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Abstract—This paper introduces and assesses a new method
to allocate memory for applications implemented on a shared
memory Multiprocessor System-on-Chip (MPSoC).

This method first consists of deriving, from a Synchronous
Dataflow (SDF) algorithm description, a Memory Exclusion
Graph (MEG) that models all the memory objects of the applica-
tion and their allocation constraints. Based on the MEG, memory
allocation can be performed at three different stages of the
implementation process: prior to the scheduling process, after an
untimed multicore schedule is decided, or after a timed multicore
schedule is decided. Each of these three alternatives offers a
distinct trade-off between the amount of allocated memory and
the flexibility of the application multicore execution. Tested use
cases are based on descriptions of real applications and a set of
random SDF graphs generated with the SDF For Free (SDF3)
tool.

Experimental results compare several allocation heuristics
at the three implementation stages. They show that allocating
memory after an untimed schedule of the application has been
decided offers a reduced memory footprint as well as a flexible
multicore execution.

I. INTRODUCTION

During the design of an embedded system, memory issues
strongly impact the system quality and performance, as the
area occupied by the memory can be as large as 80% of the
chip and may be responsible for a major part of its power
consumption [1]. Consequently, memory allocation plays a
crucial role in the implementation process of an application
on a Multiprocessor System-on-Chip (MPSoC) and new allo-
cation techniques are needed to accommodate the increasing
complexity of embedded systems where multiple applications
are executed concurrently on a single MPSoC.

This paper focuses on memory allocation of applications
described by a Synchronous Dataflow (SDF) Model of Com-
putation (MoC) [2]. A SDF MoC models the application as
a directed graph of computational entities named actors that
exchange data via First In, First Out data queues (FIFOs).
Each actor is associated with fixed firing rules specifying its
behavior in terms of data token production and consumption.
A token is an abstract representation of a data quantum,
independent of its size. Actors themselves are “black boxes”
of the model and may be implemented in any programming
language. Firing an actor consists of starting its preemption-
free execution. An example of an SDF graph with 5 actors
is given in Figure 1. Edges are labeled with their token
production and consumption rates. An edge with a black dot

signifies that initial tokens are present in the FIFO queue when
the system starts to execute. The number of initial tokens is
specified by the xN label. Initial tokens are a semantic element
of the SDF MoC that makes communication possible between
successive iterations of the graph execution; they are often used
to pipeline applications described with SDF graphs [2].

A
20

B
10

C
50

200 100 150 150 D
40

50 50 E
30

25 50
7575

x75

Fig. 1. Synchronous Dataflow (SDF) graph

Multicore scheduling is composed of actor mapping,
scheduling and timing [3]. Mapping a graph consists of as-
signing the computation of each actor to a specific processing
element of the architecture. Scheduling consists of ordering the
firings of the actors assigned to each processing element. In a
timed schedule, not only the order of actor firings is fixed but
also the time at which each actor starts and ends its execution.
Multicore scheduling stages can be performed at compile time
or at runtime.

Section II of this paper presents existing memory allocation
techniques. Section III explains the preprocessing of the SDF
graph to reveal its memory characteristics. Then, Section IV
details the different implementation stages and Section V
presents a performance evaluation of our method. Finally,
Section VI concludes this paper and proposes directions for
future work.

II. RELATED WORK

Memory optimization for multicore systems has generally
been studied as a post-scheduling process. As such, the life-
times of the different memory objects of an application are de-
rived from scheduling and timing information. Minimization is
then achieved by allocating memory objects whose lifetimes do
not overlap in the same memory space. Common approaches
to perform the memory allocation are:

• Running an online allocation algorithm. Online allocators
assign memory objects one by one in the order in which
they arrive. The most commonly used online allocators
are the First-Fit (FF) and the Best-Fit (BF) algorithms
[4]. FF algorithm consists of allocating an object to the
first available space in memory that is sufficiently large to



store it. The BF algorithm works similarly but allocates
each object to the available space in memory whose size
is the closest to the size of the allocated object.

• Running an offline allocation algorithm [1], [5]. In con-
trast to online allocators, offline allocators have a global
knowledge of all memory objects requiring allocation,
thus making further optimizations possible.

• Coloring an exclusion graph that models the conflicting
memory objects [6].

• Using constraint programming [7] where memory con-
straints are used together with cost, resource usage and
execution time constraints.

The novelty of our memory allocation method is that it
is applicable at three different stages of the implementation
process. Indeed, memory allocation can be performed before
scheduling, after the multicore scheduling process but without
actor timing information, or with a timed multicore schedule
of the graph actors. As shown in Section IV, these three
possibilities offer a trade-off between size of memory footprint
and flexibility of actor mapping and scheduling.

III. PREPROCESSING TOWARD MEMORY ALLOCATION

Before allocating an SDF graph in memory, a set of
transformations is applied to reveal and model its embedded
parallelism and its memory characteristics.

A. Transforming the Algorithm

The first transformation applied to the input SDF graph
to reveal parallelism is a conversion into a single-rate SDF
(srSDF) graph: a SDF graph where the production and con-
sumption rates on each FIFO are equal. Each vertex of the
srSDF graph corresponds to a single actor firing from the
SDF graph. This conversion is performed by computing the
topology matrix [2], by duplicating actors by their number
of firings, and by connecting FIFOs properly. For example, in
Figure 2, actors B, C, and D are each split in two instances and
new FIFOs are added to ensure the equivalence with the SDF
graph of Figure 1. An algorithm to perform this conversion
can be found in [8].

The second conversion consists of generating a Directed
Acyclic Graph (DAG) by isolating one iteration of the algo-
rithm. This conversion is achieved simply by ignoring FIFOs
with initial tokens in the srSDF. In our example, this approach
means that the feedback FIFO C2 → C1 which stores 75
initial tokens is ignored.
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Fig. 2. Single-rate SDF (Directed Acyclic Graph if dotpoint FIFO is ignored)
Dotpoint arrows depict new precedence relationships introduced by a schedule
of the DAG on an architecture with 2 cores.

In the context of memory analysis and allocation, these
transformations are applied to fulfill the following objectives:

• Expose data parallelism: Concurrent analysis of data paral-
lelism and data precedence gives information on the lifetime
of memory objects prior to any scheduling process. Indeed,
two FIFOs belonging to parallel data-paths may contain data
tokens simultaneously and are consequently forbidden from
sharing a memory space. Conversely, two single-rate FIFOs
linked with a precedence constraint can be allocated in the
same memory space since they will never store data tokens
simultaneously. In Figure 2 for example, FIFO A → B1 is a
predecessor to C1 → D1 . Consequently, these two FIFOs may
share a common address range in memory.

• Break FIFOs into shared buffers: In the SDF model, channels
carrying data tokens between actors behave like FIFO queues.
The memory needed to allocate each FIFO corresponds to the
maximum number of tokens stored in the FIFO during an
iteration of the graph. As this number of tokens depends on the
schedule of the actors, methods exist to derive a schedule that
minimizes the memory needed to be allocated to the FIFOs
[9]. However, in our method, the memory allocation can be
independent from scheduling considerations. It is for this rea-
son that FIFOs of undefined size before the scheduling step are
replaced with buffers of fixed size during the transformation
of the graph into a srSDF. In Figure 2, buffers linking two
actors will be written and read only once with a data token of
fixed size, which simplifies the memory allocation.

• Derive an acyclic model: Cyclic data-paths in an SDF graph
are an efficient way to model iterative or recursive calls to
a subset of actors. In order to use efficient static scheduling
algorithms [10], SDF models are often converted into DAGs
before being scheduled. Besides revealing data-parallelism,
this transformation makes it easier to schedule an application,
as each actor is fired only once per execution of the resulting
DAG. Similarly, in the absence of a schedule, deriving a DAG
permits the use of memory objects (communication buffers)
that will be written and read only once per execution of the
DAG. Consequently, before a memory object is written and
after it is read, its memory space will be reusable to store
other objects.

B. Extracting Memory Characteristics from the Algorithm

The DAG resulting from the transformations of an SDF
graph contains three types of memory objects

• Communication buffers: The first type of memory object,
which corresponds to the single-rate FIFOs of the DAG, are
the buffers used to transfer data between consecutive actors. In
our approach, we consider that the memory allocated to these
buffers is reserved from the execution start of the producer
actor until the completion of the consumer actor. This choice
is made to enable custom token consumption throughout actor
firing time. As a consequence, the memory used to store an
input buffer of an actor should not be reused to store an output
buffer of the same actor. In Figure 2, the 100 units of memory
used to carry data between actors A and B1 can not be reused,
even partially, to transfer data from B1 to C1 .

• Working memory of actors: The second type of memory
object corresponds to the maximum amount of memory allo-
cated by an actor during its execution. This working memory
represents the memory needed to store the data used during
the computations of the actor but does not include the input



buffer nor the output buffer storage. In our method, we assume
that an actor keeps an exclusive access to its working memory
during its execution. In Figures 1 and 2, the size of the working
memory associated with each actor is given by the number
below the actor name. This memory is equivalent to a task
stack space in an operating system.

• Feedback/Pipeline FIFOs: The last type of memory object
corresponds to the memory needed to store edges ignored as
a result of the transformation of a srSDF into a DAG. These
edges carry data between successive executions of the DAG
and must behave like FIFO queues.

C. Deriving a Memory Exclusion Graph (MEG)

Once an application has been transformed into a DAG
and all its memory objects have been identified, the last pre-
processing step of our allocation method consists of deriving
the MEG [11] used for memory allocation (Section IV).

A Memory Exclusion Graph (MEG) is an undirected
weighted graph denoted by G =< V,E,w > where:

• V is the set of vertices. Each vertex represents an indi-
visible memory object.

• E is the set of edges representing the memory exclusions.
• w : V → N is a function with w(v) the weight of a

vertex v. The weight of a vertex corresponds to the size
of the associated memory object.

• |S| the cardinality of a set S. |V | and |E| are respectively
the number of vertices and edges of a graph.

• δ(G) = 2·|E|
|V |·(|V |−1) the edge density of the graph corres-

ponding to the ratio of existing exclusions to all possible
exclusions.

Two memory objects of any type exclude each other (i.e.
they can not share the same memory space) if a schedule can
be derived from the DAG where both these memory objects
store data simultaneously. Some exclusions are directly caused
by the properties of the memory objects, such as exclusions
between input and output buffers of an actor. Other exclusions
result from the parallelism of an application, as is the case
with the working memory of actors from parallel data-paths
that might be executed concurrently.

The MEG presented in Figure 3 is derived from the SDF
graph of Figure 1. The complete MEG contains 18 memory
objects and 78 exclusions but, for clarity, only the vertices
corresponding to the buffers between actors (1st type memory
objects) are presented. The values printed below the vertices
names represent the weight w of the memory objects. Methods
to build the MEG are given in [11].
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Fig. 3. Memory Exclusion Graph (MEG). Crossed out exclusions are removed
when considering new precedence edges induced by the schedule of Fig. 2

D. Generating Memory Bounds from MEG

Memory bounds of an SDF graph are introduced in [11]
and used in this paper to assess allocation results. The MEG
of an application is built and analyzed in order to derive
two values that bound the amount of memory needed for
the allocation of all memory objects in memory (Figure 4).
For example, the memory required for the MEG allocation of
Figure 3 is between 525 and 725 memory units.
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Fig. 4. Memory Bounds

This bounding method, independent of timing and archi-
tecture constraints, can be used prior to allocation to verify
whether a targeted architecture has sufficient memory to run
an application. In the next section, we show that a MEG can be
updated to incorporate precedence information resulting from a
schedule thus allowing the reduction of the amount of allocated
memory.

IV. MEMORY ALLOCATION

Given an initial MEG constructed from a non-scheduled
DAG, we propose three possible implementation stages to
perform the allocation of this MEG in shared memory: prior
to any type scheduling process, after an untimed multicore
scheduling of actors, or after a timed multicore scheduling
of the application. The current section details the scheduling
flexibility resulting from the three alternatives.

A. Pre-scheduling Memory Allocation

The pre-scheduling memory allocation offers the greatest
flexibility of the three alternatives in terms of mapping and
scheduling. In this first alternative, the input MEG is allocated
in shared memory without being associated with any schedul-
ing or timing information.

As presented in Section III-C, the MEG models all possi-
ble exclusions that may prevent memory objects from being
allocated in the same memory space. As we will show in
Section IV-B, scheduling a DAG on a multicore architecture
always results in removing exclusions from its corresponding
MEG but never results in adding new exclusions. Hence, a
pre-scheduling MEG models all possible exclusions for all
possible multicore schedules of an application. Consequently a
compile-time allocation based on a pre-scheduling MEG will
never violate any exclusion for any valid multicore schedule
of this graph on any shared-memory architecture.

Since a compile-time memory allocation based on a pre-
scheduling MEG is compatible with any multicore schedule,
it is also compatible with any runtime schedule. The great
flexibility of this first allocation approach is that it supports any
runtime scheduling policy for the DAG and can accommodate
any number of cores that can access a shared memory.

A typical scenario where this pre-scheduling compile-time
allocation is useful is a multicore architecture implementation



which runs multiple applications concurrently. In such a sce-
nario, the number of cores used for an application may change
at runtime to accommodate applications with high priority or
those with high processing needs. The compile-time allocation
relieves runtime management from the weight of a dynamic
allocator while guaranteeing a fixed memory footprint for the
application.

The downside of this first approach is that, as shown in
the results of Section V, this allocation technique requires
substantially more memory than post-scheduling allocators.

B. Post-scheduling Memory Allocation

Post-scheduling memory allocation offers a trade-off be-
tween amount of allocated memory and multicore scheduling
flexibility. In this second alternative, the input MEG is updated
with information from a schedule of the corresponding DAG
before allocating the MEG in shared memory.

Scheduling a DAG on a multicore architecture introduces
an order of execution of the graph actors, which can be
seen as a new precedence relationship between actors. For
example, Figure 2 illustrates the new precedence edges that
result from scheduling the DAG on 2 cores. In this example,
Core1 executes actors B2 , C1 , D2 and E ; and Core2 executes
actors A, B1 , C2 and D1 . Adding new precedence edges to
a DAG results in decreasing the embedded parallelism of the
application. For example in Figure 2, the schedule of Core1
creates a new precedence relationship between C2 and D1 .

As presented in Section III-C, memory objects belonging
to parallel data-paths may have overlapping lifetimes [11].
Reducing the parallelism of an application results in creating
new precedence-paths between memory objects, thus prevent-
ing them from having overlapping lifetimes and removing ex-
clusions between them. Since all the parallelism embedded in
a DAG is explicit, the scheduling process cannot augment the
parallelism of an application and cannot create new exclusions
between memory objects. Figure 3 illustrates the updated MEG
resulting from the multicore schedule of Figure 2.

The advantage of post-scheduling compared to pre-
scheduling allocation is that updating the MEG greatly de-
creases its density which results in using less memory to
allocate the MEG (Section V).

Like pre-scheduling memory allocation, the flexibility of
post-scheduling memory allocation comes from its compat-
ibility with any schedule obtained by adding new prece-
dence relationships to the scheduled DAG. Indeed, adding
new precedence edges will make some exclusions useless
but it will never create new exclusions. Consequently, any
memory allocation based on the updated MEG of Figure 3
is compatible with a new schedule of the DAG that introduces
new precedence edges. For example, we consider a single core
schedule derived by combining schedules of Core1 and Core2
as follows A B2 , B1 , C1 , C2 , D2 , D1 and E . Updating the
MEG with this schedule would only result in removing the
following exclusions: AB2−B1C1 and C2B2−D1E .

The scheduling flexibility for post-scheduling allocation is
inferior to the flexibility offered by pre-scheduling allocation.
Indeed, the number of cores allocated to an application may
be only dynamically decreased for post-scheduling allocation

while pre-scheduling allocation allows the number of cores to
be both dynamically increased and decreased.

C. Timed Memory Allocation

Timed memory allocation offers the least scheduling flex-
ibility of the three alternatives. However, this approach is the
one that yields the best performance in terms of memory
allocation. In this third alternative, the MEG is associated with
information from a timed schedule.

A timed schedule is a schedule where not only the ex-
ecution order of the actors is fixed, but also their absolute
starting and ending times. Such a schedule can be derived if
the exact, or the worst-case execution times of all actors are
known at compile time [12]. Following assumptions made in
Section III-B, the lifetime of a memory object begins with the
execution start of its producer, and ends with the execution end
of its consumer. In the case of working memory, the lifetime
of the memory object is equal to the lifetime of its associated
actor. Using a timed schedule, it is thus possible to update a
MEG so that exclusions remain only between memory objects
whose lifetimes overlap.
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E FCore3

(a) Original 3 cores
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A BCore1
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F

(b) 2 cores reschedule with
post-scheduling allocation
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B F

(c) 2 cores reschedule with timed
allocation

Fig. 5. Re-scheduling from 3 to 2 cores with no precedence between actors

Rescheduling a DAG with a timed memory allocation con-
sists of adding precedence edges between all actors with non-
overlapping lifetimes. As a consequence, the parallelism of the
application is greatly decreased, which leads to less efficient re-
scheduling possibilities. Figure 5(a) illustrates this issue with
an example where 6 actors, A to F , with no dependency
between them are scheduled on 3 cores. Figure 5(b) shows the
schedule obtained when rescheduling the 6 actors on 2 cores
in the case of post-scheduling memory allocation where actor
order from the original schedule must be respected. Figure 5(c)
shows the schedule obtained when rescheduling the 6 actors
on 2 cores in the case of timed memory allocation where
time precedence from the original schedule must be respected.
Because E must end its execution before B and D are started,
this schedule is longer than the schedule obtained with post-
scheduling allocation.

Because its MEG has the lightest density, timed allocation
has the best results in terms of memory size. However, its
reduced parallelism makes it the least flexible scenario in terms
of multicore scheduling. The results presented in the next
section illustrate the memory allocation efficiency offered by
the three implementation stages.

V. RESULTS

The three implementation stages presented in Section IV
were tested within the Preesm MPSoC rapid prototyping



framework [12]. For each case, three allocation algorithms
were tested to allocate the MEGs in memory: the First-Fit
(FF) and the Best-Fit (BF) algorithms [4], and the Placement
Algorithm (PA) algorithm introduced by DeGreef et al. in [1].
Two types of memory object orders were used in online
algorithms that allocate memory objects in order in which
they are received. In the Largest-First (LF) order, memory
objects are allocated in decreasing order of size. For post-
scheduling and timed allocations, we also tested the allocation
of the memory objects in scheduling order. This is equivalent
to using an online allocator at runtime.

srSDF graph Memory Exclusion Graph (MEG)

Nr Application Actors FIFOs |V | δpre δsch δtim Bmax

1 MPEG4 Enc. 74 143 143 0.80 0.60 0.50 2534479
2 H263 Enc.∗ 207 402 603 0.98 0.76 0.50 5238336
3 MP3 Dec.∗ 33 44 71 0.64 0.55 0.31 363104
4 PRACH 308 897 897 0.94 0.67 0.56 4518961
5 Sample Rate 624 1556 1289 0.50 0.22 0.03 1639

*: Actors of this graph have working memory

TABLE I. PROPERTIES OF THE TEST GRAPHS

The different algorithms and stages were tested on a set of
MEGs derived from SDF graphs of real applications. Table I
shows the characteristics of the tested graphs. The first three
entries of this table, namely MPEG4 Enc., H263 Enc., and
MP3 Dec., model standard multimedia encoding and decoding
applications. The Sample Rate graph models an audio sample
rate converter. The MPEG4 Enc., H263 Enc. and Sample Rate
graphs were taken from the SDF For Free (SDF3) example
database1. The PRACH graph models the preamble detection
part of the Long Term Evolution (LTE) telecommunication
standard [12]. Information on the working memory of actors
was only available for the MPEG4 Enc. and the MP3 Dec.
graphs. In Table I, columns δpre, δsch, and δtim respectively
correspond to the density of the MEG in the pre-scheduling,
post-scheduling, and timed stages. Bmax gives the upper bound
in Bytes for the memory allocation of the applications [11].

In order to complete these results, the different algorithms
were also tested on 45 SDF graphs that were randomly
generated with SDF31 tool. These 45 MEGs cover a wide range
of complexities with a number of memory objects |V | ranging
from 47 to 2208, and exclusion densities δ ranging from 0.03
to 0.98. For each stage, a table presents the performance of the
three allocators for each application. Performance is expressed
as a percentage corresponding to the amount of memory
allocated by the algorithm compared to the smallest amount
of memory allocated by all algorithms. So, 0% means that the
algorithm determined the best allocation. A positive percentage
value indicates the degree of excess memory allocated by an
allocator compared to the value of the Best Found column. The
Bmin column gives the lower memory bound found using the
heuristic presented in [11]

For each stage, a box-plot diagram presents performance
statistics obtained with all 50 graphs. For each allocator, the
following information is given: the leftmost and rightmost
marks are the best and worst performance achieved by the
allocator, left and right sides of the rectangle respectively are
inferior and superior to 75% of the 50 measured performances,

1SDF3 website: http://www.es.ele.tue.nl/sdf3

and the middle mark of the rectangle is the median value of
the 50 measured performances.

A. Pre-scheduling allocation

First-Fit (FF) Best-Fit (BF)

Nr Best Found Bmin LF LF PA [1]

1 988470 -3% +3% 0% +13%
2 2979776 0% +1% +1% 0%
3 144384 -3% +2% +2% 0%
4 2097152 0% 0% +1% +29%
5 347 -17% 0% +4% +18%

Bmin: Lower bound (Bytes) for the memory allocation of the application [11]
LF: Algorithm fed in Largest-First Order

TABLE II. PRE-SCHEDULING MEMORY ALLOCATION

Performances obtained for pre-scheduling allocation are
displayed in Table II and Figure 6. These results clearly show
that the FF-LF algorithm tends to generate a smaller footprint
than the other algorithms. Indeed, the FF-LF algorithm finds
the best allocation for 29 of the 50 graphs tested. When it
fails to find the best solution, it assigns only 1.35% more
memory, on average, than the Best Found allocation. Moreover,
the solution of the FF-LF is 4% superior, on average, to the
lower bound Bmin.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

FF-LF

BF-LF

PA [1]

Fig. 6. Performance of pre-scheduling allocation algorithms for 50 graphs.

Since the pre-scheduling allocation is performed at
compile-time, it is possible to execute all allocation algorithms
and keep only the best results. Indeed, in our 50 tests, the BF-
LF allocator found the best solution for 13 graphs and the PA
for 12 graphs.

B. Post-scheduling allocation

First-Fit (FF) Best-Fit (BF)

Nr Best Found Bmin LF Sch. LF Sch. PA [1]

1 861726 -3% 0% +6% +3% +6% +9%
2 1570240 -37% +0% +5% +2% +17% 0%
3 117184 -1% +8% +34% +8% +55% 0%
4 1365906 -16% 0% +51% +11% +51% +13%
5 185 -2% +1% 0% 0% +4% +5%

Sch.: Algorithm fed in Scheduling Order

TABLE III. POST-SCHEDULING MEMORY ALLOCATION

Table III and Figure 7 present the performance obtained
for post-scheduling allocation on a multicore architecture with
3 cores. Because the 50 graphs have very different degrees
of parallelism, mapping them on the same number of cores
decreases their parallelism differently and enables us to have
a wide variety of test cases. On average, updating MEGs with
scheduling information reduces their exclusion density by 39%
which in turns leads to a diminution of the amount of allocated
memory by 32%.

As for pre-scheduling allocation, the FF-LF is the most
efficient algorithm, finding the best allocation for 29 of the 50
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Fig. 7. Performance of post-scheduling allocation algorithms for 50 graphs.

graphs and allocating 1.74% more memory, on average, than
the Best Found solution for the remaining 21 graphs. Online
allocation algorithms fed in scheduling order present the worst
performance which was expected since online algorithms do
not exploit global knowledge of all memory objects.

C. Timed allocation

Performances obtained for timed allocation are presented
in Table IV and Figure 8. The FF-LF allocator is once again
the most efficient algorithm as it finds the best allocation for
31 of the 50 graphs, including all 5 real applications.

First-Fit (FF) Best-Fit (BF)

Nr Best Found Bmin LF Sch. LF Sch. PA

1 760374 -0% 0% +13% +0% +13% +13%
2 1243072 -0% 0% +28% +10% +48% +3%
3 111008 -3% 0% +3% 0% +3% +1%
4 1231968 -8% 0% +17% +14% +22% +26%
5 41 -10% 0% +5% +5% +2% +17%

TABLE IV. TIMED MEMORY ALLOCATION

The online allocators fed in scheduling order assign more
memory than the FF-LF algorithm for 38 graphs with up to
48% more memory being assigned. In the timed stage, online
allocators assign only 7% less memory, on average, than the
FF-LF algorithm in the post-scheduling stage. In 5 cases,
including the PRACH application, online allocators assign even
more memory in the timed stage than which was allocated by
the FF-LF algorithm in the post-scheduling stage. Considering
the O(nlogn) complexity of these online allocators [4], where
n is the number of allocated objects, using the post-scheduling
allocation is an interesting alternative. Indeed, using post-
scheduling allocation removes the computation overhead of
dynamic online allocation while guaranteeing a fixed memory
footprint slightly superior to that which could be achieved
dynamically.
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Fig. 8. Performance of timed allocation algorithms for 50 graphs.

On average, the Best Found timed allocation uses only 11%
less memory than the post-scheduling allocations and only

2.7% more memory than the minimum bound Bmin. Consid-
ering the small gain in footprint and the loss of flexibility
induced by this stage (Section IV), timed allocation appears to
be a good choice for systems with restricted memory resources
where flexibility is not important. However, for systems where
the memory footprint is important, but scheduling flexibility
is also desired, the post-scheduling allocation offers the best
trade-off. Finally for systems where a strong flexibility is
essential, the pre-scheduling allocation offers all the required
parallelism while ensuring a fixed memory footprint.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a new method to perform
memory allocation of applications described with SDF graphs.
In this method, memory allocation can be performed at three
distinct stages of the implementation process, each offering a
distinct trade-off between memory footprint and scheduling
flexibility. We show that using our method with the First-
Fit (FF) allocator fed in the Largest-First (LF) order pro-
vides smaller memory footprints that commonly used dynamic
online allocators. Furthermore, allocating memory after an
untimed schedule of the application has been decided is shown
to offer an efficient trade-off between memory footprint and
multicore execution flexibility.

Future work on this subject will include a study of the
throughput and latency obtained for the different stages of
memory allocation. An investigation of a runtime scheduler
design that exploits the scheduling flexibility offered by the
pre- and post-scheduling allocations is also planned.
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