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Université Pierre et Marie Curie

Paris, France

Abstract

This paper is concerned with the total variation of the solution of scalar
conservation law with discontinuous flux in one space dimension. One of the
main unsettled questions concerning conservation law with discontinuous flux
was the boundedness of the total variation of the solution near interface. In [1],
it has been shown by a counter example at T = 1, that the total variation of
the solution blows up near interface, but in that example the solution become
bounded variation after time T > 1. So the natural question is that what
happens to the BV ness of the solution for large time. Here we give a complete
picture of the bounded variation of the solution for all time. For a uniform
convex flux with only L∞ data, we obtain a natural smoothing effect in BV for
all time t > T0. Also we give a counter example (even for a BV data) to show
that the assumptions which has been made are optimal.

Key words: Hamilton-Jacobi equation, scalar conservation laws, discontinuous Flux,
explicit Formula, characteristic lines, BV function.
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1 Introduction:

In this paper, we investigate the total variation bound of the following scalar conser-
vation laws

∂u

∂t
+

∂

∂x
F (x, u) = 0 if x ∈ IR, t > 0

u(x, 0) = u0(x) if x ∈ IR
(1.1)

where the flux function F (x, u) is a discontinuous function of x given by F (x, u) =
H(x)f(u)+ (1−H(x))g(u), H is the Heaviside function. Here we consider f, g to be
strictly convex function with superlinear growth. That is

lim
|u|→∞

(
f(u), g(u)

|u|

)
= (∞,∞). (1.2)

Equation (1.1) has been extensively studied since few decades from both the theoret-
ical and numerical points of view. Notice that a very few results are known regarding
the total variation of the solution of (1.1) near interface.

A conservation laws with a discontinuous flux of the form (1.1), is a first order
hyperbolic model, which arises in many applicative problems. It has a huge applica-
tion in fluid flows in heterogeneous media such as two-phase flow in a porous medium,
which arises in the petroleum industry. (1.1) also arises while dealing with modeling
gravity, continuous sedimentation in a clarifier thickener unit [16, 17, 15, 14, 14, 23,
24]. Some other Applications are in the model of car traffic flow on a highway (see
[47]) and in ion etching in the semiconductor industry (see [48]).

It is well understood that even if F and u0 are smooth, the solution of (1.1)
may not admit classical solution in finite time, hence one must define the notion of
weak solutions. In general, weak solutions of (1.1) are not unique. Due to this fact,
one has to put some extra condition so called ”entropy condition” in order to get
the uniqueness. When f = g, Kruzkov[40] has introduced the most general entropy
condition in order to prove the uniqueness by using doubling variable technique. For
f 6= g, the general entropy condition has been established in [5], [8], [7], [18], [10],
[45] in order to prove the uniqueness.

When f = g, existence of the solution has been studied in several ways, namely
vanishing viscosity method (see [40]), convergence of numerical schemes, front track-
ing method(see [31]) and via Hamilton-Jacobi equation (see [25], [42]).

In general, when f 6= g, (1.1) may not admit any solutions, hence for existence,
some extra assumptions are required. Under the assumption that the fluxes f and g
coincide at least two points Gimse-Risebro [28, 27], Diehl [22] obtained a solution for
Riemann data. (also see [39, 23]). A theory by using front tracking method has been
developed in [27], [35],[39]. Under the assumptions that the fluxes f and g are strictly
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convex and C2, (1.1) also has been studied in [5]. They obtained a Lax-Oleinik type
formula satisfying the following interface entropy condition

meas
{
t : f ′(u+(t)) > 0, g′(u−(t)) < 0

}
= 0 (1.3)

and Lax-Olenik entropy condition for x 6= 0. Also they prove the L1-contraction
semi-group. On the otherhand, Karlsen, Risebro, Towers [35, 36], used a modified
Kruzkhov type entropy condition and they proved L1 stability of entropy solutions.
In general, these solutions admit undercompressive waves at the interface x = 0 which
is not allowed in the classical theory of Lax-Olenik and Kruzkov (see, [40] ). From
the model of capillary diffusion, Kaasschieter [34] studied this problem by using a
different diffusion term and he noticed that the solution satisfies interface entropy
condition (1.3). Some cases like clarifier-thickner model also allows undercompressive
at the interface [14, 15, 16, 13, 17, 35, 19, 21, 20, 36].

In [8], Adimurthi et. al. characterized an infinitely many stable semigroups
of entropy solutions ((A,B) entropy) in terms of explicit Hopf-Lax type formulas
under the assumption that either the fluxes are strictly convex or strictly concave.
This general theory known as (A,B) interface entropy conditions. It was shown
that (A,B)-entropy solution exists and forms an L1-contractive semi-group and is
unique. Convergence of a numerical scheme that approximates entropy solutions
of type (A,B) for any connection (A,B) has been encountered in [7, 18]. Proof of
convergence for the the Godunov or Enquist-Osher type scheme has been encountered
as in [6, 44, 37, 53, 52, 13, 9] and the Lax-Friedrichs type as in [38]. Very recently,
Andreianov et.al. [10] characterized a more general concept of ”vanishing viscosity”
germs and they proved the L1 contraction property.

BV regularity of a solution for conservation laws is an important phenomenon
in order to understand the convergence and the existence of traces of the solution. For
f = g, it is well understood that the solution is TVD, that is TV (u(·, t)) ≤ TV (u0),
for all t > 0. By Lax-Oleinik type formula it is easy to see that under the assumption
f ′′ ≥ α, for some α > 0, u(·, t) ∈ BVloc, even if u0 /∈ BV. We ask the question that
can one expect the similar result when f 6= g? When f = g, it has been noticed in
[3] that the assumption of uniformly convexity is optimal in order to prove the BV
regularity without the the assumption that u0 /∈ BV . For the case when f 6= g, we
cannot expect total variation diminishing property due to the fact that constant data
gives rise to a non-constant solution and hence the total variation increases. Due to
the lack of the total variation bound the convergence theory for the discontinuous flux
has been studied by using different technique, namely, singular mapping technique in
[43, 52, 6, 39], [7]. It has been noticed in [12] that the solution is of total variation
bounded away from the interface x = 0. But the information at the interface x = 0
was completely unknown. The open problem was what happens to the total
variation of the solution near interface?

A counter example has been given in [1] by choosing a proper initial data u0 ∈
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BV and proved that u(·, 1) /∈ BV , but in that example the solution become BV
due to the fact that the characteristics intersects after time T = 1 and the solution
become smoother. Now repeatation of this kind of initial data will not work in order
to get u(·, t) /∈ BV for t > 1, due to the fact that the intersection of characteristics
makes the solution smoother near interface. So we need to create some ”free region”,
such a way that we can put the right initial data further to obtain u(·, Tn) /∈ BV with
lim
n→∞

Tn = ∞. This idea of creating free region has been encountered in [4]. In [1],

they have shown that the (A,B) entropy solutions are of bounded variation in the
interface if A 6= θg and B 6= θf , that is if (A,B) are away from the critical points of f
and g, then the associated singular mappings are invertible and Lipschitz continuous
which allows (in [1]) to prove the bounded variation of the solution near interface.
When A = θg or B = θf , the total variation of the solution near interface has been
proved in [1], under the assumption that f−1g(u0), g

−1f(u0) and u0 ∈ BV . In this
paper, we relax this condition and allow only u0 ∈ L∞. It has been noticed in [1]
that if (A,B) are away from the critical points, then the solution is of total bounded
variation for all time t > 0.

Aim of this paper is to understand the bounded variation of the solution for all
time and for all A,B connection. In this paper, we have noticed a very surprising
result that if the lower height of the fluxes f, g are same i.e. if f(θf ) = g(θg), then the
solution is of bounded variation near interface for all time t > 0, even if the initial
condition does not belongs to BV. When f(θf ) 6= g(θg), then u(·, t) ∈ BV for
t > T0, for some T0. We assume the fluxes f, g to be convex, superlinear growth and
we use the Lax-Oleinik type formulas for the discontinuous flux introduced in [5].

Under the suitable condition on f, g and u0, Adimurthi et.al [1] proved the
following.

THEOREM 1.1 (Adimurthi et.al [1]) Let u0 ∈ L∞(IR) and u be the solution ob-
tained in Theorem Let t > 0, ε > 0,M > ε, I(M, ε) = {x : ε ≤ |x| ≤ M}. Then

(1). Suppose there exists an α > 0 such that f ′′ ≥ α, g′′ ≥ α, then there exist
C = C(ε,M, α) such that

TV
(
u(., t), I(M, ε)

)
≤ C(ε,M, t).

(2). Suppose u0 ∈ BV, and T > 0. Then there exists C(ε, T ) such that for all
0 < t ≤ T

TV
(
u(., t), |x| > ε

)
≤ C(ε, t)TV(u0) + 4||u0||∞

(3). Let u0 ∈ BV, T > 0 and A 6= θg and B 6= θf . Then there exists C > 0 such
that for all 0 < t ≤ T ,

TV
(
u(., t)

)
≤ C TV(u0) + 6||u0||∞.
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(4). Let u0, f−1
+ (g(u0)), g−1

− (f(u0)) ∈ BV, T > 0 and A = θg. Then for all 0 < t ≤
T ,

TV
(
u(., t)

)
≤ TV(u0) + max

(
TV (f−1

+ (g(u0))),TV(g
−1
− (f(u0)))

)
+ 6||u0||∞.

(5). For a certain choice of fluxes f and g there exists u0 ∈ BV ∩ L∞ such that
TV(u(., 1))
= ∞ if A = θg or B = θf .

In this context, we ask the following questions

Problem I. When can we say u(·, t) ∈ BV near interface, even if u0 /∈ BV ?

Problem II. Is it possible to choose a u0 ∈ BV such that solution of (1.1) /∈ BV for
large time?

Here in this paper, we answer the above problems in a very general setting.
This paper is organized in the following way. Section 2 has been devoted for the
preliminaries to make this article self contained. There we have recollected some
properties of the characteristics and the entropy condition (see [5] for details). Section
3 deals with the main theorems. Theorem 3.1, (i) (3.1) proves the fact that u(·, t) ∈
BV near interface for the case when f(θf ) 6= g(θg) and Theorem 3.1, ((i) and (ii)(3.3),
(3.4) and (3.5)) deals with the case when f(θf ) = g(θg) without the assumption that
u0 ∈ BV . We give a counter example by choosing a proper initial data u0 ∈ BV such
that u(x, t) /∈ BV for lagre t > 0, which has been explained by splitting in to several
steps, has been put in section 4.

2 Preliminaries:

We assume the following

(i). f and g are strictly convex, C2 and of superlinear growth.

(ii). u0 ∈ L∞ and let v0 be its primitive given by

v0(x) =

∫ x

0

u0(θ)dθ.
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Let f(θf ) = inf
θ∈IR

f(θ), g(θg) = inf
θ∈IR

g(θ) be the point of minima of f and g. Let f ∗ and

g∗ be their respective convex duals defined by

f ∗(x) = sup
y∈IR

{xy − f(y)}.

If f is strictly convex and super linear growth then f and f ∗ satisfies the following:
(a) f∗(0) = −min f , is finite
(b) f∗ is strictly convex and super linear growth and satisfy

f(y) = sup
x∈IR

{xy − f ∗(x)}.

(c) (f ∗)∗ = f.
(d) (f ′)−1 = (f∗)′.
(e) f∗(f(p)) = pf(p)− f(p), f(f ∗(p)) = pf ∗(p)− f∗(p).

Let us recall some of the definitions and notations from [5].

DEFINITION 2.1 Interior entropy condition (Ei) : u is said to satisfy the
entropy condition (Ei) (Lax-Oleinik entropy conditions) if for all t > 0,

lim
0<z→0

≤ lim
0<z→0

u(x− z, t) if x > 0, (2.1)

lim
0<z→0

≤ lim
0<z→0

u(x− z, t) if x < 0. (2.2)

DEFINITION 2.2 Interface Entropy Condition (Eb) : At x = 0, u(0+, t) =
lim
x→0+

u(x, t), u(0−, t) = lim
x→0−

u(x, t) exist for a.e. t > 0. Furthermore, for a.e. t > 0

the following condition must hold:

meas
{
t : f ′(u+(t)) > 0, g′(u−(t)) < 0

}
= 0 (2.3)

DEFINITION 2.3 ((A,B) Connection ). Let (A,B) ∈ IR2. Then (A,B) is
called a connection if it satisfies
(i). f(B) = g(A).
(ii). f ′(B) ≥ 0, g′(A) ≤ 0.

DEFINITION 2.4 (Interphase entropy functional). Let u ∈ L∞
loc(IR× IR+)

such that u±(t) = u(0±, t) exist a.e. t > 0. Then we define IAB(t), the interface
entropy functional by

IAB(t) = (g(u−(t))−g(A))sign(u−(t)−A)− (f(u+(t))−f(B))sign(u+(t)−B). (2.4)
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DEFINITION 2.5 (Interphase entropy condition). Let u ∈ L∞
loc(IR× IR+)

such that u±(t) exist a.e. t > 0. Then u is said to satisfy Interfase entropy condition
relative to a connection (A,B) if for a.e. t > 0

IAB(t) ≥ 0. (2.5)

Notice that when A = θg or B = θf , (2.5) and (2.3) coincide. In this paper, we deal
with the case when A = θg or B = θf , hence we use (2.3) to be the entropy condition
through out this paper.

DEFINITION 2.6 Entropy Solution : Let

F (x, u) = H(x)f(u) + (1−H(x))g(u).

Let u0 ∈ L∞
loc(IR). Then u ∈ L∞

loc(IR× IR+) is said to be an entropy solution if:

(i). u is a weak solution of

ut + F (x, u)x = 0 if x ∈ IR, t > 0,
u(x, 0) = u0(x) if x ∈ IR, t = 0.

(2.6)

(ii). u satisfies the Lax-Oleinik-Kruzkov entropy condition away from the interface
x = 0, i.e. u must satisfy (2.1) and (2.2).

(iii). At the interface x = 0, u satisfies the interface entropy condition (2.3).

(x,t) (x,t) (x,t)

FIGURE 1a FIGURE 1b FIGURE 1c  =(   ,   ,    ) =(    ,   ,    )ξ ξ ξ ξ

ξ ξ ξ
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θ θ θ

φ φ φ 

ξ ξ

ξ

ξ

ξ

ξ

1

1 1 1
=(   ,    ,    )

3 2

2

3

1

3

3

1

Figure 1: Characteristic curves

DEFINITION 2.7 Admissible curves : Let 0 ≤ s < t and ξ ∈ c([s, t], IR). ξ is
called an admissible curve if the following holds.
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=(   ,    ,    )
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(x,t)(x,t)(x,t)
θθ

FIGURE 2a FIGURE 2b FIGURE 2c

ξ
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ξ

ξξ

2

3 3

θ

1
1 1

Figure 2: Characteristic curves

(i). ξ consists of atmost three linear curves (see Figure 1a, Figure 1b, Figure 1c,
for x ≥ 0, Figure 2a, Figure 2b, Figure 2c, for x ≤ 0) and each segment lies
completely in either x ≥ 0 or x ≤ 0 .

(ii). Let s = t3 ≤ t2 ≤ t1 ≤ t0 = t be such that for i = 1, 2, 3, ξi = ξ|[ti,ti−1] be the
linear parts of ξ. If ξ consists of three linear curves then ξ2 = 0 (see Figure 1c,
Figure 2c) and ξ1, ξ3 > 0 or ξ1, ξ3 < 0.

Represent an admissible curve ξ = {ξ1, ξ2, ξ3}. Let

c(x, t, s) = {ξ ∈ c([s, t], IR); ξ(t) = x, ξ is an admissible curve}
c(x, t) = c(x, t, 0).

Divide c(x, s, t) into three categories defined as below.

c0(x, t, s) = {ξ ∈ c(x, t, s); ξ is exactly one linear curve} .
( see Figure 1a and Figure 2a).

cb(x, t, s) = {ξ ∈ c(x, t, s); ξ2 = φ , ξ1(θ)ξ3(θ) ≤ 0, for θ ∈ (s, t)} .
( see Figure 1b and Figure 2b).

cr(x, t, s) = {ξ ∈ c(x, t, s); ξ consists of three pieces and xξ(θ) ≥ 0 ∀ θ ∈ [s, t]} .
( see Figure 1c and Figure 2c).

DEFINITION 2.8 Let t > 0, define

R1(t) = inf{x ; x ≥ 0, ch(x, t) ⊂ c0(x, t)},

R2(t) =

{
inf{x ; 0 ≤ x ≤ R1(t), ch(x, t) ∩ cr(x, t) 6= φ},
R1(t) if the above set is empty.

L1(t) = sup{x ; x ≤ 0, ch(x, t) ⊂ c0(x, t)},

L2(t) =

{
sup{x ; L1(t) ≤ x ≤ 0, ch(x, t) ∩ cr(x, t) 6= φ},
L1(t) if the above set is empty.
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See [2],[4] for the finer properties of this curves.

Now recall from [5], [8], [1] the existence and uniqueness of entropy solution.
With out loss of generality we can assume that g(θg) ≥ f(θf ).

THEOREM 2.1 (Adimurthi, Gowda [5],[8]) Let u0 ∈ L∞(IR), then there exists
an entropy solution u of (2.6) with u ∈ L∞(IR) and is unique under mild regu-
larity assumption (see Remark 2.12 of [1]). Furthermore, the solution can be de-
scribed explicitly by Lax-Olenik type formula as follows. For each t > 0 there exists

(x,t) (x,t) (t) (x,t)

y−(x,t) +(x,t) x=0 y+(x,t)

L1(t)=0,  R1(t) 0

(x,t) (x,t) (x,t)

y−(x,t) x=0 −(x,t) y+(x,t)

R (t)
1

L1(t) 0, R1(t)      0

x=0

(x,t) (x,t)

y(x,t) y−(0−,t) y+(0+,t) y+(x,t)

L1(t)=0,   R1(t)=0

y

y

R1R2(t)

Figure 3:

R1(t), R2(t) ≥ 0, L1(t) ≤ 0, L2(t) ≤ 0 ( for i = 1, 2, Ri, Li are Lipschitz continuous
functions) and monotone functions y±(x, t), t±(x, t) such that
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(i). For x ∈ [R1(t),∞), y+(x, t) ≥ 0 is a non-decreasing function and for x ∈
[0, R1(t)), 0 ≤ t+(x, t) < t is a non-increasing function such that for x > 0,(see
page 16, equation (44), [8])

u(x, t) =

 (f ′)−1
(

x−y+(x,t)
t

)
= u0(y+(x, t)) if x ≥ R1(t),

(f ′)−1
(

x
t−t+(x,t)

)
if 0 ≤ x < R1(t).

(2.7)

(ii). For x ∈ (−∞, L1(t)], y−(x, t) ≤ 0, is a non-decreasing function and for x ∈
(L1(t), 0], 0 ≤ t−(x, t) < t, t−(x, t) is non-increasing function such that for
x < 0,

u(x, t) =

 (g′)−1
(

x−y−(x,t)
t

)
= u0(y−(x, t)) if x ≤ L1(t),

(g′)−1
(

x
t−t−(x,t)

)
if L1(t) < x < 0.

(2.8)

(iii). Furthermore, we have the following three cases
Case I. L1(t) = 0, R1(t) ≥ 0 (see page 53, equation (4.21), (4.22), [5])

u(x, t) =


f−1
+ (g(u0(y+(x, t)))) if 0 < x < R2(t)
f−1
+ (g(θg)) if R2(t) ≤ x < R1(t),
u0(y−(x, t)) if x < L1(t) = 0.

(2.9)

Case II. L1(t) < 0, R1(t) ≥ 0 (see Lemma 4.8 and page 55, equation (4.30),
[5])

u(x, t) =

{
g−1
− (f((u0(y−(x, t))))) if 0 > x > L1(t) = L2(t)
f−1
+ (g(θg)) if 0 < x < R1(t) = R2(t).

(2.10)

Case III. L1(t) = 0, R1(t) = 0 (see page 53, equation (4.20) , [5])

u(x, t) =

{
u0(y+(x, t)) if x > R1(t) = 0,
u0(y−(x, t)) if x < L1(t) = 0.

(2.11)

See Figure (3) for clear illustrations.

3 Main Theorems

In this section, we prove our main results for the connection A = θg or B = θf (where
θf , θg are the respective critical point of the fluxes). For the other connection proof
can be done similarly and the sketch of the proof has been given in the Appendix.
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THEOREM 3.1 Let u0 ∈ L∞(IR) and u be a solution obtained in Theorem 2.6. Let
t > 0, ε > 0, M > ε and

I(M) = {x : |x| < M},
I(R1(t)) = {x > 0 : x < R1(t)}, I(L1(t)) = {x < 0 : x > L1(t)},

(i). Let f(θf ) 6= g(θg) and f ′′ ≥ α, g′′ ≥ α, for some α > 0, also assuming the fact
that Supp u0 ⊂ [−K,K], for some K > 0, then there exists a T0 > 0 such that
for all t > T0,

TV (u(· , t), I(M)) ≤ C(M, t). (3.1)

As a consequence we have, for all t > T0,

TV (u(· , t), IR) ≤ C(t), (3.2)

where C(t), C(M, t) > 0 are some constants.

(ii). Let f(θf ) = g(θg) then for all t > 0,

TV (u(· , t), I(R1(t)) ∪ I(L1(t))) ≤ C(t). (3.3)

In addition if f ′′ ≥ α, g′′ ≥ α, for some α > 0, then for all t > 0,

TV (u(· , t), I(M)) ≤ C(M, t). (3.4)

As a consequence, if Supp u0 ⊂ [−K,K], for some K > 0, then for all t > 0,

TV (u(· , t), IR) ≤ C(t), (3.5)

(iii). Let f(θf ) = g(θg) and u0 ∈ BV (IR) then for all t > 0,

TV (u(· , t)) ≤ C(t)(TV (u0) + 1) + 4‖u0‖∞. (3.6)

Proof of (i). With out loss of generality we can assume that g(θg) > f(θf ). If

M > R1(t), then for x > R1(t), u(x, t) = f ∗′
(

x−y+(x,t)
t

)
. Let x1 = R1(t) < x2 < · · · <

xN+1 = M be any partition in (R1(t),M). Then by using the Lipschitz continuity of
f ∗′(which is bounded by 1

α
) and monotonicity of y+, we obtain

N∑
i=1

|u(xi, t)− u(xi+1, t)| ≤ 1
α

N∑
i=1

∣∣∣xi−y+(xi,t)
t

− xi+1−y+(xi+1,t)
t

∣∣∣
≤ 1

αt

N∑
i=1

(|xi − xi+1|+ |y+(xi, t)− y+(xi+1, t)|)

≤ 1
αt
((M −R1(t)) + (y+(M, t)− y+(R1(t), t))

≤ C(t).

(3.7)
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Hence

TV (u(· , t), (R1(t),M)) ≤ C(t) (3.8)

and similarly

TV (u(· , t), (−M,L1(t))) ≤ C(t). (3.9)

So from now onwards we can assume that M < R1(t). We consider the following three
cases.
Case 1: L1(t) = 0, R1(t) ≥ 0. From (2.9), if x ∈ (R2(t), R1(t)), u(x, t) = f−1g(θg) =
a constant, hence u is bounded variation in (R2(t), R1(t)). Let θ̄, θ̃ be such that g(θg) =
f(θ̄) = f(θ̃) with f ′(θ̄) < 0, f ′(θ̃) > 0. At first, we prove total variation of u in (0, ε)
and then in (ε,M), where ε > 0 be such that 0 < ε < R2(t). Now

u(x, t) = f ∗′
(

x

t− t+(x, t)

)
if 0 < x < ε < R2(t), (3.10)

where t+(x, t) is a non-increasing function of x.

g

f

θ θg f
θ−

~θ

Figure 4:

Claim:

t+(x, t) → ∞ as t → ∞, if x ∈ (0, ε). (3.11)

If possible, let

t+(x, t) ≤ C̄, x ∈ (0, ε), for all t > T0, (3.12)

for some constants C̄, T0 > 0. Then from (3.10),(3.12) there exists a large T1 > T0

(denoting T1 by T0 only) such that

u(x, t) ∈ (θf , θ̃) if x ∈ (0, ε), t > T0. (3.13)

12



Again

u(x, t) = u(0+, t+(x, t)) [see page 15,16 equations 42-46 in [8]]
= f−1g(u(0−, t+(x, t))) [by R-H condition]

> θ̃ [since g(θg) > f(θf )],
(3.14)

which contradicts (3.13). Hence the claim.

For x ∈ (0, R2(t)),

u(x, t) = f−1g(u(0−, t+(x, t)))

= f−1g
(
g∗′

(
−y+(0,t+(x,t))

t+(x,t)

))
[see page 53, equation (4.22) and

step 1 of Lemma 4.10 in [5]]
= f−1g(u0(y+(x, t))) [see page 53, equation (4.22) in [5]]

(3.15)

where y+(0, z) is a non-decreasing function of z > 0 and y+(x, t) is a non-decreasing
function of x > 0.

If y+(0, t+(x̄, t)) < −K for some x̄ ∈ (0, R2(t)), then by monotoncity of t+ and
y+ we have

y+(0, t+(x, t)) < −K, for all x ∈ (0, x̄). (3.16)

Since Supp u0 ⊂ [−K,K] therefore by (3.15),(3.16) u(x, t) = f−1g(0) =constant,
hence u is of bounded variation in (0, x̄). Since t+ is non increasing function of x, hence
0 < β < x

t−t+(x,t)
for all x ∈ (x̄,M), for some β. Let x1 = x̄ < x2 < · · · < xN+1 = M

be any partition in (x̄,M). We obtain

N∑
i=1

|u(xi, t)− u(xi+1, t)| ≤ 1
α

N∑
i=1

∣∣∣ xi

t−t+(xi,t)
− xi+1

t−t+(xi+1,t)

∣∣∣
≤ 1

αt
Mt
t−β

.
(3.17)

Hence

TV (u(· , t), (0,M) ≤ C(t) (3.18)

Now we assume −K ≤ y+(0, t+(x, t)) ≤ 0, for all x ∈ (0, R2(t)). Hence by (3.11)

y+(0, t+(x, t))

t+(x, t)
→ 0 as t → ∞. (3.19)

Since g∗′(0) = θg, therefore by (3.19)

g∗′
(
−y+(0, t+(x, t))

t+(x, t)

)
→ θg as t → ∞ if x ∈ (0,M). (3.20)

13



Hence from (3.20), it is easy to see that there exists a small δ1 > 0 and a large T0 > 0
such that

g∗′
(
−y+(0, t+(x, t))

t+(x, t)

)
∈ (θg, θg + δ1) if x ∈ (0,M), t > T0. (3.21)

Since f(θf ) < g(θg), therefore from (3.21) we deduce that g
(
g∗′

(
−y+(0,t+(x,t))

t+(x,t)

))
avoids critical point of f hence f−1g

(
g∗′

(
−y+(0,t+(x,t))

t+(x,t)

))
is Lipschitz continuous for

x ∈ (0,M), t > T0. Again g∗′ = (g′)−1 is Lipschitz continuous and Lipschitz constant
is bounded by 1

α
. Let 0 < x1 < x2 < · · · < xN+1 = M be a partition. Therefore by

using the fact y+, t+ are monotone also y+ ∈ [−K, 0], we conclude from (3.11) and
(3.15) that

N∑
i=1

|u(xi, t)− u(xi+1, t)|

≤ C
N∑
i=1

∣∣∣∣(−y+(0, t+(xi+1, t))

t+(xi+1, t)

)
−
(
−y+(0, t+(xi, t))

t+(xi, t)

)∣∣∣∣
≤ C

N∑
i=1

1

t+(xi, t)
|y+(0, t+(xi+1, t))− y+(0, t+(xi, t))|+

N∑
i=1

C |y+(0, t+(xi+1, t))|
∣∣∣ 1
t+(xi,t)

− 1
t+(xi+1,t)

∣∣∣
≤ C

N∑
i=1

|y+(0, t+(xi+1, t))− y+(0, t+(xi, t))|+

N∑
i=1

CK
∣∣∣ 1
t+(xi,t)

− 1
t+(xi+1,t)

∣∣∣
≤ CK + CK

∣∣∣ 1
t+(x1,t)

− 1
t+(xN+1,t)

∣∣∣
≤ CK(1 + 2

t
).

(3.22)

So for t > T0,

TV (u(·, t), 0 < x < M) ≤ C(M, t). (3.23)

Since L1(t) = 0, so for −M < x < 0,

u(x, t) = g∗′
(
x− y−(x, t)

t

)
,

where y−(x, t) is a non-decreasing function of x. Hence from (3.9)

TV (u(· , t) : −M < x < 0) ≤ C(M, t). (3.24)
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Hence (3.1) follows.

From the finite speed of propagation, we know ( see Lemma 4.2, page no. 38 in
[5]) that there exist a S > 0 such that∥∥∥∥dξdθ

∥∥∥∥
∞

≤ S for all ξ ∈ ch(x, t). (3.25)

By (3.25) it is clear that characteristic originating from the point (K, 0) of x axis can
travel with speed at most S and characteristic originating from the point (−K, 0)
can travel with speed not less than −S. Since Supp u0 ⊂ [−K,K], therefore for each
t > 0, there exists l(t) > 0 such that u(x, t) is constant outside (−l(t), l(t)). Choosing
M = l(t) in (3.23), we conclude

TV (u(· , t) : IR) ≤ C + C(ε, t). (3.26)

Case 2 : L1(t) = L2(t) < 0, R1(t) ≥ 0.
In this case R2(t) = 0, so for x ∈ (0, R1(t)), u(x, t) = f−1g(θg), hence u(x, t) is
bounded variation in (0, R1(t)). From the explicit formulas, we get

u(x, t) = g∗′
(

x
t−t−(x,t)

)
if 0 > x > −ε > L1(t),

= u(0−, t−(x, t))

= g−1f
(
f∗′

(
−y−(0−,t−(x,t))

t−(x,t)

))
[by R-H condition]

= f−1g(u0(y−(x, t)))

(3.27)

where t−(x, t) is a non-decreasing function of x and y−(0, z) is a non-decreasing func-
tion of z < 0.

If y−(0, t−(x̄, t)) > K, for some x̄ ∈ (L1(t), 0), then u is of bounded variation in
(−ε, 0) (choosing ε = −x̄). So we let 0 ≤ y−(0, t−(x, t)) ≤ K, for all x ∈ (L1(t), 0).
Claim:

|t−(x, t)| ≤ C̄ if x ∈ (L1(t), 0), t > T0, (3.28)

for some constants C̄, T0 > 0.

Suppose for some ε > 0,

t−(x, t) → ∞ as t → ∞ if x ∈ (−ε, 0). (3.29)

Therefore we deduce

f∗′
(
−y−(0, t−(x, t))

t−(x, t)

)
→ θf as t → ∞ [since f∗′(0) = θf ]. (3.30)

By (3.29), there exists a small δ2(t) and a large T0 > 0 such that

f∗′
(
−y−(0, t−(x, t))

t−(x, t)

)
∈ (θf − δ2(t), θf ) if x ∈ (−ε, 0), t > T0. (3.31)
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If x ∈ (−ε, 0), then from (3.27),

g(u(x, t)) = f

(
f∗′

(
−y−(0, t−(x, t))

t−(x, t)

))
≤ θ̄ [since g(θg) > f(θf )],

which contradicts (3.31). Hence the claim.

Let −M = xN+1 < xN < · · · < x1 < 0 be a partition then by (3.27)

N∑
i=1

|u(xi, t)− u(xi+1, t)| =
N∑
i=1

∣∣∣∣g∗′ ( xi

t− t−(xi, t)

)
− g∗′

(
xi+1

t− t−(xi+1, t)

)∣∣∣∣
≤ C

N∑
i=1

∣∣∣∣ xi

t− t−(xi, t)
− xi+1

t− t−(xi+1, t)

∣∣∣∣ .
(3.32)

Now by using (3.28) and monotoncity of t−, we conclude

xi+1

t− t−(xi+1, t)
− xi

t− t−(xi, t)
≥ xi+1 − xi

t− t−(xi+1, t)
(3.33)

and

xi+1

t− t−(xi+1, t)
− xi

t− t−(xi, t)
≤ xi+1(t−(xi+1, t)− t−(xi, t))

(t− t−(xi+1, t))(t− t−(xi, t))

≤ xi+1(t−(xi+1, t)− t−(xi, t))

(t− C̄)(t− C̄)
.

(3.34)

By using, (3.33) and (3.34) we deduce that for t > T0,∑N
i=1

∣∣∣ xi

t−t−(xi,t)
− xi+1

t−t−(xi+1,t)

∣∣∣ ≤ C Max {1
t
, ε}. (3.35)

Hence for t > T0,

TV (u(·, t),−M < x < 0) ≤ C(M).

From (3.24), we obtain

TV (u(·, t), I(M)) ≤ C(M, t). (3.36)

Since Supp u0 ⊂ [−K,K], hence from (3.25) and (3.36) we conclude

TV (u(·, t), IR) ≤ C(t).

Case 3 : L1(t) = 0, R1(t) = 0. In this case

u(x, t) =

 f ∗′
(

x−y+(x,t)
t

)
if x > 0,

g∗′
(

x−y−(x,t)
t

)
if x < 0.

(3.37)
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By using Lipschitz continuity of f∗′, g∗′ and monotoncity of y+, y− it is easy to see
that for t > 0,

TV (u(·, t) : −M < x < M) ≤ C(M, t).

Again using (3.25) and Supp u0 ⊂ [−K,K], we derive

TV (u(·, t), IR) ≤ C(t).

This proves (i).

Proof of (ii) and (iii). It is enough to prove the result for the case when L1(t) =
0, R1(t) ≥ 0, other cases follows similarly. Let 0 < ε < R2(t). To prove (3.3), atfirst
we prove total variation of u in (0, ε) then in (ε, R2(t)). Consider a characteristic
ξ ∈ ch(ε, t). Then by monotoncity of t+ and y+ we have the following

t+(ε, t) ≤ t+(x, t) if x ∈ (0, ε), (3.38)

t+(ε, t) ≥ t+(x, t) if x ∈ (ε, R2(t)), (3.39)

y+(0, t+(ε, t)) ≥ y+(0, t+(x, t)) if x ∈ (0, ε), (3.40)

y+(0, t+(ε, t)) ≤ y+(0, t+(x, t)) if x ∈ (ε, R2(t)). (3.41)

Let 0 < x1 < x2 < · · · < xN+1 = ε < R2(t) be a partition. From (3.40), there exists
δ3(t) > 0 (i.e. there exists a neighbourhood of θg) such that for t > 0

x=0(−K,0) (y+(0,t),0) (y+(0,t+(   ,t),0)ε

(x,t) R (t)1

(0,t+(x,t))

(0,t +
(   

,t))ε

R
2
(t)(   ,t)

y +
(0,t +

(x,t))

ε

(R1(z),z)

+(R1(z)),0)y( (K,0)
t=0

t

ζ

ζ

Figure 5:

−y+(0, t+(x, t))

t+(x, t)
/∈ (θg − δ3(t), θg + δ3(t)) if x ∈ (0, ε). (3.42)
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Therefore from (3.42), we conclude that −y+(0,t+(x,t))
t+(x,t)

avoids critical point of g, for

x ∈ (0, ε), so it is easy to see that for x ∈ (0, ε), g∗′
(
−y+(0,t+(x,t))

t+(x,t)

)
is Lipschitz

continuous. Again from (3.42), there exists a δ4(t) > 0 such that

g

(
g∗′

(
−y+(0, t+(x, t))

t+(x, t)

))
/∈ (g(θg)− δ4(t), g(θg) + δ4(t)) if x ∈ (0, ε). (3.43)

Since g(θg) = f(θf ), hence from (3.43), we deduce that f−1g
(
g∗′

(
−y+(0,t+(x,t))

t+(x,t)

))
is

f
g

θ θ
f g

Figure 6:

Lipschitz continuous for x ∈ (0, ε), t > 0. Now from (3.15) and above arguments we
estimate similarly as in (3.22) to obtain

N∑
i=1

|u(xi, t)− u(xi+1, t)|

=
N∑
i=1

∣∣∣∣f−1g(g∗′(−y+(0, t+(xi+1, t))

t+(xi+1, t)
))− f−1g(g∗′(−y+(0, t+(xi, t))

t+(xi, t)
))

∣∣∣∣
≤ C(t)|y+(0, t)|+ C(t)|y+(0, t)|

∣∣∣ 1
t+(xN+1,t)

− 1
t+(x1,t)

∣∣∣
≤ C(t).

(3.44)

Therefore

TV (u(·, t) : 0 < x < ε) ≤ C(t). (3.45)

From (3.39), there exists δ5(t) > 0 such that

x

t− t+(x, t)
/∈ (θf , θf + δ5(t)) if x ∈ (0, ε), t > 0. (3.46)

Hence f∗′
(

x
t−t+(x,t)

)
is Lipschitz continuous for x ∈ (ε, R2(t)), t > 0. Let ε = x1 <

x2 < · · · < xN+1 = R2(t) be a partition. Therefore
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N∑
i=1

|u(xi, t)− u(xi+1, t)| =
N∑
i=1

∣∣∣∣f∗′
(

xi

t− t+(xi, t)

)
− f∗′

(
xi+1

t− t+(xi+1, t)

)∣∣∣∣(3.47)
(3.33), (3.34) and (3.39) yields

N∑
i=1

∣∣∣∣( xi

t− t+(xi, t)

)
−

(
xi+1

t− t+(xi+1, t)

)∣∣∣∣ ≤ Max{ 1

t− t+(ε, t)
, R2(t)} (3.48)

Then from (3.47) and (3.48) we have , for t > 0,

N∑
i=1

|u(xi, t)− u(xi+1, t)| ≤ C(t). (3.49)

Hence

TV (u(·, t) : 0 < x < R2(t)) ≤ C(t). (3.50)

This proves (3.3).

If M < R1(t), then (3.3) follows from (3.50), so let M > R1(t). In this case
(3.3) follows by using Lipschitz continuity of f ∗′ and monotoncity of y+. (3.4) follows
similarly as in (3.26). This proves (ii).

In addition, if u0 ∈ BV (IR) (see Theorem (2.13), (ii) in [1]) then for t > 0,

TV (u(·, t) : |x| > ε) ≤ C(ε, t)TV (u0) + 4‖u0‖∞ (3.51)

Hence (3.6) follows from (3.3) and (3.51). This proves (iii).

4 Construction of the counter example

In this section we focus on the counter example of the blow up of TV bound for large
time. In order to provide the example we need to use the following Lemma.

LEMMA 4.1 Consider the following problem

ut + f(u)x = 0 if x > 0, t > 0,
ut + g(u)x = 0 if x < 0, t > 0,

(4.52)

where f(u) = (u− 1)2 − 1, g = u2 and the initial data u0 is given by

u0(x) =


0 if x < c1 < 0,
ū0(x) if c1 < x < 0,
ṽ if x ≥ 0

(4.53)
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where c1 < 0, c2 > 0 are constants and ū0, b̃ satisfies the following property

g′(ū0(x)) < 0 for all x ∈ (c1, 0) (4.54)

g−1f(ṽ) < 0, f ′(ṽ) < 0, g′(ṽ) < 0, (4.55)

|u0(x)− g−1f(ṽ)| > c2 for all x ∈ (c1, 0), (4.56)

then there exists a m < 0, such that the solution of (4.52) and (4.53) is given by

u(x, t) =

{
g−1f(ṽ) if mt < x < 0,
ṽ if x > 0.

(4.57)

PROOF : Since g′(ū0(x)) < 0, g′(ṽ) < 0 and g′(0) = 0, so L2(t) < 0. Hence by RH
condition we have

L̇2(t) = g(L2(t)−)−g(L2(t)+)
(L2(t)−)−(L2(t)+)

or g′(g−1f(ṽ)) (see Figure 7)

= g(ū0(z))−g(g−1f(ṽ))
ū0(z)−g−1f(ṽ)

or g(0)−g(g−1f(ṽ))
0−g−1f(ṽ)

or g′(g−1f(ṽ)).

(4.58)

for some z ∈ (c1, 0). In any case , by (4.54), (4.55), (4.56) and (4.58) we have

L̇2(t) < m < 0, for some m < 0. (4.59)

Hence by (4.59) we have

L2(t) < mt < 0. (4.60)
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then by R-H condition the solution is given by

u(x, t) =

{
g−1f(ṽ) if mt < x < 0,
ṽ if x > 0.

(4.61)

Hence the Lemma.

Counter Example : If we do not assume Supp u0 ⊂ [−K,K], for some K > 0,
then for a certain choice of fluxes f, g there exists u0 ∈ L∞(IR) ∩ BV (IR) such that
TV (u(· , Tn)) = ∞, for all n, with lim

n→∞
Tn = ∞ ( This violets Theorem 3.1 (i) without

those assumptions).

We have devided this proof into several steps.

Step 1: In order to construct this counter example, first we study the following initial
value problem

ut + f(u)x = 0 if x > 0, t > 0,
ut + g(u)x = 0 if x > 0, t > 0,

(4.62)

where f = (u− 1)2 − 1, g(u) = u2 with the initial data u0 as follows

u0(x) =


0 if x < 0,
a1 if 0 < x < x1,
a2 if x1 < x < x2,
a3 if x > x2,

(4.63)

where 0 < x1 < x2, a1 < a2 < 0, a2 > a3 and we are going to choose xi, ai in a proper
way.

Since a1 < a2 and a2 > a3, so it creats a rarefaction at x = x1 and a shock
at x = x2. Now we choose a1, a2, a3 such a way that characteristics do not meet in
x > 0, t > 0. Therefore for x > 0, the solution of (4.62), (4.63) is given by

u(x, t) =


a1 if 0 < x < 2(a1 − 1)t+ x1,
1
2

(
x−x1

t
+ 2

)
if 2(a1 − 1)t+ x1 < x << 2(a2 − 1)t+ x1,

a2 if 2(a1 − 1)t+ x2 < x < (a2 + a3 − 2)t+ x2,
a3 if x > (a2 + a3 − 2)t+ x2.

(4.64)

Since g′(0) = 0 and f ′(ai) < 0 for all i = 1, 2, 3, so (4.64) yields

u(0+, t) =


a1 if 0 < t < x1

2(1−a1)
= t1(say),

1
2

(
x1

t
+ 2

)
if x1

2(1−a1)
< t < x1

2(1−a2)
= t2(say),

a2 if x1

2(1−a2)
< t < x2

2−(a2+a−3)
= t3(say),

a3 if x2

2−(a2+a3)
< t.

(4.65)

21



x−x1 =2(a
1 −1)t

x−x1 =2(a
2 −1)t

x−x2 =(a
2 +a

3 −2)t

x=2b
2 (t−t2 )
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By R-H condition, (4.65) yields

u(0−, t) =


g−1f(a1) = b1 say if 0 < t < t1,
g−1f

(
1
2

(
−x1

t
+ 2

))
if t1 < t < t2,

g−1f(a2) = b2 (say) if t2 < t < t3,
g−1f(a3) = b3 (say) if t3 < t.

(4.66)

u(0+, t) is an increasing function of t in the interval (t1, t2) so as u(0−, t), therefore
the outgoing characteristic from (t1, t2) will never intersect. Now we modify a1, a2, a3
(such a modification is obvious) such a way that characteristics do not meet in 0 <
t ≤ 1, x ∈ IR.

Then the solution of (4.62),(4.63) at T = 1 is given by

u(x, 1) =



0 if x < b1,
b1 if b1 < x < 2b1(1− t1),
u(0−, t+(x, 1)) if 2b1(1− t1) < x < 2b2(1− t2),
b2 if 2b2(1− t2) < x < (b2 + b3)(1− t3),
b3 if (b2 + b3)(1− t3) < x < 0,
a3 if x > 0.

(4.67)

where t+(x, 1) is an increasing function of x (this is possible due to the fact that
u(0−, t) is an increasing function of t in (t1, t2)).

See Figure (8) for clear illustrations.
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Step 2 : Let us denote

D =


√(

1

(i+ 1)2
+ 1

)2

− 1,

√(
1

(i+ 1)4
+ 1

)2

− 1 : i ∈ N

 .

Let v1 < 0, such that

v1 < − 1
(i+1)2

for all i ≥ i0,

|v1| < 1
2l0

for some l0 ∈ N,
v1 /∈ D,

(4.68)

where i0 ∈ N is large and we are going to choose it later.

Let T1 > 0 be a positive no. which is going to be choose later. Let us Denote

A1 = 2T1, a2i−1 = − 1

(i+ 1)2
, a2i = − 1

(i+ 1)4
, bi = g−1f(ai) for i ≥ 1,

x1,2i0−1 = A1 −
∞∑

j=2i0−1

1

j3/2
, x1,i = x1,2i0−1 +

i∑
j=2i0

1

j3/2
, for i ≥ 2i0,

s1 =
(v1 − 1)2 − 1

v1
, B1 =

1− (v1 − 1)2

v1
T1.

Then by definition, x1,2i0−1 < x1,2i0 < · · · < A1, and A1 =
∞∑

j=2i0−1

x1,j.

Now consider the following initial data

u0(x) =



0 if x ≤ 0,
a2i0−1 if 0 < x < x1,2i0−1,
a2i if x1,2i−1 < x < x1,2i, for i ≥ i0,
a2i+1 if x1,2i < x < x1,2i+1, for i ≥ i0,
0 if A1 < x < B1,
v1 if x ≥ B1.

(4.69)

Since a2i−1 < a2i, a2i > a2i+1, so it creats rarefaction at x = x1,2i−1 and shock
at x = x1,2i. For i ≥ i0, let t̃i be the time when the lines x = 2(a2i − 1)t+ x1,2i−1 and
x = (a2i + a2i+1 − 2)t+ x1,2i meets, then we have

t̃1,i =
x1,2i − x1,2i−1

a2i − a2i+1

=
1(2i)3/2

− 1
(i+1)4

+ 1
(i+2)2

. (4.70)

Let t̄1,i be the time when the lines x = (a2i + a2i+1 − 2)t + x1,2i and x = 2(a2i+1 −
1)t+ x1,2i+1 meets, then we have

t̄1,i =
x1,2i+1 − x1,2i

a2i − a2i+1

=
1(2i+ 1)3/2

− 1
(i+1)4

+ 1
(i+2)2

. (4.71)
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It is clear from (4.70) and (4.71) that we can choose a large i0 such that

t̃1,i, t̄1,i > T1 for all i ≥ i0. (4.72)

Since ai < 0, for all i, hence there will be no shocks at x = A1 and the characteristic
speed at x = A1 is given by f ′(0) = −2. This characteristic hits the line x = 0 at time
t = T1. Again v1 < 0, so at x = B1 it creats a shock with speed s1 and this shock also
hits the line x = 0 at time t = T1. By (4.72) we see that for x ≥ 0 no characteristics
intersects before t = T1, i.e. shocks and rarefactions do not meet before the time
t = T1.

For x > 0, t < T1, the solution of (4.62),(4.69) is given by

u(x, t) =



a2i0−1 if 0 < x < 2(a2i0−1 − 1)t+ x1,2i0−1,
1
2

(x−x1,2i−1

t
+ 2

)
if 2(a2i−1 − 1)t+ x1,2i−1 < x
< 2(a2i − 1)t+ x1,2i−1, i ≥ i0,

a2i if 2(a2i − 1)t+ x1,2i−1 < x
< (a2i + a2i+1 − 2)t+ x1,2i, i ≥ i0,

a2i+1 if (a2i + a2i+1 − 2)t+ x1,2i < x
< 2(a2i+1 − 1)t+ x1,2i+1, i ≥ i0,

0 if A1 − 2t < x < s1 +B1,
v1 if x > s1 +B1.

(4.73)

For i ≥ i0, let t1,i be the time when the characteristics originating from x = x1,i hits
the line x = 0, then

t1,3i =
x1,2i

2− (a2i + a2i+1)
,

t1,3i−1 =
x1,2i−1

2(1− a2i)
,

t1,3i−2 =
x1,2i−1

2(1− a2i−1)
.

Since no characteristic intersects in the region {(x, t) : x > 0, 0 < t < T1}, therefore

t1,3i−2 < t1,3i−1 < t1,3i < T1 for all i ≥ i0. (4.74)

Now f ′(ai) < 0 for all i ≥ 1, therefore by using (4.73), we obtain

u(0+, t) =


a2i0−1 if 0 < t <

x1,2i0−1

2(1−a2i0−1)
= t1,3i0−2,

1
2

(
−x1,2i−1

t
+ 2

)
if t1,3i−2 < t < t1,3i−1, for i ≥ i0,

a2i if t1,3i−1 < t < t1,3i, for i ≥ i0,
a2i+1 if t1,3i < t < t1,3i+1, for i ≥ i0,
v1 if t > T1.

(4.75)
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R-H condition and (4.75) yields

u(0−, t) =


b2i0−1 if 0 < t < t1,3i0−2,
g−1f

(
1
2

(
−x1,2i−1

t
+ 2

))
if t1,3i−2 < t < t1,3i−1, for i ≥ i0,

b2i if t1,3i−1 < t < t1,3i, for i ≥ i0,
b2i+1 if t1,3i < t < t1,3i+1, for i ≥ i0,
g−1f(v1) = w1(say) if t > T1.

(4.76)

Since b2i > b2i+1, it creats shock at t = t1,3i. g
−1f

(
1
2

(
−x1,2i−1

t
+ 2

))
is an increasing

function of t in (t1,3i−2, t1,3i−1), so outgoing characteristic from (t1,3i−2, t1,3i−1) will
never meet. Let t

′
1,i be the time when the lines x = (b2i + b2i+1)(t − t1,3i) and

x = 2b2i(t− t1,3i−1) meets, then we have

t
′

1,i =

x1,2i

2+ 1
(i+1)2

+ 1
(i+1)4

√(
1

(i+1)2
+1

)2
−1√(

1
(i+1)4

+1
)2

−1

+ 1

− x1,2i−1

1+ 1
(i+1)4√(

1
(i+1)2

+1
)2

−1√(
1

(i+1)4
+1

)2
−1

− 1

 (4.77)

Since

lim
i→∞

√(
1

(i+1)2
+ 1

)2

− 1√(
1

(i+1)4
+ 1

)2

− 1

= ∞.

Therefore

lim
i→∞

t
′

1,i = lim
i→∞

x1,2i

2 + 1
(i+1)2

+ 1
(i+1)4

. (4.78)

Let t
′′
1,i be the time when the lines x = (b2i+ b2i+1)(t− t1,3i) and x = 2b2i+1(t− t1,3i+1)

meet, then we have

t
′′

1,i =

−x1,2i+1

(1+ 1
(i+1)2

)
+

x1,2i

2+ 1
(i+1)4

+ 1
(i+1)2

√(
1

(i+1)4
+1

)2
−1√(

1
(i+1)2

+1
)2

−1

+ 1


√(

1
(i+1)4

+1
)2

−1√(
1

(i+1)2
+1

)2
−1

+ 1

 (4.79)

Since

lim
i→∞

√(
1

(i+1)2
+ 1

)2

− 1√(
1

(i+1)4
+ 1

)2

− 1

= 0,
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therefore

lim
i→∞

t
′′
1,i = lim

i→∞
−x1,2i+1

(1+ 1
(i+1)2

)
+

x1,2i

2+ 1
(i+1)4

+ 1
(i+1)2

= lim
i→∞

−x1,2i

2
.

(4.80)

From (4.77) and (4.78), there exists a large ĩ0 (denoting ĩ0 by i0 only) and a T1 > 0
such that

t
′

1,i > T1 > 0 for all i ≥ i0. (4.81)

Now from (4.79), (4.80), there exists a large ˜̃i0 (denoting ˜̃i0 by i0 only) so that

t
′′

1,i < 0 for all i ≥ i0. (4.82)

By using (4.72)(4.81)(4.82) it is clear that no characteristics meet in the region

(say) F1 = {(x, t) : x ∈ IR, 0 < t < T1.} (4.83)

Hence the solution of (4.59),(4.69) for t = T1 is given by

0

u(x,T )

u(x,T )

t=T

t=T

t=0

v

0

0

u (x)1
1

2

1
1

2

v1,0)(A
1

(B ,0)
1

x=m
1 (t−T

1 )

FREE REGION

Figure 9:
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u(x,B1) = u1(x) =



0 if 0 < b2i0−1T1,
b2i0−1 if b2i0−1T1 < x < 2b2i0−1(t− t1,3i0−2),
u(0−, t+(x, T1)) if 2b2i−1(t− t1,3i−2) < x

< 2b2i(t− t1,3i−1), for i ≥ i0,
b2i if 2b2i(t− t1,3i−1) < x

< (b2i + b2i+1)(t− t1,3i), for i ≥ i0,
b2i+1 if (b2i + b2i+1)(t− t1,3i) < x

< b2i+1(t− t1,3i+1), for i ≥ i0,
v1 if x > 0,

(4.84)

where t+(x, T1) is an increasing function of x (this is possible due to the fact that
u(0−, t) is an increasing function of t in (t1,3i−2, t1,3i−1)).

Step 3 : From (4.84) we can choose a partition such that P1,2i0−1 < P1,2i0 < · · · < 0,
with lim

j→∞
P1,j = 0 such that u(P1,i, T1) = bi for all i ≥ 2i0 − 1. Hence

TV (u(· , T1)) ≥
∞∑

j=2i0−1

|u(P1,j, T1)− u(P1,j+1, T1)|

=
∞∑

j=2i0−1

|bj − bj+1|

≥
∞∑

j=2i0−1

√(
1 +

1

(j + 1)2

)2

− 1

−
∞∑

j=2i0−1

√(
1 +

1

(j + 1)4

)2

− 1

≥
∞∑

j=2i0−1

1

j + 1
−

∞∑
j=2i0−1

√(
1 +

1

(j + 1)4

)2

− 1

= ∞.

(4.85)

Now our aim is to find a T2 > T1 and a u0 ∈ BV (IR) such that u(x, T1) /∈ BV
as well as u(x, T2) /∈ BV.

Step 4 : Consider the following problem

ut + ((u− 1)2 − 1)x = 0 if x > 0, t > T1,
ut + (u2)x = 0 if x < 0, t > T1,
u(x, T1) = u1(x) for all x ∈ IR.

(4.86)

Now u1(x) satisfies all the condition of Lemma 3.2, therefore there exists a m1 < 0
such that the solution of (4.86) satisfies

u(x, t) = g−1f(v1) = w1(say) if m1(t− T1) < x < 0,
= v1 if x > 0.

(4.87)

27



So we do get a free region (see Figure 9). Let Ã1 > B1, T2 >
Ã1

2(1−v1)
, where Ã1, T2 are

going to be choose in a proper way. We choose v2 such that

v1 < v2 < − 1
(i+1)2

for all i ≥ i1,

|v2| < 1
2l1

and v2 /∈ D, for some l1 ∈ N with l0 < l1,
(4.88)

where i1 is a large natural number with i1 > i0 and we are going to choose i1 later.
Denote

A2 = 2T2, B2 = T1
1− (v2 − 1)2

v2
, s2 =

(v2 − 1)2 − 1

v2
,

β1 = 2
√
(v1 − 1)2 − 1, β̄1 =

Ã1

1− v1
, γ1 = 2

√
(a2i1−1 − 1)2 − 1,

γ̄1 =
Ã1

1− a2i1−1

, Ã1 + x2,2i1−1 = A2 −
∞∑

j=2i1−1

1

j3/2
,

x2,2i = x2,2i1−1 −
i∑

j=2i

1

j3/2
for i ≥ i1.

Then by definition

x2,2i1−1 < x2,2i1 < ........... < x2,i..... < A2 and A2 =
∞∑

j=2i1−1

x2,j.

Now consider the following initial value problem

ut + ((u− 1)2 − 1)x = 0, if x > 0, t > 0
ut + (u2)x = 0 if x < 0, t > 0,

(4.89)

with initial data u0 as follows

u0(x) =



0 if x ≤ 0,
a2i0−1 if 0 < x < x1,2i0−1,
a2i if x1,2i−1 < x < x1,2i, for i ≥ i0,
a2i+1 if x1,2i < x < x1,2i+1, for i ≥ i0,
0 if A1 < x < B1,

v1 if B1 < x < Ã1,

a2i1−1 if Ã1 < x < Ã1 + x2,2i1−1,

a2i if Ã1 + x2,2i−1 < x < Ã1 + x2,2i, for i ≥ i1,

a2i+1 if Ã1 + x2,2i < x < Ã1 + x2,2i+1, for i ≥ i1,
0 if A2 < x < B2,
v2 if x ≥ B2.

(4.90)

The lines x = f ′(v1)t+ Ã1 and x = s1t+ T1 meet at time

t = −Ã1 − T1

v1
(4.91)
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The lines x = g′(g−1f(v1))(t− Ã1

2(1−v1)
) and x = m1(t− T1) meet at time

t =
2
√

(v1 − 1)2 − 2 Ã1

2(v1−1)
+m1T1

m1 − 2
√

(v1 − 1)2 − 1
. (4.92)

From (4.91) and (4.92) it is clear that if we choose Ã1 large such that Ã1 > 1, then the

above lines do not intersects before time T2 = δ + Ã1

2(1−v1)
, for some δ > 0, which we

are going to choose later. Denote for i ≥ i1, t2,i be the time when the characteristics
originating from x = x2,i hits the line x = 0, then

t2,3i =
x2i + Ã1

2− (a2i + a2i+1)
, t2,3i−1 =

x2i−1 + Ã1

2(1− a2i)
, t2,3i−2 =

x2i−1 + Ã1

2(1− a2i−1)
.

Let the lines x = 2(a2i−1)t+Ã1+x2,2i−1 and x = (a2i+a2i+1−2)t+Ã1+x2,2i meet at
time t = t̃2,i, the lines x = (a2i+a2i+1−2)t+Ã1+x2,2i and x = 2(a2i+1−1)t+Ã1+x2,2i+1

meet at time t = t̄2,i, the lines x = (b2i + b2i+1)(t− t2,3i) and x = 2b2i(t− t2,3i) meet
at time t = t

′
2,i, the lines x = (b2i + b2i+1)(t − t2,3i) and x = 2b2i+1(t − t2,3i+1) meet

at time t = t
′′
2,i, then similarly as in (4.72), (4.81), (4.82) it is clear that there exists

T2 >
Ã1

2(1−v1)
and a large i1 ∈ N such that no characteristics insersects in the region

(say) F2 = {(x, t) : m1(t− T1) < x < 0, T1 < t < T2}. (4.93)

By (4.93) the solution of (4.59), (4.90) as follows (see Figure 10)

u(x, T1) = u1(x) for all x.

For m1(t− T1) < x, t = T2,

u(x, T2) = u2(x) =



g−1f(v1) if m1(T2 − T1) < x < 2β(T2 − β̄1),
u(0+, t+(x, T2)) if 2β(T2 − β̄1) < x < 2γ(T2 − γ̄1),
b2i1−1 if b2i1−1B1 < x

< 2b2i1−1(T2 − t2,3i1−2),
u(0−, t+(x, T2)) if 2b2i−1(T2 − t2,3i−2) < x

< 2b2i(T2 − t2,3i−1), for i ≥ i1,
b2i if 2b2i(T2 − t2,3i−1) < x

< (b2i + b2i+1)(T2 − t2,3i), for i ≥ i1,
b2i+1 if (b2i + b2i+1)(T2 − t2,3i) < x

< b2i+1(T2 − t2,3i+1), for i ≥ i1,
v2 if x > 0.

(4.94)

Now by (4.94) we can choose a partition such that

P2,2i1−1 < P2,2i1 < · · · < 0, with lim
j→∞

P2,j = 0

such that u(P2,i, T2) = bi, for all i ≥ 2i1 − 1.
(4.95)
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Hence

TV (u(· , T2)) ≥
∞∑

j=2i1−1

|u(P2,j, T2)− u(P2,j+1, T2)|

=
∞∑

j=2i1−1

|bj − bj+1|

= ∞.

(4.96)

0

u(x,T )

u(x,T )

t=T

t=T

t=0

v

u (x)

0

(A 1,0) (A2,0)(A (B
1
,0)

0

1
,0)

v1

u (x)1
1

22

1
1

2

Figure 10:

Step 5 : Again we Consider the following problem

ut + ((u− 1)2 − 1)x = 0 if x > 0, t > T2,
ut + (u2)x = 0 if x < 0, t > T2,
u(x, T1) = u2(x) for all x ∈ IR.

(4.97)

Now u2(x) satisfies all the condition of Lemma 3.2, therefore there exists a m2 < 0
such that the solution of (4.97) satisfies

u(x, t) = g−1f(v2) = w2(say) if m2(t− T2) < x < 0,
= v2 if x > 0.

(4.98)

Then we can proceed as in Step 4 to get

T3 > T2 > T1 such that u(x, Ti) /∈ BV, for i = 1, 2, 3.
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Step 6 : In general, we consider the following problem to get free region

ut + ((u− 1)2 − 1)x = 0 if x > 0, t > Tn,
ut + (u2)x = 0 if x < 0, t > Tn,
u(x, Tn) = un(x) for all x ∈ IR.

(4.99)

Now un(x) satisfies all the condition of Lemma 4.1, therefore there exists a mn < 0
such that the solution of (4.99) satisfies

u(x, t) = g−1f(vn) = wn(say) if mn(t− Tn) < x < 0,
= vn if x > 0.

(4.100)

Let Ãn > Bn, Tn+1 > Ãn

2(1−vn)
then A1 < B1 < Ã1 < A2 < B2 < Ã2 < A3 <

· · · < Bn < Ãn, where n < Ãn and we are going to be choose Ãn, Tn+1 in a suitable
way. We choose vn+1 such that

v1 < v2 < ...... < vn < vn+1 < − 1
(i+1)2

for all i ≥ in,

|vn+1| < 1
2ln

and vn+1 /∈ D, for some l1 ∈ N
with l0 < l1 < .... < ln−1 < ln,

(4.101)

where in is a large natural number with in > in−1 and we are going to choose in later.

Denote

An+1 = 2Tn+1, Bn+1 = Tn
1− (vn+1 − 1)2

vn+1

, sn+1 =
(vn+1 − 1)2 − 1

vn+1

,

βn = 2
√

(vn − 1)2 − 1, β̄n =
Ãn

1− vn
, γn = 2

√
(a2in−1 − 1)2 − 1,

γ̄n =
Ãn

1− a2in−1

, Ãn + xn+1,2in−1 = An+1 −
∞∑

j=2in−1

1

j3/2
,

xn+1,2i = xn+1,2in−1 −
i∑

j=2i

1

j3/2
, for i ≥ in.

Then by definition

xn+1,2in−1 < xn+1,2in < ........... < xn+1,i..... < An+1 and An+1 =
∞∑

j=2in−1

xn+1,j.
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Denote for i ≥ in, tn+1,i be the time when the characteristics originating from
x = xn+1,i, hits the line x = 0, then

tn+1,3i =
xn+1,2i + Ãn

2− (a2i + a2i+1)
,

tn+1,3i−1 =
xn+1,2i−1 + Ãn

2(1− a2i)
,

tn+1,3i−2 =
xn+1,2i−1 + Ãn

2(1− a2i−1)
.

Finally we consider the following initial value problem

ut + ((u− 1)2 − 1)x = 0 if x > 0, t > 0
ut + (u2)x = 0 if x < 0, t > 0.

(4.102)

with the general initial data u0 as follows

u0(x) =



0 if x ≤ 0,
a2i0−1 if 0 < x < x1,2i0−1,
a2i if x1,2i−1 < x < x1,2i, for i ≥ i0,
a2i+1 if x1,2i < x < x1,2i+1, for i ≥ i0,
0 if A1 < x < B1,

v1 if B1 < x < Ã1,

a2i1−1 if Ã1 < x < Ã1 + x2,2i1−1,

a2i if Ã1 + x2,2i−1 < x < Ã1 + x2,2i, for i ≥ i1,

a2i+1 if Ã1 + x2,2i < x < Ã1 + x2,2i+1, for i ≥ i1,
0 if A2 < x < B2,
v2 if x ≥ B2,
.
.
.

a2in−1 if Ãn < x < Ãn + xn+1,2in−1,

a2i if Ãn + xn+1,2i−1 < x < Ãn + xn+1,2i, for i ≥ in,

a2i+1 if Ãn + xn+1,2i < x < Ãn + xn+1,2i+1, for i ≥ in,
0 if An+1 < x < Bn+1,
vn+1 if x ≥ Bn+1,
.
.
.

(4.103)

By similar methods as in Step 4, we can choose Tn+1 and a in large so that no
characteristic intersects in the region

(say) Fn+1 = {(x, t) : mn(t− Tn) < x < 0, Tn < t < Tn+1}. (4.104)
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Therefore by (4.104) the solution of (4.62), (4.103) as follows

u(x, T1) = u1(x) for x ∈ IR,

u(x, T2) = u2 for m1(T2 − T1) < x,
...

u(x, Tn) = un for mn−1(Tn − Tn−1) < x,

and for mn(Tn+1 − Tn) < x, t = Tn+1

u(x, Tn+1) = un+1(x) =



g−1f(vn) if mn(Tn+1 − Tn) < x
< 2β(Tn+1 − β̄n),

u(0+, t+(x, Tn+1)) if 2β(Tn+1 − β̄n) < x
< 2γ(Tn+1 − γ̄n),

b2in−1 if b2in−1Bn < x
< 2b2in−1(Tn+1 − tn+1,3in−2),

u(0−, t+(x, Tn+1)) if 2b2i−1(Tn+1 − tn+1,3i−2) < x
< 2b2i(Tn+1 − tn+1,3i−1),
for i ≥ in,

b2i if 2b2i(Tn+1 − tn+1,3i−1) < x
< (b2i + b2i+1)(Tn+1 − tn+1,3i),
for i ≥ in,

b2i+1 if (b2i + b2i+1)(Tn+1 − tn+1,3i)
< x < b2i+1(Tn+1 − tn+1,3i+1),
for i ≥ in,

vn+1 if x > 0.

(4.105)

Now from (4.105) (similarly as in step 3) we can choose a partition such that

Pn+1,2in−1 < Pn+1,2in < · · · < 0, with lim
j→∞

Pn+1,j = 0

such that u(Pn+1,i, Tn+1) = bi for all i ≥ 2in − 1.
(4.106)

Hence

TV (u(· , Tn+1)) ≥
∞∑

j=2in−1

|u(Pn+1,j, Tn+1)− u(Pn+1,j+1, Tn+1)|

=
∞∑

j=2in−1

|bj − bj+1|

= ∞.

(4.107)

Now

Tn =
An+1

2
= Ãn, n < Ãn for all n ∈ N,

therefore
lim
n→∞

Ãn = ∞ and lim
n→∞

Tn = ∞.

Hence the result.
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5 Appendix

THEOREM 5.1 Let A 6= θg and B 6= θf . If f ′′, g′′ ≥ α > 0, u0 ∈ L∞(IR) then for
all t > 0,

TV (u(· , t), I(ε) ∪ I(M, ε)) ≤ C1(ε) + C2(ε,M, t). (5.108)

As a consequence, if u0 ∈ BV (IR) then for all t > 0,

TV (u(· , t)) ≤ C(ε, t)(TV (u0) + 1) + 4‖u0‖∞. (5.109)

PROOF : Without loss of generality we can prove the result for x > 0, i.e. we prove
u(·, t) ∈ BV (I(ε)∪ I(M, ε))∩ IR+, similar result holds in (I(ε)∪ I(M, ε))∩ IR−. From
[8] (equation no. (44)), we have for x > 0,

u(x, t) =


f ∗′

(
x−y+(x,t)

t

)
ify+(x, t) > 0, i,e. if 0 ≤ R(t) ≤ x

λ+(t+(x, t)) = f ∗′
(

−y+(t+)
t+

)
= u(0+, t)

if 0 < t+(x, t) < t i,e. if 0 ≤ x ≤ R(t).

(5.110)

Then we have the following two cases.

Case I: R(t) = 0. In this case u(x, t) = f∗′
(

x−y+(x,t)
t

)
for all x > 0, hence by using

the Lipschitz continuity of f∗′ and monotonicity of y+, we obtain

TV (u((· , t), I(ε) ∪ I(M, ε)) ∩ IR+) ≤
C

t
. (5.111)

Where the constant depends only on the f ∗′ and M.
Case II: R(t) > 0. From Lemma 2.10 of [1], we have f(λ+) > f(B), when B 6=
θf . Again R-H condition yields g(λ−(t)) = f(λ+(t)). Since f ′(λ+(t)) > f ′(B) and
g′(λ−(t)) < A, hence the characteristics speed is never zero near interface, which

allows λ+(t+(x, t)) = f∗′
(

−y+(t+)
t+

)
∈ BV by using the Lipschitz continuity of f ∗′ and

the monotoncity of t+, y+. Hence the result.
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