2.3 page 12 is false, because in page 13, we do not have:

Bp+1(q) = BG,p(q) ∨ BD,p(q)

Instead, we have:

Bp+1(q) = BG,p(q) ∨ BD,p(q) ∨ argB1(q)

However, I still think that the main theorem is true, by using the fact that Bn(qn)
generates, i.e. by applying Corollaire 3.3 page 54 of de la Rue’s PhD thesis, and by
considering more general partitions of � × [0, 1]� of this form:

Nevertheless, due to lack of time and suitable job perspectives, I am unable to write
the details.

I would like to thank Thierry De la Rue for mentioning this mistake.
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