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Abstract

This paper presents equational-based logics for proving first order
properties of programming languages involving effects.

We propose two dual inference system patterns that can be instanci-
ated with monads or comonads in order to be used for proving properties
of different effects. The first pattern provides inference rules which can be
interpreted in the Kleisli category of a monad and the coKleisli category
of the associated comonad. In a dual way, the second pattern provides
inference rules which can be interpreted in the coKleisli category of a
comonad and the Kleisli category of the associated monad. The logics
combine a 3-tier effect system for terms consisting of pure terms and two
other kinds of effects called ’constructors/observers’ and ’modifiers’, and a
2-tier system for ’up-to-effects’ and ’strong’ equations. Each pattern pro-
vides generic rules for dealing with any monad (respectively comonad),
and it can be extended with specific rules for each effect. The paper
presents two use cases: a language with exceptions (using the standard
monadic semantics), and a language with state (using the less standard
comonadic semantics). Finally, we prove that the obtained inference sys-
tem for states is Hilbert-Post complete.

1 Introduction

A software design pattern is not a finished design, it is a description or template
that can be instanciated in order to be used in many different situations. In
this paper, we propose inference system patterns that can be instanciated with
monads or comonads in order to be used for proving properties of different
effects.
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In order to formalize computational effects one can choose between types
and effects systems [12], monads [14] and their associated Lawvere theories [17],
comonads [22], or decorated logics [1]. Starting with Moggi’s seminal paper [14]
and its application to Haskell [23], various papers deal with the effects arising
from a monad, for instance [17, 19, 11, 18].

Each of these approaches rely on some classification of the syntactic expres-
sions according to their interaction with effects. In this paper we use decorated
logics which, by extending this classification to equations, provide a proof sys-
tem adapted to each effect.

This paper presents equational-based logics for proving first order properties
of programming languages involving effects. We propose two dual patterns,
consisting in a language with an inference system, for building such a logic.

The first pattern provides inference rules which can be interpreted in the
coKleisli category of a comonad and the Kleisli category of the associated
monad. In a dual way, the second pattern provides inference rules which can
be interpreted in the Kleisli category of a monad and the coKleisli category
of the associated comonad. The logics combine a three-levels effect system
for terms consisting of pure terms and two other kinds of effects called ob-
servers/constructors and modifiers, and a two-levels system for strong and weak
equations.

Each pattern provides generic rules for dealing with any comonad (respec-
tively monad), and it can be extended with specific rules for each effect. The
paper presents two use cases: a language with state and a language with excep-
tions. For the language with state we use a comonadic semantics and we prove
that the equational theory obtained is Hilbert-Post complete, which provides
a new proof for a result in [16]. For the language with exceptions we extend
the standard monadic semantics in order to catch exceptions; this relies on the
duality between states and exceptions from [3].

We do not claim that each effect arises either from a comonad or from a
monad, but this paper only deals with such effects. Intuitively, an effect which
observes features may arise from a comonad, while an effect which constructs
features may arise from a monad [10]. However, some interesting features in the
comonad pattern stem from the well-known fact that each comonad determines
a monad on its coKleisli category, and dually for the monad pattern. More
precisely, on the monads side, let (M, η, µ) be a monad on a category C(0) and
let C(1) be the Kleisli category of (M, η, µ) on C(0). Then M can be seen as
the endofunctor of a comonad (M, ε, δ) on C(1), so that we may consider the
coKleisli category C(2) of (M, ε, δ) on C(1). The canonical functors from C(0)

to C(1) and from C(1) to C(2) give rise to a hierarchy of terms: pure terms
in C(0), constructors in C(1), modifiers in C(2). This corresponds to the three
translations of a typed lambda calculus into a monadic language [23].

On the comonads side, we get a dual hierarchy: pure terms in C(0), observers
in C(1), modifiers in C(2).

We instanciate these patterns with two fundamental examples of effects:
state and exceptions.

Following [3], we consider that the states effect arise from the comonad
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A×S (where S is the set of states), thus a decorated logic for states is built by
extending the pattern for comonads. The comonad itself provides a decoration
for the lookup operation, which observes the state, while the monad on its
coKleisli category provides a decoration for the update operation.

Following [14], we consider that the exceptions effect arise from the monad
A+ E (where E is the set of exceptions), thus a decorated logic for exceptions
is built by extending the pattern for monads. The monad itself provides a
decoration for the raising operation, which constructs an exception, while the
comonad on its Kleisli category provides a decoration for the handling operation.

In fact the decorated logic for exceptions is not exactly dual to the decorated
logic for states if we assume that the intended interpretation takes place in a
distributive category, like the category of sets, which is not codistributive.

Other effects would lead to other additional rules, but we have chosen to
focus on two effects which are well known from various points of view. Our goal
is to enligthen the contributions of each approach: the annotation system from
the types and effects systems [12], the major role of monads for some effects [14],
and the dual role of comonads [22], as well as the flexibility of decorated logics [1].
Moreover, proofs in decorated logics can be checked with the Coq proof assistant;
a library for states is available there: http://coqeffects.forge.imag.fr.

In this paper we focus on finite products and coproducts; from a program-
ming point of view this means that we are considering languages with n-ary op-
erations and with case distinction, but without loops or higher-order functions.
In a language with effects there is a well-known issue with n-ary operations:
their interpretation may depend on the order of evaluation of their arguments.
In this paper we are looking for languages with case distinction and with se-

quential products, which allows to force the order of evaluation of the arguments,
whenever this is required.

It is well known that (co)monads fit very well with composition but require
additional assumptions for being fully compatible with products and coprod-
ucts. This corresponds to the fact that in the patterns from Section 2, which
are valid for any (co)monad, the rules for products and coproducts hold only
under some decoration constraints. However, such assumptions are satisfied for
several (co)monads. This is in particular the case for the state comonad and
the exceptions monad.

In Section 2 we describe the patterns for a comonad and for a monad. The
first pattern is instanciated with the comonad for state in Section 3, and we prove
the Hilbert-Post completeness of the decorated theory for state. In Section 4
we instanciate the second pattern to the monad for exceptions.

2 Patterns for comonads and for monads

2.1 Equational logic with conditionals

In this Section we define a grammar and an inference system for two logics
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Lcom and Lmon , then we define an interpretation of these logics in a category
with a comonad and a monad, respectively.

The logics Lcom and Lmon are called decorated logics because their grammar
and inference rules are essentially the grammar and inference rules for a “usual”
logic, namely the equational logic with conditionals (denoted Leq), together with
decorations for the terms and for the equations. The decorations for the terms
are similar to the annotations of the types and effects systems [12].

Decorated logics are introduced in [1] in an abstract categorical framework,
which will not be explicitly used in this paper.

The grammar of the equational logic with conditionals is reminded in Fig-
ure 1. Each term has a source type and a target type. As usual in categorical
presentations of equational logic, a term has precisely one source type, which
can be a product type or the unit type. Each equation relates two parallel
terms, i.e., two terms with the same source and the same target. This grammar
will be extended with decorations

in order to get the grammar of the logics Lcom and Lmon .

Grammar for the equational logic with conditionals:

Types: t ::= A | B | · · · | t+ t | 0 | t× t | 1

Terms: f ::= id t | f ◦ f |

〈f, f〉 | pr t,t,1 | pr t,t,2 | 〈 〉t

[f |f ] | int,t,1 | int,t,2 | [ ]t |

Equations: e ::= f ≡ f

Figure 1: Equational logic with conditionals: grammar

2.2 Patterns

The rules in Figure 2 are patterns, in the following sense: when the boxes
in the rules are removed, we get usual rules for the logic Leq , which may be
interpreted in any bicartesian category. When the boxes are replaced by dec-
orations, we get a logic which, according to the choice of decorations, may be
interpreted in a bicartesian category with a comonad or a monad. There may
be other ways to decorate the rules for Leq , but this is beyond the scope of this
paper.

2.3 A decorated logic for a comonad

In the logic Lcom for comonads, each term has a decoration which is denoted
as a superscript (0), (1) or (2): a term is pure when its decoration is (0), it is
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congruence rules

(refl)
f�

f�≡f
(sym)

f�
�≡g�

g�≡f
(trans)

f�
�≡g� g��≡h�

f�≡h

(repl)
f�
1 �≡f�

2 : A → B g� : B → C

g ◦ f1�≡g ◦ f2
(subs)

f� : A → B g�1 �≡g
�
2 : B → C

g1 ◦ f�≡g2 ◦ f

categorical rules

(id)
A

id�

A : A → A
(comp)

f� : A → B g� : B → C

(g ◦ f)� : A → C

(id-source)
f� : A → B

f ◦ idA�≡f
(id-target)

f� : A → B

idB ◦ f�≡f

(assoc)
f� : A → B g� : B → C h� : C → D

h ◦ (g ◦ f)�≡(h ◦ g) ◦ f

product rules

(prod)
B1 B2

B1×B2 pr�1 : B1×B2 → B1 pr�2 : B1×B2 → B2

(pair)
f�
1 : A → B1 f�

2 : A → B2

〈f1, f2〉� : A → B1×B2

(pair-eq)
f�
1 : A → B1 f�

2 : A → B2

pr 1 ◦ 〈f1, f2〉�≡f1 pr2 ◦ 〈f1, f2〉�≡f2

(pair-u)
f�
1 :A→B1 f�

2 :A→B2 g�:A→B1×B2 pr1 ◦ g�≡f1 pr2 ◦ g�≡f2
g�≡〈f1, f2〉

(unit)
1

(final)
A

〈 〉�A : A → 1
(final-u)

f� : A → 1

f�≡〈 〉A

coproduct rules

(coprod)
A1 A2

A1+A2 in�
1 : A1 → A1+A2 in�

2 : A2 → A1+A2

(copair)
f�
1 : A1 → B f�

2 : A2 → B

[f1|f2]� : A1+A2 → B

(copair-eq)
f�
1 : A1 → B f�

2 : A2 → B

[f1|f2] ◦ in1�≡f1 [f1|f2] ◦ in2�≡f2

(copair-u)
g�:A1+A2→B f�

1 :A1→B f�
2 :A2→B g ◦ in1�≡f1 g ◦ in2�≡f2

g�≡[f1|f2]

(empty)
0

(initial)
B

[ ]�B : 0 → B
(initial-u)

g� : 0 → B

g�≡[ ]B

Figure 2: Patterns: rules

5



an accessor (or an observer) when its decoration is (1) and a modifier when its
decoration is (2). Each equation has a decoration which is denoted by replacing
the symbol ≡ either by ∼= or by ∼: an equation with ∼= is called strong, with ∼
it is called weak.

The inference rules of Lcom are obtained by introducing some conversion

rules and by decorating the rules in Figure 2.
When writing terms, if a decoration does not matter or if it is clear from the

context, it may be omitted.

• The conversion rules are:

f (0)

f (1)

f (1)

f (2)

f (d) ∼= g(d
′)

f ∼ g
for all d, d′

f (d) ∼ g(d
′)

f ∼= g
for all d, d′ ≤ 1

The conversions for terms are upcasting conversions.

We will always use them in a safe way, by interpreting them as injections.
This allows to avoid any specific notation for these conversions; an acces-
sor a(1) may be converted to a modifier which is denoted a(2): both have
the same name although they are distinct terms; similarly, a pure term
v(0) may be converted to v(1) or to v(2). An equation between terms with
distinct decorations does not imply any downcasting of its members; for
instance, if f (2) ∼= g(0) then it does not follow that f is downcasted to f (0).
The conversions for equations mean that strong and weak equations coin-
cide on pure terms and accessors and that each strong equation between
modifiers can be seen as a weak one.

• All rules of Leq are decorated with (0) for terms and ∼= for equations: the
pure terms with the strong equations form a sublogic of Lcom which is
isomorphic to Leq . Thus we get id (0), pr (0), 〈 〉(0), in(0), [ ](0).

• The congruence rules for equations take all decorations for terms and
for equations, with one notable exception: the replacement rule for weak
equations holds only when the replaced term is pure:

(repl)
f
(d)
1 ∼ f

(d′)
2 : A → B g(0) : B → C

g ◦ f1 ∼ g ◦ f2

• The categorical rules hold for all decorations and the decoration of a com-
posed terms is the maximum of the decorations of its components.

• The product rules hold only when the given terms are pure or accessors
and the decoration of a pair is the maximum of the decorations of its com-
ponents. Thus, n-ary operations can be used only when their arguments
are accessors.

• The coproduct rules hold only when the given terms are pure and a copair
is always pure, which is the maximum of the decorations of its components.
Thus, case distinction can be done only for pure terms.
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2.4 The interpretation of L
com

by a comonad

In order to give a meaning to the logic Lcom , let us consider a bicartesian
category C with a comonad (T, ε, δ) satisfying the epi requirement, i.e., εA :
TA → A is an epimorphism for each object A (the dual assumption is discussed
in [14]).

Then we get a model CT of the decorated logic Lcom as follows.

• The types are interpreted as the objects of C.

• The terms are interpreted as morphisms of C: a pure term f (0) : A→B
as a morphism f : A→B in C; an accessor f (1) :A→B as a morphism
f :TA→B in C; and a modifier f (2) : A→B as a morphism f : TA→TB
in C.

• The conversion from pure terms to accessors is interpreted by mapping
f : A → B to f ◦ εA : TA → B. The epi requirement implies that this
conversion is safe.

• The conversion from accessors to modifiers is interpreted by mapping
f : TA → B to Tf ◦ δA : TA → TB. It is easy to check that this con-
version is safe.

• When a term f has several decorations (because it is pure or accessor, and
thus can be upcasted) we will denote by f any one of its interpretations: a
pure term f (0) : A→B may be interpreted as f : A→B and as f : TA→B
and as f : TA→ TB, and an accessor f (1) :A→B as f : TA→B and as
f : TA→TB. The choice will be clear from the context, and when several
choices are possible they will give the same result, up to conversions. For
this reason, we will describe the interpretation of the rules only for the
largest possible decorations.

• The identity id
(0)
A : A → A is interpreted as idA : A → A in C;

• The composition of two modifiers f (2) : A → B and g(2) : B → C is inter-
preted as g ◦ f : TA → TB in C.

• An equation between modifiers f (2) ∼= g(2) : A → B is interpreted by an
equality f = g : TA → TB in C.

• A weak equation between modifiers f (2) ∼ g(2) : A → B is interpreted by
an equality εB ◦ f = εB ◦ g : TA → B in C.

• The unit type is interpreted as the final object ofC and the term 〈 〉
(0)
A : A →

1 as the unique morphism from A to 1 in C.

• The product B1 × B2 with its projections is interpreted as the binary

product in C and the pair of f
(0)
1 : A → B1 and f

(0)
2 : A → B2 as the pair

〈f1, f2〉 : A → B1 ×B2 in C.
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• The empty type is interpreted as the initial object of C and the term

[ ]
(0)
A : 0 → A as the unique morphism from 0 to A in C.

• The coproduct A1 +A2 with its coprojections is interpreted as the binary

coproduct in C and the copair of f
(1)
1 : A1 → B and f

(1)
2 : A2 → B as the

copair [f1|f2] : A1 +A2 → TB in C.

2.5 A decorated logic for a monad

The dual of the decorated logic Lcom for a comonad is the decorated logic
Lmon for a monad.

Thus, the grammar of Lmon is the same as the grammar of Lcom , but a term
with decoration (1) is now called a constructor.

The rules for Lmon are nearly the same as the corresponding rules for Lcom ,
except that for weak equations the replacement rule always holds while the
substitution rule holds only when the substituted term is pure:

(subs)
f (0) : A → B g

(d)
1 ∼ g

(d′)
2 : B → C

g1 ◦ f ∼ g2 ◦ f

In the rules for pairs and copairs, the decorations are permuted.
The logic Lmon can be interpreted dually to Lcom . Let C be a bicartesian

category and (M, η, µ) a monad on C satisfying the mono requirement, which
means that ηA : A → MA is a monomorphism for each object A. Then we get
a model CM of the decorated logic Lmon , where

a constructor f (1) :A→B is interpreted as a morphism f : A → MB in C

and a weak equation f (2) ∼ g(2) : A → B is interpreted as an equality
f ◦ ηA = g ◦ ηA : A → TB in C.

3 States: an instance of the pattern for comon-

ads

3.1 A decorated logic for state

Let us consider a distributive category C with epimorphic projections and
with a distinguished object S called the object of states. We consider the
comonad (T, ε, δ) with endofunctor TA = A × S, with counit ε made of the
projections εA : A × S → A, and with comultiplication δ which “duplicates”
the states, in the sense that δA = 〈idA×S |prA〉 : A × S → (A × S) × S where
prA : A× S → A is the projection.

We call this comonad the comonad of state. It is sometimes called the product
comonad, and it is different from the costate comonad or store comonad with
endofuntor TA = S ×AS [7].
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The category C with the comonad of states provides a model of the logic
Lcom . We can extend Lcom into a logic Lst dedicated to the state comonad.

First, because of the specific choice of the comonad TA = A × S, we can
add new decorations to the rule patterns for pairs in Lcom , involving modifiers:

there is a left pair 〈f1, f2〉
(2)
l of an accessor f

(1)
1 and a modifier f

(2)
2 , satisfying

the first three rules in Figure 3. There are also three rules (omitted), symmetric

to these ones, for the right pair 〈f1, f2〉
(2)
r of a modifier f

(2)
1 and an accessor

f
(1)
2 .

The interpretation of the left pair 〈f1, f2〉
(2)
l : A → B1 × B2 is the pair

〈f1, f2〉 : A× S → B1 ×B2 × S of f1 : A× S → B1 and f2 : A× S → B2 × S.
Moreover, the rule (effect) expresses the fact that, when TA = A × S, two

modifiers coincide as soon as they return the same result and modify the state
in the same way.

(l-pair)
f
(1)
1 : A → B1 f

(2)
2 : A → B2

[f1|f2]
(2)
l : A → B1 ×B2

(l-pair-eq)
f
(1)
1 : A → B1 f

(2)
2 : A → B2

pr
(0)
1 ◦ 〈f1, f2〉

(2)
l ∼ f

(1)
1 pr

(0)
2 ◦ 〈f1, f2〉

(2)
l

∼= f
(2)
2

(l-pair-u)
g(2):A→B1×B2 f

(1)
1 :A→B1 f

(2)
2 :A→B2 pr

(0)
1 ◦ g ∼ f1 pr

(0)
2 ◦ g ∼= f2

g(2) ∼= 〈f1, f2〉
(2)
l

(effect)
f, g : A → B f ∼ g 〈 〉A ◦ f ∼= 〈 〉A ◦ g

f ∼= g

Figure 3: Lst : additional rules for products

For each set Loc of locations (or identifiers), additional grammar and rules
for the logic Lst are given in Figure 4. We extend the grammar of Lcom with

a type VX , an accessor lookup
(1)
X : 1 → VX and a modifier update

(2)
X : VT → 1

for each location X , and we also extend its rules.
The rule (local-global) asserts that two functions without result coincide as

soon as they coincide when observed at each location. Together with the rule
(effect) it implies that two functions coincide as soon as they return the same
value and coincide on each location.

For each family of objects (VX)X∈Loc in C such that S ∼=
∏

X∈Loc VX we
build a model Cst of Lst , which extends the model the model CT of Lcom with
functions for looking up and updating the locations.

The types VX are interpreted as the objects VX and the accessors lookup
(1)
X :

1 → VX as the projections from S to VX . Then the interpretation of each

modifier update
(2)
X : VX → 1 is the function from VX × S to S defined as the

tuple of the functions fX,Y : VX × S → VY where fX,X is the projection from
VX ×S to VX and fX,Y is made of the projection from VX ×S to S followed by

9



Types: t ::= VX for each X ∈ Loc

Terms: f ::= lookupX | updateX for each X ∈ Loc

(lookup)
X ∈ Loc

lookup
(1)
X : 1 → VX

(update)
X ∈ Loc

update
(2)
X : VX → 1

(lookupdate)
X ∈ Loc

lookupX ◦ updateX ∼ idVX

X,Y ∈ Loc X 6= Y

lookupY ◦ updateX ∼ lookupY ◦ 〈 〉VX

(local-global)
f, g : A → 1 for all X ∈ Loc lookupX ◦ f ∼ lookupX ◦ g

f ∼= g

Figure 4: Lst : additional grammar and rules for states

lookupY : S → VY when Y 6= X .
The logic we get, and its model, are essentially the same as in [2]: thus, the

pattern for a comonad in Section 2 can be seen as a generalization to arbitrary
comonads of the approach in [2].

Since we have assumed that the category C is distributive we get new dec-
orations for the rule patterns for coproducts: the copair of two modifiers now
exists, the corresponding decorated rules are given in Figure 5.

The interpretation of the modifier [f1|f2], when both f1 and f2 are modifiers,
is the composition of [f1|f2] : (A1 × S) + (A2 × S) → B × S with the inverse
of the canonical morphism (A1 × S) + (A2 × S) → (A1 +A2)× S: this inverse
exists because C is distributive.

(copair)
f
(2)
1 : A1 → B f

(2)
2 : A2 → B

[f1|f2](2) : A1+A2 → B

(copair-eq)
f
(2)
1 : A1 → B f

(2)
2 : A2 → B

[f1|f2] ◦ in1
∼= f1 [f1|f2] ◦ in2

∼= f2

(copair-u)
f
(2)
i :Ai→B g(2):A1+A2→B g ◦ in i

∼= fi
g(2) ∼= [f1|f2](2)

Figure 5: Lst : additional rules for coproducts, when C is distributive

3.2 States: conditionals and binary operations
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To conclude with states, let us look at the constructions for conditionals and
binary operations in the language for states.

The rules in Figure 5 provide conditionals.
There is no binary product of modifiers, but there is a left product of a

constructor and a modifier and a right product of a modifier and a constructor.
It follows that the left and right sequential products of two modifiers f1 and f2
can be defined, as in [4], by composing, e.g., the left product of an identity and
f1 with the right product of f2 and an identity.

A major feature of this approach is that, for states, sequential products
are defined without any new ingredient: no kind of strength, in contrast with
the approach using the strong monad of states (A × S)S [14], no “external”
decoration for equations, in contrast with [4]. This property is due to the
introduction of the intermediate notion of accessors between pure terms (or
values) and modifiers (or computations).

3.3 Hilbert-Post completeness

Now we use the decorated logic Lst for proving that the decorated theory
for states is Hilbert-Post complete. This result is proved in [16, Prop.2.40] in
the framework of Lawvere theories. Here we give a proof in the decorated logic
for states. This proof has been checked in Coq1.

The logic we use is the fragment Lst ,0 of Lst which involves neither products
nor coproducts nor the empty type (but which involves the unit type). The
theory of state, denoted Tst , is the family of equations which may be derived
from the axioms of Lst ,0 using the rules of Lst ,0. More generally, a theory T
with respect to Lst ,0 is a family of equations between terms of Lst ,0 which is
saturated with respect to the rules of Lst ,0. A theory T ′ is an extension of a
theory T if it contains all the equations of T . Two families of equations are
called equivalent if each one can be derived from the other with the rules of
Lst ,0.

As in [16, Prop.2.40], for the sake of simplicity it is assumed that there is a
single location X , and we write V , lookup and update instead of VX , lookupX
and updateX . Then there is a single axiom lookup ◦ update ∼ idV .

In addition, it is assumed that all types are inhabited, in the sense that for
each type X there exists a closed pure term with type X .

Theorem 3.1. Every equation between terms of Lst ,0 is equivalent to four equa-

tions between pure terms.

Proof. The proof is obtained by merging the two parts of Proposition 3.2, which
is proved in Appendix A.

Proposition 3.2.

1Effect categories and COQ, http://coqeffects.forge.imag.fr
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1. Every equation between accessors is equivalent to two equations between

pure terms.

2. Every equation between modifiers is equivalent to two equations between

accessors.

Roughly speaking, a theory (with respect to some logic) is said syntactically

complete if no unprovable axiom can be added to the theory without introducing
an inconsistency. More precisely, a theory with respect to the equational logic is
Hilbert-Post complete if it is consistent and has no consistent proper extension
[16, Definition 2.8.]. Since we use a decorated version of the equational logic,
we have to define a decorated version of Hilbert-Post completeness.

Definition 3.3. With respect to the logic Lst ,0,
a theory T is consistent if there is an equation which is not in T .
An extension T ′ of a theory T is a pure extension if it is generated by T

and by equations between pure terms. It is a proper extension if it is not a pure
extension.

A theory T is Hilbert-Post complete if it is consistent and has no consistent
proper extension.

The proof of Theorem 3.4 relies on Theorem 3.1. We do not have to assume
that the interpretation of the type V is a countable set. We have assumed that
Loc is a singleton, but we conjecture that our result can be generalized to any
set of locations, without any finiteness condition.

Theorem 3.4. The theory for state is Hilbert-Post complete.

Proof. The theory Tst is consistent: it cannot be proved that update(2) ∼= 〈 〉
(0)
V .

Let us consider an extension T of Tst and let T(0) be the theory generated by
Tst and by the equations between pure terms in T . Thus, T(0) is a pure extension
of Tst and T is an extension of T(0). Let us consider an arbitrary equation e
in T , according to Theorem 3.1 we get a family E of equations between pure
terms which is equivalent to the given equation e.

Since e is in T and T is saturated, the equations in E are also in T , hence
they are in T(0).

Since E is in T(0) and T(0) is saturated, the equation e is also in T(0).
This proves that T(0) = T , so that the theory Tst has no proper extension.

4 Exceptions: an instance of the pattern for

monads

4.1 The core language for exceptions

Let us consider a bicartesian category C with monomorphic coprojections
and with a distinguished object E called the object of exceptions. We do not

12



assume that C is distributive (it would not help) nor codistributive, because
usually this is not the case. The monad of exceptions on C is the monad
(M, η, µ) with endofunctor MA = A+E, its unit η is made of the coprojections
ηA : A → A+E, and its multiplication µ “merges” the exceptions, in the sense
that µA = [idA+E |inA] : (A + E) + E → A + E where inA : E → A + E is the
coprojection. It satisfies the mono requirement because the coprojections are
monomorphisms. Thus, the categoryC with the monad of exceptions provides a
model of the logic Lmon . The name of the decorations is adapted to the monad
of exceptions: a constructor is called a propagator : it may raise an exception
but cannot recover from an exception, so that it has to propagate all exceptions;
a modifier is called a catcher.

For this specific monad MA = A+E, it is possible to extend the logic Lmon

as Lexc, called the logic for exceptions, so that C with MA = A + E can be
extended as a model Cexc of Lexc.

First, dually to the left and right pairs for states in Figure 3, we get new
decorations to the rule patterns for copairs in Lmon , involving modifiers, as in
Figure 6 for the left copairs (the rules for the right copairs are omitted).

The interpretation of the left copair [f1|f2]
(2)
l : A1 + A2 → B is the copair

[f1|f2] : A1 +A2 + E → B + E of f1 : A1 → B + E and f2 : A2 + E → B + E
in C.

For instance, the coproduct of A ∼= A+ 0, with coprojections id
(0)
A : A → A

and [ ]
(0)
A : 0 → A, gives rise to the left copair [f1|f2]

(2)
l : A → B of any

constructor f
(1)
1 : A → B with any modifier f

(2)
2 : 0 → B, which is characterized

up to strong equations by [f1|f2]l ∼ f1 and [f1|f2]l ∼= f2. This will be used in
the construction of the try/catch expressions.

Moreover, the rule (effect) expresses the fact that, when MA = A+ E, two
modifiers coincide as soon as they coincide on ordinary values and on exceptions.

(l-copair)
f
(1)
1 : A1 → B f

(2)
2 : A2 → B

[f1|f2]
(2)
l : A1+A2 → B

(l-copair-eq)
f
(1)
1 : A1 → B f

(2)
2 : A2 → B

[f1|f2]
(2)
l ◦ in

(0)
1 ∼ f

(1)
1 [f1|f2]

(2)
l ◦ in

(0)
2

∼= f
(2)
2

(l-copair-u)
g(2):A1+A2→B f

(1)
1 :A1→B f

(2)
2 :A2→B g ◦ in1 ∼ f1 g ◦ in2

∼= f2

g(2) ∼= [f1|f2]
(2)
l

(effect)
f, g : A → B f ∼ g f ◦ [ ]A ∼= g ◦ [ ]A

f ∼= g

Figure 6: Lexc : additional rules for coproducts

For each set Exn of exception names, additional grammar and rules for the
logic Lexc are given in Figure 7. We extend the grammar of Lmon with a type

VT , a propagator tag
(1)
T : VT → 0 and a catcher untag

(2)
T : 0 → VT for each
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exception name T , and we also extend its rules.
The logic Lexc obtained performs the core operations on exceptions: the

tagging operations encapsulate an ordinary value into an exception, and the
untagging operations recover the ordinary value which has been encapsulated
in an exception.

This may be generalized by assuming a hierarchy of exception names [5].
The rule (local-global) asserts that two functions without argument coincide

as soon as they coincide on each exception. Together with the rule (effect) it
implies that two functions coincide as soon as they coincide on their argument
and on each exception.

Types: t ::= VT for each T ∈ Exn

Terms: f ::= tagT | untagT for each T ∈ Exn

(tag)
T ∈ Exn

tag
(1)
T : VT → 0

(untag)
T ∈ Exn

untag
(2)
T : 0 → VT

(untag-tag)
T ∈ Exn

untagT ◦ tagT ∼ idVT

T,R ∈ Exn T 6= R

untagT ◦ tagR ∼ [ ]VT
◦ tagR

(local-global)
f, g : 0 → B for all T ∈ Exn f ◦ tagT ∼ g ◦ tagT

f ∼= g

Figure 7: Lexc: additional grammar and rules for exceptions

For each family of objects (VT )T∈Exn in C such that E ∼=
∑

T∈Exn VT we
build a model Cexc of Lexc, which extends the model the model CM of Lmon

with functions for tagging and untagging the exceptions.

The types VT are interpreted as the objects VT and the propagators tag
(1)
T :

VT → 0 as the coprojections from VT to E. Then the interpretation of each

catcher untag
(2)
T : 0 → VT is the function untagT : E → VT + E defined as the

cotuple (or case distinction) of the functions fT,R : VR → VT +E where fT,T is
the coprojection of VT in VT + E and fT,R is made of tagR : VT → E followed
by the coprojection of E in VT + E when R 6= T .

This can be illustrated, in an informal way, as follows: tagT encloses its
argument a in a box with name T , while untagT opens every box with name
T to recover its argument and returns every box with name R 6= T without
opening it:

a
tag

T
// a

T
a

T

untag
T

// a

a
R

untag
T

// a
R
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Since we did not assume that the category C is codistributive we cannot get
products of modifiers in a way dual to the coproducts of modifiers for states.

However these rules have not been used for proving the Hilbert-Post com-
pleteness of the theory for state. Thus by duality from Theorem 3.4 we get “for
free” a result about the core language for exceptions.

Corollary 4.1. The core theory for exceptions is Hilbert-Post complete.

4.2 The programmer’s language for exceptions

We have obtained a logic Lexc for exceptions, with the core operations for
tagging and untagging. This logic provides a direct access to catchers (the un-
tagging functions), which is not provided by the usual mechanism of exceptions
in programming languages. In fact the core operations remain private, while
there is a programmer’s language, which is public, with no direct access to the
catchers.

The programmer’s language for exceptions provides the operations for raising
and handling exceptions, which are defined in terms of the core operations.

This language has no catcher: the only way to catch an exception is by using
a try/catch expression, which itself propagates exceptions. Thus, all terms of
the programmer’s language are propagators. This language does not include the
private tagging and untagging operations, but the public throw and try/catch
constructions, which are defined in terms of tag and untag. For the sake of
simplicity we assume that only one type of exception is handled in a try/catch
expression, the general case is treated in [5].

The main ingredients for building the programmer’s language from the core
language are the coproducts A ∼= A + 0 and a new conversion rule for terms.
The downcast conversion of a catcher to a propagator could have been defined
in Section 2 for the logic Lcom , and dually for the logic Lmon ; the rule is:

f (2) : A → B

(↓f)(1) : A → B

This downcasting conversion from catchers to propagators is interpreted by map-
ping f : MA → MB to ↓f = f ◦ ηA : A → MB. It is related to weak equations:
f ∼ ↓f , and f ∼ g if and only if ↓f ∼= ↓g. But the downcasting conversion
is unsafe: several catchers may be downcasted to the same propagator. This
powerful operation turns an effectful term to an effect-free one; since it is not
required for states nor for the core language for exceptions, we did not introduce
it earlier.

Definition 4.2. For each type B and each exception name T , the propagator

throw
(1)
B,T is:

throw
(1)
B,T = [ ]

(0)
B ◦ tag

(1)
T : VT → B

For each each propagator f (1) : A → B, each exception name T and each prop-
agator g(1) : VT → B, the propagator try(f)catch(T ⇒ g)(1) is defined in three
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steps, involving two catchers catch(T ⇒ g)(2) and TRY(f)catch(T ⇒ g)(2), as
follows:

catch(T ⇒ g)(2) = [ g(1) | [ ]
(0)
B ](1) ◦ untag

(2)
T : 0 → B

TRY(f)catch(T ⇒ g)(2) = [ idB | catch(T ⇒ g) ]
(2)
l ◦ f (1) : A → B

try(f)catch(T ⇒ g)(1) = ↓(TRY(f)catch(T ⇒ g)) : A → B

This means that raising an exception with name T consists in tagging the
given ordinary value (in VT ) as an exception and coerce it to any given type B.

For handling an exception, the intermediate expressions catch(T ⇒ g) and
TRY(f)catch(T ⇒ g) are private catchers and the expression try(f)catch(T ⇒
g) is a public propagator: the downcast operator prevents it from catching excep-
tions with name T which might have been raised before the try(f)catch(T ⇒ g)
expression is considered.

The definition of try(f)catch(T ⇒ g) corresponds to the Java mechanims
for exceptions [8, 9].

The definition of try(f)catch(T ⇒ g) corresponds to the following control
flow, where exc? means “is this value an exception?”, an abrupt termination
returns an uncaught exception and a normal termination returns an ordinary
value; this corresponds, for instance, to the Java mechanims for exceptions [8, 9].

��

exc?Y
vvmmm

mm N

**VV
VV

VV
VV

VV
V

abrupt f (1)

��

exc?Y

tthhh
hh
hh
hh N

**VV
VV

VV
VV

V

untag
(2)
T

��

normal

exc?Y
vvmmm

mm N

**VV
VV

VV
VV

VV
VV

abrupt g(1)

��

normal or abrupt

4.3 Exceptions: case distinction and binary operations

To conclude with exceptions, let us look at the constructions for case distinc-
tion and binary operations in the programmer’s language for exceptions, which
means, copairs and pairs of constructors.

The general rules of the logic Lmon include coproducts of constructors (Fig-
ure 2), which provide case distinction for all terms in the programmer’s language
for exceptions.
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But the general rules for a monad do not include binary products involving a
constructor, hence they cannot be used for dealing with binary operations in the
programmer’s language for exceptions when at least an argument is not pure.

Indeed, if f
(0)
1 : A → B1 is pure and f

(1)
2 : A → B2 does raise an exception, it

is in general impossible to find f (1) : A → B1 × B2 such that pr1 ◦ f
∼= f1 and

pr2 ◦ f
∼= f2.

However, there are several ways to formalize the fact of first evaluating f1
then f2: for instance by using a strong monad [14], or a sequential product [4], or
productors [21]. The sequential product approach can be used in our framework;
it requires the introduction of a third kind of “equations”, in addition to the
strong and weak equations, which corresponds to the usual order between partial
functions: details are provided in [4].

5 Conclusion

We have presented two patterns giving sound inference systems for effects arising
from a monad or a comonad.

We also gave detailed examples of applications of these patterns to the state
and the exceptions effects. The obtained decorated proof system for states has
been implemented in Coq, so that the given proofs can be automatically verified.
We plan to adapt this logic to local states (with allocation) in order to provide
a decorated proof of the completeness Theorem in [20].

From this implementation, we plan to extract the generic part corresponding
to the comonad pattern, dualize it and extend it to handle the programmer’s
language for exceptions.

Then a major issue is scalability: how can we combine effects? Within the
framework of this paper, it may seem difficult to guess how several effects arising
from either monads or comonads can be combined. However, as mentioned in
the Introduction, this paper deals with two patterns for instanciating the more
general framework of decorated logics [1]. Decorated logics are based on spans
in a relevant category of logics, so that the combination of effects can be based
on the well-known composition of spans.

Acknowledgment. We are grateful to Samuel Mimram for enlightning dis-
cussions.
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[19] Lutz Schröder, Till Mossakowski. Generic Exception Handling and the Java
Monad. AMAST 2004. LNCS, Vol. 3116, p. 443-459, Springer (2004).

[20] Sam Staton. Completeness for Algebraic Theories of Local State. FoSSaCS
2010. LNCS, Vol. 6014, p. 48-63, Springer (2010).

[21] Ross Tate. The sequential semantics of producer effect systems. POPL 2013.
ACM Press, p. 15-26 (2013).

[22] Tarmo Uustalu, Varmo Vene. Comonadic Notions of Computation. CMCS
2008. ENTCS 203, p. 263-284 (2008).

[23] Philip Wadler. The essence of functional programming. POPL 1992. ACM
Press, p. 1-14 (1992).

A Proof of Hilbert Post completeness

The logic used in this Appendix is the fragment Lst ,0 of the decorated logic for
states Lst which involves neither products nor coproducts nor the empty type,
but which involves the unit type.

For the sake of simplicity it is assumed that there is a single location X , and
we write V , lkp and upd instead of VX , lookupX and updateX . Then there is
a single axiom lkp ◦ upd ∼ idV .

In Section 3, the proof of Hilbert-Post completeness in Theorem 3.4 relies
on Proposition 3.2, which is restated here as Proposition A.5. The aim of this
Appendix is to prove Proposition A.5.

Lemma A.1. The following rules can be derived:

1.
f (2), g(2) : X → 1 lkp ◦ f ∼ lkp ◦ g

f ∼= g

2.
f (2), g(2) : X → V f ∼ g

upd ◦ f ∼= upd ◦ g

3.
upd ◦ lkp ∼= id1

4.
a(1) : X → V u(0) : V → Y

u(0) ◦ lkp(1) ◦ upd(2) ◦ a(1) ∼ u(0) ◦ a(1)

5.
x(0) : 1 → X

x(0) ∼= x(0) ◦ 〈 〉
(0)
V ◦ lkp(1)
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6.
u(0), w(0) : V → X w(0) ◦ lkp(1) ∼= u(0) ◦ lkp(1)

w(0) ∼= u(0)

7.
x(0) : 1 → X w(0) : V → X w(0) ◦ lkp(1) ∼= x(0)

w(0) ∼= x(0) ◦ 〈 〉
(0)
V

Proof. 1. Consequence of the observational Rule (local-global) with only one
location.

2. Consequence of 1 applied to upd ◦ f, upd ◦ g : X → 1: indeed, from the
axiom lkp ◦ upd ∼ idV we get lkp ◦ upd ◦ f ∼ lkp ◦ upd ◦ g.

3. From axiom lkp◦upd ∼ idV by substitution we get lkp◦upd◦lkp ∼ lkp;
thus, point 1 implies upd ◦ lkp ∼= id1.

4. From lkp(1) ◦ upd(2) ∼ idV , as u is pure, by the weak replacement we
have u(0) ◦ lkp(1) ◦ upd(2) ∼ u(0). Then, weak substitution with a yields
u(0) ◦ lkp(1) ◦ upd(2) ◦ a(1) ∼ u(0) ◦ a(1).

5. We know that 〈 〉
(0)
V ◦ lkp(1) : 1 → 1 ∼= id1.

It follows that x(0) ◦ 〈 〉
(0)
V ◦ lkp(1) ∼= x(0).

6. Let w(0) ◦lkp(1) ∼= u(0) ◦lkp(1). Composing with upd we get w(0) ◦lkp(1) ◦
upd(2) ∼= u(0) ◦ lkp(1) ◦ upd(2). Using the axiom lkp ◦ upd ∼ idV and the
replacement rule for ∼, which can be used here because both w and u are
pure, we get w(0) ∼ u(0). Since weak and strong equations coincide on
pure terms we get w(0) ∼= u(0).

7. Let w(0)◦lkp(1) ∼= x(0). By point 5 above we get x(0) ∼= x(0)◦〈 〉
(0)
V ◦lkp(1),

thus w(0) ◦ lkp(1) ∼= x(0) ◦ 〈 〉
(0)
V ◦ lkp(1). Then by point 6 above we get

w(0) ∼= x(0) ◦ 〈 〉
(0)
V .

Now, let us prove Proposition A.2, which says that, up to strong equations,
it can be assumed that there is at most one occurrence of lkp in any accessor
and at most one occurrence of upd in any modifier.

Proposition A.2. 1. For each accessor a(1) : X → Y , if a is not pure then

there is a pure term v(0) : V → Y such that

a(1) ∼= v(0) ◦ lkp(1) ◦ 〈 〉
(0)
X (1)

2. For each modifier f (2) : X → Y , if f is not an accessor then there is an

accessor a(1) : X → V and a pure term u(0) : V → Y such that

f (2) ∼= u(0) ◦ lkp(1) ◦ upd(2) ◦ a(1) (2)
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Proof. 1. If a(1) : X → Y is not pure then it contains at least one occurrence
of lkp(1). Thus, it can be written in a unique way as a(1) = v(0) ◦ lkp(1) ◦

a
(1)
1 for some pure term v(0) : V → Y and some accessor a

(1)
1 : X → 1.

Since a
(1)
1 : X → 1 is such that a

(1)
1

∼= 〈 〉X , the result follows.

2. If f (2) : X → Y is not an accessor then it contains at least one occurrence
of upd(2). Thus, it can be written in a unique way as f (2) = b(1) ◦ upd(2) ◦

f
(2)
1 for some accessor b(1) : 1 → Y and some modifier f

(2)
1 : X → V .

From point 1, we also have that b(1) ∼= v(0) ◦ lkp(1) ◦ 〈 〉1 ∼= v(0) ◦ lkp(1)

for some pure term v(0) : V → Y so that f (2) ∼= v(0) ◦lkp(1) ◦upd(2) ◦ f
(2)
1 .

• If f1 is an accessor, the result follows with a = f1.

• Otherwise, f
(2)
1 contains at least one occurrence of upd(2). Thus, it

can be written in a unique way as f
(2)
1 = b

(1)
1 ◦ upd(2) ◦ f

(2)
2 for some

accessor b
(1)
1 : 1 → V and some modifier f

(2)
2 : X → V . According

to point 1 applied to the accessor b1, either b1 is pure or b
(1)
1

∼=

v
(0)
1 ◦ lkp(1) for some pure term v

(0)
1 : V → V

– If b
(1)
1

∼= v
(0)
1 ◦ lkp(1) then f1 ∼= v1 ◦ lkp ◦ upd ◦ f2. The axiom

lkp ◦ upd ∼ idV and the replacement and substitution rules for
∼ (since v1 is pure) yield f1 ∼ v1 ◦ f2. Then it follows from
point 2 in Lemma A.1 that upd ◦ f1 ∼= upd ◦ v1 ◦ f2, and since
f = b ◦ upd ◦ f1 we get f ∼= b ◦ upd ◦ v1 ◦ f2. The result follows
by induction on the number of occurrences of upd in f : indeed,
there is one less occurrence of upd in b ◦ upd ◦ v1 ◦ f2 than in
f = b ◦ upd ◦ b1 ◦ upd ◦ f2.

– If b1 is pure then b
(0)
1

∼= b
(0)
1 ◦〈 〉V ◦lkp from point 5 in Lemma A.1.

Thus the previous proof applies by replacing b1 with b1 ◦ 〈 〉V .

Corollary A.3. The previous forms can be simplified for accessors with do-

main 1 and for modifiers with codomain 1, as follows:

1. For each accessor a(1) : 1 → Y there is a pure term v(0) : V → Y such

that

a(1) ∼= v(0) ◦ lkp(1)

2. For each modifier f (2) : X → 1 there is an accessor a(1) : X → V such

that

f (2) ∼= upd(2) ◦ a(1)

Proof. 1. • If a : 1 → Y is pure, since 〈 〉V ◦ lookup ∼= id1 (because
〈 〉V ◦ lookup is an accessor) we get a ∼= a ◦ 〈 〉V ◦ lkp, thus the result
is obtained with v(0) = a ◦ 〈 〉V .

• Otherwise, we have just proved that a ∼= v(0)◦lkp◦〈 〉
(0)
X with X = 1,

then 〈 〉X ∼= id1 and a(1) ∼= v(0) ◦ lkp.
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2. • If f : X → 1 is an accessor, since upd ◦ lkp ∼= id1 we get f ∼=
upd ◦ lkp ◦ f , thus the result is obtained with a(1) = lkp ◦ f .

• Otherwise, we have just proved that f ∼= b(1) ◦ upd ◦ a(1) with b(1) :
1 → 1, then b ∼= id1 and f (2) ∼= upd ◦ a(1).

Corollary A.4. For each modifier f (2) : X → Y , if f is not an accessor then

there is an accessor a(1) : X → V and a pure term u(0) : V → Y such that

f ∼ u(0) ◦ a(1).

Proof. From Proposition A.2 we have that f (2) ∼= u(0) ◦ lkp(1) ◦ upd(2) ◦ a(1).
Using the axiom lkp ◦ upd ∼ idV and the replacement rule for ∼, which can be
used here because u(0) is pure, we get f (2) ∼ u(0) ◦ a(1).

We can now prove Proposition A.5 on which the Hilbert-Post completeness
theorem relies. This proof has been checked with the Coq proof assistant us-
ing the system for states of [6]. The Coq library with the inference system
is available there: http://coqeffects.forge.imag.fr. The single proof of
the following proposition (roughly 16 pages in Coq) is directly available there:
http://coqeffects.forge.imag.fr/HPcompleteCoq.v.

Proposition A.5. Let us assume that for each type X there exists a closed

pure term h
(0)
X : 1 → X. Then:

1. every equation between accessors is equivalent to one or two equations

between pure terms;

2. every equation between modifiers is equivalent to one or two equations

between accessors.

Proof. 1. We prove that for any accessors a
(1)
1 , a

(1)
2 : X → Y there are three

cases:

(a) either they are both pure and a1 ∼= a2 is the required equation be-
tween pure terms.

(b) either they are both accessors and it can be derived from a1 ∼= a2

that v1 ∼= v2 for some pure terms v
(0)
1 , v

(0)
2 : V → Y .

(c) or one of them is pure and the other one is an accessor and it can be
derived from a1 ∼= a2 that v1 ∼= v2 and w1

∼= w2 for some pure terms

v
(0)
1 , v

(0)
2 : V → Y and w

(0)
1 , w

(0)
2 : X → Y .

We prove, moreover, that the converse also hold.

(a) As already mentioned, if a1 and a2 are both pure and a1 ∼= a2 is the
required equation between pure terms.

(b) If neither a1 nor a2 is pure, then according to Proposition A.2 a
(1)
1

∼=

v
(0)
1 ◦ lkp ◦ 〈 〉

(0)
X and a

(1)
2

∼= v
(0)
2 ◦ lkp ◦ 〈 〉

(0)
X for some pure terms

v
(0)
1 , v

(0)
2 : V → Y .
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• Starting from the equation a
(1)
1

∼= a
(1)
2 : X → V we thus get

v
(0)
1 ◦ lkp ◦ 〈 〉X ∼= v

(0)
2 ◦ lkp ◦ 〈 〉X : X → Y . Then, using

the assumption, for any function h
(0)
X : 1 → X , we have that

v
(0)
1 ◦ lkp ◦ 〈 〉X ◦ hX ◦ upd ∼= v

(0)
2 ◦ lkp ◦ 〈 〉X ◦ hX ◦ upd. Now

〈 〉X ◦ h
(0)
X

∼= id1 : 1 → 1. This, together with the axiom lkp ◦
upd ∼ idV and the replacement rule for ∼ (which can be used

here because both v1 and v2 are pure) yield v
(0)
1 ∼ v

(0)
2 . As the

latter are both pure terms we also have v
(0)
1

∼= v
(0)
2 : V → Y .

• Conversely, if v
(0)
1

∼= v
(0)
2 : V → Y then v

(0)
1 ◦lkp(1)◦〈 〉

(0)
X

∼= v
(0)
2 ◦

lkp(1) ◦ 〈 〉X : X → Y , which means that a
(1)
1

∼= a
(1)
2 : X → Y .

(c) The only remaining case is w.l.o.g. if a1 is pure and a2 is not.

• Then a
(1)
2 = v

(0)
2 ◦lkp(1)◦〈 〉

(0)
X from Proposition A.2 as previously

and v
(0)
1 = a

(0)
1 ◦ h

(0)
X ◦ 〈 〉V : V → Y satisfies v

(0)
1

∼= v
(0)
2 for any

assumed h
(0)
X : 1 → X . Indeed from a

(0)
1

∼= v
(0)
2 ◦ lkp(1) ◦ 〈 〉

(0)
X

we get

a
(0)
1 ◦ h

(0)
X

∼= v
(0)
2 ◦ lkp(1) ◦ 〈 〉

(0)
X ◦ h

(0)
X . (3)

But, on the one hand, a
(0)
1 ◦ h

(0)
X : 1 → Y so that point 5 in

Lemma A.1 gives a
(0)
1 ◦ h

(0)
X

∼= v
(0)
1 ◦ lkp(1) with v

(0)
1 = a

(0)
1 ◦

h
(0)
X ◦ 〈 〉

(0)
V : V → Y . On the other hand, 〈 〉

(0)
X ◦ h

(0)
X

∼= id
(0)
1

so

that v
(0)
2 ◦ lkp(1) ◦ 〈 〉

(0)
X ◦ h

(0)
X

∼= v
(0)
2 ◦ lkp(1). Thus Equation (3)

rewrites as v
(0)
1 ◦lkp(1) ∼= v

(0)
2 ◦lkp(1) and point 7 in Lemma A.1

yields

a
(0)
1 ◦ h

(0)
X ◦ 〈 〉

(0)
V = v

(0)
1

∼= v
(0)
2 : V → Y. (4)

Thus now we also have a
(1)
2

∼= v
(0)
2 ◦ lkp(1) ◦ 〈 〉

(0)
X

∼= a
(0)
1 ◦ h

(0)
X ◦

〈 〉
(0)
V ◦ lkp(1) ◦ 〈 〉

(0)
X

∼= a
(0)
1 ◦ h

(0)
X ◦ 〈 〉

(0)
X . From the original

equation a
(0)
1

∼= a
(1)
2 we finally get

a
(0)
1 ◦ h

(0)
X ◦ 〈 〉

(0)
X

∼= a
(0)
1 : X → Y. (5)

• Conversely, we start from v
(0)
2 and a

(0)
1 satisfying both Equa-

tions (4) and (5). Then, we define a
(1)
2 = v

(0)
2 ◦ lkp(1) ◦ 〈 〉

(0)
X

which satisfies a
(1)
2

∼= a
(0)
1 ◦ h

(0)
X ◦ 〈 〉

(0)
V ◦ lkp(1) ◦ 〈 〉

(0)
X thanks to

Equation (4). The latter is also a
(1)
2

∼= a
(0)
1 ◦ h

(0)
X ◦ 〈 〉

(0)
X which is

thus a
(1)
2

∼= a
(0)
1 thanks to Equation (5).

2. The rule (effect) for states means that two modifiers coincide as soon as
they return the same result and modify the state in the same way. This

means that f
(2)
1

∼= f
(2)
2 if and only if f1 ∼ f2 and 〈 〉A ◦ f1 ∼= 〈 〉A ◦ f2.

Thanks to Corollary A.4 the equation f1 ∼ f2 is equivalent to an equation
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between accessors. It remains to prove that the equation 〈 〉A◦f1 ∼= 〈 〉A◦f2
is also equivalent to an equation between accessors.

For i ∈ {1, 2}, since 〈 〉A ◦ fi : A → 1, Proposition A.2 says that 〈 〉A ◦ fi ∼=
upd ◦ ai for some accessor ai : A → V . Thus, 〈 〉A ◦ f1 ∼= 〈 〉A ◦ f2 if and
only if upd ◦ a1 ∼= upd ◦ a2. Let us check that this equation is equivalent
to a1 ∼= a2.

Clearly if a1 ∼= a2 : A → V then upd ◦ a1 ∼= upd ◦ a2. Conversely, if
upd ◦ a1 ∼= upd ◦ a2 : A → 1 then lkp ◦ upd ◦ a1 ∼= lkp ◦ upd ◦ a2 and since
lkp ◦ upd ∼ idV we get a1 ∼ a2, which is the same as a1 ∼= a2 because a1
and a2 are accessors.

Thus, 〈 〉A ◦ f1 ∼= 〈 〉A ◦ f2 if and only if a1 ∼= a2, as required.
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