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Jean-Guillaume Dumas∗ Dominique Duval∗

Jean-Claude Reynaud†
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Abstract

We propose patterns for proving properties of programs involving com-
putational effects, in the framework of decorated logics. Although this
framework does not mention monads nor comonads, it can be instanti-
ated for a combination of monads and comonads. We propose two dual
patterns. The first one provides inference rules which can be interpreted
in the Kleisli category of a monad and the coKleisli category of the asso-
ciated comonad. For instance, in this pattern, the raising of exceptions
corresponds to the exception monad (with endofunctor A + E) on some
category and their handling corresponds to a comonad (with the same
endofunctor A+E) on the Kleisli category of the monad. In a dual way,
the second pattern provides inference rules which can be interpreted in
the coKleisli category of a comonad and the Kleisli category of the as-
sociated monad. For instance, in this pattern, the lookup operation on
states corresponds to the comonad with endofunctor A × S and the up-
date operation corresponds to a monad on the coKleisli category of the
comonad. Each pattern consists in a language with an inference system.
This system can be used for proving properties of programs which involve
an effect that can be associated to a monad (respectively a comonad). The
pattern provides generic rules for dealing with any monad (respectively
comonad), and it can be extended with specific rules for each effect.

1 Introduction

Although there is no precise definition of computational effects, it is generally
accepted that the mechanism of exceptions in a computer language is an effect,
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Mathématiques, umr CNRS 5224, bp 53X, F38041 Grenoble, France,
{Jean-Guillaume.Dumas,Dominique.Duval}@imag.fr.

†Reynaud Consulting (RC), Jean-Claude.Reynaud@imag.fr.

1

mailto:Jean-Guillaume.Dumas@imag.fr,Dominique.Dumas@imag.fr
mailto:Jean-Claude.Reynaud@imag.fr


as well as the evolution of the states of the memory for an imperative language.
In order to formalize effects one can choose between types and effects systems
[9], monads [10] and their associated Lawvere theories [11], comonads [15], or
decorated logics [1]. Each of these approaches rely on some classification of the
syntactic expressions according to their interaction with effects. In this paper
we use decorated logics which, by extending this classification to equations, they
provide a proof system adapted to each effect.

The aim of this paper is to provide two dual patterns for building decorated
logics. The first pattern can be used for effects which arise from a monad,
and the second for effects which arise from a comonad. Each pattern consists
in a set of annotations and a sound inference system which are used to prove
properties of programs involving those kinds of effects. Then, for each chosen
effect arising from a monad or a comonad, the corresponding pattern can be
extended, according to the particular properties of this effect. For instance,
we then apply the patterns to two specific effects: the exception effect and the
state effect. In particular, we focus on the rules for operators of arbitrary arity
and for case distinction, which are expressed categorically as finite products and
finite coproducts.

We do not claim that each effect arises either from a monad or from a comonad,
but this paper only deals with such effects. Intuitively, an effect which constructs
features may arise from a monad, while an effect which observes features may
arise from a comonad. However, some interesting features in the monad pattern
stem from the well-known fact that each monad determines a comonad on its
Kleisli category, and dually for the comonad pattern.

More precisely, on the monads side, let (M, η, µ) be a monad on a category C(0)

and let C(1) be the Kleisli category of (M, η, µ) on C(0). Then M can be seen
as the endofunctor of a comonad (M, ε, δ) on C(1), so that we may consider the
coKleisli category C(2) of (M, ε, δ) on C(1). The canonical functors from C(0)

to C(1) and from C(1) to C(2) give rise to a hierarchy of terms: pure terms in
C(0), constructors in C(1), modifiers in C(2). On the comonads side, we get a
dual hierarchy: pure terms in C(0), observers in C(1), modifiers in C(2).

We apply this point of view to the study of two fundamental examples of effects:
exceptions and states.

Following [10], we consider that the exceptions effect arise from the monad A+E
(where E is the set of exceptions), thus a decorated logic for exceptions is built
by extending the pattern for monads. The monad itself provides a decoration
for the raising operation, which constructs an exception, while the comonad on
its Kleisli category provides a decoration for the handling operation.

Following [3], we consider that the states effect arise from the comonad A × S
(where S is the set of states), thus a decorated logic for states is built by
extending the pattern for comonads. The comonad itself provides a decoration
for the lookup operation, which observes the state, while the monad on its
coKleisli category provides a decoration for the update operation.
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In fact, the decorated logic for exceptions is not exactly dual to the decorated
logic for states, because we assume that the intended interpretation takes place
in a distributive category, like the category of sets, which is not codistributive.

Other effects would lead to other additional rules, but we have chosen to focus
on two effects which are very well known from various points of view. Our goal
is to enligthen the contributions of each approach: the annotation system from
the types and effects systems [9], the major role of monads for some effects [10],
and the dual role of comonads [15], as well as the flexibility of decorated logics
[1].

Section 2 is devoted to the description of our first pattern and of its decorated
proof system, valid for any effect arising from a monad. Then, Section 3 applies
this pattern to the example of the exception effect. The generic system is
completed by adding more specific rules such as the ones dealing with case
distinction. Our second generic pattern, fully dual to the first one, is presented
in Section 4. It is meant to be applied to any effect arising from a comonad.
Finally, in Section 5, we apply the latter pattern to the state effect by adding
rules such as the ones dealing with multiple arity functions.

2 Effect based on a monad

Starting with Moggi’s seminal paper [10] and its application to Haskell [16],
various papers deal with the effects arising from a monad, for instance [11, 13,
8, 12].

2.1 A decorated logic for a monad

In this Section we define a logic LM , made of a grammar and an inference
system. It is called a decorated logic because its grammar and inference rules
are essentially the grammar and inference rules for a “usual” logic, namely the
equational logic with conditionals, together with decorations (represented by a
superscript) for the terms and the equations. The decorations for terms are
similar to the annotations of the types and effects systems [9]. In Section 2.2
we associate to each monad a model of this decorated logic, which provides a
meaning to the decorations and rules of the logic LM .

Decorated logics are introduced in [1] in an abstract categorical framework,
which will not be explicitly used in this paper.
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Grammar of LM :

Types: t ::= A | B | · · · | t+ t | 0 | t× t | 1

Terms: f ::= ↓f | id t | f ◦ f |

〈f, f〉 | pr t,t,1 | pr t,t,2 | 〈 〉t

[f |f ] | int,t,1 | int,t,2 | [ ]t |

Equations: e ::= f ≡ f

Decorations:

for terms: (d) ::= (0) | (1) | (2)

for equations: (deq) ::= (s) | (w)

Terms are called pure when their decoration is (0), they are called constructors

when their decoration is (1) and they are called modifiers when their decora-
tion is (2). Equations are called strong when their decoration is (s) and weak

when their decoration is (w). Since it is important to see clearly the difference
between strong and weak equations, we use ∼= and ∼ instead of ≡(s) and ≡(w),
respectively.

The inference rules of LM are given in Figures 1, 2 and 3; the symbol (d), as
well as the absence of decoration, stand for “any decoration”.

f (0) : A → B

f (1) : A → B

f (1) : A → B

f (2) : A → B

f (2) : A → B

(↓f)(1) : A → B

A

id
(0)
A : A → A

f (d) : A → B g(d) : B → C

(g ◦ f)(d) : A → C

B1 B2

pr
(0)
1 : B1 ×B2 → B1 pr

(0)
2 : B1 ×B2 → B2

f
(0)
1 : A → B1 f

(0)
2 : A → B2

〈f1, f2〉(0) : A → B1 ×B2

A

〈 〉
(0)
A : A → 1

A1 A2

in
(0)
1 : A1 → A1 +A2 in

(0)
2 : A2 → A1 +A2

f
(0)
1 : A1 → B f

(0)
2 : A2 → B

[f1|f2](0) : A1 +A2 → B

B

[ ]
(0)
B : 0 → B

f
(1)
1 : A1 → B f

(1)
2 : A2 → B

[f1|f2](1) : A1 +A2 → B

Figure 1: Typing and decorations rules for a monad
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f

↓f ∼ f

f (1) ∼ g(1)

f ∼= g

f : A → B

f ◦ idA
∼= f

f : A → B

idB ◦ f ∼= f

f : A → B g : B → C h : C → D

h ◦ (g ◦ f) ∼= (h ◦ g) ◦ f

f

f ∼= f

f ∼= g

g ∼= f

f ∼= g g ∼= h

f ∼= h

f : A → B g1 ∼= g2 : B → C

g1 ◦ f ∼= g2 ◦ f : A → C

f1 ∼= f2 : A → B g : B → C

g ◦ f1 ∼= g ◦ f2 : A → C

f

f ∼ f

f ∼ g

g ∼ f

f ∼ g g ∼ h

f ∼ h

f (0) : A → B g1 ∼ g2 : B → C

g1 ◦ f ∼ g2 ◦ f

f1 ∼ f2 : A → B g : B → C

g ◦ f1 ∼ g ◦ f2 : A → C

Figure 2: Equational rules for a monad (1)

Remark 2.1.

• The first rules in Figure 1 are conversion rules for terms. The first two
conversions are safe: they may be used for upcasting pure terms to con-
structors and constructors to modifiers. The third conversion is unsafe:
each modifier f (2) may be downcasted to a constructor (↓f)(1), but several
modifiers may be downcasted to the same constructor. The first rule in
Figure 2 says that a modifier is weakly equal to its downcasted construc-
tor, and the next rule is the conversion rule from strong equations to weak
ones.

• The decoration rule for composition and the upcasting rules imply the
following derived rules, for each decorations d, d′, d′′ ∈ {0, 1, 2} such that
d′′ ≥ max(d, d′):

f (d) : A → B g(d
′) : B → C

(g ◦ f)(d′′) : A → C

• The pair 〈f1, f2〉 exists only when f1 and f2 are pure, and it is pure.
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f
(0)
1 : A → B1 f

(0)
2 : A → B2

pr 1 ◦ 〈f1, f2〉
∼= f1 pr2 ◦ 〈f1, f2〉

∼= f2

g(0) : A → B1 ×B2 pr 1 ◦ g
∼= f

(0)
1 pr 2 ◦ g

∼= f
(0)
2

g ∼= 〈f1, f2〉

f (0) : A → 1

f ∼= 〈 〉A

f
(1)
1 : A1 → B f

(1)
2 : A2 → B

[f1|f2] ◦ in1
∼= f1 [f1|f2] ◦ in2

∼= f2

g(1) : A1 +A2 → B g ◦ in1
∼= f

(1)
1 g ◦ in2

∼= f
(1)
2

g ∼= [f1|f2]

g : 0 → B

g ∼ [ ]B

Figure 3: Equational rules for a monad (2)

• Thanks to the conversion from pure terms to constructors, the copair
[f1|f2] exists and it is a constructor when f1 and f2 are pure terms and
constructors, and in addition it is pure when both f1 and f2 are pure.

• Strong and weak equality coincide on pure terms and on constructors,
they may differ on modifiers.

• Weak equations form a “weak” congruence, in the sense that the substi-
tution rule for weak equations holds only when the substituted term is
pure.

• With these decorated rules it is easy to prove that:

f ∼ g if and only if ↓f ∼= ↓g

2.2 A decorated model for a monad

Let (M, η, µ) be a monad on a category C which satisfies the mono requirement,
which means that ηA : A → MA is a monomorphism for each object A. In
addition, let us assume that C has finite products and finite coproducts. Then
we get a model CM of the decorated logic LM in the following way.

• the types are interpreted as the objects of C;

• the operations and terms are interpreted as morphisms of C, in the fol-
lowing way:

– a pure term f (0) : A→B as a morphism f : A→B in C;
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– a constructor f (1) :A→B as a morphism f :A→MB in C;

– a modifier f (2) : A→B as a morphism f : MA→MB in C;

• the equations between modifiers are interpreted as equalities in C, in the
following way:

– a strong equation f (2) ∼= g(2) : A → B as an equality f = g : MA →
MB in C;

– a weak equation f (2) ∼ g(2) : A → B as an equality f ◦ ηA = g ◦
ηA : A → MB in C;

• the conversions are interpreted as follows:

– from pure terms to constructors: f : A → B is upcasted as ηB ◦
f : A → MB;

– from constructors to modifiers: f : A → MB is upcasted as µB ◦
Mf : MA → MB;

– from modifiers to constructors: f : MA → MB is downcasted as
↓f = f ◦ ηA : A → MB;

• for identities and composition:

– the identity id
(0)
A : A → A is interpreted as idA : A → A in C;

– the composition of two modifiers f (2) : A → B and g(2) : B → C is
interpreted as g ◦ f : MA → MB in C;

• products are interpreted as follows:

– the unit type as the final object of C;

– the term 〈 〉A : A → 1 as the unique morphism from A to 1 in C;

– the product B1×B2 with its projections pr
(0)
1 and pr

(0)
2 as the binary

product in C;

– the pair of f
(0)
1 : A → B1 and f

(0)
2 : A → B2 as the pair 〈f1, f2〉 : A →

B1 ×B2 in C;

• coproducts are interpreted as follows:

– the empty type as the initial object of C;

– the term [ ]A : 0 → A as the unique morphism from 0 to A in C;

– the coproduct A1 + A2 with its coprojections in
(0)
1 and in

(0)
2 as the

binary coproduct in C.

– the copair of f
(0)
1 : A1 → B and f

(0)
2 : A2 → B as the copair [f1|f2] : A1+

A2 → B in C;

– the copair of f
(1)
1 : A1 → B and f

(1)
2 : A2 → B as the copair [f1|f2] : A1+

A2 → MB in C;
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The interpretation of composition and equations is defined above only for mod-
ifiers. The general definition, for terms with arbitrary decorations, is the fol-
lowing one: first all terms are converted to modifiers, then the definition above
is used. It is easy to check that there are “obvious” shortcuts: the composition
of two constructors f (1) : A → B and g(1) : B → C is the Kleisli composition of
f : A → MB and g : B → MC, the composition of two pure terms f (0) : A → B
and g(0) : B → C is the composition of f : A → B and g : B → C in C, an
equation f (1) ∼= g(1) : A → B or f (1) ∼ g(1) : A → B is f = g : A → MB in C

and an equation f (0) ∼= g(0) : A → B or f (0) ∼ g(0) : A → B is f = g : A → B in
C.

Now, it is easy to check that CM is indeed a model of LM .

Proposition 2.2. The rules of the logic LM are satisfied by CM .

3 Exceptions

3.1 Operations on exceptions

In Section 2.2 we have defined a model CM of the logic LM from Section 2.1, for
any monad (M, η, µ) satisfying the mono requirement on any category C with
finite products and coproducts.

For a more specific choice of the category and the monad, it may happen that
additional rules can be added to the logic LM . In this Section we consider
a category C with finite products and coproducts such that the coprojections
are monomorphisms and with a distinguished object E called the object of ex-

ceptions. The monad of exceptions on C is the monad (M, η, µ) with end-
ofunctor MA = A + E, its unit η is made of the coprojections ηA : A →
A + E, and its multiplication µ “merges” the exceptions, in the sense that
µA = [idA+E |inA] : (A + E) + E → A + E where inA : E → A + E is the
coprojection.

We define a logic Lexc by extending LM . For each set Exn of exception names

and each family of objects (VT )T∈Exn in C we build a model Cexc of Lexc. In
this context, the exceptions of name T are obtained by tagging, or encapsulating,
the values in VT . The model Cexc extends the model CM of LM with functions
for raising and handling the exceptions of name T for each T ∈ Exn.

If can be assumed that there is a hierarchy of exception names, then the rules
must be be slightly modified.

Since coproducts form an associative and commutative law, we have new rules

for coproducts when the monad isMA = A+E: we have a left copair [f1|f2]
(2)
l of

a constructor f
(1)
1 and a modifier f

(2)
2 , satisfying the first three rules in Figure 4.

There are also three rules (omitted), symmetric to these ones, for the right copair

[f1|f2]
(2)
r of a modifier f

(2)
1 and a constructor f

(1)
2 . The last rule in Figure 4
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expresses the fact that, when MA = A + E, two modifiers coincide as soon as
they coincide on ordinary values and on exceptions.

f
(1)
1 : A1 → B f

(2)
2 : A2 → B

[f1|f2]
(2)
l : A1 +A2 → B

f1 : A1 → B f2 : A2 → B

[f1|f2]l ◦ in1 ∼ f1 [f1|f2]l ◦ in2
∼= f2

g(2) : A1 +A2 → B g ◦ in1 ∼ f
(1)
1 g ◦ in2

∼= f
(2)
2

g ∼= [f1|f2]l

f, g : A → B f ∼ g f ◦ [ ]A ∼= g ◦ [ ]A
f ∼= g

Figure 4: Exceptions: additional rules for coproducts

Remark 3.1. For instance, the coproduct of any type A with the empty type

0 is isomorphic to A, with coprojections id
(0)
A : A → A and [ ]

(0)
A : 0 → A. It

gives rise to the left copair [f1|f2]
(2)
l : A → B of any constructor f

(1)
1 : A → B

with any modifier f
(2)
2 : 0 → B. This property will be used in the construction

of the try/catch expressions.

We distinguish two languages for exceptions, as in [3]:

• The core language performs the core operations of tagging, which encap-
sulates an ordinary value into an exception, and untagging, which recovers
the ordinary value encapsulated in an exception. This language is private.

• The programmer’s language is public. It provides the operations for raising
and handling exceptions, which are defined in terms of the core operations.

The core language. The decorations are the same as for LM , but their name
is adapted to the monad of exceptions:

• A constructor f (1) is called a propagator : it may raise an exception but
cannot recover from an exception, so that it has to propagate all excep-
tions.

• A modifier f (2) is called a catcher.

Grammar for the core language (in addition to the grammar of LM ):

Types: t ::= VT for each T ∈ Exn

Terms: f ::= tagT | untagT for each T ∈ Exn

9



Specific rules for the core language (in addition to the rules of LM ): see Figure 5.

Remark 3.2.

• The weak equations relating untagT and tagR (for R = T and for R 6= T )
mean that untagT , when applied to an exception, recovers the argument
of the exception if this exception has name T and propagates the exception
otherwise.

• The last rule in Figure 5 is the local-to-global rule which asserts that two
functions without argument coincide as soon as they coincide on each
exception. It follows that two functions with an argument coincide as
soon as they coincide on their argument and on each exception: this is the
following rule, which is derived from the local-to-global rule and the last
rule in Figure 4.

f, g : A → B f ∼ g

for all T f ◦ [ ]A ◦ tagT ∼ g ◦ [ ]A ◦ tagT

f ∼= g

T ∈ Exn

tag
(1)
T : VT → 0

T ∈ Exn

untag
(2)
T : 0 → VT

T ∈ Exn

tagT ◦ untagT ∼ idVT

T 6= R ∈ Exn

tagR ◦ untagT ∼ tagR ◦ [ ]VT

f, g : 0 → B for all T ∈ Exn f ◦ tagT ∼ g ◦ tagT
f ∼= g

Figure 5: Exceptions: specific rules for the core language

The programmer’s language. The programmer’s language for exceptions
has no catcher: the only way to catch an exception is by using a try/catch ex-
pression, which itself propagates exceptions. Thus, the programmer’s language
has less decorations than the core language: its operations are either pure or
constructors. Since weak and strong equations coincide on constructors we may
consider that all the equations for the programmer’s language are strong. Let

L
(1)
M be the part of the decorated logic for a monad which deals only with pure

terms, constructors and strong equations.

The grammar for the programmer’s language does not include the private tag-
ging and untagging operations, but the public throw and try/catch construc-
tions.
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Grammar for the programmer’s language (in addition to the grammar of L
(1)
M ):

Types: t ::= VT for each T ∈ Exn

Terms: f ::= throwt,T |

try(f)catch(T1 ⇒ f | Tn ⇒ f)

for each T, T1, . . . , Tn ∈ Exn (with n > 0)

The rules for the programmer’s language (in addition to the rules of LM,1) are
only the typing and decorating rules for the throw and try/catch expressions,
see Figure 6.

T ∈ Exn B

throw
(1)
B,T : VT → B

f (1) : A → B g
(1)
1 : VT1 → B . . . g

(1)
n : VTn

→ B

(try(f)catch(T1 ⇒ g1| . . . |Tn ⇒ gn))(1) : A → B

Figure 6: Exceptions: rules for the programmer’s language

Definitions of throw and try/catch The throw and try/catch expressions
in the programmer’s language are defined in terms of the tag and untag core
operations: see Definition 3.3 for throw, Definition 3.4 for try/catch when
only one exception is catched, and more generally Definition 3.6 for the general
try/catch construction (so that Definition 3.4 is redundant). Diagrams are
provided for illustrating the Definitions; some subscripts and decorations are
omitted.

Definition 3.3. For each type B and each T ∈ Exn, the propagator throw
(1)
B,T : VT →

B is:
throw

(1)
B,i = [ ]

(0)
B ◦ tag

(1)
T

VT

tag
(1)
T

// 0
[ ]

(0)
B

// B

This means that raising an exception with name T consists in tagging the given
ordinary value (in VT ) as an exception and coerce it to any given type B.

Definition 3.4. For each type B, each T ∈ Exn and each propagator g(1) : VT →
B, the catcher (catch(T ⇒ g))(2) : 0 → B is:

catch(T ⇒ g) = [ g(1) | [ ]
(0)
B ](1) ◦ untag

(2)
T

11



VT

id(0)
��

g(1)

((R
RR

RR
RR

RR
RR

0
untag

(2)
T

// VT
//

∼=

∼=
B

0

[ ](0)
OO

[ ](0)

55llllllllllll

then for each propagator f (1) : A → B, the catcher
(TRY(f)catch(T ⇒ g))(2) : A → B is:

TRY(f)catch(T ⇒ g) = [ idB | catch(T ⇒ g) ]
(2)
l ◦ f (1)

B

id(0)
��

id(0)

))R
RR

RR
RR

RR
RR

A
f(1)

// B //
∼

∼=
B

0

[ ](0)
OO

catch(T⇒g)(2)

55lllllllllll

and finally the propagator
(try(f)catch(T ⇒ g))(1) : A → B is:

try(f)catch(T ⇒ g) = ↓(TRY(f)catch(T ⇒ g))

Remark 3.5.

• The intermediate expressions (catch(T ⇒ g)) and TRY(f)catch(T ⇒ g)
are catchers, they are not part of the programmer’s language.

• The expression try(f)catch(T ⇒ g) is a propagator: the downcast oper-
ator prevents it from catching exceptions with name T which might have
been raised before the try(f)catch(T ⇒ g) expression is considered.

Definition 3.4 corresponds to the following control flow, where exc? means “is
this value an exception?”, an abrupt termination returns an uncaught exception
and a normal termination returns an ordinary value. This corresponds, for
instance, to the Java mechanims for exceptions [6, 7].
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��

exc?
Y
wwpp
pp
p N

''O
OO

OO
OO

abrupt f (1)

��

exc?
Y
wwoo
oo
o N

''P
PP

PP

untag
(2)
T

��

normal

exc?
Y
wwpp
pp
p N

''O
OO

OO
OO

abrupt g(1)

��

normal
or

abrupt

In the general case, we use the abbreviated notation:

catch(Ti ⇒ gi)p≤i≤n = catch(Tp ⇒ gp| . . . |Tn ⇒ gn)

Definition 3.6. For each type B, each list (T1, . . . , Tn) (with n ≥ 1) of excep-
tional names and each propagators

g
(1)
1 : VT1 → B, . . . , g(1)n : VTn

→ B

the family of catchers

k(2)p = (catch(Ti ⇒ gi)p≤i≤n)
(2) : 0 → B

(for p = 1, . . . , n) is defined recursively by:

k(2)p =

{

[ g
(1)
p | [ ]

(0)
B ](1) ◦ untag

(2)
Tp

when p = n

[ g
(1)
p | k

(2)
p+1 ]

(2)
l ◦ untag

(2)
Tp

when p < n

then for each propagator f (1) : A → B, the catcher
(TRY(f)catch(Ti ⇒ gi)1≤i≤n)

(2) : A → B is:

TRY(f)catch(Ti ⇒ gi)1≤i≤n = [ idB | k1 ]
(2)
l ◦ f (1)

and finally the propagator
(try(f)catch(Ti ⇒ gi)1≤i≤n)

(1) : A → B is:

try(f)catch(Ti ⇒ gi)1≤i≤n =

↓(TRY(f)catch(Ti ⇒ gi)1≤i≤n)

13



3.2 Case distinction and sequential product, for excep-

tions

Since the programmer’s language for exceptions has no catcher, the coproducts
of constructors, which are valid for any monad, provide case distinction for all
terms in this language.

There is no binary product of propagators. Indeed, if f
(1)
1 : A → B1 and

f
(1)
2 : A → B2 both raise an exception, it is in general impossible to find
f (1) : A → B1 ×B2 such that pr 1 ◦ f

∼= f1 and pr 2 ◦ f
∼= f2. However, there are

several ways to formalize the fact of first evaluating f1 then f2: for instance by
using a strong monad [10], or a sequential product [4], or productors [14].

We define the left sequential product of f1 and f2 from semi-pure products, as
in [4]; the right sequential product can be defined in a symmetric way.

For this purpose, let us introduce a third decorations for equations: (p) and let
us focus on the interpretation in the category of sets. The interpretation of ≡(p)

is defined from the usual ordering between partial functions: each f : A → B+E
determines a partial function f̃ : A ⇀ B with domain of definition D(f̃) = {x ∈
A | f(x) ∈ B}, such that f̃ coincides with f on D(f̃). Then for f, g : A → B+E
we say that f ≡(p) g when f̃ ≤ g̃ in the sense of partial functions. Thus, the
relation ≡(p) is a preorder compatible with composition, but it is not symmetric.
For readability, we use 4 instead of ≡(p).

f

f 4 f

f 4 g g 4 h

f 4 h

f : A → B g1 4 g2 : B → C

g1 ◦ f 4 g2 ◦ f : A → C

f1 4 f2 : A → B g : B → C

g ◦ f1 4 g ◦ f2 : A → C

f
(0)
1 : A → B1 f

(1)
2 : A → B2

〈f1, f2〉
(1)
l : A → B1 ×B2

f1 : A → B1 f2 : A → B2

pr 1 ◦ 〈f1, f2〉l 4 f1 pr2 ◦ 〈f1, f2〉l
∼= f2

g(1) : A → B1 ×B2 pr 1 ◦ g 4 f
(0)
1 pr 2 ◦ g

∼= f
(1)
2

g ∼= 〈f1, f2〉l

Figure 7: Exceptions: additional rules for products
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The left product 〈f1, f2〉
(1)
l of a pure term f

(0)
1 and a propagator f

(1)
2 is a prop-

agator, characterized by the last rules in Figure 7. The right product 〈f1, f2〉
(1)
r

of a propagator f
(1)
1 and a pure term f

(0)
2 is characterized by the dual rules.

Now we can define the left sequential product of two propagators f
(1)
1 : A → B1

and f
(1)
2 : A → B2, corresponding to first evaluating f1 then f2, as the following

propagator 〈f1, f2〉
(1)
l : A → B1×B2 (where q1 : B1×A → B1 is the projection):

〈f
(1)
1 , f

(1)
2 〉

(1)
l = 〈q

(0)
1 , f

(1)
2 〉l ◦ 〈f

(1)
1 , id

(0)
A 〉r

4 Effect based on a comonad

Effects arising from a comonad are studied for instance by [15, 5].

4.1 A decorated logic for a comonad

The dual of the logic LM for monads, from Section 2.1, is a logic LT for comon-
ads. It follows that:

• The grammar of LT is the same as the grammar of LM ,
but a term with decoration (1) is now called an observer.

• The typing and decorations rules of LT are nearly the same as the corre-
sponding rules for LM , in Figure 1, except for the last rule:

f
(1)
1 : A1 → B f

(1)
2 : A2 → B

[f1|f2](1) : A1 +A2 → B

which is replaced by:

f
(1)
1 : A → B1 f

(1)
2 : A → B2

〈f1, f2〉(1) : A → B1 ×B2

• The equational rules for LM in Figure 2 are valid for LT , except for the
last two rules which are replaced by:

f : A → B g1 ∼ g2 : B → C

g1 ◦ f ∼ g2 ◦ f

f1 ∼ f2 : A → B g(0) : B → C

g ◦ f1 ∼ g ◦ f2 : A → C

This means that weak equations form a “weak” congruence, in the sense
that the replacement rule for weak equations holds only when the replaced
term is pure.
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• The equational rules for LM in Figure 3 are replaced by the dual rules
for LT in Figure 8. This means that the decorations for binary products
switch from (0) to (1) and the decorations for binary coproducts from (1)
to (0).

f
(1)
1 : A → B1 f

(1)
2 : A → B2

pr 1 ◦ 〈f1, f2〉
∼= f1 pr2 ◦ 〈f1, f2〉

∼= f2

g(1) : A → B1 ×B2 pr 1 ◦ g
∼= f

(1)
1 pr 2 ◦ g

∼= f
(1)
2

g ∼= 〈f1, f2〉

f (0) : A → 1

f ∼= 〈 〉A

f
(0)
1 : A1 → B f

(0)
2 : A2 → B

[f1|f2] ◦ in1
∼= f1 [f1|f2] ◦ in2

∼= f2

g(0) : A1 +A2 → B g ◦ in1
∼= f

(0)
1 g ◦ in2

∼= f
(0)
2

g ∼= [f1|f2]

g : 0 → B

g ∼ [ ]B

Figure 8: Equational rules for a comonad (2)

4.2 A decorated model for a comonad

This Section is dual to Section 2.2. Let C be a category with finite products and
finite coproducts and (T, ε, δ) a comonad on C satisfying the epi requirement,
which means that εA : TA → A is an epimorphism for each object A. Then we
get a modelCT of the decorated logic LT in a way which is similar to Section 2.2,
except for the following points.

• terms:

– an observer constructor f (1) :A → B is interpreted as a morphism
f : TA → B in C;

• equations:

– a weak equation f (2) ∼ g(2) : A → B is interpreted as an equality
εB ◦ f = εB ◦ g : TA → B in C;

• conversions:

– f : A → B is upcasted as f ◦ εA : TA → B;
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– f : TA → B is upcasted as Tf ◦ δA : TA → TB;

– f : TA → TB is downcasted as ↓f = εB ◦ f : TA → B;

• products:

– the pair of f
(1)
1 : A → B1 and f

(1)
2 : A → B2 is interpreted as the pair

〈f1, f2〉 : TA → B1 ×B2 in C;

• coproducts:

– there is no copair of f
(1)
1 : A1 → B and f

(1)
2 : A2 → B.

Clearly, the result dual to Proposition 2.2 holds.

Proposition 4.1. The rules of the logic LT are satisfied by CT .

5 States

5.1 Operations on states

In this Section we consider a category C with finite products and coproducts
such that the projections are epimorphisms and with a distinguished object S
called the object of states. We consider the comonad (T, ε, δ) with endofunctor
TA = A × S, with counit ε made of the projections εA : A × S → A, and
with comultiplication δ which “duplicates” the states, in the sense that δA =
〈idA×S |prA〉 : A× S → (A× S)× S where prA : A× S → A is the projection.

We call this comonad the comonad of states. It is sometimes called the product

comonad, and it is different from the costates comonad or stores comonad with
endofuntor TA = S ×AS [5].

We define a logic Lst by extending LT . For each set Loc of locations (or identi-
fiers) and each family of objects (VX)X∈Loc in C we build a model Cst of Lst .
The model Cst extends the model CT of LT with functions for looking up and
updating the locations X ∈ Loc.

The logic we get, and its model, are essentially the same as in [2]. However our
approach, via comonads, is new and can be adapted to other comonads.

There is no need here to distinguish a core language from a programmer’s lan-
guage; the unique language for states is dual to the core language for exceptions.

Grammar for the language (in addition to the grammar of LT ):

Types: t ::= VX for each X ∈ Loc

Terms: f ::= lookupX | updateX for each X ∈ Loc
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Since products form an associative and commutative law, we have new rules for

products when the comonad is TA = A × S: we have a left pair 〈f1, f2〉
(2)
l of

an observer f
(1)
1 and a modifier f

(2)
2 , satisfying the first three rules in Figure 9.

There are also symmetric rules for the right pair 〈f1|f2〉
(2)
r of a modifier f

(2)
1 and

an observer f
(1)
2 . The last rule in Figure 9 expresses the fact that two modifiers

coincide as soon as they return the same result and modify the state in the same
way.

f
(1)
1 : A → B1 f

(2)
2 : A → B2

〈f1, f2〉
(2)
l : A → B1 ×B2

f
(1)
1 : A → B1 f

(2)
2 : A → B2

pr 1 ◦ 〈f1, f2〉l ∼ f1 pr2 ◦ 〈f1, f2〉l
∼= f2

g(2) : A → B1 ×B2 pr 1 ◦ g ∼ f
(1)
1 pr 2 ◦ g

∼= f
(2)
2

g ∼= 〈f1, f2〉l

f, g : A → B f ∼ g 〈 〉A ◦ f ∼= 〈 〉A ◦ g

f ∼= g

Figure 9: States: additional rules for products

Specific rules for the language of states are given in Figure 10.

X ∈ Loc

lookup
(1)
X : 1 → VX

X ∈ Loc

update
(2)
X : VX → 1

X ∈ Loc

lookupX ◦ updateX ∼ idVX

X 6= Y ∈ Loc

lookupj ◦ updateX ∼ lookupY ◦ 〈 〉VX

f, g : 0 → B for all X ∈ Loc lookupX ◦ f ∼ lookupX ◦ g

f ∼= g

Figure 10: States: specific rules for the language

The last rule in Figure 10 is the local-to-global rule which asserts that two
functions without result coincide as soon as they coincide on each location.
Together with the last rule in Figure 9, this rule implies that two functions
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coincide as soon as they return the same value and coincide on each location.

f, g : A → B f ∼ g

for all X lookupX ◦ 〈 〉B ◦ f ∼ lookupX ◦ 〈 〉B ◦ g

f ∼= g

Now, in addition, let us assume that the category C is distributive. Then there
are additional rules for coproducts, given in Figure 11. These rules are not
dual to rules for exceptions, because we have not assumed in Section 3 that the
category C was codistributive.

The interpretation of the modifier [f1|f2], when both f1 and f2 are modifiers, is
the composition of [f1|f2] : (A1 ×S)+ (A2×S) → B×S with the inverse of the
canonical morphism (A1 × S) + (A2 × S) → (A1 + A2) × S: this inverse exists
because C is distributive.

f
(2)
1 : A1 → B f

(2)
2 : A2 → B

[f1|f2](2) : A1 +A2 → B

f1 : A1 → B f2 : A2 → B

[f1|f2] ◦ in1
∼= f1 [f1|f2] ◦ in2

∼= f2

g(2) : A1 +A2 → B g ◦ in1
∼= f

(2)
1 g ◦ in2

∼= f
(2)
2

g ∼= [f1|f2]

Figure 11: States: additional rules for coproducts

5.2 Case distinction and sequential product, for states

As soon as the category C is distributive, the additional rules for coproducts in
Figure 11 provide case distinction for the language for states.

There is no binary product of modifiers, but there is a left product of a construc-
tor and a modifier, see Figure 9. Dually there is a right product of a modifier
and a constructor.

It follows that the left and right sequential products can be defined from these
products in a similar way as for exceptions, in Section 3.2.

A major distinction between exceptions and states is that, for exceptions, we
have introduced a third decoration for equality, whereas this is not necessary for
states. This is due to the introduction of the intermediate notion of observers
between pure terms (or values) and modifiers (or computations). This is also
a distinction, for states, between the usual approach with the strong monad
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of states M(A) = (A × S)S and this approach with the comonad of states
T (A) = A× S.

6 Conclusion

We have presented two patterns giving sound inference systems to effects arising
from a monad or a comonad. We have shown that the obtained inference systems
are sound and that they provide a way to handle proofs of programs dealing
with such effects.

We also gave detailed examples of applications of these patterns to the state
and the exception effects. The obtained decorated proof system for states, as
described in Section 4 and similar to the one of [2], has been implemented
in Coq 1 so that the given proofs can be automatically verified. ¿From this
implementation, it should be possible to extract the generic part corresponding
to the comonad pattern, dualize it and extend it to handle e.g. the system for
exceptions of Section 2.

A major issue is then the combination of effects. It is indeed required of any
approach for effects to be scalable. Within the framework of this paper, it
may seem difficult to guess how several effects arising from either monads or
comonads can be combined. However, as mentioned in the Introduction, this
paper deals with two patterns for instanciating the more general framework of
decorated logics [1]. Decorated logics are based on spans in a relevant category
of logics, so that the combination of effects can be based on the well-known
composition of spans.
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[13] Lutz Schröder, Till Mossakowski. Generic Exception Handling and the Java
Monad. AMAST 2004. Springer-Verlag Lecture Notes in Computer Science
3116, p. 443-459 (2004).

[14] Ross Tate. The sequential semantics of producer effect systems. POPL 2013.
ACM Press, p. 15-26 (2013).

[15] Tarmo Uustalu, Varmo Vene. Comonadic Notions of Computation. CMCS
2008. ENTCS 203, p. 263-284 (2008).

[16] Philip Wadler. The essence of functional programming. POPL 1992. ACM
Press, p. 1-14 (1992).

A Diagrams for decorated products and coprod-

ucts

21



ANY MONAD

Products.

B1

A

f
(0)
1

66mmmmmmmmmmmmmmm

f
(0)
2 ((Q

QQ
QQ

QQ
QQ

QQ
QQ

QQ 〈f1,f2〉
(0) // B1×B2

pr
(0)
1

OO

pr
(0)
2

��

∼=

∼=

B2

B1

A

f1

66mmmmmmmmmmmmmmm

f2
((Q

QQ
QQ

QQ
QQ

QQ
QQ

QQ 〈f1,f2〉 // B1×B2

pr1

OO

pr2

��

=

=

B2

Coproducts.

A1

in
(0)
1

��

f
(0)
1

((Q
QQ

QQ
QQ

QQ
QQ

QQ
QQ

A1+A2 [f1|f2]
(0) //

∼=

∼=

B

A2

in
(0)
2

OO

f
(0)
2

66mmmmmmmmmmmmmmm

A1

in1

��

f1

((Q
QQ

QQ
QQ

QQ
QQ

QQ
QQ

A1+A2 [f1|f2] //

=

=

B

A2

in2

OO

f2

66mmmmmmmmmmmmmmm

E.g., exceptions: for case distinction in the programmer’s language:
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THE MONAD OF EXCEPTIONS

Products.

With 4. For sequential products in the programmer’s language:
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Coproducts.

Because + is AC. For case distinction in the core language:
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E.g., states: for pairs of observers:
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THE COMONAD OF STATES
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Coproducts.

When C is distributive. For case distinction:
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Because × is AC. For sequential products:
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