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1. INTRODUCTION

High-order response properties of molecular systems subjected
to perturbations have received a growing interest in the past
few years (for a recent review, see ref 1). For instance, the
response to an electric field allows the description of nonlinear
spectroscopy,2 through calculation of hyperpolarizabilities
constants. Computing high-order energy derivatives with
respect to geometric displacements can be used in optimization
schemes or to build an analytical local potential energy surface
(PES) with a Taylor expansion. Such a surface can then be used
with approaches demanding fast energy computation to access
quantum nuclear effects, like wave packet dynamics, quantum
vibrational Monte Carlo, or calculation of infrared (IR) spectra
including quantum effects with many-body mean-field or
multiconfigurational methods for quantum vibrational pertur-
bation theory.3−5

In the past decades, density functional theory (DFT)
combined with the development of computational facilities
has opened the route to the study of large systems. In many ab
initio code using DFT, the third-order derivatives can be
obtained as well as some partial fourth-order ones. In other
calculations, harmonic constants may be derived with high level
methods such as CCSD(T) and corrections with DFT third
and fourth partial order derivatives are achieved to provide
analytical surfaces.6

Tight-binding (TB) methods are much faster approaches
that conserve the quantum description with explicit use of
molecular orbitals (MO). Developed as the early quantum
semiempirical methods (like the extended Hückel Hamilto-
nians7), these approaches, which evolved to more complex
formulations including for instance self-consistent processes,
can be derived from ab initio methods (TB-HF from Hartee−

Fock8 or DFTB from DFT9−12). In all TB approaches, the
solution of the electronic problem is achieved by the
diagonalization (possibly iteratively) of the Hamiltonian matrix
(eventually expressed in a nonorthogonal basis). The computa-
tional efficiency of TB approaches relies on the use of a
minimal atomic basis set and the fact that the Hamiltonian and
overlap matrices elements are obtained from two-body
parametrized functions or interpolated from precalculated
points.
Among these TB approaches, density functional based tight-

binding (DFTB9−12) is a computationally efficient DFT
scheme in which all integrals are parametrized from DFT
calculations. The second-order DFTB, also called self-
consistent charge (SCC11) DFTB, is a refinement of this
approach providing a more accurate description of moderately
charged systems requiring a self-consistent diagonalization
scheme. This approach has been widely used over the past
decades to extract properties of systems for which DFT turns
out to be too time-consuming in fields ranging from solid-state
structures13 to biomolecules.14

Analytical second-order SCC-DFTB energy derivatives with
respect to geometry have been formulated by Witek et al.15 and
used to extract physical properties, in particular IR spectra in
the harmonic approximation.16,17 In this work, we describe how
higher-order geometric derivatives of the energy can be
computed analytically within the SCC-DFTB framework. The
use of automatic differentiation enables a unique implementa-
tion that allows the calculation of these derivatives up to any

ABSTRACT: We present and implement the calculation of analytical n-order geometric derivatives of the energy obtained 
within the framework of the density functional based tight binding approach. The use of automatic differentiation techniques 
allows a unique implementation for the calculation of derivatives up to any order providing that the computational facilities 
are sufficient. As first applications, the derivatives are used to build an analytical potential energy surface around the 
optimized geometry of acetylene. We also discuss the relevant anharmonic contributions that have to be considered when 
building such an analytical potential energy surface for acetylene, ethylene, ethane, benzene, and naphtalene.
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order, provided that the CPU time and storage capabilities are
sufficient.
Although the approach is applied here to SCC-DFTB, it is

general for any self-consistent (or not) TB scheme. It can also
be applied to achieve high-order derivations with respect to any
perturbation (for instance electric or magnetic field) once the
TB matrices elements derivatives with respect to this
perturbation are known.
The paper is organized as follows. In the next section, after a

brief presentation of the DFTB approach, we present the
formalism allowing the calculation of any order properties
derivatives within this framework as well as an analytic fit of
DFTB parameters. We then benchmark the approach by
comparing numerical and analytical calculation of derivatives. In
the last section, the derivatives are used to build an analytical
PES. We discuss the n-order derivative terms, that are
quantitatively relevant on some examples.

2. METHOD

2.1. SCC-DFTB. In this section, we briefly review the basics
of the SCC-DFTB method.9−12 It is derived from the Kohn−
Sham (KS) DFT through an expansion of the DFT energy
functional with respect to the electronic density around a
reference density up to second-order. All three center integrals
are neglected. With these approximations, the SCC-DFTB is
given by

∑ ∑

∑

ψ ψ

γ

= + ⟨ | ̂ | ⟩
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α β
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where Ĥ0 is the KS operator at the reference density, ni is the
electronic occupation of the KS MO Ψi, and Eαβ

rep is a repulsive
potential between atoms α and β. The last term is the second-
order contribution to the energy expressed through atomic pair

contributions involving a γ function of interatomic distances
and atomic charges fluctuations Δqα.
The molecular orbitals are developed on a minimal atomic

orbital (AO) basis set {ϕμ}
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leading to the matrix formulation
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where H0 and S are the KS and overlap matrices expressed in
the AO basis. Atomic charge fluctuations are calculated with the
Mulliken analysis approach Δqα = qα − qα

0 where qα
0 is the

number of valence electrons in the neutral free atom and
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∈

q n c c S
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i i i

As the atomic charge fluctuations depend on the MO
coefficients, the energy minimization is performed through self-
consistent cycles by solving the eigenvalue equation:

∑ ε− =
ν

ν μν μνc H S( ) 0i i
(4)

with

∑ γ γ= + = + + Δμ α ν β μν μν μν μν

ξ

αξ ξβ ξ∈ ∈H H H H S q
1

2
( ),
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(5)

The matrix elements of H0, S, and Eαβ
rep are interpolated from

two-body DFT calculations.
Additional terms can be added to account for London

dispersion (Edisp) forces as a sum over atomic pairs.18−20 In

Figure 1. Hamiltonian and overlap matrix elements as functions of the distance for C−H interaction obtained from the analytical fit eq 6 and some
of points obtained from the DFT integrals used to fit these parameters.
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recent years, order terms with respect to the density have been
introduced.21

2.2. Parameter Fitting. In the next section, n-order
response properties resulting from a geometric perturbation ζ
(geometrical change, electric field, etc.) will be derived
analytically assuming the knowledge of the DFTB parameter
derivatives with respect to this perturbation: ∂Hμν

0 /∂ζ, ∂Sμν/∂ζ,
∂Eαβ

rep/∂ζ, ∂γαβ/∂ζ.
DFTB matrices elements are computed at the DFT level for

selected interatomic distances. Clearly, one cannot use low-
order splines for high-order derivations and global analytic
fitting of the DFTB parameters is relevant. The analytical fitting
has been discussed by several authors either with Chebyshev
polynomials22 or standard polynomials.23 One has to be aware
of possible artifacts and transferability problems for very small
matrices elements and out of the DFT tabulated ranges at long
interatomic distances. Long-range artifacts can be in principle
corrected via cutoff functions. The essential scope of the
present paper is to present the analytical derivatives of the
DFTB energy. This algebra is valid for any kind of derivable
fitting functions. In the present work, we have expressed the
interatomic elements of the Hamiltonian matrix at the reference
density H0 and the overlap matrix S as a polynomial function of
the interatomic distance through a polynomial expansion:

∑ϑ =
=−

R a R( )k

n

nk
n

5

15

(6)

The subindex k specifies the different types of interacting
orbitals. For instance, in the case of second-row elements, the
possible orbital interactions are s−s, s−p, p−s, (p−p)σ, and
(p−p)π. As an example, we show in Figure 1 the results of the
fitting process for the Hamiltonian and overlap matrices
elements corresponding to s−s and s−p atomic basis orbitals
for interaction of C−H atoms. We have used high-order
polynomials in order to ensure the fit accuracy better than 9 ×

10−5 Hartrees for all the DFT tabulated points. This is
important to compute high-order derivatives. The n-derivatives
of the H0 and S matrices are obtained by calculating the
derivatives of the products of this function with the rotation
matrices corresponding to various angular momenta.24 The fact
that the DFTB method only takes in account two-body
interactions simplifies the calculations because all the
derivatives that involve coordinates of three or more different
atoms are zero.
2.3. Analytical Derivatives. We first consider the

calculation of n-order derivatives with respect to a single
coordinate in the standard second-order SCC-DFTB. We
follow here the approach of Masmoudi et al.25 and extend it to
the self-consistent scheme. In order to obtain the n-derivatives
of the MO coefficients civ and the eigenvalues εi, we start
calculating the n-derivative of eq 4:

∑ ε− =
ν

ν μν μνc H S[ ( )] 0i i
n

(7)

The superscript stands for the n-order derivative ∂
n/∂ζn. We

suppose now that we have solved eq 7 for all orders k < n. So,
in this equation, the only unknown terms are the highest-order
ones ciν

n and εi
n.

In order to calculate this terms, the derivatives of the
coefficients ciν

n are expressed as a linear combination of the MO
coefficients ciμ:
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Introducing this expansion in eq 7, using the formula of
differentiation of a product
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where n
r( ) is the binomial coefficient n!/(r!(n − r)!) and

multiplying by cjμ coefficients and summing over μ leads to the
following expression:
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If we extract the term corresponding to r = 0 from the sum and
we apply again eq 9 to expand the product of (εiSμv)

(n−r), we
can separate eq 10 in two cases. For i ≠ j, we have
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and for i = j,

∑ ∑

∑ ∑

ε ε

ε

= −

+ −

μν

μ ν μν μν

μν

μ ν μν μν

=

−

=

−
−

⎜ ⎟

⎛

⎝
⎜⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟⎟

( )

c c H
n

k
S

n

r
c c H S( )

i
n

i i
n

k

n

i
n k k

r

n

i i
r

i
n r

1

1

1
( )

(12)

where we are making use of the fact that ∑μνciμcjνSμν = δij.
These two sets of equations can be solved independently.

For the non-SCC case, all the terms in the right-hand side (rhs)
of eq 11 are known, as Hμv = Hμv

0 . Therefore, this equation gives
the solution for each uif for i ≠ j. On the other hand, in the SCC
scheme, the Hamiltonian matrix H depends on Δqn and
therefore on uif. The contribution of the n-order derivatives of
the Hamiltonian involving uif are identified and transferred to
the left-hand side (lhs) of the equation, leading to the linear
system:

∑ ε= ′ < < ≤ ≤A u R c H S( , , , )
lm

ijlm lm
k n k n k n k n0

(13)

At first order, this system is known as the coupled perturbed
equations (see, for instance,ref 26). The full expressions of Aijlm

and R′ are given in Appendix A. We notice that, although this
system has to be solved for each order of the ciμ derivatives, the
matrix Aijlm will allways remain the same and only a single
inversion of this matrix is necessary for the calculations of all
derivatives.
To get the diagonal terms uii, we use the normalization

condition.

∑ =
μν

μ μν νc S c( ) 0i i
n nN,...,1

(14)

that leads to
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Once the MO coefficients are determined, eq 12 can be
solved to obtain the eigenvalues derivatives εi

n.
In the general case, namely when we want to calculate a

derivative according to more than a single coordinate, eq 7 is
replaced by
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The procedure for solving the latter is exactly the same as the
derivation according to a single variable. Besides, in the SCC
case, the matrix Aijlm, that needs to be inverted to solve the
linear problem equivalent to eq 13, is exactly the same as the
one for the case of derivation with respect to a single variable.
This property is very favorable to save computational efforts.
Another fact that simplifies the calculation of the derivatives

is the Wigner’s 2n + 1 rule,27 according to which, the
knowledge of the n-derivative of the coefficients is sufficients to
calculate the (2n + 1)-order derivative for the energy.
The applications in the next section section are carried on

using second-order SCC-DFTB. Nevertheless, for sake of
completeness, we show that analytical derivatives can also be
carried on in the case of the third-order expansion of DFTB
with respect to the density (DFTB3 approach21). The algebra
of the derivatives is given in Appendix B.

3. BENCHMARKS

The algorithm presented in the previous section has been
implemented in a preliminary version of the deMonNano28

code, a version of the deMon suite of programs devoted to
large systems calculations with the DFTB approach. To
benchmark the algorithm and its implementation, n-order
derivatives have been calculated with the analytical approach
presented previously and through finite differences. Both
numerical and analytical derivatives calcuations have been
performed with the analytical parameter fitting eq 6. The choice
of the geometric displacement step, taken here as 0.01 bohr,
results from a compromise between the fact that this value
should be as small as possible to respect the differentiation
definition but not too small to avoid numerical errors. We are
calculating this derivatives in two steps. In the first one, we
make an evaluation of the energy in a grid given by all the
displacements: (±δx, ±2δx, ..., ±nδx), where n is the maximum
order we want to calculate. The energy is then stored for all

points of this grid. In the second step, we use this stored values
to calculate the derivatives. This way of calculating numerical
derivatives makes it fast, but it has the drawback of requiring a
very big amount of memory as we increase the size of the
system.
As can be seen in Table 1, the relative error remains smaller

than 0.1% up to third-order derivatives and increases up to 1−

7% for fourth-order derivative calculations. We also mentioned
that the analytical differentiation is much faster than performing
finite difference calculations as can be seen in Figure 2. This is

true, even when we are calculating the numerical derivatives
with the efficient scheme previously described. Nevertheless,
the numerical fourth-order derivatives for naphtalene were not
calculated because the memory and time demands were too big.
This fact indicates that, if we want to calculate derivatives up to
fourth-order for big systems, one would need to do it without
storing the values of the energy in a grid, and the time
differences between analytical and numerical derivatives would
be even larger than the ones showed in Figure 2.

4. APPLICATIONS

In this section, we present selected applications of n-order
derivative calculations. We first present on a simple system
(C2H2) how going up to fourth-order is mandatory to have a
reasonably good description of the PES within a Taylor
expansion. Finally, we discuss the distributions of derivative
absolute values, depending on the number of involved normal
modes for a variety of systems, namely acetylene, ethylene,
ethane, benzene, and naphtalene.

Table 1. Maximum Relative Deviation between Numerical
and Analytical n-Order (n = 2, 3, 4) Derivatives for
Acetylene, Ethylene, Ethane, and Benzene Moleculesa

molecule second-order third-order fourth-order

acetylene 9.8419 × 10−4 1.0348 × 10−4 6.8994 × 10−2

ethylene 1.0037 × 10−4 9.3118 × 10−4 1.1079 × 10−3

ethane 1.2842 × 10−4 6.2790 × 10−4 3.1483 × 10−2

benzene 1.9457 × 10−4 6.8088 × 10−4 1.2265 × 10−2

aAs the relative errors have no meaning for very small derivatives, we
only considered derivatives that have an absolute value of at least 1%
of the biggest derivative.

Figure 2. Time scale (seconds) comparison between calculation of
analytical (dashed lines) and numerical (solid lines) as a function of
the basis size (i.e., the dimension of DFTB matrices).
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4.1. Building an Analytical Potential Energy Surface

of Acetylene. As a first application of high-order derivative
calculations, we focus on analytical PES reduced to two possible
geometric deformations, namely the C−C and C−H bond
length. Figure 3 present the corresponding potential energy
subsurface, obtained either from single point DFTB calcu-
lations either from Taylor expansion of the PES using n-order
(n = 2−4) derivatives. The first plot shows that, around the
minimum energy structure, iso-energetic contours look like a
slightly deformed ellipse. Obviously, the harmonic approx-
imation can not go beyond the ellipse shape description of the
PES. This is not the case with the third-order expansion, the
non-symmetric shape of the PES being recovered. However,
two fictitious local metastable minima appear at intermediate
distances from the most stable configuration. Such minima
could have strong artificial effects for instance if some physical
properties would be calculated by molecular dynamics on this
approximated surface. Theses errors are washed by including
fourth-order terms in the expansion, the local metastable
minima being pushed much further from the most stable
configuration.

4.2. Relevant Terms in n-Order Derivatives. Calculating
high-order response properties in a DFT framework can be
extremely computationally costly for systems even with a
relatively small number of degrees of freedom. A solution often
used is to calculate derivatives according to a selected number
of modes. For instance, the calculation of fourth-order
derivatives is often restricted to the dependence of one or
two different normal modes Ni. Taking advantage of the
computational cost of DFTB and analytical high-order response
implementation, it is possible to calculate all derivatives up to
fourth-order for several molecular systems and to identify the
significant terms. Figure 4 represents, for acetylene, ethylene,
ethane, benzene, and naphtalene, the third- and fourth-order
energy derivatives with respect to frequency scaled normal
mode coordinates: Ñα = Nα(ωα)

1/2, Nα being the normal mode
resulting from the diagonalization of the mass weighted Hessian
matrix.
For the third-order derivatives of the five studied systems,

some derivatives with respect to two or three different normal
modes are of the same order of magnitude (or even larger) as
the ones with respect to one single normal mode.

Figure 3. PES of the acetylene molecule as function of C−C and C−H bond lengths obtained from single points calculations (left). In the upper
panel, we show, from left to right, the PES obtained from Taylor’s expansion using analytical derivatives up to second-, third-, and fourth-order . In
the lower panel, we plot the absolute value of the difference between the full PES and the n-order approximation.

Figure 4. Absolute values of third- and fourth-order derivatives of the energy with respect to frequency weighted modes coordinates, Ñα. The values
of the derivatives are normalized with respect to the maximum value of the derivative in each case. Derivatives with respect to 1, 2, 3, and 4 different
coordinates are separated by dashed lines.
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For fourth-order derivatives, the situation is different
between the three systems. In some systems, as acetylene and
ethane, the derivatives according to one or two normal modes
are the most important. However in the cases of ethylene,
benzene, and naphtalene, derivatives with respect to 4 different
coordinates are the same order of magnitude as the previous
ones.
Such examples suggests that when only some values of

derivatives are used to compute physical properties from a
fitted surface, it is more consistent to calculate all derivatives
and to use a threshold to eliminate some derivatives than to
select it according to the number of involved normal modes. In
a DFT framework, calculating all derivatives would have a
computationally expensive cost. In such cases, DFTB could be
used as a precalculation to select a limited number of
derivatives to be calculated at the DFT level.

5. CONCLUSION

In this paper, we have derived general equation to calculate the
n-order response of the energy of a system with respect to a
geometric perturbation, calculated within SCC-DFTB ap-
proach. The implementation of these equations in the
deMonNano code makes use of automatic differentiation
which enable the calculation of derivatives up to any order
provided the fact that memory and computational time is
available. Due to storage limitation, only derivatives up to
fourth-order have been calculated in this work.
The implementation has been benchmarked by comparing

the results with derivatives computed by the finite differences
method. The analytical calculation is much faster than the latter
approach. Such derivatives can be used to obtain an
approximated PES of he system through a Taylor expansion
up to a given order.
We notice that the equations reported in this paper are

general and can be used to calculate the response with respect
to any perturbation as long as the DFTB parameter derivatives
with respect to this perturbation are known. This opens the
route for instance to calculation of hyperpolarisabilities
constants. The scope of this work was to express analytical n-
order derivatives of DFTB properties to avoid its numerical
calculations, without addressing the quality of DFTB PES. One
should however keep in mind that DFTB is an approximated
DFT scheme and that the quality of the n-order derivatives of
any property relies on the DFTB accuracy itself, which can
always be improved by refining parameters, introducing higher-
order terms29 or some specific corrections for instance to treat
long-range dispersion and Coulombic interactions.18−20

As an illustration, we have discussed how including third- and
fourth-order terms in the building of an analytical PES based on
a Taylor expansion improves the local description of the
acetylene PES. The role of high-order terms has been shown to
have a significant effect. Finally, we have discussed the relative
values of the derivatives for third- and fourth-order energy
derivatives with respect to 1, ..., 4 normal mode deformations
for acetylene, ethylene, ethane, benzene, and naphtalene. We
showed that fourth-order derivatives involving two normal
modes are for some systems less important than the same order
derivatives involving 3 or 4 normal modes. As calculating
derivatives with respect to all coordinates might be prohibitive
at the DFT level and as the selection of the significant terms
can hardly be done on the number of normal modes involved,
we suggest that a fast DFTB high-order derivative calculation

could be performed in order to select the DFT derivatives to be
calculated, when this level of description is required.

APPENDIX A: FULL EXPRESSION OF THE TERMS
AIJLM AND R′ IN EQUATION 13

In this appendix, we give the steps to obtain eq 13 from eq 11
for the SCC case. The left part of eq 13 contains all the terms
that involve ulm in eq 11. The hamiltonian Hμv is the sum of a
non-self-consistent part Hμv

0 and the SCC component, Hμv
1

given by eq 5. The n-derivative of H1 is given by
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The second term in the expression for Δqξ
n, is the only one in

which appear the n-order derivatives of the coefficients ciμ, while
gξ contains only lower-order terms. The matrix Aijlm is obtained
after expressing the derivatives ciμ

n in terms of the coefficients uif
using eq 8 and grouping all these terms in the lhs of eq 11. The
final expression is the following:

∑ ∑

∑ ∑

ε ε δ δ γ γ= − − +

× +

μν

μ ν μν

ξ
αξ ξβ

ω ξ χ

ωχ χ ω ω χ

∈

A c c S

n S c c c c

( )
1

2
( )

( )

ijlm l m il jm i j

m l m l m

(21)

We notice that the expression of this matrix is equivalent to
the one used to obtain the MO coefficient derivatives in the
context of the DFTB-CI30

The rhs of eq 13 contains all the other terms and can be
expressed as

ε′ = + + + +< < ≤ ≤R c H S R R R R( , , , )k n k n k n k n
ij ij ij ij

0 1 2 3 4

(22)

where

∑ ∑ ε= −
μν

μ ν μν μν

=

−
−( )R

n

r
c c H S( )ij

r

n

j i
r

i
n r1

1

1

(23)

∑ ∑ ε= −
μν

μ ν μν

=

−
−( )R c c

n

r
Sij j i

r

n

i
n r r2

1

1

(24)
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∑ ∑ ∑ ∑ γ γ= + Δ
μν

μ ν

ξ

μν

ξ

αξ ξβ ξ
=

−( )R c c
n

r
S q

1

2
[ ( )]ij j i

r

n
r n r3

1

(25)

and

∑ ∑ γ γ= +
μν

μ ν μν

ξ

αξ ξβ ξ
R c c S g

1

2
( )ij j i

4

(26)

APPENDIX B: FULL EXPRESSION OF THE TERMS
AIJLM AND R′ IN THE DFTB3 SCHEME

In the third-order extension of the SCC-DFTB method, the 
Hamiltonian can be expressed as

∑= + Δμ α ν β μν

ξ
ξ ξμν∈ ∈H H q L,

2nd

(27)

where Hμv
2nd is the second-order Hamiltonian given by equation

eq 5, and

= Δ Γ + Δ Γ +
Δ

Γ + Γξμ αν β α αξ β βξ

ξ

ξα ξβ∈ ∈L q q
q1

3
( )

6
( )

(28)

where

γ
Γ =

∂

∂
ξα

ξα

ξ
ξ

q
q 0

(29)

Appling the same procedure used in the second-order case,
we arrive to the correspondent expressions for the left and right
parts in this extended scheme. For the matrix Aijlm, we have

∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

= − × +

+ +
Δ

Γ

+ +
Δ

Γ +

μν

μ ν μν

ξ

ξμν ξμν

ω ξ χ

ωχ χ ω ω χ

ξ

ξ

αξ

ω α χ

ωχ

χ ω ω χ

ξ

ξ

βξ

ω β χ

ωχ χ ω ω χ

∈ ∈

∈

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

A A c c S n L M

S c c c c
q

S

c c c c
q

S c c c c

( )

( )
3

( )
3

( )

ijlm ijlm j i m

l m l m

l m l m l m l m

2nd

(30)

where Aijlm
2nd is given for eq 21 and

=
Δ

Γ + Γξμν

ξ

ξα ξβM
q

6
( )

(31)

The expression for the right part R′ is given by

ε′

= + + + + +

< < ≤ ≤R c H S

R T T T T T

( , , , )k n k n k n k n

ij ij ij ij ij ij

0

2nd 1 2 3 4 5
(32)

where the second-order part is given by eq 22 and the rest of
the terms are

∑ ∑ ∑= Δ
μν

μ ν

ξ
ξ ξμν

=

−
−( )T

n

r
c c q L( )ij

r

n

j i
r n r1

1

1

(33)

∑ ∑ ∑= Δ
μν

μ ν

ξ

μν ξ ξμν

=

−( )T c c
n

r
S q L( )ij j i

r

n
r n r2

1 (34)

∑ ∑ ∑= Δ
μν

μ ν

ξ

μν ξ ξμν

=

−
−( )T c c

n

r
S q Lij j i

r

n
r n r3

1

1

(35)

being

∑ ∑= Δ
μν

μ ν

ξ

μν ξ ξμνT c c S q Tij j i
4 4

(36)

where

∑=
Δ

Γ +
Δ

Γ

+
Δ

Γ + Γ

ξμν
α

αξ

β

βξ

ξ

ξα ξβ

=

−
− −

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )T
n

r

q q

q

3 3

6
( )

r

n r

n r

r

n r

r

n r

4

0

1

(37)

and

∑ ∑= +
Δ

Γ + Γ

+
Δ

Γ + Γ

μν

μ ν μν

ξ
ξ ξμν

ξ

ξα ξβ

ξ

α αξ β βξ

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬
⎭

T c c S g L
q

q
g g

6
( )

3
( )

ij j i
n

n n

5

(38)
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