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On the solutions of the Aubin equation and the K-energy of Einstein-Fano manifolds.

Nefton Pali
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We propose an improvement to the bifurcation technique considered by Bando-Mabuchi for the construction of the solutions of the Aubin equation over Einstein-Fano manifolds. We introduce also a simplication in Tian's proof of the properness of the K-energy functional over Einstein-Fano manifolds with trivial holomorphic automorphisms group. This result combined with Perelman's estimates for the Kähler-Ricci ow allows us to give a sharp version of the Hamilton-Tian conjecture on the convergence of the Kähler-Ricci ow in the case of Einstein-Fano manifolds with trivial holomorphic automorphisms group. Contents 1 Some notations and denitions 1.1 The functionals of Kähler-Einstein Geometry. . . . . . . . . . . . 2 Introduction 3 Basics of Kähler-Einstein geometry 3.1 II and III order estimates for the solutions of the complex Monge-Ampère equations . . . . . . . . . . . . .

1 Some notations and denitions Let X be a Fano manifold of complex dimension n, let Aut 0 J (X) be the identity component of the group of holomorphic automorphisms and let E(X, R) be the space of smooth real valued functions. We will note by E p,p (X, R) the space of real smooth (p, p)-forms on X and by K := {ω ∈ 2πc 1 | ω > 0} the space of Kähler metrics in the anticanonical class 2πc 1 ⊂ E 1,1 (X, R) and KE ⊂ K the subset of Kähler-Einstein metrics. For any ω ∈ K we dene the space of potentials P ω := {ϕ ∈ E(X, R) | i∂ ∂ϕ > -ω} and we set ω ϕ := ω + i∂ ∂ϕ for every ϕ ∈ P ω . More in general we consider the space C k, 1/2 p,p (X, R) of real (p, p)-forms with coecients of class C k, 1/2 . We dene

(2πc 1 ) k := α ∈ C k, 1/2 1,1 (X, R) | ∃β ∈ 2πc 1 , ∃f ∈ C k+2, 1/2 : α -β = i∂ ∂f ,
and

K k := {ω ∈ (2πc 1 ) k | ω > 0}. The symbol P k,1/2 ω ⊂ C k,1/2 (X, R) has an obvious meaning. Set C k,1/2 ω,0 (X, R) := f ∈ C k,1/2 (X, R) | X f ω n = 0 , k ∈ N and let P k, 1/2 ω, 0 ⊂ C k,1/2
ω,0 (X, R) be the corresponding set of potentials. We will use the notation -X := ( X ω n ) -1 X for the average operator. Set also

C k,1/2 ω (X, R) 1 := f ∈ C k,1/2 (X, R) | - X f ω n = 1 .
In all this paper a linear map f : E → F between Banach spaces is called an isomorphism if is an isomorphism of Banach spaces. Let E k be a closed ane subspace of the Banach space of dierential forms with coecients of class C k,α with E k+1 ⊂ E k and let E := ∩ 0≤k<+∞ E k equipped with the direct limit topology. Let U be an open set in a Banach space. We say that a map f : U → E is smooth if the induced maps f : U → E k are smooth for all k ≥ 0.

More in general let F k , F as before, U k ⊂ E k open sets, with U k+1 ⊂ U k and let U := ∩ 0≤k<+∞ U k ⊂ E. We say that map f : U → F is smooth if for some integer p it extends to a smooth map f : U p → F 0 such that its resection denes a smooth map from U p+k to F k , for all k > 0. In a similar way we dene the notion of smooth dieomorphism. Given a real (1, 1)-form α, we dene the trace of α respect to ω as

Tr ω (α) = 2nα ∧ ω n-1 ω n ,
We remind that the scalar curvature Sc(ω) ∈ E(X, R) of ω is dened by the formula Sc(ω) := Tr ω (Ric(ω)) , where Ric(ω) is the Ricci form. This denition coincides with the usual denition of scalar curvature of the Riemannian metric g = ω(•, J•). We dene the Laplacian of a function f by the formula ∆ ω f := Trace ω (i∂ ∂f ) . Our Laplacian diers by a minus sign from the usual Laplace-Beltrami operator associated to the Riemannian metric g = ω(•, J•). Let also α, β ω := Tr ω (iα ∧ β)/2 be the induced hermitian product over the complex vector bundle Λ 1,0 J T * X .
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1.1 The functionals of Kähler-Einstein Geometry.

Aubin's functionals. The Aubin [START_REF] Aubin | Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité[END_REF] functionals I ω , J ω : P ω → [0, +∞) are dened by the formulas

I ω (ϕ) := - X ϕ ω n -ω n ϕ = n-1 k=0 - X i∂ϕ ∧ ∂ϕ ∧ ω k ∧ ω n-k-1 ϕ J ω (ϕ) := n-1 k=0 k + 1 n + 1 - X i∂ϕ ∧ ∂ϕ ∧ ω k ∧ ω n-k-1 ϕ = - X ϕ ω n - 1 n + 1 n k=0 - X ϕ ω k ∧ ω n-k ϕ .
Set G ω := I ω -J ω . We have the obvious inequalities, 0 ≤ J ω ≤ I ω ≤ (n + 1)J ω ,

(1.1)

0 ≤ I ω ≤ (n + 1)G ω ≤ nI ω .
(1.2) If (ϕ t ) t∈(-ε,ε) ⊂ P ω is a C ∞ path then we have the well known formula

d dt n k=0 - X ϕ t ω k ∧ ω n-k t = (n + 1)- X φt ω n t , (1.3) 
where φt := ∂ ∂t ϕ t and ω t := ω ϕt . See for example [START_REF] Tian | Kähler-Einstein metrics with positive scalar curvature[END_REF] or . This formula implies the equality

d dt G ω (ϕ t ) = - 1 2 - X φt ∆ t ϕ t ω n t ,
(1.4)

The K-energy functional of the anticanonical class 2πc 1 . Consider the function h ω ∈ E(X, R) dened by the conditions Ric(ω) = ω + i∂ ∂h ω , with normalization -X e hω ω n = 1 . The K-energy functional ν ω : P ω → R of the anticanonical class 2πc 1 is given by the formula

ν ω (ϕ) := - X log ω n ϕ ω n -h ω ω n ϕ -G ω (ϕ) + - X h ω ω n ,
which satises

d dt ν ω (ϕ t ) = - 1 2 - X φt Sc(ω t ) -2n ω n t ,
(1.5)

for every C ∞ path (ϕ t ) t∈(-ε,ε) ⊂ P ω . All the previous functionals naturally extends to the space of Kähler metrics K. Consider also Λ ω := Ker(∆ ω + 2) ⊂ E(X, R), CΛ ω := Ker(∆ ω + 2) ⊂ E(X, C) and

Λ ⊥ ω, k := f ∈ C k,1/2 (X, R) | X f u ω n = 0, ∀u ∈ Λ ω ,
for some nonnegative integer k. The symbol Λ ⊥ ω ⊂ E(X, R) has an obvious meaning.

Introduction

Inspired from the work of Donaldson on the existence of Hermite-Einstein metrics, Mabuchi introduced the K-energy functional [Mab]. In a joint work with Bando, [Ba-Ma] they proved that the existence of a Kähler-Einstein metric implies a lower bound of the K-energy functional and the uniqueness of the Kähler-Einstein metrics modulo the action of the identity component of the holomorphic automorphisms of the manifold.

This last result is proved by applying the backward continuity method in order to construct the solutions of the Aubin equation. The solution at time t = 0 correspond to Yau's solution of the Calabi conjecture. The solution at time t = 1 correspond to a Kähler-Einstein metric. Then the uniqueness of Kähler-Einstein metrics follows from the uniqueness of the solution of the Calabi equation combined with the uniqueness of the solutions in the implicit function theorem (see the proof of part (B) of the theorem 1 for the precise argument).

The main diculty in the backward continuity method is at time t = 1 since the implicit function theorem does not apply directly. In order to handle this diculty Bando-Mabuchi consider a remarkable bifurcation technique. In [Ba-Ma] the authors reduce the application of the implicit function theorem on the eigenspace corresponding to the eigenvalue 2 of the Laplacian of the Kähler-Einstein metric at time t = 1. However even after this reduction the implicit function theorem does not apply for all Kähler data ω orthogonal to the Kähler-Einstein metric at time t = 1.

In this paper we introduce a new density method which allows to overcome this diculty (see section 4) and simplies the argument and avoid the computation of a Hessian in [Ba-Ma]. We prove the following result which is the optimal version of the main ingredient in [Ba-Ma].

Theorem 1 (The Aubin equation). Let X be an Einstein-Fano manifold. (A). Let ω ∈ K. There exist a unique solution

(ω t ) t∈[0,1] ⊂ K of Aubin's equation Ric(ω t ) = tω t + (1 -t)ω. Moreover ω 1 is the unique Kähler-Einstein metric such that ω ∈ K ⊥ ω1 and the map t → ω t is smooth. (B). Let ω ∈ KE. Then KE = Aut 0 J (X) • ω.
We can assume in this statement that if ω ∈ K k , k > 0, then ω t ∈ K ⊥ ω1, k+2 for all t ∈ [0, 1]. We suppose for simplicity k > 0 since Calabi's C 3 -uniform estimate for the potential of the complex Monge-Ampère equation requires derivatives of order V of the potential [Cal], [Yau]. We remark also that a Kähler-Einstein metric ω ∈ K 0 is always smooth by elliptic regularity. (See [START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère Equations[END_REF]Th. 3.56,pag. 86.) In the proof of the theorem 1 (A) we reverse the point of view (see prop 4.1). We x a Kähler-Einstein metric ω ∈ K and we consider all the metrics

ω ∈ K ⊥ ω .
We introduce also a simplication in the computations of the following result due to Tian [START_REF] Tian | Kähler-Einstein metrics with positive scalar curvature[END_REF] (see also the statements in [P-S-S-W]).

Theorem 2 (The properness of the K-energy). Let X be a Einstein-Fano manifold with H 0 (T X,J ) = 0 and let ω ∈ K be the unique Kähler-Einstein metric. Then there exists two constants A > 0, B > 0 such that the inequality ν ω (ω) ≥ AJ ω (ω) -B hold for all Kähler metrics ω ∈ K.

In our proof we use directly the K-energy functional instead of passing by Tian's functional F as in [START_REF] Tian | Kähler-Einstein metrics with positive scalar curvature[END_REF]. It is well known that the meaningful functional from the algebraic stability point of view is the K-energy functional. We do this by using the backward continuity method in an ecient way until t = 0. It turns out that this approach simplies some of the computations in a consistent way.

Theorem 2 allows to prove the C 0 -uniform estimate for the convergence of the Kähler-Ricci ow. Namely the fact that the K-energy is nonincreasing along the Kähler-Ricci ow provides a uniform bound for the Aubin's functional J along the ow. This combined with Perelman's uniform estimate for the potential of the Kähler-Ricci ow allows us to obtain the uniform C 0 estimate along the Kähler-Ricci ow, see [Ti-Zh] and . The previous results allows us to give the following sharp version of the Hamilton-Tian conjecture in the case of Einstein-Fano manifolds with H 0 (T X,J ) = 0. (Compare also with [Ti-Zh].) Theorem 3 (An Einstein case of the Hamilton-Tian conjecture). Let X be a Einstein-Fano manifold with H 0 (T X,J ) = 0 and let ω ∈ K be the unique Kähler-Einstein metric. Then any Kähler-Ricci ow (ω t ) t≥0 ⊂ K converge in the smooth topology to the Kähler-Einstein metric ω.

We remind that the convergence obtained in [Ti-Zh] is by one sequence in the Cheeger-Gromov topology. After the work of X.X. Chen [Che] there has been a recent interest (see , [C-L-W]) in the Chen-Tian energy functional E 1 introduced in [Ch-Ti] in order to get a new existence criteria for Kähler-Einstein metrics over a Fano manifold. By combining the estimate

E 1, ω (ω) ≥ 2ν ω (ω) + C ω , ω ∈ K, proved in [Pal-1]
with the theorem 2 we deduce immediately the following corollary.

Corollary 1 (The properness of the energy functional E 1 ). Let X be a Einstein-Fano manifold with H 0 (T X,J ) = 0 and let ω ∈ K be the unique Kähler-Einstein metric. Then there exists two constants A > 0, B > 0 such that the inequality E 1, ω (ω) ≥ AJ ω (ω) -B hold for all Kähler metrics ω ∈ K.

3 Basics of Kähler-Einstein geometry 3.1 II and III order estimates for the solutions of the complex Monge-Ampère equations

We explain now the Aubin-Yau C 2 and Calabi C 3 uniform estimates for the solutions of the complex Monge-Ampère equations. We will refer to the notations introduced in the section 6 of .

Proposition 3.1 Let (X, ω) be a compact Kähler manifold of complex dimension n ≥ 2, let S ⊂ P ω be a subset of potentials for the Kähler metric ω and let λ : S -→ [-1, 1], ϕ → λ ϕ be a map. Suppose that the functions

f ϕ := log ω n ϕ ω n + λ ϕ ϕ satisfy the uniform estimates f ϕ ≤ K 0 and ∆ ω f ϕ ≥ -K 0 , for some constant K 0 > 0 independent of ϕ ∈ S.
Then there exists constants C > 0, k > 0 such that for all ϕ ∈ S we have the estimates

0 < 2n + ∆ ω ϕ ≤ Ce kϕ-(λϕ+k) minX ϕ =: C ϕ , |∂ ∂ϕ| ω < (C ϕ + 2 √ n)/2 and ω ϕ < (C ϕ /2)ω. Moreover if also f ϕ ≥ -K 0 then there exist a constant k 0 > 0 such that k -1 0 C 1-n ϕ e -λϕ ϕ ω < ω ϕ for all ϕ ∈ S.
(In the case n = 1 is obvious to nd an uniform estimate for 0 < 2n + ∆ ω ϕ.) P roof . Consider the smooth function A := log(2n + ∆ ω ϕ)kϕ where the constant k will be choosed later. By deriving the formula

∂A = ∂∆ ω ϕ 2n + ∆ ω ϕ -k ∂ϕ ,
we obtain

i∂ ∂A = i∂ ∂∆ ω ϕ 2n + ∆ ω ϕ + i∂ 1 2n + ∆ ω ϕ ∧ ∂∆ ω ϕ -ki∂ ∂ϕ = i∂ ∂∆ ω ϕ 2n + ∆ ω ϕ - i∂∆ ω ϕ ∧ ∂∆ ω ϕ (2n + ∆ ω ϕ) 2 -ki∂ ∂ϕ .
Taking the trace whith respect to the metric ω ϕ we get the identity

∆ ϕ A = ∆ ϕ ∆ ω ϕ 2n + ∆ ω ϕ - 2|∂∆ ω ϕ| 2 ϕ (2n + ∆ ω ϕ) 2 -k∆ ϕ ϕ.
(3.1) ). Using the inequality (19) in the proposition 6.1 in [Pal-2] and the inequality Tr ϕ ω > 0 we nd the inequality

Set C ω := min{-1/2, min x∈X λ ω 1 (x)} (see
2 Tr ω Ric(ω ϕ ) ≥ -∆ ϕ ∆ ω ϕ + 2C ω (2n + ∆ ω ϕ) Tr ϕ ω + 2|∂∆ ω ϕ| 2 ϕ 2n + ∆ ω ϕ
which combined with the equality (3.1) gives

∆ ϕ A ≥ - 2 Tr ω Ric(ω ϕ ) 2n + ∆ ω ϕ + 2C ω Tr ϕ ω -k∆ ϕ ϕ.
(3.2)

Applying the i∂ ∂ operator to the denition of f ϕ and taking the trace respect to ω we nd the equality

∆ ω f ϕ -λ ϕ ∆ ω ϕ = Sc(ω) -Tr ω Ric(ω ϕ ).
(3.3)

Moreover we have the trivial identity ∆ ϕ ϕ = -Tr ϕ ω + 2n. Using this identity with the equality (3.3) in the inequality (3.2), we nd

∆ ϕ A ≥ 2 ∆ ω f ϕ -λ ϕ ∆ ω ϕ -Sc(ω) 2n + ∆ ω ϕ + (2C ω + k) Tr ϕ ω -2kn = 2 ∆ ω f ϕ + 2λ ϕ n -Sc(ω) 2n + ∆ ω ϕ + (2C ω + k) Tr ϕ ω -2kn -2λ ϕ . (3.4) Let C 1 , C 2 > 0 be two constants independents of ϕ such that ∆ ω f ϕ + 2λ ϕ n -Sc(ω) ≥ -C 1 and -2kn -2λ ϕ ≥ -C 2 .
Using ω-orthogonal and ω ϕ -diagonal coordinates in a point x we nd the inequality

Tr ϕ ω 2 = l 1 1 + 2ϕ l, l ≥ 2n 2n + ∆ ω ϕ . ∆ ϕ A ≥ Tr ϕ ω 2 -C 2 .
(3.5)

Consider now the trivial inequality n l=1 a 1 . . . a l . . . a n ≤ ( n l=1 a l ) n-1 for any positive a l . Taking the 1/(n -1)-th power of this inequality with the terms a l := 1/(1 + 2ϕ l, l) we nd the expressions

Tr ϕ ω 2 = l 1 1 + 2ϕ l, l ≥ l (1 + 2ϕ l, l) l (1 + 2ϕ l, l) 1 n-1 = K n e λϕ-f n-1 (2n + ∆ ω ϕ) 1 n-1 , where K n := 2 -1 n-1 > 0.
Consider the function u := e A = (2n + ∆ ω ϕ)e -kϕ . Then the previous inequality gives

Tr ϕ ω 2 ≥ K n e (λ+k)ϕ-f n-1 u 1 n-1 ≥ C 0 e (λ+k)ϕ n-1 u 1 n-1
for some constant C 0 > 0 independent of ϕ. Then the inequality (3.5) gives

∆ ϕ A ≥ -C 2 + C 0 e (λ+k)ϕ n-1 u 1 n-1 .
Let x 0 be a maximum point for A. Then x 0 is also a maximum point for u and ∆ ϕ A(x 0 ) ≤ 0. We deduce the existence of a constant C > 0 independent of ϕ such that

u(x 0 ) ≤ C e -(λϕ+k) minX ϕ .
So in conclusion we have found the required estimate

0 < 2n + ∆ ω ϕ ≤ e kϕ u(x 0 ) ≤ C e kϕ-(λϕ+k) minX ϕ =: C ϕ . Moreover 2|ω ϕ | ω < Tr ω ω ϕ , since ω ϕ > 0.
This implies the a priory estimate

|∂ ∂ϕ| ω < (C ϕ + 2 √ n)/2. The inequality 0 < 2 + 4ϕ l, l < 2n + ∆ ω ϕ ≤ C ϕ implies ω ϕ < (C ϕ /2)ω. By denition of f ϕ we have e fϕ-λϕ = ω n ϕ /ω n = l (1 + 2ϕ l, l) < (C ϕ /2) n-1 (1 + 2ϕ j, j ),
for all j. If we have also f ϕ ≥ -K 0 then there exist a uniform constant

k 0 > 0 such that k -1 0 C 1-n ϕ e -λϕ ϕ ω < ω ϕ .
Lemma 1 Let (X, ω) be a compact Kähler manifold of complex dimension n and let S ⊂ P ω be a subset of potentials for the Kähler metric ω. Suppose that there exist a constant k > 0 such that k -1 ω ≤ ω ϕ ≤ kω for all ϕ ∈ S. Then there exist a constant C > 0 depending only on the constant k, such that for every potential ϕ ∈ S hold the uniform estimate

∆ ϕ |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ ≥ - 6k| Ric(ω ϕ )| ω + C|R ω | ω |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ - 4|∇ 1,0 ω Ric(ω ϕ )| ϕ + nC|∇ 1,0 ω R ω | ω |∇ 1,0 ω ∂ ∂ϕ| ϕ .
P roof . The proof follows the lines of the computation in the lemma 6 of until the denition of the tensor Tr ϕ ∇ 1,0 ω R ω . By applying the Cauchy-Schwartz inequality to the expression (31) of ∆ ϕ |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ in the lemma 6 of [Pal-2] we nd the following intrinsic inequality.

∆ ϕ |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ ≥ -6k| Ric(ω ϕ )| ω |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ -4|∇ 1,0 ω Ric(ω ϕ )| ϕ |∇ 1,0 ω ∂ ∂ϕ| ϕ -8| Tr ϕ ∇ 1,0 ω R ω | ϕ,ω |∇ 1,0 ω ∂ ∂ϕ| ϕ,ω -C 1 |R ω | ω |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ .
Then the required inequality of lemma 1 follows from the inequality

| Tr ϕ ∇ 1,0 ω R ω | ω ≤ 2kn|∇ 1,0 ω R ω | ω .
Proposition 3.2 Let (X, ω) be a compact Kähler manifold of complex dimension n, let S ⊂ P ω be a subset of potentials for the Kähler metric ω and let λ : S -→ [-1, 1], ϕ → λ ϕ be a map. Assume the existence of a uniform constant C > 0 such that Osc(ϕ) ≤ C for all ϕ ∈ S. Suppose also that the functions

f ϕ := log ω n ϕ ω n + λ ϕ ϕ satisfy the uniform estimates |f ϕ | ≤ K 0 , |∂ ∂f ϕ | ω ≤ K 0 and |∇ 1,0 ω ∂ ∂f ϕ | ω ≤ K 0 , for some constant K 0 > 0 independent of ϕ ∈ S. Let α ∈ (0, 1). Then there exist positive constants k, K, K ′ , K α > 0 such that for all ϕ ∈ S hold the uniform estimates 0 < 2n + ∆ ω ϕ ≤ K, |∂ ∂ϕ| ω < (K + 2 √ n)/2, k -1 ω < ω ϕ < (K/2)ω, |∇ 1,0 ω ∂ ∂ϕ| ω ≤ K ′ and dϕ C 1,α ω ≤ K α .
Remark. By denition of f follows the equality X ω n = X e f -λϕ ω n . So f ϕ -λ ϕ ϕ = 0 or f ϕλ ϕ ϕ change signs. In the rst case |λ ϕ ϕ| ≤ K 0 . In the

second |f ϕ -λ ϕ ϕ| ≤ Osc(f ϕ -λ ϕ ϕ) and so |λ ϕ ϕ| ≤ Osc(ϕ) + 3K 0 ≤ C. In particular -λ ϕ min X ϕ ≤ C. P roof . Using the inequality |∆ ω f ϕ | ≤ 2 √ n|∂ ∂f ϕ | ω ≤ 2
√ nK 0 , we can apply proposition 3.1 to obtain the rst three uniform estimates of the proposition 3.2. Applying the i∂ ∂ operator to the denition of f ϕ and taking respectively the trace respect to ω and deriving again we nd the equalities

i∂ ∂f ϕ -λ ϕ i∂ ∂ϕ = Ric(ω) -Ric(ω ϕ ),
(3.6)

∆ ω f ϕ -λ ϕ ∆ ω ϕ = Sc(ω) -Tr ω Ric(ω ϕ ),
(3.7)

∇ 1,0 ω ∂ ∂f ϕ -λ ϕ ∇ 1,0 ω ∂ ∂ϕ = ∇ 1,0 ω Ric(ω) -∇ 1,0 ω Ric(ω ϕ ).
(3.8)

Then using the identity (3.8), we nd the inequality

|∇ 1,0 ω Ric(ω ϕ )| ϕ ≤ |λ ϕ | • |∇ 1,0 ω ∂ ∂ϕ| ϕ + C 3 , fore some constant C 3 > 0.
The lemma 1 implies in conclusion the uniform estimate

∆ ϕ |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ ≥ -C 4 |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ -C 5 , (3.9) 
where C 4 , C 5 > 0 and the constant C 5 is chosen suciently large. On the other hand

2 Tr ϕ (ω ϕ • Rm ω ) ≥ 2λ ω 1 (2n + ∆ ω ϕ) Tr ϕ ω ≥ -C 6 ,
with C 6 > 0. Then combining the identity (18) in the proposition 6.1 in [Pal-2] with the equality (3.7) we nd the uniform estimate

∆ ϕ ∆ ω ϕ ≥ (4/k)|∇ 1,0 ω ∂ ∂ϕ| 2 ϕ -C 7 ,
(3.10) with C 7 > 0. Dene now the positive constant C 8 := k(C 4 + 1)/4 > 0. Then combining the estimates (3.9) and (3.10) we nd the estimate

∆ ϕ |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ + C 8 ∆ ω ϕ ≥ |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ -C 9 ,
with C 9 > 0. This implies that at the point where |∇ 1,0 ω ∂ ∂ϕ| 2 ϕ +C 8 ∆ ω ϕ achieves its maximum we have the estimate

|∇ 1,0 ω ∂ ∂ϕ| 2 ϕ + C 8 ∆ ω ϕ ≤ C 9 + C 8 ∆ ω ϕ ≤ C 10 ,
which implies the uniform estimate |∇ 1,0 ω ∂ ∂ϕ| ω ≤ C, since the metrics ω ϕ are uniformly equivalent to the metric ω for all ϕ ∈ S. We infer that the family of (1, 1)-forms (∂ ∂ϕ) ϕ∈S is uniformly bounded in C α (X)-topology. In particular we have the uniform estimate |∆ ω ϕ| C α (X) ≤ C. By deriving the Green Formula (see [START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère Equations[END_REF], Th. 4.13 pag. 108) we deduce the identity

d x ϕ = - X d x G ω (x, •) ∆ ω ϕ ω n .
By the classic Newtonian potential theory (see [Gi-Tru], Lemm. 4.4 pag. 56) we deduce the uniform estimate

|dϕ| C 1,α (X) ≤ C|∆ ω ϕ| C α (X) ≤ C ′ ,
which allows to conclude.

Projections to a Kähler-Einstein orbit

Lemma 2 (Bochner-Kodaira formula). Let (X, ω) be a compact Kähler manifold of complex dimension n and let u ∈ E(X, R) be a smooth real function. Then hold the identity

2 X | ∂ ∇ 1,0 ω u| 2 ω ω n = X (∆ ω u) 2 ω n -2 X Ric(ω)(∇ ω u, J∇ ω u) ω n .
(3.11)

P roof . Consider the decomposition of the norm square of the Hessian in the classic Bochner Formula

∆|∇u| 2 t = 2g(∇∆u, ∇u) + 4|∇ 1,0 ∂u| 2 + 4|∂ ∂u| 2 + 2 Ric(∇u, J∇u) .
(We drop the dependence on ω.) Combining this with the identities

4n(n -1) (i∂ ∂u) 2 ∧ ω n-2 ω n = (∆u) 2 -4|∂ ∂u| 2 ,
(3.12)

2| ∂ ∇ 1,0 u| 2 = 4|∇ 1,0 ∂u| 2 and integrating by parts we get the formula (3.11).

We say that λ ∈ R is an eigenvalue of the Laplacian ∆ ω if there exists a function u ∈ E(X, C), not identically zero, such that ∆ ω,h u + λu = 0. We deduce the following corollary.

Corollary 2 Let (X, ω) be a compact Kähler manifold such that Ric(ω) > tω for some t > 0. Then the rst eigenvalue λ 1 of the Laplacian ∆ ω satises the estimate λ 1 > 2t. Moreover if Ric(ω) ≥ tω then λ 1 ≥ 2t.

In fact let u be an eigenfunction of λ 1 . By the Bochner formula we deduce the inequality

λ 2 1 X u 2 ω n > 2t X |∇ ω u| 2 ω ω n = 2tλ 1 X u 2 ω n .
We remind also the following well known theorem which is a consequence of the Bochner formula for dierential forms.

Theorem 4 Let (M, g) be a compact Riemannian manifold such that Ric(g) > 0. Then the rs Betti number is zero.

We remind now a very useful lemma [Ba-Ma].

Lemma 3 Let (X, ω) be a compact Kähler manifold of complex dimension n and let ψ t ∈ P ω , t > 0 be a potential such that the metric ω t := ω+i∂ ∂ψ t satises Ric(ω t ) ≥ tω t . Then there exist a constant C n > 0 depending only on n and a constant C ω > 0 depending only on ω such that Osc(ψ t ) ≤ I ω (ψ t )+C n t -1 +C ω .

We need now a very elementary lemma.

Lemma 4 Let (X, J, ω) be a Kähler manifold and ξ ∈ O(T 1,0 X,J )(U ) be a (1, 0) holomorphic vector eld over an open set U ⊂ X. Then hold the identity over

U 2ξ Ric(ω) = -i ∂ Tr ω [∂(ξ ω)] . (3.13) Let f ∈ E(U, C) be a smooth function such that ∇ 1,0 ω f ∈ O(T 1,0 X,J )(U ). Then hold the identity over U 2∇ 1,0 ω f Ric(ω) = -i ∂∆ ω f .
(3.14) P roof . Let rst remind the local expression of the Ricci tensor

Ric(ω) = i ∂(ω l,r ∂ω r, l) = -i∂k (ω l,r ∂ j ω r, l) dz j ∧ dz k . Set ξ = ξ k ∂ ∂z k .
Then we have the equalities

ξ ω = i 2 ω j, l ξ j dz l , ∂(ξ ω) = i 2 ∂ r (ω j, l ξ j ) dz r ∧ dz l , Tr ω [∂(ξ ω)] = 2ω l,r ∂ r (ω j, l ξ j ) = 2ω l,r ∂ r ω j, l ξ j + 2∂ j ξ j .
Using the hypothesis ∂ξ k = 0 and the fact that ω is Kähler we nd the equality

-i ∂ Tr ω [∂(ξ ω)] = -2i ∂(ω l,r ∂ j ω r, l)ξ j = 2ξ Ric(ω).
The splitting of the gradient

∇ ω f = ∇ 1,0 ω f + ∇ 0,1 ω f of the function f implies the identities ∇ 1,0 ω f ω = i ∂f and ∇ 0,1 ω f ω = -i∂f .
Then by using the identity (3.13) we deduce the identity (3.14).

Let X be a Fano manifold admitting a Kähler-Einstein metric ω ∈ 2πc 1 . It is well known that the isotropy group K ω ⊳ Aut 0 J (X) of the Kähler-Einstein metric ω is maximal compact. Let κ ω = {ξ ∈ H 0 (T X,J ) | L ξ ω = 0} its (real) Lie algebra. We remind the following well known fact in Kähler-Einstein geometry, which follows from the Bochner-Kodaira formula [Mat].

Theorem 5 (Matsushima). Let X be a Fano manifold admitting a Kähler-Einstein metric ω ∈ 2πc 1 . Then the rst eigenvalue λ 1 of the Laplacian ∆ ω satises the estimate λ

1 ≥ 2. If H 0 (T 1,0 X,J ) = 0, then λ 1 > 2. If H 0 (T 1,0 X,J ) = 0,
then λ 1 = 2. In this case the (1, 0)-component of the gradient map

∇ 1,0 ω : CΛ ω -→ H 0 (T 1,0 X,J )
is well dened and gives a C-isomorphism of vector spaces. Moreover this induces the R-isomorphisms

∇ ω : Λ ω -→ Jκ ω , J∇ ω : Λ ω -→ κ ω and the decom- position H 0 (T X,J ) = κ ω ⊕ Jκ ω .
P roof . The estimate λ 1 ≥ 2 follows immediately from the corollary 2. Assume rst that H 0 (T 1,0 X,J ) = 0 and let prove that the (1, 0)-component of the gradient map is an isomorphism. In some sense is more natural to start with the inverse map, so consider ξ ∈ H 0 ω (T 1,0 X,J ). The fact that ω is Kähler and ξ holomorphic implies the equality ∂(ξ ω) = 0. Then the theorem 4 implies the existence of a function u ∈ E(X, C), X uω n = 0, such that ξ ω = i ∂u. In other terms ξ = ∇ 1,0 ω u. Then the identity 3.14 implies the identity ∂(∆ ω u + 2u) = 0, which in his turn implies the equality ∆ ω u + 2u = 0. Consider now an eigenfunction with real values u ∈ E(X, R), such that ∆ ω u + 2u = 0. Then the Bochner formula (3.11) implies ∇ ω u ∈ H 0 (T X,J ). The fact that u is a function with real values implies ∇ 1,0 ω u ∈ H 0 (T 1,0 X,J ). In general if u ∈ E(X, C) the same conclusion holds by the fact that the Laplacian is a real operator. So in conclusion we have show the required isomorphism. Now is clear that If H 0 (T 1,0 X,J ) = 0, then λ 1 > 2. The existence of the R-isomorphisms is now also obvious.

Remark 1.

Let O := Aut 0 J (X) • ω be the orbit of a Kähler-Einstein metric ω ∈ 2πc 1 and let P O ω the corresponding set of potentials ϕ, normalized by the condition -X e -ϕ ω n = 1. Moreover O ≃ Aut 0 J (X)/K ω has the structure of a homogeneous space. A posteriory the uniqueness result of Bando-Mabuchi [Ba-Ma] implies that O is the set of all Kähler-Einstein metrics. We have a natural identication

η ω : O → P O ω , θ → u θ := log ω n θ n .
Let ω t = ω + i∂ ∂u t , u t ∈ P O ω , ω 0 = ω a Kähler-Einstein variation of ω, so we have the identity ω n t = e -ut ω n . By time deriving the equivalent identity

log ω n t ω n + u t = 0 , at t = 0 we get ∆ ω u0 /2 + u0 = 0 i.e u0 ∈ Λ ω .
The dierential at ω of the map η ω is the isomorphism

d ω η ω : T O, ω → T P O ω , 0 ⊂ Λ ω
given by i∂ ∂ u0 → u0 . We remark that T P O ω , 0 = Λ ω . In fact consider the composition

Λ ω ∇ ω -Jκ ω µ ω -T O, ω v -→ ∇ ω v -→ 1 2 L ∇ωv ω .
Let (σ t ) t∈R ⊳ Aut 0 J (X) the one parameter subgroup of automorphisms corresponding to ∇ ω v and ω t := σ * t ω = ω + i∂ ∂u t , u t ∈ P O ω , its Kähler-Einstein variation. As before u0 ∈ Λ ω . This combined with the identities

2i∂ ∂v = L ∇ωv ω = d dt | 0 ω t = i∂ ∂ u0 implies 2v = u0 , which shows that T P O ω , 0 = Λ ω and so (d ω η ω • µ ω ) -1 = ∇ ω .
In particular µ ω is also an isomorphism.

Remark 2. R) for some nonnegative integer k. The isomorphism 

Consider now the Banach space and Λ⊥

ω, k := Λ ⊥ ω, k ∩ C k,1/2 ω, 0 (X,
∆ ω : C k+2,1/2 ω, 0 (X, R) → C k,1/2 ω, 0 (X, R) , induces the isomorphism ∆ ω : Λ⊥ ω, k+2 → Λ⊥
∆ ω + 2 : Λ ⊥ ω, k+2 → Λ ⊥ ω, k ,
is zero. Then by a classic result of elliptic Theory (see Th. 12.4, pag 688 in [A-D-N]) we deduce that the previous operator is surjective and so an isomorphism of Banach spaces by the Banach theorem.

Orthogonal pro jection of Kähler metrics.

We remind the following projection lemma due to Bando-Mabuchi [Ba-Ma].

Lemma 5 Let (X, ω) be an Einstein-Fano manifold. Then for all orbits O := Aut 0 J (X)• ω ⊂ KE and for all Kähler metrics ω ∈ K there exist a Kähler-Einstein

metric θ ∈ O such that ω ∈ K ⊥ θ . P roof . Set θ = ω φ ∈ O and consider the functional Ψ ω := G ω |O . Consider a Kähler-Einstein variation of θ, θ t = θ + i∂ ∂u t = ω + i∂ ∂(u t + φ), u t ∈ P O θ , u 0 = 0. Moreover u0 ∈ Λ θ as in remark 1. Using the identity (1.4) we get d dt | 0 G ω (θ t ) = - 1 2 - X φ ∆ θ u0 θ n = - X φ u0 θ n .
Then the fact that the dierential

d θ η θ : T O, θ → Λ θ of the map η θ : O → P E θ in remark 1 is an isomorphism implies that a metric θ ∈ O is a critical point of the functional Ψ ω if and only if ω ∈ K ⊥ θ .
We show now that the smooth function Ψ ω is an exhaustion, which implies that it always admits a minimum. Consider ω ψ = ωϕ+ψ ∈ O. The Einstein condition is equivalent to the equation

ω n ψ = e hω-ψ ω n , which implies X e -ψ e hω ω n = X e hω ω n ,
and so ψ change signs. Then using lemma 3 and the inequality (1.2) we get the estimate

ψ C 0 ≤ Osc(ψ) ≤ I ω (ψ) + C ω ≤ (n + 1)Ψ ω (ω ψ ) + C ω ,
for some constants C ω > 0 depending only on ω. Now all the topologies induced from a Banach norm coincident on P O ω since it is a nite dimensional submanifold. Moreover the fact that P O ω is homeomorphic with the homogeneous space O ≃ Aut 0 J (X)/K ω implies that it is also closed in any holder space C k,α . This combined with the previous inequality implies that for all r > 0 the sets η ω ({Ψ ω ≤ r}) are compact and so the sets {Ψ ω ≤ r} are compact, which shows that Ψ ω is an exhaustion.

The solutions of the Aubin equation

Let ω ∈ 2πc 1 be a Kähler-Einstein metric. For all ϕ ∈ P ω ∩ Λ ⊥ ω consider ω := ω + i∂ ∂ϕ and the smooth family of solutions ψ t ∈ P ω of the complex Monge-Ampère equation

(ω + i∂ ∂ψ t ) n = e hω-tψt ω n , t ∈ [0, 1] , (4.1)
which is equivalent to the Aubin equation

Ric(ω t ) = tω t + (1 -t)ω , t ∈ [0, 1] , (4.2)
with ω t := ω + i∂ ∂ψ t . The potential ψ 1 := -ϕ + c is a solution of the equation (4.1) for t = 1 since ω is a Kähler-Einstein metric. It has been pointed out by Bando-Mabuchi [Ba-Ma] that a necessary condition for the existence of solutions of (4.1) for t in a neighborhood of 1, with

ω 1 = ω is ϕ ∈ P ω ∩ Λ ⊥ ω .
In fact dierentiating at t = 1 the equation (4.1) we get

∆ ω ψ1 + 2 ψ1 + 2ψ 1 = 0. Then 2 - X ψ 1 u ωn = -- X (∆ ω + 2) ψ1 u ωn = -- X ψ1 (∆ ω + 2)u ωn = 0 ,
for all u ∈ Λ ω . The following proposition (the main argument is due to [Ba-Ma]) shows that the condition ϕ ∈ P ω ∩ Λ ⊥ ω is also sucient for the existence of solutions of (4.1). Proposition 4.1 Let X be a Fano manifold admitting a Kähler-Einstein metric ω ∈ 2πc 1 and let ω = ωϕ with ϕ ∈ P ω ∩ Λ ⊥ ω . Then the following hold.

(A). There exist a unique map [0, 1] → K, t → ω t , solution of the Aubin equation (4.2). Moreover this map is smooth and ω 1 = ω.

(B). There exist a unique map ψ : [0, 1] → P ω , t → ψ t , solution of the complex Monge-Ampère equation (4.1). This map is continuous over the interval [0,1] and smooth over (0, 1]. Moreover ω ψ1 = ω. P roof . We start by considering the solution ψ 1 = -ϕlog -X e -ϕ ωn , which gives ω ψ1 = ω. By comparing the Monge-Ampère equation (4.1) with the equation (4.1) at time t = 1 we nd e tψt ω n t = e hω ω n = e ψ1 ωn . This implies that (4.1) can be written in the equivalent ways

log ωn θt ωn + tθ t = (1 -t)ψ 1 , (4.3) log ωn θt ωn + θ t = (1 -t)ψ t , (4.4) 
ωn = e θt+(t-1)ψt ω n t , (4.5) where θ t := ψ tψ 1 ∈ P ω . Remark that ω t = ωθt . The last two expressions will be useful in the section 5.

Step I: Short backward time existence. Let P : L 2 → Λ ω be the L 2 projection on Λ ω . In the following considerations we will always consider the natural embedding

P k, 1/2 ω ⊂ Λ ω ⊕ Λ ⊥ ω, k . Consider now the smooth maps Φ : [0, 1] × P k+2, 1/2 ω → Λ ⊥ ω, k , Ψ : [0, 1] × P k+2, 1/2 ω → Λ ω ,
with k ≥ 3, given by the expressions

Φ(t, u, µ) := (1 -P ) log ωn u+µ ωn + tµ -(1 -t)ψ 1 , Ψ(t, u, µ) := P log ωn u+µ ωn + tu = 0 .
So if we decompose θ t = u t + µ t , u t ∈ Λ ω and µ t ∈ Λ ⊥ ω we deduce that the equation (4.3) is equivalent to the system Φ(t, u t , µ t ) = 0, Ψ(t, u t , µ t ) = 0. Remark that Φ(1, 0, 0) = 0. The partial Frechet derivative

D µ Φ(1, 0, 0) : Λ ⊥ ω, k+2 -Λ ⊥ ω, k f -→ 1 2 ∆ ω f + f ,
is an isomorphism by the remark 2 in the last section. Then the implicit function theorem implies the existence of a unique and smooth map

µ : (1 -ε 1 , 1] × B Λ ω, k+2 (0, R 1 ) -B Λ ⊥ ω, k+2 (0, R 2 ) ,
such that Φ(t, u, µ(t, u)) = 0. In particular µ(1, 0) = 0. (Here B E (0, R) is the ball of center 0 and radius R in the space E.) Set

Ψ(t, u) := Ψ(t, u, µ(t, u)) .
Then the equation ( 4.3) is equivalent to the equation Ψ(t, u t ) = 0, u 1 = 0 by setting µ t := µ(t, u t ). In fact is obvious that this last equation implies (4.3).

The other direction follows by applying the uniqueness in the statement of the implicit function theorem to the equality

Φ(t, u t , µ t ) = Φ(t, u t , µ(t, u t )) = 0 ,
which gives µ t = µ(t, u t ). On the other hand for any θ ∈ P O ω the identity log ωn

θ ωn + θ = 0 , is equivalent to Φ(1, u, µ) = 0, Ψ(1, u, µ) = 0, where θ = u + µ, u ∈ Λ ω and µ ∈ Λ ⊥ ω .
For r > 0 suciently small

(1 -P )(P O ω ∩ B C k+2 (0, r)) ⊂ B Λ ⊥ ω, k+2 (0, R 2 ) , P (P O ω ∩ B C k+2 (0, r)) ⊃ B Λ ω, k+2 (0, r 1 ) , r 1 ∈ (0, R 1 ).
The last inclusion follows from the fact that T P O ω , 0 = Λ ω as pointed out in remark 1 of the previous section. So the identity

Φ(1, u, µ(1, u)) = 0 , u ∈ B Λ ω, k+2 (0, r 1 ) , combined with Φ(1, u, µ) = 0 implies µ = µ(1, u).
Then from the identity

Ψ(1, u, µ) = 0 ,
we get Ψ(1, u) = 0 for all u ∈ B Λ ω, k+2 (0, r 1 ). We deduce that the function Ψ(t, u)/(t -1) extends to a smooth function

Ψ : (1 -ε 1 , 1] × B Λ ω, k+2 (0, r 1 ) -→ Λ ω .
By considering the rst order Taylor expansion of Ψ in the variable t we get

Ψ(1, u) = ∂ Ψ ∂t (1, u) .
In particular for u = 0 we have

Ψ(1, 0) = ∂ Ψ ∂t (1, 0) = d dt | 1 P log ωn µ(t,0) ωn = 1 2 P ∆ ω d dt | 1 µ(t, 0) = 0 , (4.6) since d dt | 1 µ(t, 0) ∈ Λ ⊥ ω and ∆ ω (Λ ⊥ ω ) = Λ ⊥ ω .
We remark that the orthogonality condition ϕ ∈ Λ ⊥ ω on the potential plays a crucial role in the equality (4.6). In conclusion the equation ( 4.3) is equivalent to the equation Ψ(t, u t ) = 0, u 1 = 0.

We will apply now the implicit function theorem to the function Ψ. Consider now for all ϕ ∈ Λ ⊥ ω the quadratic form Q ω ϕ : Λ ω × Λ ω → R given by the formula

Q ω ϕ (u, v) := X 1 - 1 4 ∆ ω ϕ uv ωn , for all u, v ∈ Λ ω .
The following lemma due to [Ba-Ma] gives an expression of the partial derivative

D u Ψ(1, 0) : Λ ω → Λ ω .
Lemma 6 For all f 1 , f 2 ∈ Λ ω hold the equality

n! D u Ψ(1, 0)f 1 , f 2 L 2 (X, ω) = Q ω ϕ (f 1 , f 2 ) , Set U ω := ϕ ∈ Λ ⊥ ω | Q ω ϕ is non degenerate . Clearly U ω is non empty since Q ω 0 is the induced L 2 (X, ω) product on Λ ω .
Any choice of the initial potential ϕ ∈ P ω ∩ U ω implies the invertibility of the partial derivative D u Ψ(1, 0). We deduce that so far we have prove the existence of a unique smooth family of solutions ψ t ∈ P ω of (4.1) for all t ∈ (1ε, 1], ε ∈ (0, ε 1 ], with ω ψ1 = ω and ϕ ∈ P ω ∩ U ω .

P roof of the lemma 6. Let (u s ) s ⊂ Λ ω be a variation of 0 i.e u 0 = 0, with u0 = f . Then

d ds | 0 Ψ(1, u s ) = d ds | 0 ∂ Ψ ∂t (1, u s ) = d ds | 0   P n i∂ ∂ d dt | 1 µ(t, u s ) ∧ ωn-1 us+µ(1,us) ωn us+µ(1,us) + u s   = P   n i∂ ∂ ∂ 2 ∂s ∂t | (s,t)=(0,1) µ(t, u s ) ∧ ωn-1 ωn + n(n -1) i∂ ∂ d dt | 1 µ(t, 0) ∧ i∂ ∂ f + d ds | 0 µ(1, u s ) ∧ ωn-2 ωn - 1 4 ∆ ω d dt | 1 µ(t, 0) ∆ ω f + d ds | 0 µ(1, u s ) + f = f -P i∂ ∂ d dt | 1 µ(t, 0) , i∂ ∂f ω .
In the last equality we have use the facts that

∂ 2 ∂s ∂t | (s,t)=(0,1) µ(t, u s ) ∈ Λ ⊥ ω , ∆ ω (Λ ⊥ ω ) = Λ ⊥ ω and d ds | 0 µ(1, u s ) = 0.
This last one need an explanation. Set

h := d ds | 0 µ(1, u s ) ∈ Λ ⊥ ω, k+2 .
Deriving at s = 0 the identity

Φ(1, u s , µ(1, u s )) = 0 we get ∆ ω h/2+h = 0 which implies h = 0, so D u µ(1, 0) = 0.
So far we have obtain the formula

D u Ψ(1, 0)f 1 , f 2 L 2 (X, ω) = X f 1 f 2 -f 2 i∂ ∂ d dt | 1 µ(t, 0) , i∂ ∂f 1 ω ωn n! .
(4.7)

We need other formulas in order to conclude the computation. By time dierentiating at t = 1 the identity Φ(t, 0, µ(t, 0)) = 0 we get

(∆ ω + 2) d dt | 1 µ(t, 0) = -2ψ 1 .
(4.8)

Moreover for all u, v ∈ Λ ω and f ∈ E(X, R) we have

∆ ω ∂f, ∂u ω = 2 ∂ ∂f, ∂ ∂u ω + ∂∆ ω f, ∂u ω ,
(4.9)

(∆ ω + 2) ∂u, ∂v ω = 2 ∂ ∂u, ∂ ∂v ω = (∆ ω + 2) ∂v, ∂u ω .
(4.10)

The equality (4.10) is an immediate consequence of the equality (4.9). Let prove the equality (4.9). Let (z 1 , ..., z n ) holomorphic ω-geodesic coordinates centered in an arbitrary point x. Then at the point x we have

∆ ω ∂f, ∂u ω = 4∂ 2 rr (2ω k l∂ l f ∂ku) = -8∂ 2 rr ωk l ∂ l f ∂ku + 2∂ k ∆ ω f ∂ku + 2∂ k f ∂k∆ ω u + 2 ∂ ∂f, ∂ ∂u ω + 2 ∇ 1,0 ω ∂f, ∇ 1,0 ω ∂u ω .
Then using the identities -∂ 2 rr ωk l = R k l = δ k l, ∆ ω u + 2u = 0 and ∇ 1,0 ω ∂u = 0, which is equivalent to say that ∇ ω u is a holomorphic vector eld, we deduce the equality (4.9). We need to prove also the identity

-2 X u ∂ ∂f, ∂ ∂u ω ωn = X uv - 1 2 ∂u, ∂v ω - 1 2 ∂v, ∂u ω (∆ ω + 2)f ωn .
for all u, v, f as before. In fact set h := (∆ ω + 2)f . Then

X uv - 1 2 ∂u, ∂v ω - 1 2 ∂v, ∂u ω h ωn = X (uv -∂u, ∂v ω ) h ωn (by (4.10)) = -n X u i∂ ∂v + i∂u ∧ ∂v h ∧ ωn-1 (since v = -∆ ω v/2) = -n X h i∂(u ∂v) ∧ ωn-1 = n X u i∂h ∧ ∂v ∧ ωn-1 = X u ∂h, ∂v ω ωn = X u ( ∂∆ ω f, ∂v ω + 2 ∂f, ∂v ω ) ωn = X u ∆ ω ∂f, ∂v ω -2 ∂ ∂f, ∂ ∂v ω + 2 ∂f, ∂v ω ωn (by (4.9)) = X (∆ ω + 2)u ∂f, ∂v ω -2u ∂ ∂f, ∂ ∂u ω ωn = -2 X u ∂ ∂f, ∂ ∂u ω ωn .
(since

(∆ ω + 2)u = 0)
Combining the identity (4.7) with the identity just proved we get

n!2 D u Ψ(1, 0)f 1 , f 2 L 2 (X, ω) = 2 X f 1 f 2 ωn + X f 1 f 2 - 1 2 ∂f 1 , ∂f 2 ω - 1 2 ∂f 2 , ∂f 1 ω (∆ ω + 2) d dt | 1 µ(t, 0) ωn = 2 X f 1 f 2 -f 1 f 2 - 1 2 ∂f 1 , ∂f 2 ω - 1 2 ∂f 2 , ∂f 1 ω ψ 1 ωn (by (4.8)) = 2 X f 1 f 2 + 1 4 ∆ ω (f 1 f 2 )ψ 1 ωn = 2 X 1 - 1 4 ∆ ω ϕ f 1 f 2 ωn .
Step II: All time existence. We continue assuming ϕ ∈ P ω ∩ U ω . Let

τ := inf {t ∈ (0, 1) | ∃ψ ∈ C ∞ ((t, 1], P ω ), ψ s sol. of (4.1) ∀s ∈ (t, 1], ω ψ1 = ω} .
We prove rst that τ = 0 by a contradiction argument. So assume τ ∈ (0, 1).

By deriving the Monge-Ampère equation (4.1) we get

∆ t ψt + 2t ψt + 2ψ t = 0 .
(4.11)

By plugging this in the equality (1.4) we get

d dt G ω (ψ t ) = - 1 2 - X ∆ t ψt ψ t ω n t = 1 4 - X ∆ t ψt (∆ t ψt + 2t ψt ) ω n t .
Let (e k ) +∞ k=0 ⊂ E(X, R) be an L 2 (X, ω n t )-orthonormal base of eigenfunctions of ∆ t . i.e ∆ t e k + λ k e k = 0, with e 0 = 1, λ 0 = 0 and 0 < λ 1 ≤ λ 2 . The equation (4.2) implies Ric(ω t ) > tω t for all t ∈ (τ, 1). By the Bochner formula we get

λ 1 > 2t > 0. The equalities in sense L 2 ψt = +∞ k=0 c k e k , ∆ t ψt = - +∞ k=0 c k λ k e k , ∆ t ψt + 2t ψt = - +∞ k=0 c k (λ k -2t) e k imply X ∆ t ψt (∆ t ψt + 2t ψt ) ω n t = +∞ k=1 c 2 k (λ k -2t)λ k ≥ 0 (4.12)
for all t ∈ (τ, 1). We deduce that the function G(t

) := G ω (ω t ) ≡ G ω (ψ t ) ≥ 0 is nondecreasing in t. So we get 0 ≤ G ω (ψ t ) ≤ G ω (ψ 1 ) = G ω (-ϕ) ≤ Osc(ϕ) ,
which implies 0 ≤ I ω (ψ t ) ≤ (n + 1) Osc(ϕ) .

(4.13)

Combining lemma 3 with the inequality (4.13) we deduce the estimate Osc(ψ t ) ≤ t -1 C. The equation (4.1) can be written as e tψt ω n t = e hω ω n . This implies

- X e tψt ω n t = - X ω n t ,
and so

ψ t C 0 ≤ Osc(ψ t ) ≤ t -1 C .
Then Yau's C 2 -uniform estimate and Calabi's C 3 -uniform estimate [Yau], [Cal], implies that for any sequence (t k ) k ⊂ (τ, 1), t k → τ there exist a subsequence (t l ) l ⊂ (t k ) k such that the sequence (ψ t l ) l converge in the C 2,α -topology to a potential ψ τ ∈ P ω . The fact that ψ τ is a potential derive from the inequality

ω ψτ = lim l→+∞ ω t l > 0 ,
which hold since ω n t /ω n > c > 0, for some constant c > 0 independent of t. Moreover ψ τ is a solution of the equation (4.1) for t = τ , so by elliptic regularity ψ τ is smooth. Consider now the map

F : [0, 1] × P k+2, 1/2 ω -C k, 1/2 (X, R) (t, ψ) -→ log ω n ψ ω n + tψ -h ω .
We have F (t, ψ t ) = 0 for all t ∈ [τ, 1]. Consider also the partial Frechet derivative

D ψ F (t, ψ) : C k+2, 1/2 (X, R) -C k, 1/2 (X, R) f -→ 1 2 ∆ ψ f + tf .
The fact that Ric(ω τ ) > τ ω τ implies λ 1 (∆ τ ) > 2τ , which means that the map D ψ F (τ, ψ τ ) is an isomorphism. So by the implicit function theorem there exist an open ball B r (ψ τ ) ⊂ P k+2, 1/2 ω and δ ∈ (τ, 1) such that for all t ∈ [τ, δ] there exist a unique potential ψt ∈ B r (ψ τ ) such that F (t, ψt ) = 0 and the corresponding function

ψ : [τ, δ] → P k+2, 1/2 ω ,
is smooth. We remark now that the limit ψ τ is independent of the sequence. In fact if (s k ) ⊂ (τ, 1) is an other sequence such that s k → τ and ψ s k converge in the C 2,α -topology to a potential ψ ′ τ ∈ P ω we can choose the radius r > 0 such that B r (ψ τ ) ∩ B r (ψ ′ τ ) = ∅ and we can pick s k , t l ∈ (τ, δ), s k < t l such that

ψ s k ∈ B r (ψ ′ τ ) and ψ t l = ψt l ∈ B r (ψ τ ).
But by continuity of the map ψ there exist

t ∈ ψ -1 (B r (ψ τ )) ⊂ (s k + ε, t l ] ,
such that ψ t = ψt , which contradicts the uniqueness in the statement of the implicit function theorem. We deduce the existence of the limit ψ τ = lim t→τ ψ t in the C 2,α -topology. So by the implicit function theorem we can nd a smooth extension ψ : (τε, 1] → P ω , t → ψ t , ω ψ1 = ω solution of the equation (4.1). But this contradicts the denition of τ , so τ = 0.

Step III: Regularity at t = 0. The inequality tψ t C 0 ≤ C for all t ∈ (0, 1] implies that the factor e hω-tψt on the right hand side of the Monge-Ampère equation (4.1) is bounded. Then Yau's C 0 -estimate for the solution of Calabi's conjecture [Yau], implies Osc(ψ t ) ≤ C for all t ∈ (0, 1] and so we deduce

ψ t C 0 ≤ Osc(ψ t ) ≤ C .
Then Yau's C 2 -uniform estimate and Calabi's C 3 -uniform estimate implies that for any sequence (t k ) k ⊂ (0, 1), t k → 0 there exist a subsequence (t l ) l ⊂ (t k ) k such that the sequence ω t l is convergent in the C α -topology. So set

ω 0 := lim l→+∞ ω t l ∈ 2πc 1 .
We have ω 0 > 0 since ω n t /ω n > c > 0, for some constant c > 0 independent of t and ω 0 is the unique solution of Calabi's equation Ric(ω 0 ) = ω. By elliptic regularity ω 0 is a smooth Kähler metric. The uniqueness implies the existence of the limit ω 0 := lim t→0 ω t in the C α -topology. So we have obtained a Hölder continuous map [0, 1] → K, t → ω t , which is smooth over the interval (0, 1] and solution of the equation (4.2) with ω 1 = ω. We remark now that this map is smooth over all [0, 1]. Set ω := ω 0 = ω ψ0 . With the notations of section 1 consider the map

Γ : [0, 1] × P k+2, 1/2 ω, 0 -C k, 1/2 ω (X, R) 1 (t, ρ) -→ ωn ρ ωn e t(ρ+ψ0) - X e t(ρ+ψ0) ωn ρ -1
.

Then the equation (4.2) is equivalent to the equation

Γ(t, ρ t ) = 1, t ∈ [0, 1].
In fact ω t = ωρt . The partial Frechet derivative of the map Γ at the point (t, ρ) = (0, 0) is

D ρ Γ(0, 0) : C k+2, 1/2 ω, 0 (X, R) -C k, 1/2 ω, 0 (X, R) f -→ 1 2 ∆ ω f ,
which is an isomorphism. Then the map t → ω t is also smooth in a neighborhood of 0 by the implicit function theorem. Set now

Pω,0 := ϕ ∈ P ω | - X ϕe hω ω n = 0 ,
and consider the potentials ϕ t ∈ Pω, 0 , t ∈ [0, 1] dened by

ϕ t := φt -- X φt e hω ω n , with φt (x) := - X (Tr ω ω t ) G ω (x, •) ω n ,
where G ω is the Green function. Thus we have a smooth map [0, 1] → Pω, 0 , t → ϕ t , ω ϕt = ω t , solution of the equation

(ω + i∂ ∂ϕ t ) n = e hω-tϕt+ct ω n , t ∈ [0, 1] ,
with

c t := -log - X e hω-tϕt ω n .
For all t ∈ (0, 1] we can pass from the solutions of this equation to the solutions of (4.1) by the formulas ψ t = ϕ tc t /t and ϕ t = ψ t --X ψ t e hω ω n .

Consider now the limit

lim t→0 - X e hω-tϕt ω n 1 t = exp - X d dt | 0 e -tϕt e hω ω n = exp -- X ϕ 0 e hω ω n = 1 .
Then the formula ψ t = ϕ tc t /t implies lim t→0 ψ t = ϕ 0 . So we set ψ 0 = ϕ 0 in (4.1).

Step IV: The case of potentials ϕ with degenerate form Q ω ϕ . We start by observing that U ω = Λ ⊥ ω in the smooth topology. In fact consider the linear map

A ω : Λ ⊥ ω → S 2 R (Λ * ω ), ϕ → A ω ϕ given by A ω ϕ (u, v) := - 1 4 X ∆ ω ϕ uv ωn .
Let A ω ϕ be the endomorphism on Λ ω induced by the L 2 (X, ω) product. For all

v ∈ Λ ⊥ ω the map Rv ∋ ϕ → det(I + A ω ϕ )
is polynomial, which implies U ω = Λ ⊥ ω . So for a potential ϕ ∈ P ω ∩∂U ω consider a sequence (ϕ k ) ⊂ P ω ∩ U ω such that ϕ k → ϕ in the smooth topology. Set also ω k := ωϕ k , ω := ωϕ . Consider also for all k the solutions ψ k,t ∈ P ω k of the complex Monge-Ampère equations

(ω k + i∂ ∂ψ k,t ) n = e hω k -tψ k,t ω n k , t ∈ [0, 1] , (4.14)
which we rewrite in the equivalent ways

Ric(ω k,t ) = tω k,t + (1 -t)ω k , t ∈ [0, 1] , (4.15) (1 -t)ψ k,1 = log ωn θ k,t ωn + tθ k,t , t ∈ [0, 1] , (4.16)
where

ω k,t := ω k + i∂ ∂ψ k,t = ωn θ k,t ,
with θ k,t := ψ k,tψ k,1 ∈ P ω as in the beginning of the section. Set also ψ 1 := lim k→+∞ ψ k,1 . The monotonicity of the functional G ω k along the solutions of (4.14) implies

G ω k (ψ k,t ) ≤ G ω k (ψ k,1 ) = G ω k (-ϕ k ) ≤ G ω k (-ϕ) + 1 , for all t ∈ [0, 1] and k ≥ c. Moreover G ω k (-ϕ) ≤ C for some uniform constant C > 0.
We infer by lemma 3 the estimate

t ψ k,t C 0 ≤ Osc(t ψ k,t ) ≤ C .
As before, by applying Yau's C 0 -estimate for the solution of the Calabi's conjecture to the equation (4.14), we deduce the uniform estimate

ψ k,t C 0 ≤ Osc(ψ k,t ) ≤ C .
Here we use also the fact that all the metrics ω k are uniformly equivalents. In particular θ k,t C 0 ≤ C for all t ∈ [0, 1] and k ≥ c. 

Θ t := θ t | ∃(θ k l ,t ) l : θ t C 2,α = lim l→+∞ θ k l ,t .
By the properties of the Monge-Ampère equation (4.16) we deduce Θ t ⊂ P ω and every θ t ∈ Θ t is solution of the equation ( 4.3) at time t. Consider also the corresponding set of metrics

Ω t := ω t ∈ 2πc 1 | ∃(ω k l ,t ) l : ω t C α = lim l→+∞ ω k l ,t .
Every ω t ∈ Ω t is a solution of the equation (4.2). In fact for t = 0 at the limit the the equations (4.16) becomes (4.3). Then the uniqueness of the solutions of Calabi's equation Ric(ω 0 ) = ω implies ω 0 = lim k→+∞ ω k,0 in the C α -topology. For t = 0 we remark, by means of (4.16), (4.3) and the uniform estimate

θ k,t C 2,α ω ≤ C, that ω t = ωn θt C α = lim l→+∞ ω k l ,t ,
if and only if

θ t C 2,α = lim l→+∞ θ k l ,t .
Thus the equation ( 4.3) implies that ω t is a solution of the equation (4.2).

The fact that the uniform estimate

θ t C 2,α ω ≤ C ,
hold for all θ t ∈ Θ t , t ∈ [0, 1] combined with the uniqueness of the solutions of Calabi's equation Ric(ω 0 ) = ω implies that for every sequence (ω t l ) l , ω t l ∈ Ω t l with t l → 0 we have ω 0 = lim l→+∞ ω t l . Then using the implicit function theorem in the ways explained above we obtain the required existence of the solutions of the equation ( 4.2) with data ϕ ∈ P ω ∩ ∂U ω .

In conclusion we have prove the existence of the solutions for arbitrary data

ϕ ∈ P ω ∩ Λ ⊥ ω .
The uniqueness of the solutions follows immediately by combining the uniqueness of the solution of the Calabi equation with the implicit function theorem. This concludes the proof of the proposition 4.1.

P roof of theorem 1. P roof of (A). Combining the projection lemma 5 with the uniqueness of the solutions of Aubin's equation 4.2, given by proposition 4.1 we infer that for an arbitrary ω ∈ K there exist a unique Kähler-Einstein metric ω ∈ K such that ω ∈ K ⊥ ω . Then the theorem 1 (A) follows immediately from the proposition 4.1.

P roof of (B). Let O ⊂ KE be an arbitrary orbit of a Kähler-Einstein metric. Let ω ∈ K ⊥ ω . The projection lemma 5 implies the existence of θ ∈ O such that ω ∈ K ⊥ θ , which implies ω = θ ∈ O by the proof of the statement (A). Thus

O = Aut 0 J (X) • ω and so KE = Aut 0 J (X) • ω.
5 A Tian C 0 -estimate for the solutions of the Aubin equation.

Set α := 1 -1/4n > 1/2 and consider the function f ω over the interval [0, 1] dened by the formula

f ω (t) := (1 -t) 1-α 1 + 2(1 -t) ψ t C 0 α .
The following proposition is a very slight modication of a computation in [START_REF] Tian | Kähler-Einstein metrics with positive scalar curvature[END_REF].

Proposition 5.1 There exist a constant D ∈ (0, 1) depending only on ω such that the estimate

Osc(ψ t -ψ 1 ) ≤ 2 ψ t -ψ 1 C 0 ≤ 18(1 -t) ψ t C 0 + 1 (5.1) hold for all t ∈ [t 0 , 1], where t 0 ∈ [0, 1) satises f ω (t 0 ) = max [t0,1] f ω = D.
P roof . The rst inequality is obvious. Now consider the identity

h ωt = -log ωn θt ωn -θ t -c t .
Then the equation (4.4) implies h ωt = (t -1)ψ t -c t , and so the integral normalization of h ωt implies the equality c t = log -X e (t-1)ψt ω n t , which gives |c t | ≤ (1 -t) ψ t C 0 . In conclusion we get the inequality

h ωt C 0 ≤ 2(1 -t) ψ t C 0 .
(5.2) Consider now the Kähler-Ricci ow equation

d ds U s = log Ω n Us Ω n + U s -h Ω ,
with initial data U 0 = 0 and Ω = ω t ∈ K. Set u t := U 1 and

ωt := ω t + i∂ ∂u t = ω + i∂ ∂(θ t + u t ) ∈ K .
The fact that the metric ω 1 = ω is Kähler-Einstein implies u 1 = 0. The identity

h ωt = -log ω + i∂ ∂(θ t + u t ) n ωn -θ t -u t -k t ,
combined with the equation (4.5) implies the equalities

1 = - X e hω t ωn t = - X e -θt-ut-kt ωn = - X e -kt-ut+(t-1)ψt ω n t ,
which gives the estimate

|k t | ≤ u t C 0 + (1 -t) ψ t C 0 .
(5.3) Set η t := θ t + u t + k t ∈ P ω . We have ωηt = ωt . The inequality (5.3) implies η 1 = 0. We have the obvious identity

-h ωt = log ωn ηt ωn + η t .
(5.4)

We will prove in the sequel the following lemma.

Lemma 7 The inequality

u t C 0 ≤ 2 h ωt C 0 hold for all t ∈ [0, 1]. Moreover let τ ∈ [0, 1) such that ω/2 ≤ ωτ ≤ 2ω. (such τ always exist since ω1 = ω.)
Then there exist a constant B = B(ω) > 1 depending only on ω such that

h ωτ C 0, 1/2 ω ≤ B(1 -τ ) 1-α 1 + h ωτ C 0 α .
(5.5)

Then using the inequality (5.2) we get u t C 0 ≤ 4(1 -t) ψ t C 0 , and so the inequality (5.3) implies

|k t | ≤ 5(1 -t) ψ t C 0 .
In conclusion we get the estimate

Osc(θ t )/2 ≤ θ t C 0 ≤ u t C 0 + |k t | + η t C 0 ≤ 9(1 -t) ψ t C 0 + η t C 0 .
In order to prove the estimate η t C 0 < 1/2 we consider the map

Φ : P 2, 1/2 ω -C 0, 1/2 (X, R) η -→ log ωn η ωn + η .
Its Frechet derivative at η = 0 is the map

DΦ(0) : C 2, 1/2 (X, R) -C 0, 1/2 (X, R) f -→ 1 2 ∆ ω f + f ,
which is an isomorphism of Banach spaces. By the Inverse function theorem we deduce the existence of ε = ε(ω) ∈ (0, 2) and δ = δ(ω) ∈ (0, 1/2) such that for all h ∈ C 0, 1/2 (X, R) with h C 0, 1/2 ω < ε there exist a unique potential

η ∈ P 2, 1/2 ω ∩ B δ (0) such that Φ(η) = h. Moreover η C 2, 1/2 ω < δ.
Claim 1 Set D := ε/(2B) and let t 0 ∈ [0, 1) the time dened in the statement of the proposition 5.1. Then

η t C 2, 1/2 ω < δ for all t ∈ [t 0 , 1].
P roof . We assume the contrary. Since η 1 = 0 there exist a τ ∈ [t 0 , 1) such that

η τ C 2, 1/2 ω = δ < 1/2 and η t C 2, 1/2 ω < δ for all t ∈ (τ, 1] .
In particular -ω/2 ≤ i∂ ∂η τ ≤ ω/2, i.e ω/2 ≤ ωητ = ωτ ≤ 2ω. Then by applying the estimate (5.5) of lemma 7 and the estimate (5.2) we nd

h ωτ C 0, 1/2 ω ≤ B(1 -τ ) 1-α 1 + 2(1 -τ ) ψ τ C 0 α .
So by denition of t 0 we get h ωτ C 0, 1/2 ω < ε . By applying the estimates of the Inverse function theorem to the identity (5.4) we deduce the contradiction

η τ C 2, 1/2 ω < δ.
This concludes the proof of the proposition 5.1 modulo the proof of lemma 7 which we give in the next subsection.

Smoothing with the Kähler-Ricci Flow

Consider the Kähler-Ricci ow equation

d ds U s = log Ω n Us Ω n + U s -h Ω ,
with initial data U 0 = 0. Set Ω s := Ω + i∂ ∂U s , v s = Us and h s = h Ωs . Then h s = -v s + c s for some constant c s with c 0 = 0. In the following context the objects ∆ s , ∇ s , | • | s are dened respect to the evolving metric Ω s .

Lemma 8 The inequalities

|v s | ≤ e s h 0 C 0 ,
(5.6)

|v s | 2 + s|∇ s h s | 2 s ≤ e 2s h 0 2 C 0 ,
(5.7)

e -s ∆ s h s ≥ min X ∆ 0 h 0 , (5.8) 
holds for all s ≥ 0.

P roof . Dierentiating the Kähler-Ricci ow equation we get the evolving equation 2 vs = ∆ s v s + 2v s . By applying the maximum principle we get (5.6). Using the identity ∆v 2 = 2|∇ v| 2 + 2v∆ v we get

2 ∂ ∂s v 2 s = ∆ s v 2 s -2|∇ s v s | 2 s + 4v 2 s .
(5.9)

Moreover we have the evolution formulas

2 ∂ ∂s |∇ s v s | 2 s = ∆ s |∇ s v s | 2 s -4|∇ 1,0 s ∂ v s | 2 s -4|∂ ∂ v s | 2 s + 2|∇ s v s | 2 s ≤ ∆ s |∇ s v s | 2 s + 4|∇ s v s | 2 s ,
(5.10)

2 ∂ ∂s ∆ s v s = ∆ 2 s v s + 2∆ s v s -4|∂ ∂ v s | 2 s ≤ ∆ 2 s v s + 2∆ s v s . (5.11)
By applying the maximum principle to (5.11) we get ∆ s v s ≤ e s max X ∆ 0 v 0 which implies (5.8). Moreover combining (5.9) with (5.10) we get

2 ∂ ∂s v 2 s + s|∇ s v s | 2 s ≤ ∆ s v 2 s + s|∇ s v s | 2 s + 4 v 2 s + s|∇ s v s | 2 s ,
which implies (5.7) by the maximum principle.

Lemma 9 Assume that the initial metric Ω 0 ∈ 2πc 1 satises Ric(Ω 0 ) > τ Ω 0 for some τ ∈ [0, 1) and ω/2 ≤ Ω 1 ≤ 2ω. Set p = 2n and H := h 1 --X h 1 Ω n 1 . then there exist a constant C > 0 depending only on ω such that

H C 0 ≤ C(1 -τ ) 1/p h 0 1-1/p C 0 .
(5.12)

Remember that in the setting of lemma 7 we have Ω 0 = ω τ , Ω 1 = ωτ , h 0 = h ωτ and h 1 = h ωτ . P roof . The inequalities (5.6) and (5.7) of lemma 8 imply

H C 0 ≤ 2e h 0 C 0
and |∇ 1 H| 1 ≤ e h 0 C 0 . Then using the Sobolev inequality (see [START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère Equations[END_REF] lemma 2.22 pag 45) and the Poincarre inequality we deduce

H p+1 C 0 ≤ C S   X |H| p+1 Ω n 1 + X |∇ 1 H| p+1 1 Ω n 1   ≤ C S   H p-1 C 0 X |H| 2 Ω n 1 + (e h 0 C 0 ) p-1 X |∇ 1 H| 2 1 Ω n 1   ≤ C 1 h 0 p-1 C 0 X |∇ 1 H| 2 1 Ω n 1 .
(5.13)

The Sobolev and Poincarre constants depends only on ω since the metric Ω 1 is uniformly equivalent to ω. The assumption Ric(Ω 0 ) > τ Ω 0 implies ∆ 0 h 0 > 2n(τ -1). Then the inequality (5.8) implies -∆ 1 H < 2ne(1τ ). So we deduce

X |∇ 1 H| 2 1 Ω n 1 = - X H∆ 1 H Ω n 1 = X H -min X H (-∆ 1 H) Ω n 1 ≤ 2ne(1 -τ ) X H -min X H Ω n 1 ≤ C(1 -τ ) H C 0 .
Combining this with the inequality (5.13) we deduce

H p C 0 ≤ C(1-τ ) h 0 p-1
C 0 , which is the inequality (5.12).

P roof of the lemma 7. The proof of this lemma is a very slight modication of a Tian's computation [START_REF] Tian | Kähler-Einstein metrics with positive scalar curvature[END_REF] pointed out recently in [P-S-S-W]. By integrating from 0 to 1 the inequality -e s h 0 C 0 ≤ Us ≤ e s h 0 C 0 , (which is (5.6)) we get |U 1 | ≤ 2 h 0 C 0 , which is the inequality |u t | ≤ 2 h ωt C 0 of lemma 7. Let x, y ∈ X and let d 1 (x, y) be the distance between x and y with respect to the metric Ω 1 . Set δ := 1/2n. If d 1 (x, y) ≥ (1τ ) δ (1 + h 0 C 0 ) -δ , then the inequality (5.12) implies

|h 1 (x) -h 1 (y)| d 1 (x, y) 1/2 ≤ 2 H C 0 (1 -τ ) -δ/2 (1 + h 0 C 0 ) δ/2 ≤ C(1 -τ ) 1/p-δ/2 (1 + h 0 C 0 ) 1-1/p+δ/2 = C(1 -τ ) 1-α (1 + h 0 C 0 ) α .
If d 1 (x, y) < (1τ ) δ (1 + h 0 C 0 ) -δ instead, then we use the estimate (5.7) of lemma 8, |∇ 1 H| 1 ≤ e h 0 C 0 to get

|h 1 (x) -h 1 (y)| d 1 (x, y) 1/2 ≤ d 1 (x, y) 1/2 max X |∇ 1 H| 1 ≤ C(1 -τ ) δ/2 (1 + h 0 C 0 ) -δ/2+1 = C(1 -τ ) 1-α (1 + h 0 C 0 ) α .
So in both cases we get the same estimate. Now the integral normalization X e h1 Ω n 1 = X Ω n 1 implies that h 1 change signs, and thus

h 1 C 0 ≤ Osc(h 1 ) = Osc(H) ≤ 2 H C 0 .
Then using (5.12) we get

h 1 C 0 ≤ C(1 -τ ) 1/p h 0 1-1/p C 0 ≤ C(1 -τ ) 1-α (1 + h 0 C 0 ) α ,
which concludes the proof of the lemma 7.

6 Proof of the properness of the K-energy

We will prove now the inequality ν ω (ϕ) ≥ AJ ω (ϕ) -B for all potentials ϕ ∈ P ω ∩ Λ ⊥ ω . We start by observing that the equation (4.2) can also be written in the form

Ric(ω t ) = ω t -(1 -t)i∂ ∂ψ t .
By taking the trace we get Sc(ω t ) = 2n -(1t)∆ t ψ t . Plugging this in (1.5) and using (1.4) we get the well known formula

d dt ν ω (ψ t ) = -(1 -t) d dt G ω (ψ t ) . (6.1)
Set ν(t) := ν ω (ω t ) ≡ ν ω (ψ t ). By integrating the equality (6.1) from t to 1 we get the identity

ν(1) -ν(t) = (1 -t)G(t) - 1 t G .
(6.2)

For t = 0 we get

ν(1) = ν(0) + G(0) - 1 0 G .
The equation (4.1) for t = 0 implies ν(0) + G(0) = -X h ω ω n . Then the integral normalization - X e hω ω n = 1, implies ν(0) + G(0) ≤ 0. So we get ν(1) ≤ -

1 0 G = - t 0 G - 1 t G ≤ - 1 t G .
Then the monotonicity of the function G implies ν( 1) So using this claim and the inequality (1.2) we get

≤ (t -1)G(t) for all t ∈ [0, 1]. Using the fact that ν(1) = ν ω (ω) = -ν ω (ω) = -ν ω (ϕ) we get the inequality ν ω (ϕ) ≥ (1 -t)G(t)
ν ω (ϕ) ≥ (1 -t) [G(1) -n Osc(ψ t -ψ 1 )] ≥ (1 -t) I ω (ψ 1 ) n + 1 -n Osc(ψ t -ψ 1 ) .
It is easy to see that I ω (ψ 1 ) = I ω (ϕ). In conclusion we get the estimate

ν ω (ϕ) ≥ (1 -t) J ω (ϕ) n + 1 -n Osc(ψ t -ψ 1 ) , (6.3) 
for all t ∈ [0, 1]. We prove now an other useful estimate. Using the cocycle identity for the K-energy and the identity (6.2) we have

ν ω (ψ t -ψ 1 ) = ν(t) -ν(1) = 1 t G -(1 -t)G(t) ≤ (1 -t)[G(1) -G(t)] .
In the last inequality we have use the monotonicity of the function G. Combining this with the claim 2 we get the inequality ν ω (ψ tψ 1 ) ≤ n(1t) Osc(ψ tψ 1 ) .

(6.4)

The fact that ω t = ω + i∂ ∂(ψ tψ 1 ) allows us to apply the lemma 3 with metric ω and potential ψ tψ 1 . So we get for all t ∈ [1/2, 1] the estimate Osc(ψ tψ 1 ) ≤ (n + 1) J ω (ψ tψ 1 ) + C , (6.5)

where C > 0 is a constant depending only on ω. Then the inequalities (6.3) and (6.5) will allows to conclude provided we prove the following proposition.

Proposition 6.1 There exists constants C, c > 0 (depending only on ω) and t

′ ≥ 1/2, 1 -t ′ ≥ c such that J ω (ψ t ′ -ψ 1 ) ≤ C.
Before proving this proposition we prove the following weaker version of theorem 2.

Proposition 6.2 There exists constants C 1 , C 2 > 0 depending only on ω such that the estimate

ν ω (ϕ) ≥ C 1 J ω (ϕ) (2 Osc(ϕ) + 1) α -C 2 (6.6)
hold for all potentials ϕ ∈ P ω . P roof . By denition of t 0 in the proposition 5.1 we get 2 α (1

-t 0 ) ψ t0 α C 0 ≤ D.
The fact that 1/α < 2 implies (1t 0 ) 2 ψ t0 C 0 ≤ D 1/α . Hence from the inequality (5.1) we get

(1 -t 0 ) Osc(ψ t0 -ψ 1 ) ≤ 18(1 -t 0 ) 2 ψ t0 C 0 + 1 ≤ C ′ 2 ,
which combined with the inequality (6.3) gives

ν ω (ϕ) ≥ 1 -t 0 n + 1 J ω (ϕ) -C 2 . (6.7) Set δ := min{1/18 , 2 -α 1-α D 1 1-α } > 0 .
We can assume 1t 0 ≤ δ otherwise we are done. This implies the inequality (1t 0 ) ψ t0 C 0 ≥ 1/2. In fact if not the denition of t 0 implies

2 -α 1-α D 1 1-α < 1 -t 0 .
Then the denition of t 0 implies the inequality D ≤ 2 2α (1t 0 ) ψ t0 α C 0 , giving

1 -t 0 ≥ C/ ψ t0 α C 0 .
So we deduce by (6.7) the estimate

ν ω (ϕ) ≥ C 1 J ω (ϕ) ψ t0 α C 0 -C 2 .
(6.8)

Using the second inequality in the estimate (5.1) and the assumption

1 -t 0 ≤ δ ≤ 1/18 we get ψ t0 C 0 ≤ 2 ψ 1 C 0 + 1. But ψ 1 C 0 ≤ Osc(ψ 1 ) = Osc(ϕ)
since ψ 1 change signs. So we get the estimate ψ t0 C 0 ≤ 2 Osc(ϕ) + 1, which combined with (6.8) allows to deduce (6.6).

P roof of the P roposition (6.1). Set J(t) := J ω (ψ tψ 1 ). Then applying the estimate (6.6) to the potential ψ tψ 1 ∈ P ω and using (6.5) we deduce for all t ∈ [1/2, 1] the inequality

CJ (J + 1) α -C 2 ≤ ν ω (ψ t -ψ 1 ) ,
with C > 0 depending only on ω. Combining this with the estimates (6.4) and (6.5) we get for all t ∈ [1/2, 1] the estimate

CJ (J + 1) α -C 2 ≤ n(n + 1)(1 -t)J + C 3 (1 -t) ,
which can also be written as

J (J + 1) α [C -n(n + 1)(1 -t)(J + 1) α ] ≤ C 3 (1 -t) + C 2 . (6.9)
We can assume the existence of t

′ ∈ [1/2, 1] such that n(n + 1)(1 -t ′ )(J(t ′ ) + 1) α = C/2 . (6.10) In fact if not n(n + 1)(1 -t)(J(t) + 1) α < C/2 , for all t ∈ [1/2, 1].
In particular for t = 1/2 this gives J(1/2) ≤ C 4 and we will be done. So assuming (6.10) we deduce J(t ′ ) ≤ C 5 by (6.9). Combining this with (6.10) we get 1t ′ = C 6 /(J(t ′ ) + 1) α ≥ c > 0.

6.1 On the existence of Kähler-Einstein metrics.

By using directly the K-energy functional we can give a rather direct proof of the following result due to Tian [START_REF] Tian | Kähler-Einstein metrics with positive scalar curvature[END_REF].

Theorem 6 Let X be a Fano manifold, G be a compact maximal subgroup of the identity component of the group of automorphisms of X and ω ∈ 2πc 1 a G-invariant Kähler metric. Suppose that the K-energy ν ω is proper in the space of G-invariant Kähler metrics. Then X admits a G-invariant Kähler-Einstein metric.

P roof . The solutions ψ t t ∈ [0, τ ) of the complex Monge-Ampère equation (4.1) are G-invariant since ω is G-invariant. Moreover along the solutions of (4.1) the K-energy has the expression .11) Plugging this in the identity (6.1) we get the identity

ν ω (ψ t ) = -t - X ψ t ω n t -G ω (ψ t ) + - X h ω ω n . ( 6 
d dt   t - X ψ t ω n t + tG ω (ψ t )   = G ω (ψ t ) ≥ 0 ,
which implies that the function inside the brackets is nondecreasing and so t -X ψ t ω n t + tG ω (ψ t ) ≥ 0 .

(6.12)

Then using the expression (6.11) we get ν ω (ψ t ) ≤ (t -1)G ω (ψ t ) ≤ 0. Then the properness of the K-energy implies I ω (ψ t ) ≤ C and so Osc(ψ t ) ≤ C/t by lemma 3.

Tian's α invariant. Let ω ∈ 2πc 1 , α > 0 and set C ω (α) := sup ϕ∈Pω X e -α(ϕ-max ϕ) ω n .

We remind the following well known fact [Hör].

Theorem 8 Over a Fano manifold X of complex dimension n, the Kähler-Ricci ow d dt ω t = ω t -Ric t = i∂ ∂ φt satises the uniform estimates | φt |, |∇ t φt | t , |∆ t φt |, Diam t (X), Sc t ≤ C, where the Ricci potential φt is normalized by the condition -X e -φt ω n t = 1.

So combing Perelman's uniform estimate | φt | ≤ C with the uniform bound 0 ≤ J ω (ϕ t ) ≤ C deriving from the properness of the K-energy (which is decreasing along the ow) and with the C 0 -uniform estimate of the theorem 4 in [Pal-2] (see also [Ti-Zh]), we infer the C 0 -uniform estimate |ϕ t + c t | ≤ C. Then the C 2 and C 3 -uniform estimates

|∂ ∂ϕ t | C 0 (X) , |∇ 1,0 ω ∂ ∂ϕ t | C 0 (X) ≤ C ,
for the Kähler-Ricci ow [Cao], [Pal-2], imply that the (7.

2)

The right hand side of this equation is also uniformly bounded in C α -norm at least. By the regularity theory for parabolic equations [L-S-U] we deduce that the functions (ξ.ϕ t ) t≥0 are uniformly bounded in C 2,α -norm. So we obtain the uniform estimate ϕ t + c t C 3,α ω ≤ C for all t ≥ 0. This implies that the coecients of the Laplacian ∆ t and the right hand side of the equation (7.2) are uniformly bounded in C 1,α -norm at least. By iteration we get the uniform estimates ϕ t + c t C k,α ω ≤ C k,α for all t ≥ 0. We remind now that along the Kähler-Ricci ow hold the identity

d dt ν ω (ϕ t ) = -- X |∂ φt | 2 t ω n t =: -f (t) ,
which implies the convergence of the integral

+∞ 0 dt - X |∂ φt | 2 t ω n t = ν ω (ϕ 0 ) -lim T →+∞ ν ω (ϕ T ) ≤ ν ω (ϕ 0 ) + C < +∞
by the lower bound of the K-energy. Combining the identity (3.12) with the Stokes formula and Perelman's theorem 8 we deduce

4 X |∂ ∂ φt | 2 t ω n t = X (∆ t φt ) 2 ω n t ≤ C , (7.3) 
for all times t ≥ 0. By time deriving the Kähler-Ricci ow equation (7.1) we deduce 2 φt = ∆ t φt + 2 φt + 2 ċt .

(7.4) By deriving the function f , using the identities (7.4), (3.12) and the Stokes formula we get

ḟ (t) = 2n - X i∂ φt ∧ ∂ φt ∧ ω n-1 t + n(n -1) - X i∂ φt ∧ ∂ φt ∧ i∂ ∂ φt ∧ ω n-2 t = 2 - X |∂ φt | 2 t ω n t + n - X i∂∆ t φt ∧ ∂ φt ∧ ω n-1 t -n(n -1) - X φt (i∂ ∂ φt ) 2 ∧ ω n-2 t = 2 - X |∂ φt | 2 t ω n t - 1 2 - X (∆ t φt ) 2 ω n t + - X φt |∂ ∂ φt | 2 t ω n t - 1 4 - X φt (∆ t φt ) 2 ω n t .
Then Perelman's theorem 8 combined with the estimate (7.3) implies the uniform estimate | ḟ (t)| ≤ C for all times t ≥ 0. So the function f : [0, +∞) → [0, K] satises +∞ 0 f (t) dt < +∞ and | ḟ (t)| ≤ C, t ≥ 0. But this implies the existence of the limit lim t→+∞ f (t) = 0. In fact by contradiction assume there exist an ε > 0 and a sequence of times (t j ) ⊂ [0, +∞), t j → +∞ such that f (t j ) > ε. Dene r j := sup{r > 0 | f | (t j -r,t j +r) > ε/2} .

Then the equality f (t j ± r j ) = ε/2 hold for at least one of the signs "+, -" and the integral condition +∞ 0 f (t) dt < +∞ implies r j → 0. Moreover for at least one of the signs "+, -"

0 < ε 2r j < f (t j ) -f (t j ± r j ) r j = | ḟ (τ j )| ,
with τ j ∈ (t jr j , t j + r j ), which contradicts the uniform bound | ḟ (t)| ≤ C. By the other hand the uniform estimate ϕ t + c t C h,α ω ≤ C h,α , h ≥ 3 implies that for every sequence t j → +∞ there exist a subsequence (t k ) k such that the sequence (ϕ t k + c t k ) k converges to a potential ϕ ∞ ∈ P h,α ω in the C h,α -topology. Moreover we deduce the existence of the limits By elliptic regularity the solution ϕ ∞ is smooth. Moreover ωϕ∞ = ω by the uniqueness of the Kähler-Einstein metric in our case. This implies the convergence of the limit lim t→+∞ ω t = ω in the smooth topology.

8 Appendix. A proof of the short time existence of the Kähler-Ricci ow equation.

We will use some elements of abstract parabolic theory in a similar spirit as in [Ch-He].

Short time existence and uniqueness of fully nonlinear parabolic equations.

We remind here some basic facts about the short time existence and uniqueness of abstract fully nonlinear parabolic equations. See for example [Ang], [Lun]. Let T > 0, I := [0, T ], E 0 be a Banach space and E 1 ⊂ E 0 be a dense subvector space equipped with a Banach norm such that the embedding E 1 ֒→ E 0 is continuous. We dene also the Banach space E 0 (I) := C 0 (I, E 0 ) and An operator A ∈ L(E 1 , E 0 ) can be considered as an unbounded operator on E 0 with domain E 1 . It can happen that A ∈ L(E 1 , E 0 ) seen as an unbounded operator on E 0 , is closed and generates a strongly continuous analytic semigroup denoted by (e tA ) t≥0 ⊂ L(E 0 , E 0 ). We will note by A(E 1 , E 0 ) the subset of L(E 1 , E 0 ) for which this property holds. It is well known that A(E 1 , E 0 ) is open in L(E 1 , E 0 ) and (e tA ) t≥0 ⊂ L(E 0 , E 1 ). Let C ra the real analytic class. It is easy to see that if A ∈ A(E 1 , E 0 ), the function t → e tA x belongs to the space C 0 ([0, +∞), E 0 ) ∩ C ra ((0, +∞), E 0 ) ∩ C 0 ((0, +∞), E 1 ) , if

x ∈ E 0 and to C ra ((0, +∞), E 0 ) ∩ C 0 ([0, +∞), E 1 ) , if x ∈ E 1 . For any A ∈ A(E 1 , E 0 ) we dene the bounded operator

 : E 1 (I) -→ E 0 (I) ⊕ E 1 ,
by Â(u) := ( u -Au, u(0)) and the set M(E 1 , E 0 ) ⊂ A(E 1 , E 0 ) of operators A such that  is an isomorphism. In other words, M(E 1 , E 0 ) contains those innitesimal generators A of strongly continuous analytic semigroups for which the problem

u(t) -A u(t) = f (t) , t ∈ [0, 1] u(0) = x ,
has a unique solution u ∈ E 1 (I) for all f ∈ E 0 (I) and x ∈ E 1 . In this case the solution is given by the "variation of constants formula" u(t) = e tA x + t 0 e (t-s)A f (s) ds =: e tA x + (K A f )(t) .

An operator A ∈ A(E 1 , E 0 ) belongs to M(E 1 , E 0 ) if and only if K A E 0 (I) ⊂ E 1 (I). It is also well known that M(E 1 , E 0 ) does not depend on the interval I ⊂ [0, +∞). With this notations we have the following short time existence and uniqueness theorem for abstract fully nonlinear parabolic equations [Ang].

Theorem 9 Let U ⊂ E 1 be an open set and ϕ : U → E 0 be a map of class C 1 such that the Dϕ(x) ∈ M(E 1 , E 0 ) for all x ∈ U . Then for all x ∈ U there exist T > 0 such that the problem u(t) = ϕ(u(t)) , t ∈ I := [0, T ] u(0) = x , has a unique solution u ∈ E 1 (I).

Continuous interpolation spaces.

The interpolation space theory is very usefull in order to prove that many interesting operators belongs to M(E 1 , E 0 ). We remind here some very basic concepts. Let θ ∈ (0, 1) and set İ := (0, T ]. We dene the Banach spaces The fact that for all u ∈ E θ 1 (I) there exist a constant C > 0 such that u(t) E0 ≤ C/t -θ on İ implies the existence of u(0) := u(T ) -T 0 u(t) dt ∈ E 0 . We dene the interpolation space of the couple E := (E 1 , E 0 ) as the Banach space

E θ := x ∈ E 0 | ∃u ∈ E θ 1 (I) : x = u(0) ,
equipped with the norm

x E θ := inf u E θ 1 (I) | u ∈ E θ 1 (I) : x = u(0) .
Moreover E 1 E θ = E θ . It is well known that if A ∈ A(E 1 , E 0 ) with type(A) < 0 then

E θ = x ∈ E 0 | sup t>0 t θ Ae tA x E0 < +∞ , lim t→0 + t θ Ae tA x E0 = 0 ,

  ω, k and by construction the kernel of the operator

  for all t ∈ [0, 1]. We remind the following well known fact. (See [Ti2] for example.) Claim 2 The inequality |G ω (ϕ) -G ω (ψ)| ≤ n Osc(ϕψ), holds for any Kähler metric ω and any potentials ϕ, ψ ∈ P ω .

  and ∂ψ = lim k→+∞ ∂ φt k in the C h-3,α -topology at least. Then the existence of the limit lim t→+∞ f (t) = 0 implies ψ = 0, by the integral normalization of φt . So we have a solution ϕ ∞ of class C h,α of the Einstein equation log ωn ϕ∞ ωn + ϕ ∞ = 0 .

E 1

 1 (I) := C 0 (I, E 1 ) ∩ C 1 (I, E 0 ) , equipped with the Banach norm u E1(I) := max t∈I ( u(t) E1 + u(t) E0 )

  u ∈ C 0 ( İ, E 1 ) ∩ C 1 ( İ, E 0 ) | lim t→0 + t θ ( u(t) E1 + u(t) E0 ) = 0 , t∈ İ t θ ( u(t) E1 + u(t) E0 ) .

  Then by applying Yau's C 2

and Calabi's C 3 -uniform estimates to the equation (4.16) we deduce the uniform estimate θ k,t C 2,α ω ≤ C. For all t ∈ [0, 1] consider the set

  (1, 1)-forms (∂ ∂ϕ t ) t≥0 are uniformly bounded in C α (X)-topology. Thus the operator ∆ t is uniformly elliptic with coecients uniformly bounded in C α -norm at least. Set

t := ∆ t -2 ∂ ∂t .

Deriving the Kähler-Ricci ow equation (7.1) respect to a holomorphic vector eld ξ ∈ O(T X )(U ) over an open set U , (see

 

eq. 11 ) we obtain t (ξ.ϕ t ) + 2ξ.ϕ t = (Tr ω -Tr t )(L ξ ω) .

Proposition 6.3 It allways exist α > 0 such that C ω (α) < +∞.

This allows to dene the invariant α(X) := sup{α > 0 | C ω (α) < +∞}. At this point we can give a simple proof of the following result due to Tian [START_REF] Tian | On Kähler-Einstein metrics on certain Kähler manifolds with c 1 (M ) > 0[END_REF].

Theorem 7 Let X be a Fano manifold of complex dimension n such that α(X) > n n+1 . Then X admits a Kähler-Einstein metric.

P roof . Let ψ t t ∈ [0, τ ) be the solutions of the complex Monge-Ampère equation (4.1). The inequality (6.12) implies

(6.13) Take α ∈ ( n n+1 , α(X)). Then by using the Monge-Ampère equation (4.1) we get

So by the concavity of the log function

We deduce

Combining this with the inequality (6.13) we obtain

where µ := 1-α α n < 1, since α > n n+1 . Set γ := 1µ > 0. Then max X ψ t ≤ C/(γt). Combining this with (6.13) we deduce -- with ω t = ω+i∂ ∂ϕ t and normalization -X e -φt ω n t = 1. We remind the following fundamental result due to Perelman (see [Se-Ti] for a detailed proof). and an equivalent norm is x ′ E θ := sup t>0 t θ Ae tA x E0 . We remind now a fundamental construction due to Da Prato and Grisvard. Let F 1 ⊂ F 0 as before and A ∈ A(F 1 , F 0 ). We dene the Banach space

So in conclusion

equipped with the graph norm x F2 := x F1 + Ax F1 . In this way we get the continuous and dense embeddings F 2 ֒→ F 1 ֒→ F 0 . For θ ∈ (0, 1) we dene

With this notations we have the following fundamental theorem [Da-Gr].

Theorem 10 (Da Prato-Grisvard).

Short time existence of the Kähler-Ricci ow.

We apply now the previous considerations to our setting. We remind that the space of smooth functions is not dense in the Hölder space C k,α . One denes the little Hölder space c k,α to be the closure of the space of smooth functions in the Hölder space C k,α . For k ≤ l and 0 < α ≤ β < 1 we have the continuous and dense embedding of Banach spaces c l,β ֒→ c k,α . There is a Banach space isomorphism (see [Tri])

for all θ ∈ (0, 1) such that θl + (1θ)k + θβ + (1θ)α is not an integer. For all ω ∈ K the operator

is strictly elliptic. Then a result in [Lun] implies A ∈ A(c k+2,α , c k,α ). We show now that A ∈ M(c k+2,α , c k,α ). In fact consider 0 < γ < α < 1 and dene θ := (αγ)/2, F 0 := c k,γ , F 1 := c k+2,γ . In this case hold the Banach space equality F 2 = c k+4,γ since the map ∆ ω : c k+2,α → c k,α is an isomorphism. Moreover we have the Banach space isomorphisms

Then the Da Prato-Grisvard theorem implies the required conclusion on A. The Frechet derivative at a point ϕ of the smooth map

is given by the map

where ω ′ := ω ϕ ∈ K and DΦ(ϕ) ∈ M(c k+2,α , c k,α ), by the previous considerations. Then theorem 9 implies the existence of a unique solution
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of the Kähler-Ricci ow equation φt = log

ω n + ϕ t -h ω with initial data ϕ 0 ∈ P ω . The fact that the map Φ is smooth implies

by classic parabolic regularity (see [Lun] prop 8.4.5 pag 312). Moreover the fact that the initial data ϕ 0 is smooth implies that the relation (8.1) hold for k + 2 and ε ′ ∈ (0, ε]. By time deriving the Kähler-Ricci ow equation we get the identity φt = 1 2 ∆ t φt + φt .

(8.2)

Then the regularity of the Green formula for the Laplacian ∆ t implies ε ′ = ε and so

But using again the equation ( 8.2) we deduce

In general by time deriving k-times the Kähler-Ricci ow equation we get the identity

where f k is a smooth function over an open set of (Λ 1,1 T * X ) k and ϕ (k) t := ∂ k t ϕ t . This implies the smoothness of the unique solution ϕ : [0, ε) → P ω of the Kähler-Ricci ow over the interval [0, ε).

The long time existence of the Kähler-Ricci ow follows by combining the short time existence just proved with the arguments in [Cao] or . We infer the existence of a unique and smooth solution ϕ : [0, +∞) → P ω of the Kähler-Ricci ow equation with ω ∈ K and with initial data ϕ 0 ∈ P ω .