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The location and width of the time window in which a sequence of processes converges to equilibrum are given under conditions of exponential convergence. The location depends on the side: the left-window and right-window cutoffs may have different locations. Bounds on the distance to equilibrium are given for both sides. Examples prove that the bounds are tight.

Introduction

The term "cutoff" was introduced by Aldous and Diaconis [START_REF] Aldous | Shuffling cards and stopping times[END_REF], to describe the phenomenon of abrupt convergence of shuffling Markov chains. Many families of stochastic processes have since been shown to have similar properties: see [START_REF] Levin | Markov chains and mixing times[END_REF]Chap. 8] for an introduction to the subject, [START_REF] Saloff-Coste | Random walks on finite groups, Probability on discrete structures[END_REF] for a review of random walk models in which the phenomenon occurs, and [START_REF] Chen | The cutoff phenomenon for ergodic Markov processes[END_REF] for an overview of the theory. Consider a sequence of stochastic processes in continuous time, each converging to a stationary distribution. Denote by d n (t) the distance between the distribution at time t of the n-th process and its stationary distribution, the 'distance' having one of the usual definitions (total variation, separation, Hellinger, relative entropy, L p , etc.). The phenomenon can be expressed at three increasingly sharp levels (more precise definitions will be given in section 2).

1. The sequence has a cutoff at (t n ) if d n (ct n ) tends to the maximum M of the distance if c < 1, to 0 if c > 1.

2. The sequence has a window cutoff at (t n , w n ) if lim inf d n (t n + cw n ) tends to M as c tends to -∞, and lim sup d n (t n + cw n ) tends to 0 as c tends to +∞.

3. The sequence has a profile cutoff at (t n , w n ) with profile F if F (c) = lim d n (t n +cw n ) exists for all c, and F tends to M at -∞, to 0 at +∞.

There are essentially two ways to interpret the cutoff time t n : as a mixing time [START_REF] Levin | Markov chains and mixing times[END_REF]Chap. 18], or as a hitting time [START_REF] Martínez | Decay rates and cutoff for convergence and hitting times of Markov chains with countably infinite state space[END_REF]. For samples of Markov chains, the latter interpretation can be used to determine explicit online stopping times for MCMC algorithms [START_REF]Stopping tests for Markov chain Monte-Carlo methods[END_REF][START_REF] Lachaud | Cutoff and hitting times for a sample of Ornstein-Uhlenbeck processes and its average[END_REF][START_REF] Lachaud | Convergence times for parallel Markov chains[END_REF][START_REF] Diédhiou | Cutoff time based on generalized divergence measure[END_REF]. Sequences of processes for which an explicit profile can be determined are scarce. The first example of a window cutoff concerned the random walk on the hypercube for the 1 total variation distance; it was treated by Diaconis and Shahshahani shortly after the introduction of the notion [START_REF] Diaconis | Time to reach stationarity in the Bernoulli-Laplace diffusion model[END_REF]. It was soon precised into a profile cutoff by Diaconis, Graham, and Morrison [START_REF] Diaconis | Asymptotic analysis of a random walk on a hypercube with many dimensions[END_REF]. Cutoffs for random walks on more general products or sums of graphs have been investigated in [START_REF]Cutoff for large sums of graphs[END_REF], and more recently by Miller and Peres [START_REF] Miller | Uniformity of the uncovered set of random walk and cutoff for lamplighter chains[END_REF]. Random walks on the hypercube can be interpreted as samples of binary Markov chains. Diaconis et al.'s results were generalized to samples of continuous and discrete time finite state Markov chains for the chi-squared and total variation distance in [START_REF] Ycart | Cutoff for samples of Markov chains[END_REF], then to samples of more general processes, for four different distances in [2, section 5] (see also [START_REF] Levin | Markov chains and mixing times[END_REF]Chap. 20]). Other examples of profile cutoffs include the riffle shuffle for the total variation distance [START_REF] Bayer | Trailing the dovetail shuffle to its lair[END_REF], and birth and death chains for the separation distance [START_REF] Diaconis | Separation cut-offs for birth and death chains[END_REF] or the total variation distance [START_REF] Ding | Total-variation cutoff in birth-and-death chains[END_REF]. When the maximum M of the distance is 1 (total variation, separation), the profile F decreases from 1 to 0. Thus it can be seen as the survival function of some probability distribution on the real line. A Gaussian distribution has been found for the riffle shuffle with the total variation distance [START_REF] Bayer | Trailing the dovetail shuffle to its lair[END_REF]Theorem 2] or for some birth and death chain with the separation distance [START_REF] Diaconis | Separation cut-offs for birth and death chains[END_REF]Theorem 6.1]. A Gumbel distribution has been found for samples of finite Markov chains and the total variation distance [START_REF] Diaconis | Asymptotic analysis of a random walk on a hypercube with many dimensions[END_REF][START_REF] Ycart | Cutoff for samples of Markov chains[END_REF]. For the Hellinger, chi-squared, or relative entropy distances, other profiles were obtained in [START_REF] Barrera | Cutoff for n-tuples of exponentially converging process[END_REF].

Explicit profiles are usually out of reach, in particular for the total variation distance: only a window cutoff can be hoped for. However the definition above, which is usually agreed upon ([4, Definition 2.1] or [13, p. 218]), may not capture the variety of all possible situations. As will be shown here, the location of a left-window cutoff should be distinguished from that of a right-window cutoff: see Figure 18.2, p. 256 of [START_REF] Levin | Markov chains and mixing times[END_REF]. The main result of this note, Theorem 2.1, expresses the characteristics of the left and right windows in terms of a decomposition into exponentials of the distances d n (t). It refines some of the results in Chen and Saloff-Coste [START_REF]The L 2 -cutoff for reversible Markov processes[END_REF], in particular Theorem 3.8. Explicit bounds on the distance to equilibrium are given. They are proved to be tight, using examples of cutoffs for Ornstein-Uhlenbeck processes (see Lachaud [START_REF] Lachaud | Cutoff and hitting times for a sample of Ornstein-Uhlenbeck processes and its average[END_REF]).

The paper is organized as follows. Section 2 contains formal definitions and statements. Examples are given in section 3. Theorem 2.1 is proved in section 4.

Definitions and statements

For each positive integer n a stochastic process X n = {X n (t) ; t 0} is given. We assume that X n (t) converges in distribution to ν n as t tends to infinity. The convergence is measured by one of the usual distances (total variation, separation, Hellinger, relative entropy, L p , etc.), the maximum of which is denoted by M (M = 1 for total variation and separation, M = +∞ for relative entropy, chi-squared. . . ). The distance between the distribution of X n (t) and ν n is denoted by d n (t). Definition 2.1. Denote by (t n ) and (w n ) two sequences of positive reals, such that w n = o(t n ). They will be referred to respectively as location and width. The sequence (X n ) has:

1. a left-window cutoff at (t n , w n ) if: lim c→-∞ lim inf n→∞ inf t<tn+cwn d n (t) = M ; 2. a right-window cutoff at (t n , w n ) if: lim c→+∞ lim sup n→∞ sup t>tn+cwn d n (t) = 0 ; 3. a profile cutoff at (t n , w n ) with profile F if: ∀c ∈ R , F (c) = lim n→∞ d n (t n + cw n )
exists and satisfies:

∀c ∈ R , 0 < F (c) < M and lim c→-∞ F (c) = M , lim c→+∞ F (c) = 0 .
If both left-and right-window cutoffs hold for the same location t n and width w n , then a (t n , w n )-cutoff holds in the sense of Definition 2.1 in Chen and Saloff-Coste [START_REF] Chen | The cutoff phenomenon for ergodic Markov processes[END_REF]. The location and width are not uniquely determined. Observe that if a left-window cutoff holds at location t n , it also holds at any location t ′ n such that t ′ n t n . Symmetrically, if a right-window cutoff holds at location t n , it also holds at any location t ′ n such that t ′ n t n . Moreover, if a cutoff holds for width w n , it also holds for any width w ′ n such that w ′ n w n . The location and width of a left-window cutoff will be said to be optimal if for any c < 0: lim inf

n→∞ inf t<tn+cwn d n (t) < M .
Those of a right-window cutoff are optimal if for any c > 0:

lim sup n→∞ sup t>tn+cwn d n (t) > 0 .
This corresponds to strong optimality in the sense of [START_REF] Chen | The cutoff phenomenon for ergodic Markov processes[END_REF]Definition 2.2]. Of course, if a profile cutoff holds, then the left-and right-window cutoffs hold at the same location and width, which are optimal for both. Examples will be given in section 3.

Our main result relates the location and width of the left-and right-window cutoffs to the terms of a decomposition into exponentials of the functions d n (t). From now on, we assume M = +∞: the distance is relative entropy, L p for p > 1, etc. The result is expressed for a sequence of continuous time processes, it could be written in discrete time, at the expense of heavier notations. Theorem 2.1. Assume that for each n, there exist an increasing sequence of positive reals (ρ i,n ), and a sequence of non negative reals (a i,n ) with a 1,n > 0, such that:

d n (t) = +∞ i=1 a i,n e -ρi,nt .
(1)

Denote by A i,n the cumulated sums of (a i,n ), truncated to values no smaller than 1.

A i,n = max{1, a 1,n + • • • + a i,n } .
For each n, define:

t n = sup i log(A i,n ) ρ i,n , ( 2 
)
w n = 1 ρ 1,n , (3) 
r n = w n (log(ρ 1,n t n ) -log(log(ρ 1,n t n ))) . ( 4 
)
Assume that:

1. for n large enough, 0 < t n < +∞ , (5)

lim

n→∞ ρ 1,n t n = +∞ , ( 6 
)
3. there exists a positive real α such that for n large enough, and for all i 2,

a i,n αA i-1,n . (7)
Then (X n ) has a left-window cutoff at (t n , w n ), a right-window cutoff at (t n + r n , w n ). More precisely:

∀c < 0 , lim inf n→∞ d n (t n + cw n ) e -c , ( 8 
) ∀c > 0 , lim sup n→∞ d n (t n + r n + cw n ) e -c . (9) 
Conditions ( 5) and ( 7) are technical. Condition ( 6) is known as Peres criterion: Chen and Saloff-Coste [START_REF] Chen | The cutoff phenomenon for ergodic Markov processes[END_REF] have proved that it implies cutoff for L p distances with p > 1, and given a counterexample for the L 1 distance. A consequence is that w n = o(t n ) as requested by Definition 2.1, and more precisely that

w n = o(r n ) and r n = o(t n ).
A decomposition into exponentials of the distance to equilibrium such as (1) holds for many processes: functions of finite state space Markov chains, functions of exponentially ergodic Markov processes, etc. Assuming that the decomposition only has non-negative terms is a stronger requirement: see [ 

+ r + n , w + n ) and (t - n + r - n , w - n ). Since d n (t) is nonnegative, t - n t + n , t - n + r - n t + n + r + n , and w - n < w + n .
The sequence (X n ) has a right-window cutoff, and ( 9) holds for

d n with (t n + r n , w n ) = (t + n + r + n , w + n ). Moreover, if t - n + r - n = o(t + n ) then the sequence (X n
) has a left-window cutoff, and ( 8) holds for d n with (t n , w n ) = (t + n , w + n ). Theorem 3.8 in [START_REF]The L 2 -cutoff for reversible Markov processes[END_REF] contains a less tight assertion: it describes a (t n , r n )-cutoff, which can be deduced from Theorem 2.1 above. However, it hides the fact that when there is a (two-sided) window cutoff, the optimal width is no larger than w n thus strictly smaller than r n . The latter quantity is a correction bound on the location rather than a width: the optimal location may be anywhere between t n and t n + r n .

In the next section, sequences of processes having a profile cutoff at (t n , w n ) or (t n + r n , w n ), with profile F (c) = e -c will be constructed, thus proving that (8) and ( 9) are tight.

Examples

Several examples from the existing literature could be written as particular cases of Theorem 2.1: reversible Markov chains for the L 2 distance [START_REF] Ycart | Cutoff for samples of Markov chains[END_REF][START_REF]The L 2 -cutoff for reversible Markov processes[END_REF], n-tuples of independent processes for the relative entropy distance [START_REF] Barrera | Cutoff for n-tuples of exponentially converging process[END_REF], random walks on sums or products of graphs [START_REF]Cutoff for large sums of graphs[END_REF], samples of Ornstein-Uhlenbeck processes [START_REF] Lachaud | Cutoff and hitting times for a sample of Ornstein-Uhlenbeck processes and its average[END_REF]. The objective of this section is not an extensive review of possible applications, but rather the explicit construction of some sequences illustrating the tightness of ( 8) and ( 9), and the possible locations of window cutoffs. We shall use here the relative entropy distance, also called Kullback-Leibler divergence: if µ and ν are two probability measures with densities f and g with respect to λ, then:

d(µ, ν) = Sµ f log(f /g) dλ ,
where S µ denotes the support of µ. The main advantage of choosing that distance is its simplicity for dealing with tensor products:

d(µ 1 ⊗ µ 2 , ν 1 ⊗ ν 2 ) = d(µ 1 , ν 1 ) + d(µ 2 , ν 2 ) .
Let a and ρ be two positive reals. Our building block will be a one-dimensional Ornstein-Uhlenbeck process, denoted by X a,ρ (see Lachaud [START_REF] Lachaud | Cutoff and hitting times for a sample of Ornstein-Uhlenbeck processes and its average[END_REF] on cutoff for samples of Ornstein-Uhlenbeck processes). The process X a,ρ is a solution of the equation:

dX(t) = - ρ 2 X(t) dt + √ ρ dW (t) ,
where W is the standard Brownian motion. The distribution of X a,ρ (0) is normal with expectation √ 2a and variance 1. It can be easily checked that the distribution of X a,ρ (t) is normal with expectation √ 2a e -ρt/2 and variance 1. Therefore the (relative entropy) distance to equilibrium is:

d(t) = a e -ρt .
Consider now two sequences (a n ) and (ρ n ) of positive reals, and assume that (a n ) tends to infinity. Theorem 2.1 applies to the sequence of processes (X an,ρn ) with a 1,n = a n , ρ 1,n = ρ n , and a i,n = 0 for i > 1. The location and width are:

t n = log(a n ) ρ n and w n = 1 ρ n .
The sequence has a profile cutoff at (t n , w n ) with profile F (c) = e -c . Indeed:

d n (t n + cw n ) = a n e -(ρntn+c) = e -c .
Hence ( 8) is tight. For ρ n ≡ ρ, X an,ρ is a Markov process with a fixed semigroup, and an increasingly remote starting point: cutoff for such sequences were studied in [START_REF] Martínez | Decay rates and cutoff for convergence and hitting times of Markov chains with countably infinite state space[END_REF]. Using tuples of independent Ornstein-Uhlenbeck processes, one can construct sequences X n for which the distance to equilibrium is any finite sum of exponentials. Let m n be an integer. For i = 1, . . . , m n , let a i,n and ρ i,n be two positive reals. Define the process X n as:

X n = X a1,n,ρ1,n , . . . , X am n,n ,ρm n ,n , where the coordinates are independent, each being an Ornstein-Uhlenbeck process as defined above. The distance to equilibrium of X n is:

d n (t) = mn i=1 a i,n e -ρi,nt . ( 10 
)
Let n be an integer larger than 1. Let β n be a real such that 0 β n 1. Define:

a 1,n = e n , ρ 1,n = n 1 + βn n log n log(n) , ( 11 
)
and for i = 2, . . . , m n = 9 n ,

a i,n = e -n , ρ i,n = log(e n + (i -1)e -n ) . ( 12 
)
The following notation is introduced for clarity:

ℓ n = log n log(n) .
Using (2), (3), and (4), one gets:

t n = 1 + ℓ n β n n = n ρ 1,n , w n = t n n , r n = t n ℓ n n = ℓ n w n . ( 13 
)
Lemma 3.1. Let d n be defined by [START_REF] Ding | Total-variation cutoff in birth-and-death chains[END_REF], with a i,n and ρ i,n given by ( 11) and [START_REF] Lachaud | Convergence times for parallel Markov chains[END_REF]. Assume the following limit (possibly equal to +∞) exists:

γ = lim n→∞ (1 -β n )ℓ n . ( 14 
)
Then:

∀c ∈ R , lim n→∞ d n (t n + (1 -β n )r n + cw n ) = e -c (1 + e -γ ) . (15) 
A few particular cases are listed below. They illustrate the variety of possible behaviors.

• β ≡ 1: a cutoff with profile 2e -c occurs at (t n , w n ).

• β n ≡ β ∈ [0, 1): a cutoff with profile e -c occurs at (t n + (1 -β)r n , w n ). For β = 0, this proves that ( 9) is tight.

• β n = (1 + (-1) n )/2: a left-window cutoff occurs at (t n , w n ), a right-window cutoff at (t n + r n , w n ). The locations and width are optimal.

• β n = 1 -γ/ℓ n , with γ > 0: a cutoff with profile e -c (1 + e γ ) occurs at (t n , w n ).

• Proof. The main step is the following limit.

β n = 1 -(2 + (-1) n )/ℓ n : a (t n , w n )-cutoff
lim n→∞ d n 1 + ℓ n n + c n = e -c (1 + e -γ ) . (16) 
In the sum defining d n , let us isolate the first term:

d n 1 + ℓn n + c n = D 1 + D 2 , with D 1 = a 1,n exp -ρ 1,n 1 + ℓ n n + c n and D 2 = mn i=2 a i,n exp -ρ i,n 1 + ℓ n n + c n .
The first term is:

D 1 = exp - (1 -β n )ℓ n + c t n .
Its limit is e -(γ+c) because (1 -β n )ℓ n tends to γ and t n tends to 1. The second term is:

D 2 = +∞ i=2 e -n e n + (i -1)e -n -(1+ ℓn n + c n ) .
Thus D 2 is a Riemann sum for the decreasing function x → x -(1+ ℓn n + c n ) . Therefore, , which tends to 0 for m n = 9 n > e 2n . So the upper bound in [START_REF] Ycart | Cutoff for samples of Markov chains[END_REF] tends to e -c . There remains to prove that the difference between the two integrals tends to 0. That difference is smaller than:

e n +mne -n e n +e -n x -(1+ ℓn n + c n ) dx < D 2 < e n +(mn-1)e -n e n x -(1+ ℓn n + c n ) dx . ( 17 
e n +e -n e n x -(1+ ℓn n + c n ) dx = (e n ) -( ℓn n + c n ) ℓn n + c n 1 -(1 + e -2n ) -( ℓn n + c n ) .
We have seen that the first factor tends to e -c . The second factor tends to 0, hence the result.

Let us now deduce ( 15) from [START_REF] Saloff-Coste | Random walks on finite groups, Probability on discrete structures[END_REF]. Using [START_REF] Levin | Markov chains and mixing times[END_REF],

1 + ℓ n n + c n = t n + (1 -β n ) r n t n + c w n t n .
Hence:

lim n→∞ d n t n + (1 -β n ) r n t n + c w n t n = e -c (1 + e -γ ) . ( 18 
)
Let us write:

t n + (1 -β n ) r n t n + c w n t n = t n + (1 -β n )r n + cw n -((1 -β n )r n + cw n ) ℓ n β n nt n .
Therefore:

0 d n t n + (1 -β n ) r n t n + c w n t n -d n (t n + (1 -β n )r n + cw n ) exp ρ 1,n ((1 -β n )r n + cw n ) ℓ n β n n -1 d n (t n + (1 -β n )r n + cw n ) = exp ℓ 2 n (1 -β n )β n + cℓ n β n nt n -1 d n (t n + (1 -β n )r n + cw n ) .
Hence the difference tends to 0, since 

Proof of Theorem 2.1

Proofs of inequalities ( 8) and ( 9) are given below.

Proof of [START_REF] Diaconis | Time to reach stationarity in the Bernoulli-Laplace diffusion model[END_REF]. Let c be a negative real. Fix ǫ such that 0 < ǫ < -c. Using (2), define i * n as:

i * n = min i , t n -ǫw n log(A i,n ) ρ i,n t n . ( 19 
)
From ( 6), t n + cw n is positive for n large enough. Then:

d n (t n + cw n ) = +∞ i=1 a i,n exp(-ρ i,n (t n + cw n )) i * n i=1 a i,n exp(-ρ i,n (t n + cw n )) A i * n ,n exp(-ρ i * n ,n (t n + cw n )) exp((-ǫw n -cw n )ρ i * n ) exp((-ǫw n -cw n )ρ 1,n ) = e -c-ǫ .
Since the inequality holds for all ǫ > 0, the result follows.

Proof of [START_REF] Diédhiou | Cutoff time based on generalized divergence measure[END_REF]. Let c be a positive real. Our goal is to prove the following inequality.

d n (t n + r n + cw n ) e -(rn+cwn)ρ1,n t n r n + cw n r n + cw n t n + e Cn , ( 20 
)
where C n tends to 0 as n tends to infinity. Let us first check that (20) implies [START_REF] Diédhiou | Cutoff time based on generalized divergence measure[END_REF]. Observe that rn+cwn tn tends to 0. Using (3) and ( 4):

e -(rn+cwn)ρ1,n t n r n + cw n = e -c 1 1 -log(log(tnρ1,n))+c log(tnρ1,n)

.

By ( 6) the right-hand side tends to e -c , hence the result.

To prove (20), split the sum defining d n (t n + r n + cw n ) into two parts S 1 and S 2 , with:

S 1 = l i=1 a i,n exp(-ρ i,n (t n + r n + cw n )) and S 2 = +∞ i=l+1 a i,n exp(-ρ i,n (t n + r n + cw n )) .
Using the fact that the ρ i,n are increasing,

S 1 A l,n exp(-ρ 1,n (t n + r n + cw n )) . ( 21 
)
To bound S 2 , the idea is the same as in the proof of [START_REF] Miller | Uniformity of the uncovered set of random walk and cutoff for lamplighter chains[END_REF]. From (2), exp(-ρ i,n t n ) A -1 i,n . Therefore:

S 2 +∞ l+1 a i,n A -(1+(rn+cwn)/tn) i,n . ( 22 
)
The function x → x -(1+(rn+cwn))/tn is decreasing, and its integral from l to +∞ converges. The right-hand side of ( 22) is a Riemann sum for that integral. Therefore: By [START_REF] Diaconis | Asymptotic analysis of a random walk on a hypercube with many dimensions[END_REF], the first factor of the right-hand side tends to 0. Moreover, condition [START_REF] Diaconis | Separation cut-offs for birth and death chains[END_REF] entails that for n large enough: log 1 + a ln,n A ln-1,n < log(1 + α) .

S
Hence the result.

  c log(n) ℓ n + c , which tends to e -c . Moreover, (e n + (m n -1)e -n ) -( ℓn n + c n )

  5, section 4]. It implies that d n (t) is a decreasing function of t. We do not view it as a limitation. Indeed, if (1) has negative terms, it can be decomposed as d n (t) = d +

	n (t) -d -n (t), with:
	d + n (t) =

+∞ i=1 max{a i,n , 0} e -ρi,nt and d - n (t) = -+∞ i=1 min{a i,n , 0} e -ρi,nt . Assume that Theorem 2.1 applies to both d + n (t) and d - n (t), leading to left-window cutoffs at (t + n , w + n ) and (t - n , w - n ), right-window cutoffs at (t + n

  occurs, t n and w n are optimal. Yet no value of c is such that d n (t n + cw n ) converges: there is no profile.

  , or equivalently A 1,n = exp(t n ρ 1,n ). Applying (21) and (23) for l = 1 yields:d n (t n + r n + cw n ) e -(rn+cwn)ρ1,n t n r n + cw n ) for C n = 0. Otherwise, A 1,n < exp(t n ρ 1,n ). Let ǫ be such that 0 < ǫ < (t n ρ 1,n -log(A 1,n ))/w n . The index i * n defined by[START_REF]Cutoff for large sums of graphs[END_REF] is larger than 1. The set of integers l such that A l,n < e ρ1,ntn , contains 1 and is bounded by i * n . Therefore, there exists l n > 1 such that:A ln-1,n < e ρ1,ntn A ln,n .We must prove that C n tends to 0. By (3) and (4):(r n + cw n )ρ 1,n = log(ρ 1,n t n ) -log log(ρ 1,n t n ) + c .

	2 Consider first the particular case t n = t n r n + cw n log(A1,n) A -(rn+cwn)/tn l,n ρ1,n which is (20(25) . (23) r n + cw n t n + 1 , (24) Applying (21) and (23) to l = l n -1 yields: d n (t n + r n + cw n ) e -(rn+cwn)ρ1,n + t n r n + cw n exp -r n + cw n t n log A ln-1,n = e -(rn+cwn)ρ1,n + t n r n + cw n exp -(r n + cw n )ρ 1,n log A ln-1,n ρ 1,n t n = e -(rn+cwn)ρ1,n t n r n + cw n r n + cw n t n + e Cn . (26) with From (25): 0 < 1 -log(A ln-1,n ) ρ 1,n t n 1 ρ 1,n t n log 1 + a ln,n A ln-1,n . (29) Plugging (28) and (29) into (27), for n large enough: C (28) 0 < C n log(ρ 1,n t n ) -log log(ρ 1,n t n ) + c ρ 1,n t n log 1 + a ln,n A ln-1,n .

n = (r n + cw n )ρ 1,n 1 -log A ln-1,n ρ 1,n t n . (

27)