Jean-Guillaume Dumas
email: jean-guillaume.dumas@imag.fr.

Dominique Duval
email: dominique.duval@imag.fr.

Jean-Claude Reynaud
email: claude.reynaud@imag.fr.

Patterns for computational effects arising from a monad or a comonad

This paper presents equational-based logics for proving first order properties of programming languages involving effects.

We propose two dual inference system patterns that can be instanciated with monads or comonads in order to be used for proving properties of different effects. The first pattern provides inference rules which can be interpreted in the Kleisli category of a monad and the coKleisli category of the associated comonad. In a dual way, the second pattern provides inference rules which can be interpreted in the coKleisli category of a comonad and the Kleisli category of the associated monad. The logics combine a 3-tier effect system for terms consisting of pure terms and two other kinds of effects called 'constructors/observers' and 'modifiers', and a 2-tier system for 'up-to-effects' and 'strong' equations. Each pattern provides generic rules for dealing with any monad (respectively comonad), and it can be extended with specific rules for each effect. The paper presents two use cases: a language with exceptions (using the standard monadic semantics), and a language with state (using the less standard comonadic semantics). Finally, we prove that the obtained inference system for states is Hilbert-Post complete.

Introduction

A software design pattern is not a finished design, it is a description or template that can be instanciated in order to be used in many different situations. In this paper, we propose inference system patterns that can be instanciated with monads or comonads in order to be used for proving properties of different effects.

In order to formalize computational effects one can choose between types and effects systems [START_REF] Lucassen | Polymorphic effect systems[END_REF], monads [START_REF] Moggi | Notions of Computation and Monads[END_REF] and their associated Lawvere theories [START_REF] Plotkin | Notions of Computation Determine Monads[END_REF], comonads [START_REF] Uustalu | Comonadic Notions of Computation[END_REF], or decorated logics [START_REF] Domínguez | Diagrammatic logic applied to a parameterization process[END_REF]. Starting with Moggi's seminal paper [START_REF] Moggi | Notions of Computation and Monads[END_REF] and its application to Haskell [START_REF] Wadler | The essence of functional programming[END_REF], various papers deal with the effects arising from a monad, for instance [START_REF] Plotkin | Notions of Computation Determine Monads[END_REF][START_REF] Schröder | Generic Exception Handling and the Java Monad[END_REF][START_REF] Blain | Monads and adjunctions for global exceptions[END_REF][START_REF] Plotkin | Handlers of Algebraic Effects[END_REF].

Each of these approaches rely on some classification of the syntactic expressions according to their interaction with effects. In this paper we use decorated logics which, by extending this classification to equations, provide a proof system adapted to each effect.

This paper presents equational-based logics for proving first order properties of programming languages involving effects. We propose two dual patterns, consisting in a language with an inference system, for building such a logic.

The first pattern provides inference rules which can be interpreted in the coKleisli category of a comonad and the Kleisli category of the associated monad. In a dual way, the second pattern provides inference rules which can be interpreted in the Kleisli category of a monad and the coKleisli category of the associated comonad. The logics combine a three-levels effect system for terms consisting of pure terms and two other kinds of effects called observers/constructors and modifiers, and a two-levels system for strong and weak equations.

Each pattern provides generic rules for dealing with any comonad (respectively monad), and it can be extended with specific rules for each effect. The paper presents two use cases: a language with state and a language with exceptions. For the language with state we use a comonadic semantics and we prove that the equational theory obtained is Hilbert-Post complete, which provides a new proof for a result in [START_REF] Pretnar | The Logic and Handling of Algebraic Effects[END_REF]. For the language with exceptions we extend the standard monadic semantics in order to catch exceptions; this relies on the duality between states and exceptions from [START_REF] Dumas | A duality between exceptions and states[END_REF].

We do not claim that each effect arises either from a comonad or from a monad, but this paper only deals with such effects. Intuitively, an effect which observes features may arise from a comonad, while an effect which constructs features may arise from a monad [START_REF] Jacobs | An introduction to (co)algebras and (co)induction[END_REF]. However, some interesting features in the comonad pattern stem from the well-known fact that each comonad determines a monad on its coKleisli category, and dually for the monad pattern. More precisely, on the monads side, let (M, η, µ) be a monad on a category C (0) and let C (1) be the Kleisli category of (M, η, µ) on C (0) . Then M can be seen as the endofunctor of a comonad (M, ε, δ) on C (1) , so that we may consider the coKleisli category C (2) of (M, ε, δ) on C (1) . The canonical functors from C (0) to C (1) and from C (1) to C (2) give rise to a hierarchy of terms: pure terms in C (0) , constructors in C (1) , modifiers in C (2) . This corresponds to the three translations of a typed lambda calculus into a monadic language [START_REF] Wadler | The essence of functional programming[END_REF].

On the comonads side, we get a dual hierarchy: pure terms in C (0) , observers in C (1) , modifiers in C (2) .

We instanciate these patterns with two fundamental examples of effects: state and exceptions.

Following [START_REF] Dumas | A duality between exceptions and states[END_REF], we consider that the states effect arise from the comonad A × S (where S is the set of states), thus a decorated logic for states is built by extending the pattern for comonads. The comonad itself provides a decoration for the lookup operation, which observes the state, while the monad on its coKleisli category provides a decoration for the update operation. Following [START_REF] Moggi | Notions of Computation and Monads[END_REF], we consider that the exceptions effect arise from the monad A + E (where E is the set of exceptions), thus a decorated logic for exceptions is built by extending the pattern for monads. The monad itself provides a decoration for the raising operation, which constructs an exception, while the comonad on its Kleisli category provides a decoration for the handling operation.

In fact the decorated logic for exceptions is not exactly dual to the decorated logic for states if we assume that the intended interpretation takes place in a distributive category, like the category of sets, which is not codistributive.

Other effects would lead to other additional rules, but we have chosen to focus on two effects which are well known from various points of view. Our goal is to enligthen the contributions of each approach: the annotation system from the types and effects systems [START_REF] Lucassen | Polymorphic effect systems[END_REF], the major role of monads for some effects [START_REF] Moggi | Notions of Computation and Monads[END_REF], and the dual role of comonads [START_REF] Uustalu | Comonadic Notions of Computation[END_REF], as well as the flexibility of decorated logics [START_REF] Domínguez | Diagrammatic logic applied to a parameterization process[END_REF]. Moreover, proofs in decorated logics can be checked with the Coq proof assistant; a library for states is available there: http://coqeffects.forge.imag.fr.

In this paper we focus on finite products and coproducts; from a programming point of view this means that we are considering languages with n-ary operations and with case distinction, but without loops or higher-order functions. In a language with effects there is a well-known issue with n-ary operations: their interpretation may depend on the order of evaluation of their arguments. In this paper we are looking for languages with case distinction and with sequential products, which allows to force the order of evaluation of the arguments, whenever this is required.

It is well known that (co)monads fit very well with composition but require additional assumptions for being fully compatible with products and coproducts. This corresponds to the fact that in the patterns from Section 2, which are valid for any (co)monad, the rules for products and coproducts hold only under some decoration constraints. However, such assumptions are satisfied for several (co)monads. This is in particular the case for the state comonad and the exceptions monad.

In Section 2 we describe the patterns for a comonad and for a monad. The first pattern is instanciated with the comonad for state in Section 3, and we prove the Hilbert-Post completeness of the decorated theory for state. In Section 4 we instanciate the second pattern to the monad for exceptions.

2 Patterns for comonads and for monads

Equational logic with conditionals

In this Section we define a grammar and an inference system for two logics L com and L mon , then we define an interpretation of these logics in a category with a comonad and a monad, respectively.

The logics L com and L mon are called decorated logics because their grammar and inference rules are essentially the grammar and inference rules for a "usual" logic, namely the equational logic with conditionals (denoted L eq), together with decorations for the terms and for the equations. The decorations for the terms are similar to the annotations of the types and effects systems [START_REF] Lucassen | Polymorphic effect systems[END_REF].

Decorated logics are introduced in [START_REF] Domínguez | Diagrammatic logic applied to a parameterization process[END_REF] in an abstract categorical framework, which will not be explicitly used in this paper.

The grammar of the equational logic with conditionals is reminded in Figure 1. Each term has a source type and a target type. As usual in categorical presentations of equational logic, a term has precisely one source type, which can be a product type or the unit type. Each equation relates two parallel terms, i.e., two terms with the same source and the same target. This grammar will be extended with decorations in order to get the grammar of the logics L com and L mon .

Grammar for the equational logic with conditionals:

Types: t ::= A | B | • • • | t + t | 0 | t × t | 1
Terms:

f ::= id t | f • f | f, f | pr t,t,1 | pr t,t,2 | t [f |f] | in t,t,1 | in t,t,2 | [] t |
Equations: e ::= f ≡ f

Patterns

The rules in Figure 2 are patterns, in the following sense: when the boxes in the rules are removed, we get usual rules for the logic L eq , which may be interpreted in any bicartesian category. When the boxes are replaced by decorations, we get a logic which, according to the choice of decorations, may be interpreted in a bicartesian category with a comonad or a monad. There may be other ways to decorate the rules for L eq , but this is beyond the scope of this paper.

A decorated logic for a comonad

In the logic L com for comonads, each term has a decoration which is denoted as a superscript (0), (1) or (2): a term is pure when its decoration is (0), it is congruence rules an accessor (or an observer) when its decoration is (1) and a modifier when its decoration is [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. Each equation has a decoration which is denoted by replacing the symbol ≡ either by ∼ = or by ∼: an equation with ∼ = is called strong, with ∼ it is called weak.

(refl) f f ≡ f (sym) f ≡ g g ≡ f (trans) f ≡ g g ≡ h f ≡ h (repl) f 1 ≡ f 2 : A → B g : B → C g • f 1 ≡ g • f 2 (subs) f : A → B g 1 ≡ g 2 : B → C g 1 • f ≡ g 2 • f categorical rules (id) A id A : A → A (comp) f : A → B g : B → C (g • f) : A → C (id-source) f : A → B f • id A ≡ f (id-target) f : A → B id B • f ≡ f (assoc) f : A → B g : B → C h : C → D h • (g • f) ≡ (h • g) • f product rules (prod) B 1 B 2 B 1 ×B 2 pr 1 : B 1 ×B 2 → B 1 pr 2 : B 1 ×B 2 → B 2 (pair) f 1 : A → B 1 f 2 : A → B 2 f 1 , f 2 : A → B 1 ×B 2 (pair-eq) f 1 : A → B 1 f 2 : A → B 2 pr 1 • f 1 , f 2 ≡ f 1 pr 2 • f 1 , f 2 ≡ f 2 (pair-u) f 1 : A→B 1 f 2 : A→B 2 g : A→B 1 ×B 2 pr 1 • g ≡ f 1 pr 2 • g ≡ f 2 g ≡ f 1 , f 2 (unit) 1 (final) A A : A → 1 (final-u) f : A → 1 f ≡ A coproduct rules (coprod) A 1 A 2 A 1 +A 2 in 1 : A 1 → A 1 +A 2 in 2 : A 2 → A 1 +A 2 (copair) f 1 : A 1 → B f 2 : A 2 → B [f 1 |f 2] : A 1 +A 2 → B (copair-eq) f 1 : A 1 → B f 2 : A 2 → B [f 1 |f 2] • in 1 ≡ f 1 [f 1 |f 2] • in 2 ≡ f 2 (copair-u) g : A 1 +A 2 → B f 1 : A 1 → B f 2 : A 2 → B g • in 1 ≡ f 1 g • in 2 ≡ f 2 g ≡ [f 1 |f 2] (empty) 0 (initial) B [] B : 0 → B (initial-u) g : 0 → B g ≡ [] B
The inference rules of L com are obtained by introducing some conversion rules and by decorating the rules in Figure 2.

When writing terms, if a decoration does not matter or if it is clear from the context, it may be omitted.

• The conversion rules are:

f (0) f (1) f (1) f (2) f (d) ∼ = g (d ′) f ∼ g for all d, d ′ f (d) ∼ g (d ′) f ∼ = g for all d, d ′ ≤ 1
The conversions for terms are upcasting conversions.

We will always use them in a safe way, by interpreting them as injections. This allows to avoid any specific notation for these conversions; an accessor a (1) may be converted to a modifier which is denoted a (2) : both have the same name although they are distinct terms; similarly, a pure term v (0) may be converted to v (1) or to v (2) . An equation between terms with distinct decorations does not imply any downcasting of its members; for instance, if f (2) ∼ = g (0) then it does not follow that f is downcasted to f (0) . The conversions for equations mean that strong and weak equations coincide on pure terms and accessors and that each strong equation between modifiers can be seen as a weak one.

• All rules of L eq are decorated with (0) for terms and ∼ = for equations: the pure terms with the strong equations form a sublogic of L com which is isomorphic to L eq . Thus we get id (0) , pr (0) , (0) , in (0) , [] (0) .

• The congruence rules for equations take all decorations for terms and for equations, with one notable exception: the replacement rule for weak equations holds only when the replaced term is pure:

(repl) f (d) 1 ∼ f (d ′) 2 : A → B g (0) : B → C g • f 1 ∼ g • f 2
• The categorical rules hold for all decorations and the decoration of a composed terms is the maximum of the decorations of its components.

• The product rules hold only when the given terms are pure or accessors and the decoration of a pair is the maximum of the decorations of its components. Thus, n-ary operations can be used only when their arguments are accessors.

• The coproduct rules hold only when the given terms are pure and a copair is always pure, which is the maximum of the decorations of its components. Thus, case distinction can be done only for pure terms.

The interpretation of L com by a comonad

In order to give a meaning to the logic L com , let us consider a bicartesian category C with a comonad (T, ε, δ) satisfying the epi requirement, i.e., ε A : T A → A is an epimorphism for each object A (the dual assumption is discussed in [START_REF] Moggi | Notions of Computation and Monads[END_REF]).

Then we get a model C T of the decorated logic L com as follows.

• The types are interpreted as the objects of C.

• The terms are interpreted as morphisms of C: a pure term f (0) : A → B as a morphism f : A → B in C; an accessor f (1) : A → B as a morphism f : T A → B in C; and a modifier f (2) : A → B as a morphism f :

T A → T B in C.
• The conversion from pure terms to accessors is interpreted by mapping

f : A → B to f • ε A : T A → B.
The epi requirement implies that this conversion is safe.

• The conversion from accessors to modifiers is interpreted by mapping

f : T A → B to T f • δ A : T A → T B.
It is easy to check that this conversion is safe.

• When a term f has several decorations (because it is pure or accessor, and thus can be upcasted) we will denote by f any one of its interpretations: a pure term f (0) : A → B may be interpreted as f : A → B and as f : T A → B and as f : T A → T B, and an accessor f (1) : A → B as f : T A → B and as f : T A → T B. The choice will be clear from the context, and when several choices are possible they will give the same result, up to conversions. For this reason, we will describe the interpretation of the rules only for the largest possible decorations.

• The identity id (0)

A : A → A is interpreted as id A : A → A in C; • The composition of two modifiers f (2) : A → B and g (2) : B → C is inter- preted as g • f : T A → T B in C.
• An equation between modifiers f (2) ∼ = g (2) :

A → B is interpreted by an equality f = g : T A → T B in C.
• A weak equation between modifiers f (2) ∼ g (2) :

A → B is interpreted by an equality ε B • f = ε B • g : T A → B in C.
• The unit type is interpreted as the final object of C and the term (0)

A : A → 1 as the unique morphism from A to 1 in C.

• The product B 1 × B 2 with its projections is interpreted as the binary product in C and the pair of f (0)

1 : A → B 1 and f (0) 2 : A → B 2 as the pair f 1 , f 2 : A → B 1 × B 2 in C.
• The empty type is interpreted as the initial object of C and the term []

A : 0 → A as the unique morphism from 0 to A in C. • The coproduct A 1 + A 2 with its coprojections is interpreted as the binary coproduct in C and the copair of f

(1)

1 : A 1 → B and f (1) 2 : A 2 → B as the copair [f 1 |f 2] : A 1 + A 2 → T B in C.

A decorated logic for a monad

The dual of the decorated logic L com for a comonad is the decorated logic L mon for a monad.

Thus, the grammar of L mon is the same as the grammar of L com , but a term with decoration (1) is now called a constructor.

The rules for L mon are nearly the same as the corresponding rules for L com , except that for weak equations the replacement rule always holds while the substitution rule holds only when the substituted term is pure:

(subs) f (0) : A → B g (d) 1 ∼ g (d ′) 2 : B → C g 1 • f ∼ g 2 • f
In the rules for pairs and copairs, the decorations are permuted.

The logic L mon can be interpreted dually to L com . Let C be a bicartesian category and (M, η, µ) a monad on C satisfying the mono requirement, which means that η A : A → M A is a monomorphism for each object A. Then we get a model C M of the decorated logic L mon , where a constructor f (1) : A → B is interpreted as a morphism f : A → M B in C and a weak equation f (2) ∼ g (2) : A → B is interpreted as an equality

f • η A = g • η A : A → T B in C.
3 States: an instance of the pattern for comonads

A decorated logic for state

Let us consider a distributive category C with epimorphic projections and with a distinguished object S called the object of states. We consider the comonad (T, ε, δ) with endofunctor T A = A × S, with counit ε made of the projections ε A : A × S → A, and with comultiplication δ which "duplicates" the states, in the sense that δ A = id A×S |pr A : A × S → (A × S) × S where pr A : A × S → A is the projection.

We call this comonad the comonad of state. It is sometimes called the product comonad, and it is different from the costate comonad or store comonad with endofuntor T A = S × A S [START_REF] Gibbons | Relating Algebraic and Coalgebraic Descriptions of Lenses BX 2012[END_REF].

The category C with the comonad of states provides a model of the logic L com . We can extend L com into a logic L st dedicated to the state comonad.

First, because of the specific choice of the comonad T A = A × S, we can add new decorations to the rule patterns for pairs in L com , involving modifiers: there is a left pair f 1 , f 2 (2) l of an accessor f The interpretation of the left pair

f 1 , f 2 (2) l : A → B 1 × B 2 is the pair f 1 , f 2 : A × S → B 1 × B 2 × S of f 1 : A × S → B 1 and f 2 : A × S → B 2 × S.
Moreover, the rule (effect) expresses the fact that, when T A = A × S, two modifiers coincide as soon as they return the same result and modify the state in the same way.

(l-pair) f

(1)

1 : A → B 1 f (2) 2 : A → B 2 [f 1 |f 2]
(2) For each set Loc of locations (or identifiers), additional grammar and rules for the logic L st are given in Figure 4. We extend the grammar of L com with a type V X , an accessor lookup

l : A → B 1 × B 2 (l-pair-eq) f (1) 1 : A → B 1 f (2) 2 : A → B 2 pr (0) 1 • f 1 , f 2 (2) l ∼ f (1) 1 pr (0) 2 • f 1 , f 2 (2) l ∼ = f (2) 2 (l-pair-u) g (2) : A → B 1 ×B 2 f (1) 1 : A → B 1 f (2) 2 : A → B 2 pr (0) 1 • g ∼ f 1 pr (0) 2 • g ∼ = f 2 g (2) ∼ = f 1 , f 2 (2) l (effect) f, g : A → B f ∼ g A • f ∼ = A • g f ∼ = g
(1) X : 1 → V X and a modifier update (2)
X : V T → 1 for each location X, and we also extend its rules.

The rule (local-global) asserts that two functions without result coincide as soon as they coincide when observed at each location. Together with the rule (effect) it implies that two functions coincide as soon as they return the same value and coincide on each location.

For each family of objects (V X) X∈Loc in C such that S ∼ = X∈Loc V X we build a model C st of L st , which extends the model the model C T of L com with functions for looking up and updating the locations.

The types V X are interpreted as the objects V X and the accessors lookup

X : 1 → V X as the projections from S to V X . Then the interpretation of each modifier update

(2) X : V X → 1 is the function from V X × S to S defined as the tuple of the functions f X,Y : V X × S → V Y where f X,X is the projection from V X × S to V X and f X,Y is made of the projection from V X × S to S followed by Types:

t ::= V X for each X ∈ Loc Terms: f ::= lookup X | update X for each X ∈ Loc (lookup) X ∈ Loc lookup (1) X : 1 → V X (update) X ∈ Loc update (2) X : V X → 1 (lookupdate) X ∈ Loc lookup X • update X ∼ id VX X, Y ∈ Loc X = Y lookup Y • update X ∼ lookup Y • VX (local-global) f, g : A → 1 for all X ∈ Loc lookup X • f ∼ lookup X • g f ∼ = g
lookup Y : S → V Y when Y = X.
The logic we get, and its model, are essentially the same as in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]: thus, the pattern for a comonad in Section 2 can be seen as a generalization to arbitrary comonads of the approach in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF].

Since we have assumed that the category C is distributive we get new decorations for the rule patterns for coproducts: the copair of two modifiers now exists, the corresponding decorated rules are given in Figure 5.

The interpretation of the modifier [f 1 |f 2], when both f 1 and f 2 are modifiers, is the composition of [f 1 |f 2] : (A 1 × S) + (A 2 × S) → B × S with the inverse of the canonical morphism (A 1 × S) + (A 2 × S) → (A 1 + A 2) × S: this inverse exists because C is distributive.

(copair) f

(2)

1 : A 1 → B f (2) 2 : A 2 → B [f 1 |f 2] (2) : A 1 +A 2 → B (copair-eq) f (2) 1 : A 1 → B f (2) 2 : A 2 → B [f 1 |f 2] • in 1 ∼ = f 1 [f 1 |f 2] • in 2 ∼ = f 2 (copair-u) f (2) i : A i → B g (2) : A 1 +A 2 → B g • in i ∼ = f i g (2) ∼ = [f 1 |f 2] (2)
Figure 5: L st : additional rules for coproducts, when C is distributive

States: conditionals and binary operations

To conclude with states, let us look at the constructions for conditionals and binary operations in the language for states.

The rules in Figure 5 provide conditionals.

There is no binary product of modifiers, but there is a left product of a constructor and a modifier and a right product of a modifier and a constructor. It follows that the left and right sequential products of two modifiers f 1 and f 2 can be defined, as in [START_REF] Dumas | Cartesian effect categories are Freyd-categories[END_REF], by composing, e.g., the left product of an identity and f 1 with the right product of f 2 and an identity.

A major feature of this approach is that, for states, sequential products are defined without any new ingredient: no kind of strength, in contrast with the approach using the strong monad of states (A × S) S [START_REF] Moggi | Notions of Computation and Monads[END_REF], no "external" decoration for equations, in contrast with [START_REF] Dumas | Cartesian effect categories are Freyd-categories[END_REF]. This property is due to the introduction of the intermediate notion of accessors between pure terms (or values) and modifiers (or computations).

Hilbert-Post completeness

Now we use the decorated logic L st for proving that the decorated theory for states is Hilbert-Post complete. This result is proved in [16, Prop.2.40] in the framework of Lawvere theories. Here we give a proof in the decorated logic for states. This proof has been checked in Coq 1 .

The logic we use is the fragment L st ,0 of L st which involves neither products nor coproducts nor the empty type (but which involves the unit type). The theory of state, denoted T st , is the family of equations which may be derived from the axioms of L st ,0 using the rules of L st ,0 . More generally, a theory T with respect to L st ,0 is a family of equations between terms of L st ,0 which is saturated with respect to the rules of L st ,0 . A theory T ′ is an extension of a theory T if it contains all the equations of T . Two families of equations are called equivalent if each one can be derived from the other with the rules of L st ,0 .

As in [START_REF] Pretnar | The Logic and Handling of Algebraic Effects[END_REF]Prop.2.40], for the sake of simplicity it is assumed that there is a single location X, and we write V , lookup and update instead of V X , lookup X and update X . Then there is a single axiom lookup • update ∼ id V .

In addition, it is assumed that all types are inhabited, in the sense that for each type X there exists a closed pure term with type X. Theorem 3.1. Every equation between terms of L st ,0 is equivalent to four equations between pure terms.

Proof. The proof is obtained by merging the two parts of Proposition 3.2, which is proved in Appendix A. Proposition 3.2.

Every equation between accessors is equivalent to two equations between

pure terms.

Every equation between modifiers is equivalent to two equations between accessors.

Roughly speaking, a theory (with respect to some logic) is said syntactically complete if no unprovable axiom can be added to the theory without introducing an inconsistency. More precisely, a theory with respect to the equational logic is Hilbert-Post complete if it is consistent and has no consistent proper extension [START_REF] Pretnar | The Logic and Handling of Algebraic Effects[END_REF]Definition 2.8.]. Since we use a decorated version of the equational logic, we have to define a decorated version of Hilbert-Post completeness. Definition 3.3. With respect to the logic L st ,0 , a theory T is consistent if there is an equation which is not in T . An extension T ′ of a theory T is a pure extension if it is generated by T and by equations between pure terms. It is a proper extension if it is not a pure extension.

A theory T is Hilbert-Post complete if it is consistent and has no consistent proper extension.

The proof of Theorem 3.4 relies on Theorem 3.1. We do not have to assume that the interpretation of the type V is a countable set. We have assumed that Loc is a singleton, but we conjecture that our result can be generalized to any set of locations, without any finiteness condition.

Theorem 3.4. The theory for state is Hilbert-Post complete.

Proof. The theory T st is consistent: it cannot be proved that update (2)

∼ = (0) V .
Let us consider an extension T of T st and let T (0) be the theory generated by T st and by the equations between pure terms in T . Thus, T (0) is a pure extension of T st and T is an extension of T (0) . Let us consider an arbitrary equation e in T , according to Theorem 3.1 we get a family E of equations between pure terms which is equivalent to the given equation e.

Since e is in T and T is saturated, the equations in E are also in T , hence they are in T (0) .

Since E is in T (0) and T (0) is saturated, the equation e is also in T (0) . This proves that T (0) = T , so that the theory T st has no proper extension.

4 Exceptions: an instance of the pattern for monads

The core language for exceptions

Let us consider a bicartesian category C with monomorphic coprojections and with a distinguished object E called the object of exceptions. We do not assume that C is distributive (it would not help) nor codistributive, because usually this is not the case. The monad of exceptions on C is the monad (M, η, µ) with endofunctor M A = A + E, its unit η is made of the coprojections η A : A → A + E, and its multiplication µ "merges" the exceptions, in the sense that µ A = [id A+E |in A] : (A + E) + E → A + E where in A : E → A + E is the coprojection. It satisfies the mono requirement because the coprojections are monomorphisms. Thus, the category C with the monad of exceptions provides a model of the logic L mon The name of the decorations is adapted to the monad of exceptions: a constructor is called a propagator : it may raise an exception but cannot recover from an exception, so that it has to propagate all exceptions; a modifier is called a catcher.

For this specific monad M A = A + E, it is possible to extend the logic L mon as L exc , called the logic for exceptions, so that C with M A = A + E can be extended as a model C exc of L exc .

First, dually to the left and right pairs for states in Figure 3, we get new decorations to the rule patterns for copairs in L mon , involving modifiers, as in Figure 6 for the left copairs (the rules for the right copairs are omitted).

The interpretation of the left copair [f

1 |f 2] (2) l
:

A 1 + A 2 → B is the copair [f 1 |f 2] : A 1 + A 2 + E → B + E of f 1 : A 1 → B + E and f 2 : A 2 + E → B + E in C.
For instance, the coproduct of A ∼ = A + 0, with coprojections id (0)

A : A → A and [] (0) A : 0 → A, gives rise to the left copair [f 1 |f 2] (2) l : A → B of any constructor f (1) 1 : A → B with any modifier f (2) 2 : 0 → B, which is characterized up to strong equations by [f 1 |f 2] l ∼ f 1 and [f 1 |f 2] l ∼ = f 2 .
This will be used in the construction of the try/catch expressions.

Moreover, the rule (effect) expresses the fact that, when M A = A + E, two modifiers coincide as soon as they coincide on ordinary values and on exceptions.

(l-copair) f

(1) For each set Exn of exception names, additional grammar and rules for the logic L exc are given in Figure 7. We extend the grammar of L mon with a type V T , a propagator tag T : 0 → V T for each exception name T , and we also extend its rules.

1 : A 1 → B f (2) 2 : A 2 → B [f 1 |f 2] (2) l : A 1 +A 2 → B (l-copair-eq) f (1) 1 : A 1 → B f (2) 2 : A 2 → B [f 1 |f 2] (2) l • in (0) 1 ∼ f (1) 1 [f 1 |f 2] (2) l • in (0) 2 ∼ = f (2) 2 (l-copair-u) g (2) : A 1 +A 2 → B f (1) 1 : A 1 → B f (2) 2 : A 2 → B g • in 1 ∼ f 1 g • in 2 ∼ = f 2 g (2) ∼ = [f 1 |f 2] (2) l (effect) f, g : A → B f ∼ g f • [] A ∼ = g • [] A f ∼ = g
The logic L exc obtained performs the core operations on exceptions: the tagging operations encapsulate an ordinary value into an exception, and the untagging operations recover the ordinary value which has been encapsulated in an exception.

This may be generalized by assuming a hierarchy of exception names [START_REF] Dumas | A decorated proof system for exceptions[END_REF].

The rule (local-global) asserts that two functions without argument coincide as soon as they coincide on each exception. Together with the rule (effect) it implies that two functions coincide as soon as they coincide on their argument and on each exception.

Types:

t ::= V T for each T ∈ Exn Terms:

f ::= tag T | untag T for each T ∈ Exn (tag) T ∈ Exn tag (1)
T : The types V T are interpreted as the objects V T and the propagators tag

V T → 0 (untag) T ∈ Exn untag (2)
T : 0 → V T (untag-tag) T ∈ Exn untag T • tag T ∼ id VT T, R ∈ Exn T = R untag T • tag R ∼ [] VT • tag R (local-global) f, g : 0 → B for all T ∈ Exn f • tag T ∼ g • tag T f ∼ = g
T : V T → 0 as the coprojections from V T to E. Then the interpretation of each catcher untag

(2)

T : 0 → V T is the function untag T : E → V T + E defined as the cotuple (or case distinction) of the functions f T,R : V R → V T + E where f T,T is the coprojection of V T in V T + E and f T,R is made of tag R : V T → E followed by the coprojection of E in V T + E when R = T .
This can be illustrated, in an informal way, as follows: tag T encloses its argument a in a box with name T , while untag T opens every box with name T to recover its argument and returns every box with name R = T without opening it:

a tag T / / a T a T untag T / / a a R untag T / / a R
Since we did not assume that the category C is codistributive we cannot get products of modifiers in a way dual to the coproducts of modifiers for states. However these rules have not been used for proving the Hilbert-Post completeness of the theory for state. Thus by duality from Theorem 3.4 we get "for free" a result about the core language for exceptions.

The programmer's language for exceptions

We have obtained a logic L exc for exceptions, with the core operations for tagging and untagging. This logic provides a direct access to catchers (the untagging functions), which is not provided by the usual mechanism of exceptions in programming languages. In fact the core operations remain private, while there is a programmer's language, which is public, with no direct access to the catchers.

The programmer's language for exceptions provides the operations for raising and handling exceptions, which are defined in terms of the core operations.

This language has no catcher: the only way to catch an exception is by using a try/catch expression, which itself propagates exceptions. Thus, all terms of the programmer's language are propagators. This language does not include the private tagging and untagging operations, but the public throw and try/catch constructions, which are defined in terms of tag and untag. For the sake of simplicity we assume that only one type of exception is handled in a try/catch expression, the general case is treated in [START_REF] Dumas | A decorated proof system for exceptions[END_REF].

The main ingredients for building the programmer's language from the core language are the coproducts A ∼ = A + 0 and a new conversion rule for terms. The downcast conversion of a catcher to a propagator could have been defined in Section 2 for the logic L com , and dually for the logic L mon ; the rule is:

f (2) : A → B (↓f) (1) : A → B
This downcasting conversion from catchers to propagators is interpreted by mapping

f : M A → M B to ↓f = f • η A : A → M B.
It is related to weak equations: f ∼ ↓f , and f ∼ g if and only if ↓f ∼ = ↓g. But the downcasting conversion is unsafe: several catchers may be downcasted to the same propagator. This powerful operation turns an effectful term to an effect-free one; since it is not required for states nor for the core language for exceptions, we did not introduce it earlier.

B,T = [] (0) B • tag (1)
T : V T → B For each each propagator f (1) : A → B, each exception name T and each propagator g (1) : V T → B, the propagator try(f)catch(T ⇒ g) (1) is defined in three But the general rules for a monad do not include binary products involving a constructor, hence they cannot be used for dealing with binary operations in the programmer's language for exceptions when at least an argument is not pure. Indeed, if f (0) 1 : A → B 1 is pure and f (1) 2 : A → B 2 does raise an exception, it is in general impossible to find f (1)

: A → B 1 × B 2 such that pr 1 • f ∼ = f 1 and pr 2 • f ∼ = f 2 .
However, there are several ways to formalize the fact of first evaluating f 1 then f 2 : for instance by using a strong monad [START_REF] Moggi | Notions of Computation and Monads[END_REF], or a sequential product [START_REF] Dumas | Cartesian effect categories are Freyd-categories[END_REF], or productors [START_REF] Tate | The sequential semantics of producer effect systems[END_REF]. The sequential product approach can be used in our framework; it requires the introduction of a third kind of "equations", in addition to the strong and weak equations, which corresponds to the usual order between partial functions: details are provided in [START_REF] Dumas | Cartesian effect categories are Freyd-categories[END_REF].

Conclusion

We have presented two patterns giving sound inference systems for effects arising from a monad or a comonad.

We also gave detailed examples of applications of these patterns to the state and the exceptions effects. The obtained decorated proof system for states has been implemented in Coq, so that the given proofs can be automatically verified. We plan to adapt this logic to local states (with allocation) in order to provide a decorated proof of the completeness Theorem in [START_REF] Staton | Completeness for Algebraic Theories of Local State[END_REF].

From this implementation, we plan to extract the generic part corresponding to the comonad pattern, dualize it and extend it to handle the programmer's language for exceptions.

Then a major issue is scalability: how can we combine effects? Within the framework of this paper, it may seem difficult to guess how several effects arising from either monads or comonads can be combined. However, as mentioned in the Introduction, this paper deals with two patterns for instanciating the more general framework of decorated logics [START_REF] Domínguez | Diagrammatic logic applied to a parameterization process[END_REF]. Decorated logics are based on spans in a relevant category of logics, so that the combination of effects can be based on the well-known composition of spans.

6.

u (0) , w (0) : V → X w (0) • lkp (1) ∼ = u (0) • lkp (1) w (0) ∼ = u (0)

7.

x (0) : 1 → X w (0) : V → X w (0) • lkp 4. From lkp (1) • upd (2) ∼ id V , as u is pure, by the weak replacement we have u (0) • lkp (1) • upd (2) ∼ u (0) . Then, weak substitution with a yields u (0) • lkp (1) • upd (2) • a (1) ∼ u (0) • a (1) .

5. We know that (0) V • lkp (1) : 1 → 1 ∼ = id 1 . It follows that x (0) • (0) V • lkp (1) ∼ = x (0) . 6. Let w (0) • lkp (1) ∼ = u (0) • lkp (1) . Composing with upd we get w (0) • lkp (1) • upd (2) ∼ = u (0) • lkp (1) • upd (2) . Using the axiom lkp • upd ∼ id V and the replacement rule for ∼, which can be used here because both w and u are pure, we get w (0) ∼ u (0) . Since weak and strong equations coincide on pure terms we get w (0) ∼ = u (0) . 7. Let w (0) •lkp (1) ∼ = x (0) . By point 5 above we get x (0) ∼ = x (0) • (0)

V •lkp (1) , thus w (0) • lkp (1) ∼ = x (0) • (0) V • lkp (1) . Then by point 6 above we get w (0) ∼ = x (0) • (0) V . Now, let us prove Proposition A.2, which says that, up to strong equations, it can be assumed that there is at most one occurrence of lkp in any accessor and at most one occurrence of upd in any modifier.

Proposition A.2.

1. For each accessor a (1) : X → Y , if a is not pure then there is a pure term v (0) : V → Y such that a (1) ∼ = v (0) • lkp (1)

• (0) X (1)
2. For each modifier f (2) : X → Y , if f is not an accessor then there is an accessor a (1) : X → V and a pure term u (0) : V → Y such that f (2) ∼ = u (0) • lkp (1) • upd (2) • a (1) (2) between accessors. It remains to prove that the equation A •f 1 ∼ = A •f 2 is also equivalent to an equation between accessors.

For i ∈ {1, 2}, since A • f i : A → 1, Proposition A.2 says that A • f i ∼ = upd • a i for some accessor a i : A → V . Thus,

Figure 1 :

 1 Figure 1: Equational logic with conditionals: grammar

Figure 2 :

 2 Figure 2: Patterns: rules

 the first three rules in Figure3. There are also three rules (omitted), symmetric to these ones, for the right pair f 1 , f 2

Figure 3 :

 3 Figure 3: L st : additional rules for products

Figure 4 :

 4 Figure 4: L st : additional grammar and rules for states

Figure 6 :

 6 Figure 6: L exc : additional rules for coproducts

(1)

 1 T : V T → 0 and a catcher untag

Figure 7 :

 7 Figure 7: L exc : additional grammar and rules for exceptions For each family of objects (V T) T ∈Exn in C such that E ∼ = T ∈Exn V T we build a model C exc of L exc , which extends the model the model C M of L mon with functions for tagging and untagging the exceptions.The types V T are interpreted as the objects V T and the propagators tag

Corollary 4 . 1 .

 41 The core theory for exceptions is Hilbert-Post complete.

Definition 4 . 2 .

 42 For each type B and each exception name T , the propagator throw

(1) 1 . 2 . 3 .

 1123 ∼ = x (0)w (0) ∼ = x (0) • Consequence of the observational Rule (local-global) with only one location. Consequence of 1 applied to upd• f, upd • g : X → 1: indeed, from the axiom lkp • upd ∼ id V we get lkp • upd • f ∼ lkp • upd • g. From axiom lkp • upd ∼ id V by substitution we get lkp • upd • lkp ∼ lkp; thus, point 1 implies • lkp ∼ = id 1 .

 A • f 1 ∼ = A • f 2 if and only if upd • a 1 ∼ = upd • a 2 . Let us check that this equation is equivalent to a 1 ∼ = a 2 . Clearly if a 1 ∼ = a 2 : A → V then upd • a 1 ∼ = upd • a 2 . Conversely, if upd • a 1 ∼ = upd • a 2 : A → 1 then lkp • upd • a 1 ∼ = lkp • upd • a 2 and since lkp • upd ∼ id V we get a 1 ∼ a 2 ,which is the same as a 1 ∼ = a 2 because a 1 and a 2 are accessors.Thus, A • f 1 ∼ = A • f 2 ifand only if a 1 ∼ = a 2 , as required.

Effect categories and COQ, http://coqeffects.forge.imag.fr

Acknowledgment. We are grateful to Samuel Mimram for enlightning discussions.

steps, involving two catchers catch(T ⇒ g) (2) and TRY(f)catch(T ⇒ g) (2) , as follows: catch(T ⇒ g) (2) = [g (1) | [] (0) B] (1) • untag [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF] T : 0 → B TRY(f)catch(T ⇒ g) (2) = [id B | catch(T ⇒ g)]

(2) l • f (1) : A → B try(f)catch(T ⇒ g) (1) = ↓(TRY(f)catch(T ⇒ g)) : A → B This means that raising an exception with name T consists in tagging the given ordinary value (in V T) as an exception and coerce it to any given type B.

For handling an exception, the intermediate expressions catch(T ⇒ g) and TRY(f)catch(T ⇒ g) are private catchers and the expression try(f)catch(T ⇒ g) is a public propagator: the downcast operator prevents it from catching exceptions with name T which might have been raised before the try(f)catch(T ⇒ g) expression is considered.

The definition of try(f)catch(T ⇒ g) corresponds to the Java mechanims for exceptions [START_REF] Gosling | The Java Language Specification, Third Edition[END_REF][START_REF] Jacobs | A Formalisation of Java's Exception Mechanism[END_REF].

The definition of try(f)catch(T ⇒ g) corresponds to the following control flow, where exc? means "is this value an exception? ", an abrupt termination returns an uncaught exception and a normal termination returns an ordinary value; this corresponds, for instance, to the Java mechanims for exceptions [START_REF] Gosling | The Java Language Specification, Third Edition[END_REF][START_REF] Jacobs | A Formalisation of Java's Exception Mechanism[END_REF]. exc? 1) exc? 1) normal or abrupt

Y t t h h h h h h h h h

Exceptions: case distinction and binary operations

To conclude with exceptions, let us look at the constructions for case distinction and binary operations in the programmer's language for exceptions, which means, copairs and pairs of constructors.

The general rules of the logic L mon include coproducts of constructors (Figure 2), which provide case distinction for all terms in the programmer's language for exceptions.

A Proof of Hilbert Post completeness

The logic used in this Appendix is the fragment L st ,0 of the decorated logic for states L st which involves neither products nor coproducts nor the empty type, but which involves the unit type.

For the sake of simplicity it is assumed that there is a single location X, and we write V , lkp and upd instead of V X , lookup X and update X . Then there is a single axiom lkp • upd ∼ id V .

In Section 3, the proof of Hilbert-Post completeness in Theorem 3.4 relies on Proposition 3.2, which is restated here as Proposition A.5. The aim of this Appendix is to prove Proposition A.5.

Lemma A.1. The following rules can be derived:

f (2) , g (2) : 2) , g (2) :

5.

x

Proof.

1. If a (1) : X → Y is not pure then it contains at least one occurrence of lkp (1) . Thus, it can be written in a unique way as a (1) = v (0) • lkp (1) • a for some pure term v (0) : V → Y and some accessor a

2. If f (2) : X → Y is not an accessor then it contains at least one occurrence of upd (2) . Thus, it can be written in a unique way as f (2) = b (1) • upd (2) • f

(2) 1

for some accessor b (1) : 1 → Y and some modifier f

(2) 1

: X → V . From point 1, we also have that b (1) (1) for some pure term

• If f 1 is an accessor, the result follows with a = f 1 .

• Otherwise, f

(2) 1 contains at least one occurrence of upd (2) . Thus, it can be written in a unique way as f

for some accessor b

(1) (1) for some pure term v

The axiom lkp • upd ∼ id V and the replacement and substitution rules for

The result follows by induction on the number of occurrences of upd in f : indeed, there is one less occurrence of upd in b

Thus the previous proof applies by replacing b 1 with b 1 • V .

Corollary A.3. The previous forms can be simplified for accessors with domain 1 and for modifiers with codomain 1, as follows:

1. For each accessor a (1) :

2. For each modifier f (2) : X → 1 there is an accessor a (1) :

Proof.

1. • If f : X → 1 is an accessor, since upd • lkp ∼ = id 1 we get f ∼ = upd • lkp • f , thus the result is obtained with a (1) = lkp • f . • Otherwise, we have just proved that f ∼ = b (1) • upd • a (1) with b (1) :

1 → 1, then b ∼ = id 1 and f (2) ∼ = upd • a (1) .

Corollary A.4. For each modifier f (2) : X → Y , if f is not an accessor then there is an accessor a (1) : X → V and a pure term u (0) : V → Y such that f ∼ u (0) • a (1) .

Proof. From Proposition A.2 we have that f (2) ∼ = u (0) • lkp (1) • upd (2) • a (1) . Using the axiom lkp • upd ∼ id V and the replacement rule for ∼, which can be used here because u (0) is pure, we get f (2) ∼ u (0) • a (1) .

We can now prove Proposition A.5 on which the Hilbert-Post completeness theorem relies. This proof has been checked with the Coq proof assistant using the system for states of [START_REF] Dumas | Formal verification in Coq of program properties involving the global state effect[END_REF]. The Coq library with the inference system is available there: http://coqeffects.forge.imag.fr. The single proof of the following proposition (roughly 16 pages in Coq) is directly available there: http://coqeffects.forge.imag.fr/HPcompleteCoq.v.

Proposition A.5. Let us assume that for each type X there exists a closed pure term h (0) X : 1 → X. Then: 1. every equation between accessors is equivalent to one or two equations between pure terms;

every equation between modifiers is equivalent to one or two equations between accessors.

Proof.

1. We prove that for any accessors a

(1)

2 : X → Y there are three cases:

(a) either they are both pure and a 1 ∼ = a 2 is the required equation between pure terms.

(b) either they are both accessors and it can be derived from

2 : V → Y . (c) or one of them is pure and the other one is an accessor and it can be derived from a 1 ∼ = a 2 that v 1 ∼ = v 2 and w 1 ∼ = w 2 for some pure terms v

2 : V → Y and w

2 : X → Y . We prove, moreover, that the converse also hold.

(a) As already mentioned, if a 1 and a 2 are both pure and a 1 ∼ = a 2 is the required equation between pure terms.

(b) If neither a 1 nor a 2 is pure, then according to Proposition A.2 a

(1) 1

X and a

(1) 2

X for some pure terms v

Then, using the assumption, for any function h

This, together with the axiom lkp • upd ∼ id V and the replacement rule for ∼ (which can be used here because both v 1 and v 2 are pure) yield v

2 . As the latter are both pure terms we also have v

The only remaining case is w.l.o.g. if a 1 is pure and a 2 is not.

X from Proposition A.2 as previously and v

But, on the one hand, a (1) . Thus Equation (3) rewrites as v (1) and point 7 in Lemma A.1 yields a

Thus now we also have a

X . From the original equation a (5)

• Conversely, we start from v satisfying both Equations (4) and [START_REF] Dumas | A decorated proof system for exceptions[END_REF]. Then, we define a

X thanks to Equation (4). The latter is also a

1 thanks to Equation (5). 2. The rule (effect) for states means that two modifiers coincide as soon as they return the same result and modify the state in the same way. This means that f