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On the homogeneity at infinity of the stationary probability for an affine random walk

We consider an affine random walk on R. We assume the existence of a stationary probability ν on R and we describe the shape at infinity of ν, if ν has unbounded support. We discuss the connections of the result with geometrical or probabilistic problems.

I -Introduction

), and we will discuss analogous properties for the Markov chain X x n . We assume that µ satisfies the following set of conditions H µ .

H µ (1) : (|ℓn|a(g

4) : The elements of suppµ have no common fixed point in R. H µ (5) : The set {ℓn|a(g)| ; g ∈ suppµ} generates a dense subgroup of R. Then we have the Theorem 1 Assume that µ satisfies H µ . Then 1) There exists c + ≥ 0, c -≥ 0 such that lim t→∞ |t| α ν(t, ∞) = c + , lim t→-∞ |t| α ν(-∞, t) = c -. Moreover c = c + + c -> 0. 2) If µ{g ∈ G ; a(g) < 0} > 0, then c + = c -> 0.

3) If µ{g ∈ G ; a(g) > 0} = 1, then c + > 0 (resp c -> 0) if and only if the action of suppµ on R has no invariant half-line of the form ] -∞, k], (resp [k, ∞[) . 4) If µ{g ∈ G ; a(g) < 0} > 0, then suppν = R. Otherwise the set suppν is a half-line if and only if suppµ preserves a half-line of the same form.

We denote by P the product probability µ ⊗N on Ω = G N , where N is the set of positive integers. For ω ∈ Ω, we write g k = (a(g k ), b(g k )) = (a k , b k ). Then X x n satisfies the stochastic recursion :

X x n = a n X x n-1 + b n , X x 0 = x. The Markov chain X x
n on R will be called "affine random walk". It is well known that, for the existence and uniqueness of the stationary measure ν, it is sufficient to assume H µ [START_REF] Babillot | The random difference equation X n = A n X n-1 + B n in the critical case[END_REF] and ℓn|a(g)|µ(dg) < 0 ; then X x n converges in law to R = )µ(dg) < ∞ for some β > 0, then |x| β dν(x) < ∞.

We observe that R can be interpreted as the sum of a "random geometric series", hence its interest for collective risk theory ( [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF]). The validity of 1) and 2) was proved in [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF], [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] ; in particular implicit expression for c + , c - were given in [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] and the relation c + + c -> 0 was obtained. Here we restrict our study to 3) and 4), a result which is new under hypothesis H µ . A different proof was sketched in [START_REF] Guivarc | Homogeneity at infinity of stationary solutions of Multivariate Affine Stochastic Recursions[END_REF], where a survey of the multidimensional situation was also given. We observe that the main difficulty of the proof occurs when suppµ do not preserve a half line and a(g) > 0 µ-a.e ; in this case we have c + > 0, c -> 0. If suppµ has compact support a short complex analytic proof of this fact, depending of a Lemma of E. Landau, well known in analytic number theory, is given in [START_REF] Guivarc | Heavy tail properties of stationary solutions of multidimensional stochastic recursions[END_REF] (see also [START_REF] Buraczewski | Tailhomogeneity of stationary measures for some multidimensional stochastic recursions[END_REF]). We recall that Fréchet's law with parameter γ is the probability Φ γ α on R + given by Φ γ α (0, t) = e -γt -α where γ > 0, α > 0. This family of laws is one of the three families of max-infinitely divisible laws of extreme value theory ( [START_REF] Gnedenko | Sur la distribution limite d'une série aléatoire[END_REF], [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF]). The following is shown in [START_REF] Guivarc | Asymptotique des valeurs extrêmes pour les marches aléatoires affines[END_REF].

Corollary 2 For x ∈ R we denote M x n = sup{|X x k | ; 1 ≤ k ≤ n}, + M x n = sup{X x n ; 1 ≤ k ≤ n}. Then the sequence n -α M x n (resp n -α + M x n ) converges in P-law to Φ cθ α with 0 < θ < 1 (resp Φ c + θ + α with 0 < θ + < 1, if c + > 0).
Closely related properties have been intensively studied in the context of extreme value theory (see [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF]). The positive number θ is the so-called extremal index of the stochastic process X x n ; its inverse θ -1 gives a measure of the clustering of the exceptionally large values of the process. If the random variables X x n were i.i.d. with law ν, one would have θ = 1 (see [START_REF] Gnedenko | Sur la distribution limite d'une série aléatoire[END_REF]). If a(g) > 0, b(g) > 0 for g ∈ suppµ, the above corollary is proved in [START_REF] Haan | Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes[END_REF]. It is also known (see [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF]) that, under hypothesis H µ , the normalized Birkhoff sum of X x converges in law to a stable law of index α if α < 2. As mentioned in ( [START_REF] Basrak | Regularly varying time series[END_REF], remark 4.8), this convergence is a consequence of extreme value properties of X x n , at least for α < 1. The analysis of random walk in a random medium on Z developed in [START_REF] Dolgopyat | Quenched limit theorems for nearest neighbour random walks in 1D random environment[END_REF] is closely related to such properties for the sojourn time of the particle at a site in Z, instead of its hitting time as in [START_REF] Kesten | A limit law for random walk in a random environment[END_REF], where Birkhoff sums as above played a dominant role. The following logarithm law is an easy consequence of Corollary 2.

Corollary 3

For any x ∈ R, we have the following Pa.e convergences :

lim sup n→∞ ℓn|X x n | ℓn(n) = 1 α , lim sup n→∞ ℓn + (X x n ) ℓn(n) = 1 α if c + > 0.
The so-called "logarithm law" for excursions of geodesic flow around the cusps on hyperbolic manifolds was proved in [START_REF] Sullivan | Disjoint spheres, approximation by imaginary quadratic numbers and the logarithm law for geodesics[END_REF] and extended to more general situations in [START_REF] Kleinbock | Logarithm laws for flows on homogeneous spaces[END_REF]. It was observed in [START_REF] Pollicott | Limiting distributions for geodesic excursions on the modular surface[END_REF] that in case of the modular surface, it is a simple consequence of Fréchet's law for geodesic flow which follows from already known extreme value properties of the continuous fraction expansion of a number x uniformly distributed on [0, 1] (see [START_REF] Galambos | The distribution of the largest coefficient in the continued fraction expansion[END_REF]).

II -Calculation of invariant measures on R in a special case The Lie algebra of G is generated by the vector fields X = a ∂ ∂a , Y = ∂ ∂b . We consider the convolution semi-group of probability measures on G with infinitesimal generator D = X 2 + Y 2 -(β + 1)X. This operator is elliptic and we denote by p t (t ≥ 0) the associated semi-group of probability measures. We have ln a(g)p t (dg) = -t(β + 1) in particular ℓn a(g)p(dg) is negative if β > -1, hence p t has a stationary probability ν on R in this case. We consider more generally, for any β, the action of p t and X, Y, D on positive measures of the form ν = f (x)dx on the line. We denote by X * , Y * , D * the operators adjoint to X, Y, D. Then the extremal solutions of the equation D * f = 0 (f ≥ 0) are described by the

Proposition 1

With the above notations, the equation D * f = 0 has the following normalized extremal solutions :

β ≥ -1 : f (x) = (1 + x 2 ) -(1+β/2) , β < -1 : f + (x) = (1 + x 2 ) -(1+β/2) x -∞ (1 + t 2 ) β/2 dt, and f -(x) = (1 + x 2 ) -(1+β/2) ∞ x (1 + t 2 ) β/2 dt. If β > -1, then f (x)dx < ∞. If β ≤ -1 then f (x)dx = f + (x)dx = -f (x)dx = ∞.

Proof

We calculate the action of X, Y on the measure ν = f dx as follows. Since dx is translation-invariant and the action of the one parameter group 2) . For β = 0, D is the hyperbolic Laplacian and we recover the Cauchy law on R with density 1 π 1 1+x 2 . For β > -1, we get a probability law with density proportional to (1 + x 2 ) -(1+β/2) . We verify that for β < -1, the equation D * f = 0 has two basic extremal solutions :

x → x + b is by translation we get Y * f = -f ′ . Since Xϕ(x) = xϕ ′ (x), we get also X * f (x) = -(xf (x)) ′ . It follows D * f (x) = (x(xf ) ′ ) ′ + f ′′ + (β + 1)(xf ) ′ , so that the equation D * f = 0 implies : x(xf ) ′ + f ′ (x) + (β + 1)(xf ) = k, for a certain constant k, i.e : (1 + x 2 )f ′ + (β + 2)(xf ) = k. With u(x) = (1 + x 2 ) -(1+β/2) we have (1 + x 2 )u ′ (x) + (β + 2)xu(x) = 0, hence the above differential equation has the solutions : f = u(d + kv) with v(x) = x 0 (1 + t 2 ) β/2 dt and d is a constant. For β ≥ -1, we have lim x→∞ v(x) = ∞, hence the condition f ≥ 0 implies k = 0. In this case the equation D * f = 0 has only positive extremal solutions of the form f (x) = d(1 + x 2 ) -(1+β/
f + (x) = (1 + x 2 ) -(1+β/2) x -∞ (1 + t 2 ) β/2 dt, f -(x) = (1 + x 2 ) -(1+β/2) ∞
x (1 + t 2 ) β/2 dt. The measure ν corresponding to f + has infinite mass and satisfies : lim

t→-∞ |t| 2+β ν(-∞, t) = c-> 0 At + ∞ f + (x) is asymptotic to c + x -1 with c + > 0. Analogous properties are valid fo f -. Also, at ∞, f (x) is asymptotic to c|x| -1 (c > 0)
Remark The case β > -1 corresponds to the situation of the theorem with α = β + 1. The case β = -1 corresponds to the (critical) situation of [START_REF] Babillot | The random difference equation X n = A n X n-1 + B n in the critical case[END_REF], [START_REF] Brofferio | On the invariant measure of the random difference equation X n = A n X n-1 + B n in the critical case[END_REF]. Then the unique basic extremal solution behaves at infinity like multiplicative Lebesgue measure on R * . The situation β < -1, with two extremal solutions, corresponds to a so-called phase transition in P.D.E theory, for example in the context of non linear Schroëdinger equations.

III -Proof of theorem 1

The proofs of 1) and 2) in [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] are based on the first renewal equation in Lemma 1 below. A delicate point in [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] for the use of the renewal theorem (see [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]) is solved by replacing α f (t) = e αt f (t) by a related directly Riemann-integrable function. Here we give only the proofs of 3) and 4). We will now assume µ{g ; a(g) > 0} = 1 and we will only study the non vanishing of c + . To do that we need some preliminary notations and results. Let T be the stopping time on Ω defined by :

T = {n ≥ 1 ; g 1 g 2 • • • g n ∈ G + }, T = ∞ if {n ≥ 1 ; g 1 g 2 • • • g n ∈ G + } = φ, where G + = {b(g) > 0}.
We denote by μ the probability on the additive group R given by μ(A) = µ{ℓna(g) ∈ A} Moreover we denote by µ T the positive measure on R defined by : µ

T (A) = P{T < +∞ ; ℓn(a 1 a 2 • • • a T ) ∈ A},
where A is a Borel subset of R. We have µ T (R) = P(T < +∞) ≤ 1, and we denote by µ n T the n th convolution power of µ T on the additive group R. Define f by

f (t) = P{R > e t } = ν(]e t , +∞[) t ∈ R,
and write R n = n Σ k=1 a 1 a 2 • • • a k-1 b k , S n = n Σ k=1 ℓn(a k ).
Then we have the :

Lemma 1 1) For every real t, we have

f (t) = μ * f (t) + f 1 (t) = µ T * f (t) + h 1 (t) where : f 1 (t) = P{R -b 1 > e t } -P{R > e t }, h 1 (t) = E{1 [T <+∞] ν(]e -S T (e t -R T ), e t-S T ])}
2) For every real t, we have

f (t) = +∞ Σ n=0 µ n T * h 1 (t) = ∞ Σ n=0 µ n * f 1 (t).
If p is a bounded measure on R and ϕ is a positive Borel function, we write p * ϕ(t) = ϕ(tx)p(dx), t ∈ R. We denote by α µ, the probability measure on G defined by : α µ(dg) = a α (g)µ(dg). We define the probability α P on G N by α P = α µ ⊗N and we write α E for the corresponding expectation. The measure α µ T on R is defined by α µ T (A) = α E(1 A (ℓn(a 1 • • • a T )), and we write α h 1 (t) = e αt h 1 (t) t ∈ R. Then from lemma 1 we get :

Lemma 2

For every real t we have α f

(t) = +∞ Σ n=0 α µ T * α h 1 (t)
Now we are going to study some properties of T and ℓn(a 1 a 2 • • • a T ) under α P. For that purpose we consider the new random variables g ′ i (i ≥ 1) defined by g ′ i = (a -1 i , b i a -1 i ). Under α P, there random variables are i.i.d with law α µ ′ . We have :

g ′ n g ′ n-1 • • • g ′ 1 = ((a 1 a 2 • • • a n ) -1 , R n (a 1 • • • a n ) -1 ), hence for T ′ = Inf {n ; g ′ n g ′ n-1 • • • g ′ 1 ∈ G + } we have T ′ = T .
It follows that T can be interpreted as the entrance time in R + =]0, ∞[ of the affine random walk on R defined by α µ ′ , starting from 0. We denote by α Q the Markov kernel of this affine random walk, and for p ∈ R we write

p n = g ′ n g ′ n-1 • • • g ′ 1 p. Lemma 3 
1) There exists a unique probability measure α ν ′ on R such that α Q( α ν ′ ) = α ν ′ . The probability α ν ′ has no atoms.

2)

If α ν ′ (]0, +∞] > 0 then 0 < α E(T ′ ) < ∞.
Now we complete the proof of Theorem 1 using the above Lemmas. For assertion 3, there are two cases. First case α ν ′ (]0, +∞]) > 0.

Then by Lemma 3 and the observation before Lemma 3, α E(T ) = α E(T ′ ) < ∞, α µ T (R) = 1. By Wald's lemma (see [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]), since T ′ < ∞ α Pa.e : α E{ℓn(a 1 a 2 • • • a T ) = α E(ℓn(a 1 )) α E(T ) where α E(ℓn(a 1 )) = E(a α 1 ℓn(a 1 )) is finite and positive, hence α E(S T ) is finite and positive. Assume c + = 0, hence lim t→∞ α f (t) = 0. Then, if we denote by α h 1,L (L > 0) the function t → α h 1 (t)1 [-L,L] (t), we have using Lemma 2 and Proposition A below : for every L > 0,

0 = lim t→+∞ 1 t t 0 +∞ Σ n=0 α µ n T * α h 1,L (s)ds = 1 α E(ℓn(a 1 )) α E(T ) L -L α h 1 (s)ds, hence 0 = R α h 1 (s)ds.
Since α h 1 and h 1 are non negative we get h 1 = 0 a.e, hence Lemma 1 implies f (t) = 0, dta.e. We conclude that for almost every real s : f (s) = P(R > e s ) = 0, and so

P(R ≤ 0) = 1, hence suppν ⊂] -∞, 0]. It follows that suppµ preserves an interval (-∞, v 0 ) with v 0 ≤ 0. Second case α ν ′ (]0, +∞[) = 0.
Denote by v 0 ≤ 0 the upper bound of the support of the probability α ν ′ . Then by the stationarity property of α ν ′ we can write that for every n ≥ 1 :

α P{g ′ n g ′ n-1 • • • g ′ 1 v 0 ≤ v 0 } = 1, 1 = E(a α 1 • • • a α n 1 {v 0 +Rn≤a 1 •••anv 0 } ), which implies that for every integer n ≥ 1, P(R n ≤ -v 0 ) = 1 since E(a α 1 ) = 1. Since R n converges P -a.e to R we have P(R ≤ -v 0 ) = 1 hence c + = 0.
In conclusion we see that c + = 0 if and only if the upper bound of suppν is finite i.e if suppµ preserves an interval ] -∞, -v 0 ]. In order to show assertion 4 we will distinguish the 2 cases c + > 0, c -= 0, c + > 0, and c -> 0. We observe that suppν is invariant under suppµ and condition ℓn(a(g))dµ(g) < 0 implies that for some g ∈ (suppµ) 2 we have 0 < a(g) < 1. Also the complement of suppν is invariant under (suppµ) -1 . We denote by T µ the closed subsemigroup of G generated by suppµ, and by ∆ ⊂ R the closure of the set of attractive fixed points of the elements of T µ . We observe that T µ ∆ ⊂ ∆. Since for any x ∈ ∆ the law of g n • • • g 1 x is supported by ∆ and converges to ν, we obtain that ∆ ⊃ suppν. Since the attractive fixed points of T µ belong to suppν, we conclude that ∆ = suppν. Then, for any open interval I = [a, b] ⊂ R, n < 0, g n (I) is an interval of length a n (g)(ba) which converges to +∞, -∞ or R, depending of the relative positions of I and the fixed point x 0 of g. If c + > 0 and c -= 0, then from above suppµ preserves the interval [τ, ∞[ with τ = Inf (suppν). Since ∆ = suppν we can choose g ∈ (suppµ) 2 such that its fixed point x 0 ∈ suppν is arbitrary close to τ , and in particular τ ≤ x 0 < a.

If I ⊂]τ, ∞[ satisfies ν(I) = 0 then ν(g n (I)) = 0 for n < 0 ; since the length of the interval g n (I) is a n (g)(b -a) and lim n→-∞ a n (g) = ∞ this contradicts c + > 0.
If c + > 0, c -> 0 the same argument is valid for any interval I with ν(I) = 0. We now give the proofs of the above lemmas.

Proof of Lemma 1

1) Denote R n = +∞ Σ k=n a n+1 • • • a k b k+1 . Under P the law of R n is ν and moreover R n is independant of the random variables g i (1 ≤ i ≤ n). The formula R = R n + a 1 • • • a n R n gives R -b 1 = a 1 R 1 , hence : P{R -b 1 > e t } = P{R 1 > e t a -1 1 } = µ * f (t), f (t) = µ * f (t) + f 1 (t) We have also from above {R > e t } = {R T + a 1 a 2 • • • a τ R T > e t , T < ∞} = {R T > e t-ℓn(a 1 a 2 •••a T ) ; T < ∞} U {e t-ℓn(a 1 a 2 •••a T ) < R T ≤ e t-ℓn(a 1 a 2 •••a T ) ; T < ∞} Using the fact that T is a stopping time we have f (t) = P{R > e t } = P{R > e t , T < ∞} = µ T * f (t) + h 1 (t) where h 1 (t) = E(1 {T <∞} ν]e t-ℓn(a 1 •••a T ) -R T , e t-ℓn(a 1 •••a T ) ], It follows : f = n Σ k=0 μk * f 1 + μn+1 * f where μn+1 * f (t) = P{R > e t (a 1 • • • a n+1 ) -1 }.
The condition E(ℓn(a 1 )) < 0 implies the Pa.e convergence of (a

1 • • • a n+1 ) -1 to ∞, hence lim n→∞ μn+1 * f (t) = 0.
The first part of the formula follows.

2) From above we deduce that for every integer n and t ∈ R.

f (t) = n Σ j=0 µ j T * h 1 (t) + µ n+1 T * f (t).
We now prove that lim

n→+∞ µ n+1 T * f 1 (t) = 0.
There are two cases Case 1)

P(T < ∞) < 1 We have 0 ≤ µ n+1 T * f (t) ≤ (P(T < ∞)) n hence lim n→∞ µ n+1 T * f (t) = 0.
Case 2) P(T < ∞) = 1 Define the shift θ on Ω by θ(ω) = (g i+1 (ω), i ≥ 1) where ω = (g i (ω), i ≥ 1) and consider the sequence (T n (ω)) n≥1 of random times defined Pa.e by T n+1 = T 0 θ Tn , T 1 = T . Under P the sequence of random variables [(T 1 , S T 1 ), • • • , (T n+1 -T n , S T n+1 -S Tn )], is i.i.d and the law of S Tn is µ n T . Because E(ℓn(a 1 )) < 0, we have Pa.e lim n→∞ S n = -∞ and moreover lim n→∞ T n = ∞ hence Pa.e, lim n→∞ S Tn = -∞. We have that

µ n+1 T * f (t) = E(f (t -S T n+1 )),
and lim t→∞ f (t) = 0. So, using Lebesgue's theorem, we can conclude that lim

n→∞ µ n+1 T * f (t) = 0
Proof of lemma 2 Lemma 2 us a direct consequence of the formula α µ n T * α h(t) = e αt µ n T * h 1 (t), Lemma 1 part 2, and the fact that h 1 is non negative.

Remark

A different proof of α E(T ) < ∞ uses the interpretation of T = T ′ as hitting time of the open set R + by the Markov chain with kernel α Q starting from 0. Since a δ (g) α µ ′ (dg) < ∞, |b δ (g)| α µ ′ (dg) < ∞ for 0 < δ < α, the operator defined by α Q on a space of Hölder functions on R (as in [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF]) has a spectral gap. This implies α E(T ′ ) < ∞. The proof given above extends to the multidimensional case. 

IV -Appendix

t 0 U ψ(s)ds = 1 γ R ψ(t)dt Proof If Σ n = n Σ i=1 Z i , we have : U ψ(s) = +∞ Σ n=0 E[ψ(s -Σ n )].
Because γ = zη(dz) > 0 the random walk on R with law η is transient and using the maximum principle we have that sup s∈R U ψ(s) < +∞. where I 1 (t) = 1 t R U n 2 n 1 ψ(s)ds, I 2 (t) = 1 t R U n 1 ψ(s)ds, I 3 (t) = 1 t R U n 2 ψ(s)ds, I 4 (t) = 1 t R[0,t] U n 2 n 1 ψ(s)ds. We have 

I 1 (t) = n 2 -n 1 +1

∞ 1 a 1

 11 . . . a k-1 b k and the law of R is ν. Also if (|a(g)| β + |b(g)| β

  : a weak renewal theorem Proposition A Let (Z n ) n≥1 a sequence of independant, identically distributed real random variables on R with law η. Assume that |z|η(dz) < +∞ and that γ = zη(dz) > 0. Let ψ a bounded non negative Borel function which is supported on [-a, a]. Then the potential U ψ = +∞ Σ n=0 η n * ψ is a bounded function and we have lim t→+∞ 1 t

For 3 Σ 1 I

 31 ε > 0, t > 0 denote n 1 (t) = [ 1 γ εt] = n 1 , n 2 (t) = [ 1 γ (1ε)t] = n 2 , U n ψ = k (t) -I 4 (t)

t(I 1 (sup n 1 ≤n≤n 2 [n 1 ≤n≤n 2 (

 122 R ψ(s)ds) hence lim t→+∞ P(Σ n ≤ a) + P(t -Σ n ≤ a)]. By the law of large numbers we know that Pa.e, lim n→+∞ P{Σ n ≤ a} + P {t -Σ n ≤ a}) = 0. Hence lim t→+∞ I 4 (t) = 0 and : 0≤ I 2 (t) t ≤ ε γ × ψ(s)ds.Consider now I 3 (t) and denote for n ∈ N, s > 0 : ρ s n = Inf {k ≥ n ; |V n -s| ≤ a}. We use the interpretation of U n ψ as the expected number of visits to ψ after time n :U n ψ(x) ≤ (U ψ)P{ρ s n < ∞} with n [(1+ε)t] γ= n 2 , hence :I 3 (t) ≤ |U ψ|P{Σ k ≤ t +a for some k ≥ (1+ε)t γ }. Since Σn n converges to γ, Pa.e, we get lim t→∞ I 3 (t) = 0. Since ε is arbitrary we get finally : lim t→∞ I(t) = 1 γ ψ(s)ds.

Proof of lemma 3

The definition of α µ ′ and the condition H µ (3) imply |ℓn(a(g))| α µ ′ (dg) < ∞. The strict convexity of the function ℓn a s (g)µ(dg)(s > 0) gives ℓn(a(g)) α µ ′ (dg) < 0. It follows |ℓn|b(g)| α µ ′ (dg) < ∞. As observed above, the existence and uniqueness of α ν ′ follows. If x 0 is a fixed point of supp α µ ′ then for any (a, b) ∈ suppµ ; a -1 x 0 + ba -1 = x 0 , i.e x 0 (a -1) = b. This implies that -x 0 is a fixed point of suppµ, which contradicts H µ (4). Hence, as it well known (see [START_REF] Buraczewski | Tailhomogeneity of stationary measures for some multidimensional stochastic recursions[END_REF]), α ν ′ has no atom. In order to show α E(T ′ ) < ∞ we consider the space a Ω # = R × G Z and the extended bilateral shift defined by a θ(p, ω) = (p 1 , θω) where p 1 = g ′ 1 (p) and θ is the bilateral shift on G Z . We endow a Ω # with the Markov measure κ # associated with the α Q-invariant probability α ν ′ . Clearly κ # is a θ-invariant and ergodic. Also we consider the fibered bilateral Markov chain

Let τ be the first "ladder epoch" of (p n , V n ) (see [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]), i.e τ = Inf {n ≥ 1 ; V n > 1}, hence p -1 p τ > 0 and τ = T if p > 0. We observe that the conditions in H µ (3) implies

and ergodic. We denote by a Ω # + the subset of a Ω # defined by the conditions p n > 0 infinitely often for n = n k > 0 and n = n -k < 0. Since α ν ′ (R + ) > 0, a Ω # + has positive κ # -measure and we denote by κ # + the normalized restriction of κ # to a Ω # + ; then κ # + is invariant and ergodic under the corresponding induced shift a θ + . From above we know that lim k→∞ V n -k = 0, hence the time

On the other hand, the definition of τ shows that for ω ∈ a Ω # 0 , τ (ω) is the first return time of a θ k (ω) to a Ω # 0 , so that a θ τ is the transformation of a Ω # 0 induced by a θ on a Ω # 0 . Then Kac's theorem (see [START_REF] Wolfowitz | Remarks on the notion of recurrence[END_REF]) implies that a θ τ is ergodic with respect to the normalized restriction κ # 0 of κ # + to a Ω # 0 and α E(τ ) = τ (ω)κ # 0 (dω) < ∞. Also we denote by α ν τ + the push forward of κ # 0 to R + under the map ω → p 0 (ω). Since the stopped kernel α Q τ + and the map τ commute with p 0 , the measure κ τ + is α Q τ + -invariant, ergodic and absolutely continuous with respect to α ν + with α E 0 (τ ) = α E(T ) < ∞.