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On the homogeneity at infinity of
the stationary probability for an affine random walk.

by Y. Guivarc’h, E. Le Page

Abstract

We consider an affine random walk on R. We assume the existence of a stationary proba-
bility ν on R and we describe the shape at infinity of ν, if ν has unbounded support. We
discuss the connections of the result with geometrical or probabilistic problems.

I - Introduction

Let G be the affine group of the line. For g ∈ G, x ∈ R, we write gx = a(g)x + b(g) with
a(g) ∈ R

∗, b(g) ∈ R. Let µ be a probability on G. We denote by P the Markov operator on
R defined by Pϕ(x) =

∫
ϕ(gx)µ(dg) where ϕ is a bounded Borel function. Our hypothesis

Hµ is stated below and we observe that Hµ(1) and Hµ(2) imply that P has a unique
stationary probability ν (see [16]) ; if Hµ(4) is also valid, then suppν is unbounded. Here
we are interested in the ”shape at infinity” of ν ; we will show that for some α > 0, the
quantities |t|αν[t,∞) and |t|αν(−∞, t] have limits at infinity, we discuss their positivity
and we illustrate the possible uses of this result by two corollaries in two different contexts.
This ”homogeneity at infinity” of ν plays an essential role in extreme value theory (see
[19]), for random variables associated with the Markov chain Xx

n with kernel P on R. Also,
for random walk in a random medium on Z (see [21]) the slow diffusion property is closely
related to this homogeneity (see [6], [17]). Furthermore the construction of ν given here
provides a natural construction of a large class of heavy tailed measures which generates
”anomalous” random walks on the additive group R. This class of measures appears now
to be of great interest from the physical point of view (see [2]). In the geometrical context
of excursions of geodesic flows on manifolds of negative curvature the ”logarithm law” is
well known (see [22], [18]), and we will discuss analogous properties for the Markov chain
Xx

n .
We assume that µ satisfies the following set of conditions Hµ.

Hµ(1) :
∫
(|ℓn|a(g)|| + |(ℓn|b(g)||))µ(dg) <∞.

Hµ(2) : For some α > 0
∫
|a(g)|αµ(dg) = 1.

Hµ(3) :
∫
|a(g)|αℓn|a(g)|µ(dg) <∞,

∫
|b(g)|αµ(dg) <∞.

Hµ(4) : The elements of suppµ have no common fixed point in R.
Hµ(5) : The set {ℓn|a(g)| ; g ∈ suppµ} generates a dense subgroup of R.

Then we have the

Theorem 1

Assume that µ satisfies Hµ. Then
1) There exists c+ ≥ 0, c− ≥ 0 such that lim

t→∞
|t|αν(t,∞) = c+, lim

t→−∞
|t|αν(−∞, t) = c−.

Moreover c = c+ + c− > 0.
2) If µ{g ∈ G ; a(g) < 0} > 0, then c+ = c− > 0.
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3) If µ{g ∈ G ; a(g) > 0} = 1, then c+ > 0 (resp c− > 0) if and only if the action of suppµ
on R has no invariant half-line of the form ]−∞, k], (resp [k,∞[) .
4) If µ{g ∈ G ; a(g) < 0} > 0, then suppν = R. Otherwise the set suppν is a half-line if
and only if suppµ preserves a half-line of the same form.

We denote by P the product probability µ⊗N on Ω = GN, where N is the set of positive
integers. For ω ∈ Ω, we write gk = (a(gk), b(gk)) = (ak, bk). Then Xx

n satisfies the
stochastic recursion :

Xx
n = anX

x
n−1 + bn, X

x
0 = x.

The Markov chain Xx
n on R will be called ”affine random walk”. It is well known that, for

the existence and uniqueness of the stationary measure ν, it is sufficient to assume Hµ(1)

and
∫
ℓn|a(g)|µ(dg) < 0 ; then Xx

n converges in law to R =

∞∑
1

a1 . . . ak−1bk and the law

of R is ν. Also if
∫
(|a(g)|β + |b(g)|β)µ(dg) < ∞ for some β > 0, then

∫
|x|βdν(x) < ∞.

We observe that R can be interpreted as the sum of a ”random geometric series”, hence
its interest for collective risk theory ([19]).
The validity of 1) and 2) was proved in [10], [16] ; in particular implicit expression for c+, c−
were given in [10] and the relation c+ + c− > 0 was obtained. Here we restrict our study
to 3) and 4), a result which is new under hypothesis Hµ. A different proof was sketched
in [12], where a survey of the multidimensional situation was also given. We observe that
the main difficulty of the proof occurs when suppµ do not preserve a half line and a(g) > 0
µ−a.e ; in this case we have c+ > 0, c− > 0. If suppµ has compact support a short complex
analytic proof of this fact, depending of a Lemma of E. Landau, well known in analytic
number theory, is given in [11] (see also [5]).
We recall that Fréchet’s law with parameter γ is the probability Φγ

α on R+ given by
Φγ
α(0, t) = e−γt−α

where γ > 0, α > 0. This family of laws is one of the three fami-
lies of max-infinitely divisible laws of extreme value theory ([9], [19]). The following is
shown in [14].

Corollary 2

For x ∈ R we denote
Mx

n = sup{|Xx
k | ; 1 ≤ k ≤ n}, +M

x
n = sup{Xx

n ; 1 ≤ k ≤ n}.
Then the sequence n−αMx

n (resp n
−α

+M
x
n) converges in P-law to Φcθ

α with 0 < θ < 1 (resp

Φ
c+θ+
α with 0 < θ+ < 1, if c+ > 0).

Closely related properties have been intensively studied in the context of extreme value
theory (see [19]). The positive number θ is the so-called extremal index of the stochastic
process Xx

n ; its inverse θ−1 gives a measure of the clustering of the exceptionally large
values of the process. If the random variables Xx

n were i.i.d. with law ν, one would have
θ = 1 (see [9]). If a(g) > 0, b(g) > 0 for g ∈ suppµ, the above corollary is proved in [15].
It is also known (see [13]) that, under hypothesis Hµ, the normalized Birkhoff sum of Xx

n
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converges in law to a stable law of index α if α < 2. As mentioned in ([3], remark 4.8),
this convergence is a consequence of extreme value properties of Xx

n , at least for α < 1.
The analysis of random walk in a random medium on Z developed in [6] is closely related
to such properties for the sojourn time of the particle at a site in Z, instead of its hitting
time as in [17], where Birkhoff sums as above played a dominant role.
The following logarithm law is an easy consequence of Corollary 2.

Corollary 3

For any x ∈ R, we have the following P− a.e convergences :

lim sup
n→∞

ℓn|Xx
n |

ℓn(n)
=

1

α
, lim sup

n→∞

ℓn+(Xx
n)

ℓn(n)
=

1

α
if c+ > 0.

The so-called ”logarithm law” for excursions of geodesic flow around the cusps on hyperbolic
manifolds was proved in [22] and extended to more general situations in [18]. It was
observed in [20] that in case of the modular surface, it is a simple consequence of Fréchet’s
law for geodesic flow which follows from already known extreme value properties of the
continuous fraction expansion of a number x uniformly distributed on [0, 1] (see [8]).

II - Calculation of invariant measures on R in a special case

The Lie algebra of G is generated by the vector fields X = a ∂
∂a , Y = ∂

∂b . We consider
the convolution semi-group of probability measures on G with infinitesimal generator D =
X2 + Y 2 − (β + 1)X. This operator is elliptic and we denote by pt(t ≥ 0) the associated
semi-group of probability measures.
We have

∫
ln a(g)pt(dg) = −t(β + 1) in particular

∫
ℓn a(g)p(dg) is negative if β > −1,

hence pt has a stationary probability ν on R in this case. We consider more generally,
for any β, the action of pt and X,Y,D on positive measures of the form ν = f(x)dx on
the line. We denote by X∗, Y ∗,D∗ the operators adjoint to X,Y,D. Then the extremal
solutions of the equation D∗f = 0 (f ≥ 0) are described by the

Proposition 1

With the above notations, the equation D∗f = 0 has the following normalized extremal
solutions :

β ≥ −1 : f(x) = (1 + x2)−(1+β/2),
β < −1 : f+(x) = (1 + x2)−(1+β/2)

∫ x
−∞(1 + t2)β/2dt,

and f−(x) = (1 + x2)−(1+β/2)
∫∞
x (1 + t2)β/2dt.

If β > −1, then
∫
f(x)dx <∞. If β ≤ −1 then

∫
f(x)dx =

∫
f+(x)dx =

∫
− f(x)dx = ∞.

Proof

We calculate the action of X,Y on the measure ν = fdx as follows.
Since dx is translation-invariant and the action of the one parameter group x → x + b is
by translation we get Y ∗f = −f ′.
Since Xϕ(x) = xϕ′(x), we get also X∗f(x) = −(xf(x))′. It follows D∗f(x) = (x(xf)′)′ +
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f ′′ + (β + 1)(xf)′, so that the equation D∗f = 0 implies :
x(xf)′ + f ′(x) + (β + 1)(xf) = k,

for a certain constant k, i.e :
(1 + x2)f ′ + (β + 2)(xf) = k.

With u(x) = (1 + x2)−(1+β/2) we have (1 + x2)u′(x) + (β + 2)xu(x) = 0, hence the above
differential equation has the solutions : f = u(d + kv) with v(x) =

∫ x
0 (1 + t2)β/2dt and d

is a constant.
For β ≥ −1, we have lim

x→∞
v(x) = ∞, hence the condition f ≥ 0 implies k = 0. In

this case the equation D∗f = 0 has only positive extremal solutions of the form f(x) =
d(1+x2)−(1+β/2). For β = 0, D is the hyperbolic Laplacian and we recover the Cauchy law
on R with density 1

π
1

1+x2 . For β > −1, we get a probability law with density proportional

to (1 + x2)−(1+β/2).
We verify that for β < −1, the equation D∗f = 0 has two basic extremal solutions :

f+(x) = (1 + x2)−(1+β/2)
∫ x
−∞(1 + t2)β/2dt,

f−(x) = (1 + x2)−(1+β/2)
∫∞
x (1 + t2)β/2dt.

The measure ν corresponding to f+ has infinite mass and satisfies :
lim

t→−∞
|t|2+βν(−∞, t) = c− > 0

At+∞ f+(x) is asymptotic to c+x
−1 with c+ > 0. Analogous properties are valid fo f−.

Also, at ∞, f(x) is asymptotic to c|x|−1(c > 0) �

Remark

The case β > −1 corresponds to the situation of the theorem with α = β + 1.
The case β = −1 corresponds to the (critical) situation of [1], [4]. Then the unique basic
extremal solution behaves at infinity like multiplicative Lebesgue measure on R

∗.
The situation β < −1, with two extremal solutions, corresponds to a so-called phase
transition in P.D.E theory, for example in the context of non linear Schroëdinger equations.

III - Proof of theorem 1

The proofs of 1) and 2) in [10] are based on the first renewal equation in Lemma 1 below.
A delicate point in [10] for the use of the renewal theorem (see [7]) is solved by replacing
αf(t) = eαtf(t) by a related directly Riemann-integrable function. Here we give only the
proofs of 3) and 4). We will now assume µ{g ; a(g) > 0} = 1 and we will only study the
non vanishing of c+. To do that we need some preliminary notations and results.
Let T be the stopping time on Ω defined by :

T = {n ≥ 1 ; g1g2 · · · gn ∈ G+}, T = ∞ if {n ≥ 1 ; g1g2 · · · gn ∈ G+} = φ,
where G+ = {b(g) > 0}.
We denote by µ̄ the probability on the additive group R given by µ̄(A) = µ{ℓna(g) ∈ A}
Moreover we denote by µT the positive measure on R defined by :

µT (A) = P{T < +∞ ; ℓn(a1a2 · · · aT ) ∈ A},
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where A is a Borel subset of R. We have µT (R) = P(T < +∞) ≤ 1, and we denote by µnT
the nth convolution power of µT on the additive group R. Define f by

f(t) = P{R > et} = ν(]et,+∞[) t ∈ R,

and write Rn =
n
Σ
k=1

a1a2 · · · ak−1bk, Sn =
n
Σ
k=1

ℓn(ak).

Then we have the :

Lemma 1

1) For every real t, we have f(t) = µ̄ ∗ f(t) + f1(t) = µT ∗ f(t) + h1(t) where :
f1(t) = P{R− b1 > et} − P{R > et}, h1(t) = E{1[T<+∞]ν(]e

−ST (et −RT ), e
t−ST ])}

2) For every real t, we have f(t) =
+∞
Σ

n=0
µnT ∗ h1(t) =

∞
Σ
n=0

µn ∗ f1(t).

If p is a bounded measure on R and ϕ is a positive Borel function, we write
p ∗ ϕ(t) =

∫
ϕ(t− x)p(dx), t ∈ R.

We denote by αµ, the probability measure on G defined by : αµ(dg) = aα(g)µ(dg).
We define the probability α

P on GN by α
P = αµ⊗N and we write α

E for the corresponding
expectation.
The measure αµT on R is defined by αµT (A) =

α
E(1A(ℓn(a1 · · · aT )),

and we write αh1(t) = eαth1(t) t ∈ R.
Then from lemma 1 we get :

Lemma 2

For every real t we have αf(t) =
+∞
Σ

n=0

αµT ∗ αh1(t)

Now we are going to study some properties of T and ℓn(a1a2 · · · aT ) under α
P. For that

purpose we consider the new random variables g′i(i ≥ 1) defined by g′i = (a−1
i , bia

−1
i ). Under

α
P, there random variables are i.i.d with law αµ′. We have :
g′ng

′
n−1 · · · g

′
1 = ((a1a2 · · · an)

−1, Rn(a1 · · · an)
−1),

hence for T ′ = Inf{n ; g′ng
′
n−1 · · · g

′
1 ∈ G+} we have T ′ = T . It follows that T can be

interpreted as the entrance time in R+ =]0,∞[ of the affine random walk on R defined by
αµ′, starting from 0. We denote by αQ the Markov kernel of this affine random walk, and
for p ∈ R we write pn = g′ng

′
n−1 · · · g

′
1p.

Lemma 3

1) There exists a unique probability measure αν ′ on R such that αQ(αν ′) = αν ′. The
probability αν ′ has no atoms.

2) If αν′(]0,+∞] > 0 then 0 < α
E(T ′) <∞.

Now we complete the proof of Theorem 1 using the above Lemmas.
For assertion 3, there are two cases.

First case αν′(]0,+∞]) > 0.
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Then by Lemma 3 and the observation before Lemma 3, αE(T ) = α
E(T ′) <∞, αµT (R) = 1.

By Wald’s lemma (see [7]), since T ′ <∞ α
P− a.e :

α
E{ℓn(a1a2 · · · aT ) =

α
E(ℓn(a1))

α
E(T )

where α
E(ℓn(a1)) = E(aα1 ℓn(a1)) is finite and positive, hence α

E(ST ) is finite and positive.
Assume c+ = 0, hence lim

t→∞

αf(t) = 0. Then, if we denote by αh1,L (L > 0) the function

t→ αh1(t)1[−L,L](t), we have using Lemma 2 and Proposition A below : for every L > 0,

0 = lim
t→+∞

1

t

∫ t

0

+∞
Σ
n=0

αµnT ∗ αh1,L(s)ds =
1

αE(ℓn(a1))αE(T )

∫ L

−L

αh1(s)ds,

hence 0 =
∫
R

αh1(s)ds. Since
αh1 and h1 are non negative we get h1 = 0 a.e, hence Lemma

1 implies f(t) = 0, dt− a.e.
We conclude that for almost every real s :

f(s) = P(R > es) = 0,
and so P(R ≤ 0) = 1, hence suppν ⊂]−∞, 0]. It follows that suppµ preserves an interval
(−∞, v0) with v0 ≤ 0.

Second case αν ′(]0,+∞[) = 0.
Denote by v0 ≤ 0 the upper bound of the support of the probability αν′. Then by the
stationarity property of αν ′ we can write that for every n ≥ 1 :

α
P{g′ng

′
n−1 · · · g

′
1v0 ≤ v0} = 1, 1 = E(aα1 · · · a

α
n1{v0+Rn≤a1···anv0}),

which implies that for every integer n ≥ 1, P(Rn ≤ −v0) = 1 since E(aα1 ) = 1. Since Rn

converges P− a.e to R we have P(R ≤ −v0) = 1 hence c+ = 0.
In conclusion we see that c+ = 0 if and only if the upper bound of suppν is finite i.e if
suppµ preserves an interval ]−∞,−v0].
In order to show assertion 4 we will distinguish the 2 cases c+ > 0, c− = 0, c+ > 0, and
c− > 0. We observe that suppν is invariant under suppµ and condition

∫
ℓn(a(g))dµ(g) < 0

implies that for some g ∈ (suppµ)2 we have 0 < a(g) < 1. Also the complement of suppν
is invariant under (suppµ)−1. We denote by Tµ the closed subsemigroup of G generated by
suppµ, and by ∆ ⊂ R the closure of the set of attractive fixed points of the elements of Tµ.
We observe that Tµ∆ ⊂ ∆. Since for any x ∈ ∆ the law of gn · · · g1x is supported by ∆ and
converges to ν, we obtain that ∆ ⊃ suppν. Since the attractive fixed points of Tµ belong
to suppν, we conclude that ∆ = suppν. Then, for any open interval I = [a, b] ⊂ R, n < 0,
gn(I) is an interval of length an(g)(b − a) which converges to +∞,−∞ or R, depending
of the relative positions of I and the fixed point x0 of g. If c+ > 0 and c− = 0, then
from above suppµ preserves the interval [τ,∞[ with τ = Inf(suppν). Since ∆ = suppν we
can choose g ∈ (suppµ)2 such that its fixed point x0 ∈ suppν is arbitrary close to τ , and
in particular τ ≤ x0 < a. If I ⊂]τ,∞[ satisfies ν(I) = 0 then ν(gn(I)) = 0 for n < 0 ;
since the length of the interval gn(I) is an(g)(b− a) and lim

n→−∞
an(g) = ∞ this contradicts

c+ > 0.
If c+ > 0, c− > 0 the same argument is valid for any interval I with ν(I) = 0. �

We now give the proofs of the above lemmas.
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Proof of Lemma 1

1) Denote Rn =
+∞
Σ

k=n
an+1 · · · akbk+1. Under P the law of Rn is ν and moreover Rn is

independant of the random variables gi(1 ≤ i ≤ n).
The formula R = Rn + a1 · · · anR

n gives R− b1 = a1R
1, hence :

P{R− b1 > et} = P{R1 > eta−1
1 } = µ ∗ f(t), f(t) = µ ∗ f(t) + f1(t)

We have also from above
{R > et} = {RT + a1a2 · · · aτR

T > et, T <∞}
= {RT > et−ℓn(a1a2···aT ) ; T <∞} U{et−ℓn(a1a2···aT ) < RT ≤ et−ℓn(a1a2···aT ) ; T <∞}

Using the fact that T is a stopping time we have
f(t) = P{R > et} = P{R > et, T <∞} = µT ∗ f(t) + h1(t)

where h1(t) = E(1{T<∞}ν]e
t−ℓn(a1···aT ) −RT , e

t−ℓn(a1 ···aT )],
It follows :

f =
n
Σ
k=0

µ̄k ∗ f1 + µ̄n+1 ∗ f

where µ̄n+1 ∗ f(t) = P{R > et(a1 · · · an+1)
−1}. The condition E(ℓn(a1)) < 0 implies the

P − a.e convergence of (a1 · · · an+1)
−1 to ∞, hence lim

n→∞
µ̄n+1 ∗ f(t) = 0. The first part of

the formula follows.
2) From above we deduce that for every integer n and t ∈ R.

f(t) =
n
Σ
j=0

µ
j
T ∗ h1(t) + µn+1

T ∗ f(t).

We now prove that lim
n→+∞

µn+1
T ∗ f1(t) = 0.

There are two cases
Case 1) P(T <∞) < 1

We have
0 ≤ µn+1

T ∗ f(t) ≤ (P(T <∞))n

hence lim
n→∞

µn+1
T ∗ f(t) = 0.

Case 2) P(T <∞) = 1
Define the shift θ on Ω by θ(ω) = (gi+1(ω), i ≥ 1) where ω = (gi(ω), i ≥ 1) and consider the
sequence (Tn(ω))n≥1 of random times defined P− a.e by Tn+1 = T0θ

Tn, T1 = T . Under P
the sequence of random variables [(T1, ST1

), · · · , (Tn+1 −Tn , STn+1
−STn

)], is i.i.d and the
law of STn

is µnT . Because E(ℓn(a1)) < 0, we have P − a.e lim
n→∞

Sn = −∞ and moreover

lim
n→∞

Tn = ∞ hence P− a.e, lim
n→∞

STn
= −∞. We have that

µn+1
T ∗ f(t) = E(f(t− STn+1

)),
and lim

t→∞
f(t) = 0. So, using Lebesgue’s theorem, we can conclude that lim

n→∞
µn+1
T ∗f(t) = 0

�

Proof of lemma 2

Lemma 2 us a direct consequence of the formula αµnT ∗ αh(t) = eαtµnT ∗ h1(t), Lemma 1
part 2, and the fact that h1 is non negative. �
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Proof of lemma 3

The definition of αµ′ and the condition Hµ(3) imply
∫
|ℓn(a(g))| αµ′(dg) < ∞. The strict

convexity of the function ℓn
∫
as(g)µ(dg)(s > 0) gives

∫
ℓn(a(g)) αµ′(dg) < 0.

It follows
∫
|ℓn|b(g)| αµ′(dg) <∞.

As observed above, the existence and uniqueness of αν ′ follows.
If x0 is a fixed point of suppαµ′ then for any (a, b) ∈ suppµ ;

a−1x0 + ba−1 = x0, i.e x0(a− 1) = b.
This implies that −x0 is a fixed point of suppµ, which contradicts Hµ(4). Hence, as it well
known (see [5]), αν′ has no atom.
In order to show α

E(T ′) < ∞ we consider the space aΩ# = R × GZ and the extended
bilateral shift defined by aθ(p, ω) = (p1, θω) where p1 = g′1(p) and θ is the bilateral shift
on GZ. We endow aΩ# with the Markov measure κ# associated with the αQ-invariant
probability αν ′. Clearly κ# is aθ-invariant and ergodic. Also we consider the fibered
bilateral Markov chain (pn, Vn) on R × R

∗ where Vn = p−1pn(a1a2 · · · an) = p−1(p + Rn).
Let τ be the first ”ladder epoch” of (pn, Vn) (see [7]), i.e τ = Inf{n ≥ 1 ; Vn > 1},
hence p−1pτ > 0 and τ = T if p > 0. We observe that the conditions in Hµ(3) implies∫
|p|ε αν ′(dp) < ∞ for some ε > 0, hence lim sup

|n|→∞

1

|n|
ℓn|pn| ≤ 0. Since α

E(ℓn(a1)) > 0 the

ergodic theorem gives lim
n→∞

|Vn| = ∞, lim
n→−∞

|Vn| = 0, in particular τ is finite κ# − a.e.

Since αν ′(R+) > 0 we can consider the Markov kernel αQ+ induced by αQ on R+ ; the

normalized restriction αν′+ of αν′ to R+ is αQ+-invariant and ergodic. We denote by aΩ#
+

the subset of aΩ# defined by the conditions pn > 0 infinitely often for n = nk > 0 and
n = n−k < 0. Since αν ′(R+) > 0, aΩ#

+ has positive κ#-measure and we denote by κ
#
+

the normalized restriction of κ# to aΩ#
+ ; then κ

#
+ is invariant and ergodic under the

corresponding induced shift aθ+. From above we know that lim
k→∞

Vn
−k

= 0, hence the time

τ+(ω) = n−j (j ≥ 0), of the last strict maximum of Vn
−k

is finite κ#+ − a.e. We define
aΩ#

0 = {sup
k>0

Vn
−k
< 1} = {τ+ = 0}. Then we have aκ

#
+ (aΩ#

0 ) > 0 since, by aθ+-invariance

of κ#+ :

1 = κ
#
+{τ+ > −∞} = Σ

n≥0
κ
#
+{τ+ = −n} ≤ Σ

n≥0
κ
#
+{V−n > sup

n
−k<−n

Vn
−k
} =

Σ
n≥0

κ
#
+{0 > sup

k>0
Vn

−k
} ≤ ∞κ

#
+(

aΩ#
0 ).

On the other hand, the definition of τ shows that for ω ∈ aΩ#
0 , τ(ω) is the first return

time of aθk(ω) to aΩ#
0 , so that aθτ is the transformation of aΩ#

0 induced by aθ on aΩ#
0 .

Then Kac’s theorem (see [23]) implies that aθτ is ergodic with respect to the normalized

restriction κ
#
0 of κ#+ to aΩ#

0 and α
E(τ) =

∫
τ(ω)κ#0 (dω) < ∞. Also we denote by αντ+

the push forward of κ#0 to R+ under the map ω → p0(ω). Since the stopped kernel αQτ
+

and the map τ commute with p0, the measure κτ+ is αQτ
+-invariant, ergodic and absolutely

continuous with respect to αν+ with α
E0(τ) =

α
E(T ) <∞. �
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Remark

A different proof of α
E(T ) < ∞ uses the interpretation of T = T ′ as hitting time of the

open set R+ by the Markov chain with kernel αQ starting from 0.
Since

∫
aδ(g) αµ′(dg) < ∞,

∫
|bδ(g)| αµ′(dg) < ∞ for 0 < δ < α, the operator defined

by αQ on a space of Hölder functions on R (as in [13]) has a spectral gap. This implies
α
E(T ′) <∞. The proof given above extends to the multidimensional case.

IV - Appendix : a weak renewal theorem

Proposition A Let (Zn)n≥1 a sequence of independant, identically distributed real random
variables on R with law η. Assume that

∫
|z|η(dz) < +∞ and that γ =

∫
zη(dz) > 0.

Let ψ a bounded non negative Borel function which is supported on [−a, a].

Then the potential Uψ =
+∞
Σ

n=0
ηn ∗ ψ is a bounded function and we have

lim
t→+∞

1

t

∫ t

0
Uψ(s)ds =

1

γ

∫
R

ψ(t)dt

Proof

If Σn =
n
Σ
i=1

Zi, we have : Uψ(s) =
+∞
Σ

n=0
E[ψ(s − Σn)].

Because γ =
∫
zη(dz) > 0 the random walk on R with law η is transient and using the

maximum principle we have that sup
s∈R

Uψ(s) < +∞.

For ε > 0, t > 0 denote
n1(t) = [ 1γ εt] = n1, n2(t) = [ 1γ (1− ε)t] = n2,

Unψ =
n−1
Σ
0
ηk ∗ ψ, Unψ =

∞
Σ

n+1
ηk ∗ ψ, Um

n ψ =
m
Σ
n
ηk ∗ ψ.

Then we have

I(t) = 1
t

∫ t
0 Uψ(s)ds =

3
Σ
1
Ik(t)− I4(t)

where
I1(t) =

1
t

∫
R
Un2
n1
ψ(s)ds, I2(t) =

1
t

∫
R
Un1

ψ(s)ds,

I3(t) =
1
t

∫
R
Un2ψ(s)ds, I4(t) =

1
t

∫
R[0,t] U

n2
n1
ψ(s)ds.

We have

I1(t) =
n2−n1+1

t (
∫
R
ψ(s)ds) hence lim

t→+∞
I1(t) =

(12ε)

γ

∫
R

ψ(s)ds,

0 ≤ I4(t) ≤ ( (n2−n1+1
t sup

s∈R
|ψ(s)|) sup

n1≤n≤n2

[P(Σn ≤ a) + P(t− Σn ≤ a)].

By the law of large numbers we know that P− a.e, lim
n→+∞

Σn

n
= γ > 0, hence :

lim
t→+∞

sup
n1≤n≤n2

(P{Σn ≤ a}+ P{t−Σn ≤ a}) = 0.

Hence lim
t→+∞

I4(t) = 0 and : 0 ≤ I2(t)
t ≤ ε

γ ×
∫
ψ(s)ds.
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Consider now I3(t) and denote for n ∈ N, s > 0 : ρsn = Inf{k ≥ n ; |Vn − s| ≤ a}.
We use the interpretation of Unψ as the expected number of visits to ψ after time n :
Unψ(x) ≤ (Uψ)P{ρsn <∞} with n [(1+ε)t]

γ = n2, hence :

I3(t) ≤ |Uψ|P{Σk ≤ t+ a for some k ≥ (1+ε)t
γ }.

Since Σn

n converges to γ, P− a.e, we get lim
t→∞

I3(t) = 0.

Since ε is arbitrary we get finally : lim
t→∞

I(t) =
1

γ

∫
ψ(s)ds. �
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