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Abstract: In intelligent vehicles applications, Multi-Target Tracking (MTT ) is usually done
considering imperfect sensors’ data. As belief functions and particularly the Transferable Belief
Model (TBM ) help to model these imperfections, it represents an interesting framework for
MTT. To carry out target tracking, the system must be able to define at at time k the relations
between the detected objects (targets) and the already known ones (tracks). The correlation
step is called Multi-Object Association (MOA). This paper tackles the problem of TBM-MOA
decision making. The aim is to present a methodology and measures for the management of
associations in presence of conflicting sensors’ measures. A new algorithm based on a single
association matrix gathering all the knowledge of the targets⇔ tracks associations is presented.
It provides a semantic to avoid the aforementioned difficulties. Simulation results of an obstacle
detection application show the advantages of the proposed solution.

1. INTRODUCTION

A current trend in Intelligent Transportation Systems
(ITS) is to provide additional assistance to the user
(driver, rider, etc.). As a result, in the automotive domain,
numerous Advanced Driver Assistance Systems (ADAS)
have been recently commercialized (Adaptive Cruise Con-
trol (ACC), Lane Departure Warning System (LDWS),
etc.) and now move towards the autonomous vehicle. To
perform a safe driving, autonomous vehicles should be
aware of their environment and the potential risks which
are related to each of its element. They consequently
require a correct detection and tracking of the other road
users (vehicles, cyclists, etc.) and of static features (traffic
signs, driving lines, etc.) to determine the most adapted
actions. This environment awareness is usually obtained
through the fusion of sensors’ information (Daniel and
Lauffenburger [2013]), while the tracking is performed by
Multi-Target Tracking (MTT ). One of the most important
step in MTT is the association of the newly detected
objects with the already known ones, called Multi-Object
Association (MOA). The difficulty is the selection of the
most relevant associations.

The origin of MOA lies in the probabilistic domain with
the pioneer works of Reid [1979], Blackman and Popoli
[1999] and Bar-Shalom [2000]. Usually, MTT s track ob-
jects regarding imperfect information (inaccurate, incom-
plete, conflicting, etc.), i.e. in contexts in which the lim-
its of the probability theory are reached. To cope with
these limitations, the Transferable Belief Model (TBM )
proposed by Smets and Kennes [1994], can be used. Indeed,
the TBM is close to the evidence theory mathematically
formalized by Shafer [1976] based on the work of Dempster
[1967] concerning the upper and lower probabilities. It is
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well suited for imperfect information handling. In most
of the recent MOA studies and especially those based on
belief functions (Rombaut [1998], Royère et al. [2000],
Mourllion et al. [2005]), a two-direction strategy based
on independent belief association tables (targets ⇒ tracks
and vice versa) is adopted. This strategy presented in
Fig.1 is particularly useful for the objects appearance
and disappearance determination. Moreover, it helps to
reveal the contradictions, ambiguities and conflict which
may characterize the association problem (Mourllion et al.
[2005]).
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Fig. 1. Association of targets Xi with tracks Yj .

In Daniel and Lauffenburger [2012], a review of several
association strategies in the TBM is presented. It high-
lights that these strategies are based on the selection of
the associations which are globally satisfying the track-
ing problem. However, it is shown that these solutions
could select suspicious local associations and are usually
leading to contradictions and ambiguities. To cope with
these limitations, two decision algorithms maximizing the
local belief of an association have been proposed by the
authors. Both algorithms have shown better computation



time performance and their ability to limit the generation
of contradictions. Nevertheless, these problems can still
occur in particular cases when evidence conflicts, for in-
stance when a sensor gives a false detection. In addition,
the eventual conflict, informing about the difficulty in
the objects association represents an interesting piece of
information for decision making and should be considered.
The present paper focuses on both points by proposing a
single association matrix, the dual pignistic matrix which
gathers all the association information (targets⇒ tracks
and tracks ⇒ targets), as well as the conflict related to
each of them. Based on the dual pignistic matrix, an asso-
ciation algorithm is described. Simulation comparisons of
a real-world case show the advantages of the dual pignistic
matrix and especially its ability to avoid contradictions
and ambiguities.
The paper is organized as follows: a brief recall of the
TBM and its application to MOA is depicted in Section
2. Section 3 presents the principle of the dual pignistic
matrix and the proposed association decision algorithm.
The latter is evaluated in Section 4. Finally, Section 5
concludes this paper.

2. TBM MULTI-OBJECT ASSOCIATION

2.1 The Transferable Belief Model

The TBM is a model of uncertain reasoning and decision
making based on two levels: the credal level and the pignis-
tic level. In the credal level, belief masses are used to rep-
resent the pieces of information whereas, in the pignistic
level (or decision level) the belief masses are transformed
into probability measures. This section presents the basic
elements of the TBM . Additional details can be found in
Smets and Kennes [1994].

Consider a problem for which all the discrete solutions
(also called hypotheses) Hj , j = 1, 2, ...,K, with K the
number of possible hypotheses, define the frame of dis-
cernment Θ:

Θ = {H1, H2, ...,HK} =

K⋃
j=1

{Hj} (1)

Θ is the ignorance, i.e. the union of all hypotheses. Its
corresponding referential subset, a power set denoted 2Θ

of 2K disjunctions of Hj is such that:

2Θ = {∅, {H1} , ..., {HK} , ..., {H1, H2, H3} , ...,Θ} (2)

∅ represents the impossible hypothesis commonly inter-
preted as the conflict between sources. For practical rea-
sons, the notation Hi ∪ Hj will be preferred to {Hi, Hj}
in this paper. The veracity of a proposition A of 2Θ is
characterized by its basic belief mass (bbm) or mass m
defined as follows:

m : 2Θ → [0, 1]
A 7→ m (A) ,

∑
A∈2Θ

m (A) = 1 (3)

In opposition to the probability theory, the veracity is
defined on all disjunctions of 2Θ.

The combination gathers the different sources’ bbm. The
most straightforward combination operator is the conjunc-
tive operator ∩ (Smets [2007]). By satisfying the associa-
tivity as well as commutativity properties, a fusion order
definition over the combined sources is not required:

m∩1...p(A) =
∑

A1∩...∩Ap=A

p∏
j=1

mj (Aj) (4)

When disjunctions with an empty intersection are com-
bined (Ai ∩ Aj = ∅), a mass m∩1...p (∅) is generated.
Usually, the discernment frame is said to be exhaustive
and exclusive. Consequently, a mass on the empty set ∅
is not allowed. Nevertheless, this constraint (known as
closed world with m(∅) = 0) is rather difficult to guarantee
for real applications. Consequently, two other frameworks
have been suggested: the open world (Smets and Kennes
[1994]) and the extended open world (Royère et al. [2000]).
In Smets’ TBM, Θ is defined as the container of all known
hypotheses but not all possible ones (Θ is exclusive but
not exhaustive) so that a mass m(∅) > 0 holds. In this
particular case, ∅ represents a reject class describing the
unknown hypotheses. The conflict related to the non-
exhaustivity of the discernment frame can be treated by
adding to Θ an alternative hypothesis ∗ representing all
unknown propositions not explicitly defined in Θ (Royère
et al. [2000]). This singleton allows the new discernment
frame Θ∗ to become exhaustive (Θ∗ = Θ ∪ {∗}). A non
zero value of m(∅) is then only linked to the sources’
unreliability or to their discordance.

The selection of the problem solution, i.e. the decision,
aims at keeping the most relevant hypothesis Hj regarding
the combination results. Considering the pignistic level of
the TBM, the decision can be taken with the Pignistic
(or Bet) Probability (BetP ) (Smets and Kennes [1994]).
The latter is based on a proportional redistribution of the
belief of a disjunction over its singletons (cf. (5)). Built as
a probabilistic rule, the BetP is an interesting solution for
the MOA context.

BetP (Hj) =
∑

A∈2Θ

Hj⊆A

m∩1...p (A)

|A| (1−m∩1...p(∅))
(5)

with m∩1...p(∅) < 1 and |A| the cardinality of the composite
A. Smets underlines that the pignistic transformation
involves a redistribution of the conflict (normalization by
(1 − m∩1...p(∅))) if a decision must be taken (cf. Smets
[2007]). In Section 2.4, this point will be further discussed.

2.2 Objects Association: Problem Formalization

Let us consider, as for most of the TBM-MOA (Royère
et al. [2000], Mourllion et al. [2005]), specialized sources
expressing themselves, for each of them, only over one
hypothesis Hj of Θ. For a source j expressing itself over
the association of a target Xi with a track Yj , this leads
to the following basic belief assignment (bba):

• mΘXi
j (Yj): object Xi is associated with object Yj ,

• mΘXi
j (Y j): object Xi is not associated with object Yj ,



• mΘXi
j (ΘXi

): ignorance on the association of Xi.

ΘXi and ΘYj are the discernment frames referring respec-
tively to the targets ⇒ tracks and to the tracks ⇒ targets
association (cf. (6)). Hence, ΘXi is composed of the M
tracks Yj and the ∗ hypothesis representing a new track.
In the same way, ΘYj is composed of the N targets Xi and
the track disappearance hypothesis ∗.

ΘXi
= {Y1, Y2, ..., YM , ∗}

ΘYi
= {X1, X2, ..., XN , ∗} (6)

The TBM-MOA looks for the best association regarding
the following constraints (Rombaut [1998]):

• a target can only be associated with one track and
vice versa,
• appearance and disappearance (∗) is possible for

multiple targets or tracks.

Here, the focus is placed on the decision making step in the
association process. The way the bbas are obtained with
respect to the sensor measures is not in the scope of this
paper.

2.3 Combining Belief Masses

The conjunctive operator ∩ described in Section 2.1, is
used. As specialized sources are considered, (4) can be
formalized for each proposition Hj regarding the initial

mass distribution (Hj , Hj ,Θ) as recalled here (Royère
et al. [2000], Mourllion et al. [2005]):

m∩1...K (Hj) = mj (Hj)

K∏
a=1
a 6=j

αa

m∩1...K (Hj ∪Hl) = mj (Θ)ml (Θ)

K∏
a=1
a6=j
a6=l

γa

and for union combinations of 2 to K-1 hypotheses:

m∩1...K (Hj ∪ . . . ∪Hl) = mj (Θ) . . .ml (Θ)

K∏
a=1
a6=j
......
a6=l

γa

m∩1...K (∗) =

K∏
a=1

γa

m∩1...K
(
Hj

)
= mj

(
Hj

) K∏
a=1
a6=j

ma (Θ)

m∩1...K (Θ) =

K∏
a=1

ma (Θ)

m∩1...K (∅) = 1−

 K∏
a=1

αa +

K∑
a=1

ma (Ha)

K∏
b=1
b 6=a

βb

 (7)

with αa = (1−ma (Ha)), βb = (1−mb (Hb)), γa =(
ma

(
Ha

))
.

2.4 Pignistic Transformation and Association Matrices

In TBM-MOA, a situation is observed with two points of
view: one is dedicated to the targets-to-tracks (Xi ⇒ Yj)
association while the second is focused on the tracks-to-
targets (Xi ⇐ Yj) association. In order to face with the
association constraints, a pignistic transformation is oper-
ated on the combined masses obtained with the generalized
rule (7). This leads to two pignistic probabilities matrices
shown in Table 1 and 2. Each line defines the probabilities
of the associations of Xi with Y1, ..., YM , ∗ and vice versa.

For the sake of clarity, the complete notation BetP
ΘXi

1...K(Yj)

(or BetP
ΘYj

1...K(Xi)) has been simplified to BetPXi(Yj) (or
BetPYj (Xi)).

These matrices are obtained without conflict normaliza-
tion (contrary to (5)). Indeed, the belief on the empty set
∅ generated during information combination can be useful
for the final decision and is therefore conserved. Section
3.3 describes how this piece of information is used in the
pignistic level. Consequently, the pignistic probabilities are
given by: 

BetP (Hj) =
∑

A∈2Θ

Hj⊆A

m∩1...K (A)

|A|

BetP (∅) = m∩1...K (∅)

(8)

The matrices help to detect contradictions and/or ambi-
guities in the associations. An ambiguity occurs when, on
a given line of a matrix, several probabilities are equal,
i.e. several associations are equally possible. On the other
hand, a contradiction occurs when the matrices conclude
on different associations for the same object. Consequently,
ambiguity highlights an intra-matricial association prob-
lem whereas contradiction highlights an inter-matricial
one.

Table 1. Targets-to-Tracks Pignistic Matrix

BetPXi
Y1 . . . YM ∗ ∅

X1 BetPX1
(Y1) . . . BetPX1

(YM ) BetPX1
(∗) BetPX1

(∅)
X2 BetPX2

(Y1) . . . BetPX2
(YM ) BetPX2

(∗) BetPX2
(∅)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

XN BetPXN
(Y1) . . . BetPXN

(YM ) BetPXN
(∗) BetPXN

(∅)

Table 2. Tracks-to-Targets Pignistic Matrix

BetPYj X1 . . . XN ∗ ∅
Y1 BetPY1

(X1) . . . BetPY1
(XN ) BetPY1

(∗) BetPY1
(∅)

Y2 BetPY2
(X1) . . . BetPY2

(XN ) BetPY2
(∗) BetPY2

(∅)
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

YM BetPYM
(X1) . . . BetPYM

(XN ) BetPYM
(∗) BetPYM

(∅)

3. DUAL DECISION ALGORITHM

3.1 MOA Decision Making

In Daniel and Lauffenburger [2012], the authors have
compared different decision algorithms focusing on the



previously introduced pignistic matrices. Three of them
are based on maximizing the global belief criteria. The
results showed the limitations of such approaches, leading
the authors to the definition of two local decision algo-
rithms. The first one - the Local Pignistic Probability
(LPP ) - is based on the line-wise selection of the N/M
(depending on the association direction) pignistic proba-
bility maximum. The LPP has been shown to be less time
consuming compared to algorithms from the literature
since no extra computation is required for the decision
making. The second algorithm is the Gradient Classified
Pignistic Probability (GCPP ) which behaves similarly to
the LPP but, before the associations selection, a prelim-
inary classification of the pignistic matrix is done with
respect to the belief gradient in a line. This approach is
interesting as the pignistic gradient reveals the uncertainty
related to the considered associations. The advantage of
these local algorithms mainly lies in their ability to limit
the ambiguities and contradictions and the selection of non
suspicious local associations. However, by analyzing the
scene from two different points of view, all these solutions
can face with association difficulties. Moreover, it is worth
noting that the conflict is not considered in these decision
solutions.

3.2 Two-direction Association Limitations

The two-direction association allows to treat all the targets
and tracks independently, so that each of them is char-
acterized by association, appearance/disappearance and
conflict masses. This approach also reveals the eventual
ambiguities and contradictions which characterize the as-
sociation problem. The question raised is then: how to
manage these contradictions and ambiguities? In Daniel
and Lauffenburger [2012], the authors have shown that
the selection of the decision algorithm can limit these
effects by retaining the appropriate local associations in
both pignistic matrices. Nevertheless, in particular cases,
especially in conflicting situations, another solution has
to be found. This paper describes how the fusion of both
pignistic matrices into a generic one, called dual pignistic
matrix storing all the association and conflict information,
can help.

3.3 Dual Pignistic and Dual Conflict Matrices

Both pignistic matrices (Table 1 and Table 2) give infor-
mation about the potential associations either for the tar-
gets or the the tracks. The advantage in combining these
matrices is to solve the contradictions and ambiguities
by providing a single information matrix storing all the
association data. This approach, described in Mourllion
et al. [2005] with the global pignistic matrix, was based
on the computation of the mean pignistic probability from
the BetPXi

and BetPYj
matrices as presented in (9). Con-

sidered as a cost matrix, the global pignistic matrix is used
in a Hungarian algorithm for decision making. The limi-
tations of this approach are the loss of the conflict infor-
mation due to the normalization of the combined masses,
the use of a global optimization resolution technique and
finally the averaging of the pignistic probabilities.

M(i, j) =
BetPXi

(Yj) +BetPYj
(Xi)

2
(9)

In the present paper, the authors propose to cope with
these limitations through the definition of a general ma-
trix, called dual pignistic matrix, taking account of the
conflict. The first difference lies in the calculation of
the dual association values. Contrary to Mourllion et al.
[2005], the dual association matrix is computed through
the Hadamard product of the local pignistic probabili-
ties BetPYj (.) and BetPXi (.) as presented in (10). In a
first step, the pignistic matrix describing the targets-to-
tracks association BetPXi (.) is transposed to verify matrix
dimension properties. The operator ∗© is introduced to
represent the element-wise Hadamard product. The re-
sulting matrix is composed of the pignistic probabilities
MDual

Y X (i, j). It will be further related to dual pignistic
probabilities.

MDual
Y X = (BetPXi

(.))T ∗©BetPYj
(.) (10)

Multiplying the two pignistic matrices BetPXi
(.) and

BetPYj
(.) in this way induces a significant penalty on

the pignistic probabilities. This is the key to overcome
association contradictions and ambiguities. For instance,
if an association is certain, i.e. characterized by high
pignistic probabilities in both matrices, the dual pignistic
probability will be high. In case of a contradiction defined
by a high pignistic probability in one matrix and low in the
other, the Hadamard product will lead to the reduction of
the belief in this association. Similarly, when an ambiguity
occurs (when two pignistic probabilities are equal in the
same line either in BetPXi (.) or in BetPYj (.)), the dual
pignistic matrix will permit to select the best association.
Being more conservative, this model presents a better
discrimination power than the global pignistic matrix
formalized in (9). Indeed, associations characterized by low
BetP in the local matrices will lead to an even lower value
in the dual pignistic matrix, while confident associations
would still be characterized by a high dual value.
This paper also proposes to consider the conflict in the
decision matrix. Therefore, it is integrated as an additional
line and column in the dual pignistic matrix. This measure
characterizes the conflict level between one target/track
and all the tracks/targets. The pignistic values of the
conflict BetPYj

(∅) and BetPXi
(∅) are first combined in

order to define the dual conflict matrix MConf
Y X such that:

MConf
Y X = ∅Y X · (∅XY )T , (11)

with ∅Y X = BetPYj
(∅) and ∅XY = BetPXi

(∅).

MConf
Y X reveals important information about conflict-

related associations. In fact, the cells of this matrix rep-
resent the dual conflict probability over all individual
possible associations (one track ⇔ one target). By analyz-
ing this matrix, the conflicting associations can be easily
known. The dual conflict linked to each target and track
is then respectively obtained through the matrix row and

column sum (cf. (12)). The dual conflict vector V Conf
Y X

related to the Yj ⇒ Xi associations is the result of the sum
of the dual conflict matrix columns. Similarly, the dual

vector of the conflict for the Xi ⇒ Yj associations V Conf
XY

is the result of the sum of the columns of the transposed
matrix. The elements of these vectors give an accurate



information respectively on the targets/tracks affected by
conflict and the dual pignistic probability of this conflict.

V Conf
Y X (.) =

M∑
i=1

MConf
Y X (i, .)

V Conf
XY (.) =

N∑
i=1

(
MConf

Y X

)T
(i, .)

(12)

Both vectors complete the dual pignistic matrix as pre-
sented in Table 3. Note that a zero value is added to the
the matrix so that it becomes square.

Table 3. Dual Pignistic Matrix

MDual
Y X X1 . . . XN V Conf

Y X

Y1 MDual
Y X (1, 1) . . . MDual

Y X (1, N) V Conf
Y X (1)

Y2 MDual
Y X (2, 1) . . . MDual

Y X (2, N) V Conf
Y X (2)

...
...

. . .
...

...

YM MDual
Y X (M, 1) . . . MDual

Y X (M,N) V Conf
Y X (M)

V Conf
XY V Conf

XY (1) . . . V Conf
XY (N) 0

3.4 Dual Decision Algorithm

Based on the dual pignistic matrix which gathers all
the association information, a new decision algorithm is
proposed in this paper (cf. Algorithm 1). The conflict-
based Dual Decision algorithm consists in the linewise
selection of the dual pignistic probability maximum of
MDual

Y X (j, .) (each of them being related to one track Yj).
These values are then compared to the dual conflict to
determine if the situation allows an association or not.
Indeed, a high conflict reveals an association problem
which can be for instance due to a source false information.
If the maximum value is higher than the conflict, then it
is compared to a Threshold to determine if the object is
associated or if it disappears. Finally, the targets Xi which
have not been associated are considered to appear or are
not associated, depending on the dual conflict level.

4. APPLICATION TO VEHICLE DETECTION AND
TRACKING

4.1 Test Scenario

Let us consider the example from Mourllion et al. [2005]
presented in Fig.2. Four known vehicles (Yj) are considered
but two of them are outside of the detection range (Y3 and
Y4), thus are subject to disappearance. It can be noted
that among the three detections, one corresponds to a false
alarm due to the closeness of Y1 and Y2. For this example
the sources are expressing themselves as shown in Table 4.

These bbas lead to ambiguities since Y1 can be associated
either with X1 or X2, while Y2 can be associated either
with X2 or X3. On the other side, X2 can be associated
either to Y1 or Y2. (13) sums up the potential associations
induced by this example.

X1 X2 X3 Y1 Y2 Y3 Y4

↓ ↙↘ ↓ ↙↘ ↙↘ ↓ ↓
Y1 Y1 Y2 Y2 X1 X2 X2 X3 ∗ ∗

(13)

Algorithm 1. Dual Decision Algorithm

Require: MDual
Y X (j, i), i ∈ I = {1, . . . , N}, j ∈ J =

{1, . . . ,M}
Require: Threshold

while j ≤M do
MMAX = maxMDual

Y X (j, .)

if MMAX ≤ V Conf
Y X (j) then

Yj ⇔ NA
else

if MMAX ≥ Threshold then
Yj ⇔ Xi

else
Yj ⇔ ∗

end if
end if

end while
for Non-associated Xi do

if Threshold ≥ V Conf
XY (i) then

Xi ⇔ ∗
else
Xi ⇔ NA

end if
end for
return Y ⇔ X, Y ⇔ ∗, Y ⇔ NA, X ⇔ ∗, X ⇔ NA

Y3

Y4

Y2

Y1

Detection range

X1

X2

X3

Fig. 2. Case study: X2 is a sensor false detection. Y3 and
Y4 are out of the sensor’s range.

4.2 Association Results

For this example, the discernment frames are:

ΘXi = {Y1, Y2, Y3, Y4, ∗}
ΘYj = {X1, X2, X3, ∗} (14)

Table 4. Initial belief masses

m
ΘX1
1

(Y1) = 0.9

m
ΘX1
1

(Y1) = 0.0

m
ΘX1
1

(Θ) = 0.1

m
ΘX1
2

(Y2) = 0.0

m
ΘX1
2

(Y2) = 0.6

m
ΘX1
2

(Θ) = 0.4

m
ΘX1
3

(Y3) = 0.0

m
ΘX1
3

(Y3) = 0.8

m
ΘX1
3

(Θ) = 0.2

m
ΘX1
4

(Y4) = 0.0

m
ΘX1
4

(Y4) = 0.9

m
ΘX1
4

(Θ) = 0.1

m
ΘX2
1

(Y1) = 0.6

m
ΘX2
1

(Y1) = 0.0

m
ΘX2
1

(Θ) = 0.4

m
ΘX2
2

(Y2) = 0.6

m
ΘX2
2

(Y2) = 0.0

m
ΘX2
2

(Θ) = 0.4

m
ΘX2
3

(Y3) = 0.0

m
ΘX2
3

(Y3) = 0.8

m
ΘX2
3

(Θ) = 0.2

m
ΘX2
4

(Y4) = 0.0

m
ΘX2
4

(Y4) = 0.9

m
ΘX2
4

(Θ) = 0.1

m
ΘX3
1

(Y1) = 0.0

m
ΘX3
1

(Y1) = 0.6

m
ΘX3
1

(Θ) = 0.4

m
ΘX3
2

(Y2) = 0.9

m
ΘX3
2

(Y2) = 0.0

m
ΘX3
2

(Θ) = 0.1

m
ΘX3
3

(Y3) = 0.0

m
ΘX3
3

(Y3) = 0.7

m
ΘX3
3

(Θ) = 0.3

m
ΘX3
4

(Y4) = 0.0

m
ΘX3
4

(Y4) = 0.9

m
ΘX3
4

(Θ) = 0.1



The combination defining the association matrixBetPXi
(.)

is performed line-wise whereas BetPYj
(.) is obtained by a

column-wise combination using the generalized rules (7)
and the pignistic transformation (8). Tables 5 and 6 give
respectively the Xi ⇒ Yj and Yj ⇒ Xi probabilities.

Table 5. Targets-to-Tracks Probabilities

BetPXi
(.) Y1 Y2 Y3 Y4 ∗ ∅

X1 0.94 0.01 0.01 0.00 0.04 0.00

X2 0.29 0.29 0.01 0.00 0.05 0.36

X3 0.01 0.94 0.01 0.00 0.04 0.00

Table 6. Tracks-to-Targets Probabilities

BetPYj
(.) X1 X2 X3 ∗ ∅

Y1 0.37 0.07 0.00 0.01 0.54

Y2 0.00 0.07 0.37 0.01 0.54

Y3 0.08 0.08 0.13 0.70 0.00

Y4 0.05 0.05 0.05 0.86 0.00

These matrices confirm the association assumptions de-
scribed in (13) revealing the difficulty, except for Y3

and Y4 which should disappear (BetPY3
(∗) = 0.70 and

BetPY4
(∗) = 0.86). The association of X2 is particularly

interesting. Indeed, X2 is subject to conflict (BetPX2
(∅) =

0.36) and leads to an ambiguity since X2 is associated
to Y1 and to Y2 (BetPX2(Y1) = BetPX2(Y2) = 0.29). In
addition, Table 6 shows the difficulty of associating Y1 and
Y2 as they are characterized by high and equivalent conflict
(0.54). Both BetP matrices are then used to calculate the
dual pignistic matrix using equations (10), (11) and (12)
leading to Table 7. Its conservative aspect is highlighted
by the low probabilities, except for the Y1 ⇔ X1, Y2 ⇔ X3

(MDual
Y X (1, 1) = MDual

Y X (2, 3) = 0.35). In addition, a high
value of dual conflict can be noticed for the association
of X2 (V Conf

XY (2) = 0.39). This conflicting example is
consequently highlighting the good properties of the dual
pignistic matrix.

Table 7. Dual Pignistic Matrix

MDual
Y X X1 X2 X3 V Conf

Y X
Y1 0.35 0.02 0.00 0.19

Y2 0.00 0.02 0.35 0.19

Y3 0.00 0.00 0.01 0.00

Y4 0.00 0.00 0.00 0.00

V Conf
XY 0.00 0.39 0.00 0.00

The threshold value required by the algorithm has been
fixed to 0.1 due to the conservative behavior of the
dual pignistic matrix. The association relation depicted in
(15) presents the results of the dual decision algorithm.
These are intuitive and concordant to the predefined ones.
Indeed, Y3 and Y4 are disappearing, while Y1 and Y2

are respectively associated with X1 and X3. Then, X2,
characterized by an ambiguity in the pignistic matrices,
has not been associated at all and is discarded, due to

the high dual conflict (V Conf
XY (2) = 0.39). This makes

sense since a high conflict value leads to a difficult decision
making, which is here coming from a sensor false detection.

Y1 Y2 Y3 Y4 X2

↓ ↓ ↓ ↓ ↓
X1 X3 ∗ ∗ NA

(15)

5. CONCLUSION

This paper tackled the problem of Multi-Object Associ-
ation (MOA) performed within the Transferable Belief
Model (TBM). A new decision algorithm avoiding con-
tradictions and ambiguities usually present in traditional
approaches is proposed. To cope with these problems,
the present paper described the determination of a single
decision measure, the dual pignistic matrix, storing the
information related to the bi-directional associations. A
conflict measure related to each target or track is also pre-
sented. To deal with the information stored in this single
matrix, a decision algorithm has been developed for the
selection of the most relevant associations. This algorithm
selects the associations with a dual pignistic probability
higher than a threshold, taking account of the conflict.
Simulations, reproducing a real driving situation, show the
ability of the proposed method to avoid contradictions and
ambiguities.
The dual pignistic matrix could be enhanced to also di-
rectly integrate the information related to objects appear-
ance and/or disappearance available after source combina-
tion. In this paper, the one-to-one association constraints
lead to a mono-hypothesis tracking algorithm. By letting
the algorithm being undecided, i.e. some objects could
not be associated at all, multi-hypothesis tracking will be
possible in future works.
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