Shyam Sundar Ghoshal 
email: ghoshal@ann.jussieu.fr
  
Optimal Results On TV Bounds For Scalar Conservation Laws With Discontinuous Flux

Keywords: Hamilton-Jacobi equation, scalar conservation laws, discontinuous Flux, explicit Formula, characteristic lines, BV function

, it has been shown by a counter example at T = 1, that the total variation of the solution blows up near interface, but in that example the solution become bounded variation after time T > 1. So the natural question is that what happens to the BV ness of the solution for large time. Here we give a complete picture of the bounded variation of the solution for all time. For a uniform convex flux with only L ∞ data, we obtain a natural smoothing effect in BV for all time t > T 0 . Also we give a counter example (even for a BV data) to show that the assumptions which has been made are optimal.

Introduction:

In this paper, we investigate the total variation bound of the following scalar conservation laws

∂u ∂t + ∂ ∂x F (x, u) = 0 if x ∈ IR, t > 0 u(x, 0) = u 0 (x) if x ∈ IR (1.1)
where the flux function F (x, u) is a discontinuous function of x given by F (x, u) = H(x)f (u) + (1 -H(x))g(u), H is the Heaviside function. Here we consider f, g to be strictly convex function with superlinear growth. That is

lim |u|→∞ f (u), g(u) |u| = (∞, ∞). (1.2)
Equation (1.1) has been extensively studied since few decades from both the theoretical and numerical points of view. Notice that a very few results are known regarding the total variation of the solution of (1.1) near interface.

A conservation laws with a discontinuous flux of the form (1.1), is a first order hyperbolic model, which arises in many applicative problems. It has a huge application in fluid flows in heterogeneous media such as two-phase flow in a porous medium, which arises in the petroleum industry. (1.1) also arises while dealing with modeling gravity, continuous sedimentation in a clarifier thickener unit [START_REF] Bürger | Monotone difference approximations for the simulation of clarifier-thickener units[END_REF][START_REF] Bürger | A mathematical model of continuous sedimentation of flocculated suspensions in clarifier-thickener units[END_REF][START_REF] Bürger | A relaxation scheme for continuous sedimentation in ideal clarifier-thickner units[END_REF][START_REF] Bürger | A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units[END_REF][START_REF] Bürger | A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units[END_REF][START_REF] Diehl | A conservation law with point source and discontinuous flux function mod-elling continuous sedimentation[END_REF][START_REF] Diehl | Continuous sedimentation of multi-component particles[END_REF]. Some other Applications are in the model of car traffic flow on a highway (see [START_REF] Mochon | An analysis for the traffic on highways with changing surface conditions[END_REF]) and in ion etching in the semiconductor industry (see [START_REF] Ross | Two new moving boundary problems for scalar conservation laws[END_REF]).

It is well understood that even if F and u 0 are smooth, the solution of (1.1) may not admit classical solution in finite time, hence one must define the notion of weak solutions. In general, weak solutions of (1.1) are not unique. Due to this fact, one has to put some extra condition so called "entropy condition" in order to get the uniqueness. When f = g, Kruzkov [START_REF] Kružkov | First order quasilinear equations with several independent variables. (Russian)[END_REF] has introduced the most general entropy condition in order to prove the uniqueness by using doubling variable technique. For f = g, the general entropy condition has been established in [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF], [START_REF] Adimurthi | Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients[END_REF], [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF], [START_REF] Bürger | An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections[END_REF], [START_REF] Andreianov | A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux[END_REF], [START_REF] Mitrovic | Darko New entropy conditions for scalar conservation laws with discontinuous flux[END_REF] in order to prove the uniqueness.

When f = g, existence of the solution has been studied in several ways, namely vanishing viscosity method (see [START_REF] Kružkov | First order quasilinear equations with several independent variables. (Russian)[END_REF]), convergence of numerical schemes, front tracking method(see [START_REF] Helge | Front tracking for hyperbolic conservation laws[END_REF]) and via Hamilton-Jacobi equation (see [START_REF] Evans | Partial differential equations[END_REF], [START_REF] Lax | Hyperbolic systems of conservation laws[END_REF]).

In general, when f = g, (1.1) may not admit any solutions, hence for existence, some extra assumptions are required. Under the assumption that the fluxes f and g coincide at least two points Gimse-Risebro [START_REF] Gimse | Riemann problems with discontinuous flux function[END_REF][START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF], Diehl [START_REF] Diehl | Conservation Laws with Applications to Continuous Sedimentation[END_REF] obtained a solution for Riemann data. (also see [START_REF] Klingenberg | Convex conservation laws with discontinuous coefficients, existence, uniqueness and asymptotic behavior[END_REF][START_REF] Diehl | A conservation law with point source and discontinuous flux function mod-elling continuous sedimentation[END_REF]). A theory by using front tracking method has been developed in [START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF], [START_REF] Karlsen | On a nonlinear degenerate parabolic transport diffusion equation with discontinuous coefficient[END_REF], [START_REF] Klingenberg | Convex conservation laws with discontinuous coefficients, existence, uniqueness and asymptotic behavior[END_REF]. Under the assumptions that the fluxes f and g are strictly convex and C 2 , (1.1) also has been studied in [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF]. They obtained a Lax-Oleinik type formula satisfying the following interface entropy condition meas t : f (u + (t)) > 0, g (u -(t)) < 0 = 0 (1.3) and Lax-Olenik entropy condition for x = 0. Also they prove the L 1 -contraction semi-group. On the otherhand, Karlsen, Risebro, Towers [START_REF] Karlsen | On a nonlinear degenerate parabolic transport diffusion equation with discontinuous coefficient[END_REF][START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF], used a modified Kruzkhov type entropy condition and they proved L 1 stability of entropy solutions. In general, these solutions admit undercompressive waves at the interface x = 0 which is not allowed in the classical theory of Lax-Olenik and Kruzkov (see, [START_REF] Kružkov | First order quasilinear equations with several independent variables. (Russian)[END_REF] ). From the model of capillary diffusion, Kaasschieter [START_REF] Kaasschieter | Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media[END_REF] studied this problem by using a different diffusion term and he noticed that the solution satisfies interface entropy condition (1.3). Some cases like clarifier-thickner model also allows undercompressive at the interface [START_REF] Bürger | A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units[END_REF][START_REF] Bürger | A relaxation scheme for continuous sedimentation in ideal clarifier-thickner units[END_REF][START_REF] Bürger | Monotone difference approximations for the simulation of clarifier-thickener units[END_REF][START_REF] Bürger | Well-posedness in BV t and convergence of a difference scheme for continuous sedimentation in ideal clarifier thickener units[END_REF][START_REF] Bürger | A mathematical model of continuous sedimentation of flocculated suspensions in clarifier-thickener units[END_REF][START_REF] Karlsen | On a nonlinear degenerate parabolic transport diffusion equation with discontinuous coefficient[END_REF][START_REF] Diehl | Dynamic and steady-state behaviour of continuous sedimentation[END_REF][START_REF] Diehl | A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients[END_REF][START_REF] Diehl | Operating charts for continuous sedimentation II: Step responses[END_REF][START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF].

In [START_REF] Adimurthi | Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients[END_REF], Adimurthi et. al. characterized an infinitely many stable semigroups of entropy solutions ((A, B) entropy) in terms of explicit Hopf-Lax type formulas under the assumption that either the fluxes are strictly convex or strictly concave. This general theory known as (A, B) interface entropy conditions. It was shown that (A, B)-entropy solution exists and forms an L 1 -contractive semi-group and is unique. Convergence of a numerical scheme that approximates entropy solutions of type (A, B) for any connection (A, B) has been encountered in [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF][START_REF] Bürger | An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections[END_REF]. Proof of convergence for the the Godunov or Enquist-Osher type scheme has been encountered as in [START_REF] Adimurthi | Godunov type methods for scalar conservation laws with flux function discontinuous in the space variable[END_REF][START_REF] Mishra | Convergence of upwind finite difference schemes for a scalar conser-vation law with indefinite discontinuities in the flux function[END_REF][START_REF] Karlsen | Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient[END_REF][START_REF] Towers | A difference scheme for conservation laws with a discontinuous flux: the nonconvex case[END_REF][START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF][START_REF] Bürger | Well-posedness in BV t and convergence of a difference scheme for continuous sedimentation in ideal clarifier thickener units[END_REF][START_REF] Adimurthi | Convergence of Godunov type methods for a conservation law with a spatially varying discontinuous flux function[END_REF] and the Lax-Friedrichs type as in [START_REF] Karlsen | Convergence of the Lax-Friedrichs scheme and stability of conservation laws with a discontinuous time-dependent flux[END_REF]. Very recently, Andreianov et.al. [START_REF] Andreianov | A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] characterized a more general concept of "vanishing viscosity" germs and they proved the L 1 contraction property.

BV regularity of a solution for conservation laws is an important phenomenon in order to understand the convergence and the existence of traces of the solution. For f = g, it is well understood that the solution is TVD, that is T V (u(•, t)) ≤ T V (u 0 ), for all t > 0. By Lax-Oleinik type formula it is easy to see that under the assumption f ≥ α, for some α > 0, u(•, t) ∈ BV loc , even if u 0 / ∈ BV. We ask the question that can one expect the similar result when f = g? When f = g, it has been noticed in [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF] that the assumption of uniformly convexity is optimal in order to prove the BV regularity without the the assumption that u 0 / ∈ BV . For the case when f = g, we cannot expect total variation diminishing property due to the fact that constant data gives rise to a non-constant solution and hence the total variation increases. Due to the lack of the total variation bound the convergence theory for the discontinuous flux has been studied by using different technique, namely, singular mapping technique in [START_REF] Lin | A comparison of convergence rates for Godunovs method and Glimms method in resonant nonlinear systems of conservation laws[END_REF][START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF][START_REF] Adimurthi | Godunov type methods for scalar conservation laws with flux function discontinuous in the space variable[END_REF][START_REF] Klingenberg | Convex conservation laws with discontinuous coefficients, existence, uniqueness and asymptotic behavior[END_REF], [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF]. It has been noticed in [START_REF] Bürger | A family of numerical schemes for kinematic flows with discontinuous flux[END_REF] that the solution is of total variation bounded away from the interface x = 0. But the information at the interface x = 0 was completely unknown. The open problem was what happens to the total variation of the solution near interface?

A counter example has been given in [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF] by choosing a proper initial data u 0 ∈ BV and proved that u(•, 1) / ∈ BV , but in that example the solution become BV due to the fact that the characteristics intersects after time T = 1 and the solution become smoother. Now repeatation of this kind of initial data will not work in order to get u(•, t) / ∈ BV for t > 1, due to the fact that the intersection of characteristics makes the solution smoother near interface. So we need to create some "free region", such a way that we can put the right initial data further to obtain u(•, T n ) / ∈ BV with lim n→∞ T n = ∞. This idea of creating free region has been encountered in [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux -preprint[END_REF]. In [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF], they have shown that the (A, B) entropy solutions are of bounded variation in the interface if A = θ g and B = θ f , that is if (A, B) are away from the critical points of f and g, then the associated singular mappings are invertible and Lipschitz continuous which allows (in [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF]) to prove the bounded variation of the solution near interface. When A = θ g or B = θ f , the total variation of the solution near interface has been proved in [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF], under the assumption that f -1 g(u 0 ), g -1 f (u 0 ) and u 0 ∈ BV . In this paper, we relax this condition and allow only u 0 ∈ L ∞ . It has been noticed in [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF] that if (A, B) are away from the critical points, then the solution is of total bounded variation for all time t > 0.

Aim of this paper is to understand the bounded variation of the solution for all time and for all A, B connection. In this paper, we have noticed a very surprising result that if the lower height of the fluxes f, g are same i.e. if f (θ f ) = g(θ g ), then the solution is of bounded variation near interface for all time t > 0, even if the initial condition does not belongs to BV. When f (θ f ) = g(θ g ), then u(•, t) ∈ BV for t > T 0 , for some T 0 . We assume the fluxes f, g to be convex, superlinear growth and we use the Lax-Oleinik type formulas for the discontinuous flux introduced in [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF].

Under the suitable condition on f, g and u 0 , Adimurthi et.al [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF] proved the following.

THEOREM 1.1 (Adimurthi et.al [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF]) Let u 0 ∈ L ∞ (IR) and u be the solution obtained in Theorem Let t > 0, > 0, M > , I(M, ) = {x : ≤ |x| ≤ M }. Then [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF]. Suppose there exists an α > 0 such that f ≥ α, g ≥ α, then there exist

C = C( , M, α) such that TV u(., t), I(M, ) ≤ C( , M, t).
(2). Suppose u 0 ∈ BV, and T > 0. Then there exists C( , T ) such that for all 0 < t ≤ T TV u(., t), |x| > ≤ C( , t)TV(u 0 ) + 4||u 0 || ∞ [START_REF] Adimurthi | Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux[END_REF]. Let u 0 ∈ BV, T > 0 and A = θ g and B = θ f . Then there exists C > 0 such that for all 0 < t ≤ T ,

TV u(., t) ≤ C TV(u 0 ) + 6||u 0 || ∞ . (4). Let u 0 , f -1 + (g(u 0 )), g -1 -(f (u 0 )) ∈ BV, T > 0 and A = θ g . Then for all 0 < t ≤ T , TV u(., t) ≤ TV(u 0 ) + max T V (f -1 + (g(u 0 ))), TV(g -1 -(f (u 0 ))) + 6||u 0 || ∞ .
(5). For a certain choice of fluxes f and g there exists

u 0 ∈ BV ∩ L ∞ such that TV(u(., 1)) = ∞ if A = θ g or B = θ f .
In this context, we ask the following questions Problem I. When can we say u(•, t) ∈ BV near interface, even if u 0 / ∈ BV ?

Problem II. Is it possible to choose a u 0 ∈ BV such that solution of (1.1) / ∈ BV for large time?

Here in this paper, we answer the above problems in a very general setting. This paper is organized in the following way. Section 2 has been devoted for the preliminaries to make this article self contained. There we have recollected some properties of the characteristics and the entropy condition (see [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF] for details). Section 3 deals with the main theorems. Theorem 3.1, (i) (3.1) proves the fact that u(•, t) ∈ BV near interface for the case when f (θ f ) = g(θ g ) and Theorem 3.1, ((i) and (ii)(3.3), (3.4) and (3.5)) deals with the case when f (θ f ) = g(θ g ) without the assumption that u 0 ∈ BV . We give a counter example by choosing a proper initial data u 0 ∈ BV such that u(x, t) / ∈ BV for lagre t > 0, which has been explained by splitting in to several steps, has been put in section 4.

Preliminaries:

We assume the following (i). f and g are strictly convex, C 2 and of superlinear growth.

(ii). u 0 ∈ L ∞ and let v 0 be its primitive given by

v 0 (x) = x 0 u 0 (θ)dθ. Let f (θ f ) = inf θ∈IR f (θ), g(θ g ) = inf θ∈IR g(θ)
be the point of minima of f and g. Let f * and g * be their respective convex duals defined by

f * (x) = sup y∈IR {xy -f (y)}.
If f is strictly convex and super linear growth then f and f * satisfies the following: (a) f * (0) = -min f , is finite (b) f * is strictly convex and super linear growth and satisfy

f (y) = sup x∈IR {xy -f * (x)}. (c) (f * ) * = f. (d) (f ) -1 = (f * ) . (e) f * (f (p)) = pf (p) -f (p), f (f * (p)) = pf * (p) -f * (p).
Let us recall some of the definitions and notations from [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF]. 

DEFINITION 2.1 Interior entropy condition

(E i ) : u is said to satisfy the entropy condition (E i ) (Lax-Oleinik entropy conditions) if for all t > 0, lim 0<z→0 ≤ lim 0<z→0 u(x -z, t) if x > 0, (2.1) 
lim 0<z→0 ≤ lim 0<z→0 u(x -z, t) if x < 0. ( 2 
meas t : f (u + (t)) > 0, g (u -(t)) < 0 = 0 (2.3) DEFINITION 2.3 ((A, B) Connection ). Let (A, B) ∈ IR 2 . Then (A, B) is called a connection if it satisfies (i). f (B) = g(A). (ii). f (B) ≥ 0, g (A) ≤ 0. DEFINITION 2.4 (Interphase entropy functional). Let u ∈ L ∞ loc (IR × IR + ) such that u ± (t) = u(0±, t) exist a.e. t > 0.
Then we define I AB (t), the interface entropy functional by

I AB (t) = (g(u -(t)) -g(A))sign(u -(t) -A) -(f (u + (t)) -f (B))sign(u + (t) -B). (2.4) DEFINITION 2.5 (Interphase entropy condition). Let u ∈ L ∞ loc (IR × IR + ) such that u ± (t) exist a.e. t > 0.
Then u is said to satisfy Interfase entropy condition relative to a connection (A, B) if for a.e. t > 0

I AB (t) ≥ 0.
(2.5)

Notice that when A = θ g or B = θ f , (2.5) and (2.3) coincide. In this paper, we deal with the case when A = θ g or B = θ f , hence we use (2.3) to be the entropy condition through out this paper.

DEFINITION 2.6 Entropy Solution :

Let

F (x, u) = H(x)f (u) + (1 -H(x))g(u). Let u 0 ∈ L ∞ loc (IR). Then u ∈ L ∞ loc (IR × IR + ) is said to be an entropy solution if: (i). u is a weak solution of u t + F (x, u) x = 0 if x ∈ IR, t > 0, u(x, 0) = u 0 (x) if x ∈ IR, t = 0. (2.6) 
(ii). u satisfies the Lax-Oleinik-Kruzkov entropy condition away from the interface x = 0, i.e. u must satisfy (2.1) and (2.2).

(iii). At the interface x = 0, u satisfies the interface entropy condition (2.3). 
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([s, t], IR). ξ is called an admissible curve if the following holds
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. ξ consists of atmost three linear curves (see Figure 1a, Figure 1b, Figure 1c, for x ≥ 0, Figure 2a, Figure 2b, Figure 2c, for x ≤ 0) and each segment lies completely in either x ≥ 0 or x ≤ 0 .

(ii). Let s = t 3 ≤ t 2 ≤ t 1 ≤ t 0 = t be such that for i = 1, 2, 3, ξ i = ξ| [t i ,t i-1 ]
be the linear parts of ξ. If ξ consists of three linear curves then ξ 2 = 0 (see Figure 1c, Figure 2c) and ξ 1 , ξ 3 > 0 or ξ 1 , ξ 3 < 0.

Represent an admissible curve

ξ = {ξ 1 , ξ 2 , ξ 3 }. Let c(x, t, s) = {ξ ∈ c([s, t], IR); ξ(t) = x, ξ is an admissible curve} c(x, t) = c(x, t, 0).
Divide c(x, s, t) into three categories defined as below.

c 0 (x, t, s) = {ξ ∈ c(x, t, s); ξ is exactly one linear curve} .

( see Figure 1a and Figure 2a).

c b (x, t, s) = {ξ ∈ c(x, t, s); ξ 2 = φ , ξ 1 (θ)ξ 3 (θ) ≤ 0, for θ ∈ (s, t)} .
( see Figure 1b and Figure 2b). c r (x, t, s) = {ξ ∈ c(x, t, s); ξ consists of three pieces and xξ(θ

) ≥ 0 ∀ θ ∈ [s, t]} .
( see Figure 1c and Figure 2c).

DEFINITION 2.8 Let t > 0, define R 1 (t) = inf{x ; x ≥ 0, ch(x, t) ⊂ c 0 (x, t)}, R 2 (t) = inf{x ; 0 ≤ x ≤ R 1 (t), ch(x, t) ∩ c r (x, t) = φ}, R 1 (t) if the above set is empty. L 1 (t) = sup{x ; x ≤ 0, ch(x, t) ⊂ c 0 (x, t)}, L 2 (t) = sup{x ; L 1 (t) ≤ x ≤ 0, ch(x, t) ∩ c r (x, t) = φ}, L 1 (t) if the above set is empty.
See [START_REF] Adimurthi | Structure of an entropy solution of a scalar conservation law with strict convex flux[END_REF], [START_REF] Adimurthi | Exact controllability of scalar conservation law with strict convex flux -preprint[END_REF] for the finer properties of this curves. Now recall from [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF], [START_REF] Adimurthi | Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients[END_REF], [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF] the existence and uniqueness of entropy solution. With out loss of generality we can assume that g(θ g ) ≥ f (θ f ). THEOREM 2.1 (Adimurthi, Gowda [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF], [START_REF] Adimurthi | Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients[END_REF]) Let u 0 ∈ L ∞ (IR), then there exists an entropy solution u of (2.6) with u ∈ L ∞ (IR) and is unique under mild regularity assumption (see Remark 2.12 of [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF]). Furthermore, the solution can be described explicitly by Lax-Olenik type formula as follows. For each t > 0 there exists
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Figure 3: 44), [START_REF] Adimurthi | Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients[END_REF])

R 1 (t), R 2 (t) ≥ 0, L 1 (t) ≤ 0, L 2 (t) ≤ 0 ( for i = 1, 2, R i , L i are
u(x, t) =    (f ) -1 x-y + (x,t) t = u 0 (y + (x, t)) if x ≥ R 1 (t), (f ) -1 x t-t + (x,t) if 0 ≤ x < R 1 (t).
(2.7)

(ii). For x ∈ (-∞, L 1 (t)], y -(x, t) ≤ 0, is a non-decreasing function and for x ∈ (L 1 (t), 0], 0 ≤ t -(x, t) < t, t -(x, t) is non-increasing function such that for x < 0, u(x, t) =    (g ) -1 x-y -(x,t) t = u 0 (y -(x, t)) if x ≤ L 1 (t), (g ) -1 x t-t -(x,t) if L 1 (t) < x < 0.
(2.8) (iii). Furthermore, we have the following three cases Case I. L 1 (t) = 0, R 1 (t) ≥ 0 (see page 53, equation (4.21), (4.22), [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF])

u(x, t) =    f -1 + (g(u 0 (y + (x, t)))) if 0 < x < R 2 (t) f -1 + (g(θ g )) if R 2 (t) ≤ x < R 1 (t), u 0 (y -(x, t)) if x < L 1 (t) = 0.
(2.9) Lemma 4.8 and page 55, equation (4.30), [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF])

Case II. L 1 (t) < 0, R 1 (t) ≥ 0 (see
u(x, t) = g -1 -(f ((u 0 (y -(x, t))))) if 0 > x > L 1 (t) = L 2 (t) f -1 + (g(θ g )) if 0 < x < R 1 (t) = R 2 (t).
(2.10) 53, equation (4.20) , [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF]) 

Case III. L 1 (t) = 0, R 1 (t) = 0 (see page
u(x, t) = u 0 (y + (x, t)) if x > R 1 (t) = 0, u 0 (y -(x, t)) if x < L 1 (t) = 0. ( 2 

Main Theorems

In this section, we prove our main results for the connection A = θ g or B = θ f (where θ f , θ g are the respective critical point of the fluxes). For the other connection proof can be done similarly and the sketch of the proof has been given in the Appendix.

THEOREM 3.1 Let u 0 ∈ L ∞ (IR)
and u be a solution obtained in Theorem 2.6. Let t > 0, > 0, M > and

I(M ) = {x : |x| < M }, I(R 1 (t)) = {x > 0 : x < R 1 (t)}, I(L 1 (t)) = {x < 0 : x > L 1 (t)}, (i). Let f (θ f ) = g(θ g
) and f ≥ α, g ≥ α, for some α > 0, also assuming the fact that Supp u 0 ⊂ [-K, K], for some K > 0, then there exists a T 0 > 0 such that for all t > T 0 ,

T V (u(• , t), I(M )) ≤ C(M, t). (3.1)
As a consequence we have, for all t > T 0 ,

T V (u(• , t), IR) ≤ C(t), (3.2)
where C(t), C(M, t) > 0 are some constants.

(ii). Let f (θ f ) = g(θ g ) then for all t > 0, T V (u(• , t), I(R 1 (t)) ∪ I(L 1 (t))) ≤ C(t). (3.3)
In addition if f ≥ α, g ≥ α, for some α > 0, then for all t > 0,

T V (u(• , t), I(M )) ≤ C(M, t). (3.4)
As a consequence, if Supp u 0 ⊂ [-K, K], for some K > 0, then for all t > 0,

T V (u(• , t), IR) ≤ C(t), (3.5) (iii). Let f (θ f ) = g(θ g
) and u 0 ∈ BV (IR) then for all t > 0,

T V (u(• , t)) ≤ C(t)(T V (u 0 ) + 1) + 4 u 0 ∞. (3.6)
Proof of (i). With out loss of generality we can assume that g(θ

g ) > f (θ f ). If M > R 1 (t), then for x > R 1 (t), u(x, t) = f * x-y + (x,t) t . Let x 1 = R 1 (t) < x 2 < • • • < x N +1 = M be any partition in (R 1 (t), M ).
Then by using the Lipschitz continuity of f * (which is bounded by 1 α ) and monotonicity of y + , we obtain

N i=1 |u(x i , t) -u(x i+1 , t)| ≤ 1 α N i=1 x i -y + (x i ,t) t -x i+1 -y + (x i+1 ,t) t ≤ 1 αt N i=1 (|x i -x i+1 | + |y + (x i , t) -y + (x i+1 , t)|) ≤ 1 αt ((M -R 1 (t)) + (y + (M, t) -y + (R 1 (t), t)) ≤ C(t). (3.7) Hence T V (u(• , t), (R 1 (t), M )) ≤ C(t) (3.8)
and similarly

T V (u(• , t), (-M, L 1 (t))) ≤ C(t). ( 3.9) 
So from now onwards we can assume that M < R 1 (t). We consider the following three cases.

Case 1:

L 1 (t) = 0, R 1 (t) ≥ 0. From (2.9), if x ∈ (R 2 (t), R 1 (t)), u(x, t) = f -1 g(θ g ) = a constant, hence u is bounded variation in (R 2 (t), R 1 (t)). Let θ, θ be such that g(θ g ) = f ( θ) = f ( θ) with f ( θ) < 0, f ( θ) > 0.
At first, we prove total variation of u in (0, ) and then in ( , M ), where > 0 be such that 0

< < R 2 (t). Now u(x, t) = f * x t -t + (x, t) if 0 < x < < R 2 (t), (3.10) 
where t + (x, t) is a non-increasing function of x.

g f θ θ g f θ - θ
Figure 4:

Claim: t + (x, t) → ∞ as t → ∞, if x ∈ (0, ). (3.11) 
If possible, let

t + (x, t) ≤ C, x ∈ (0, ), for all t > T 0 , ( 3.12) 
for some constants C, T 0 > 0. Then from (3.10),(3.12) there exists a large T 1 > T 0 (denoting T 1 by T 0 only) such that 

u(x, t) ∈ (θ f , θ) if x ∈ (0, ), t > T 0 . ( 3 
= f -1 g(u(0-, t + (x, t))) [by R-H condition] > θ [since g(θ g ) > f (θ f )], (3.14) 
which contradicts (3.13). Hence the claim. where y + (0, z) is a non-decreasing function of z > 0 and y + (x, t) is a non-decreasing function of x > 0.

For x ∈ (0, R 2 (t)), u(x, t) = f -1 g(u(0-, t + (x, t))) = f -1 g g * -y + (0,t + (x,t)) t + (x,
If y + (0, t + (x, t)) < -K for some x ∈ (0, R 2 (t)), then by monotoncity of t + and y + we have

y + (0, t + (x, t)) < -K, for all x ∈ (0, x). (3.16) Since Supp u 0 ⊂ [-K, K] therefore by (3.15),(3.16) u(x, t) = f -1 g(0) =constant,
hence u is of bounded variation in (0, x). Since t + is non increasing function of x, hence 0 < β <

x t-t + (x,t) for all x ∈ (x, M ), for some β. Let

x 1 = x < x 2 < • • • < x N +1 = M be any partition in (x, M ). We obtain N i=1 |u(x i , t) -u(x i+1 , t)| ≤ 1 α N i=1 x i t-t + (x i ,t) - x i+1 t-t + (x i+1 ,t) ≤ 1 αt M t t-β . (3.17) Hence T V (u(• , t), (0, M ) ≤ C(t) (3.18)
Now we assume -K ≤ y + (0, t + (x, t)) ≤ 0, for all x ∈ (0, R 2 (t)). Hence by (3.11)

y + (0, t + (x, t)) t + (x, t) → 0 as t → ∞. (3.19)
Since g * (0) = θ g , therefore by (3.19)

g * - y + (0, t + (x, t)) t + (x, t) → θ g as t → ∞ if x ∈ (0, M ). (3.20)
Hence from (3.20), it is easy to see that there exists a small δ 1 > 0 and a large T 0 > 0 such that

g * - y + (0, t + (x, t)) t + (x, t) ∈ (θ g , θ g + δ 1 ) if x ∈ (0, M ), t > T 0 . (3.21)
Since f (θ f ) < g(θ g ), therefore from (3.21) we deduce that g g * -y + (0,t + (x,t))

t + (x,t)
avoids critical point of f hence f -1 g g * -y + (0,t + (x,t))

t + (x,t)
is Lipschitz continuous for

x ∈ (0, M ), t > T 0 . Again g * = (g ) -1 is Lipschitz continuous and Lipschitz constant is bounded by

1 α . Let 0 < x 1 < x 2 < • • • < x N +1
= M be a partition. Therefore by using the fact y + , t + are monotone also y + ∈ [-K, 0], we conclude from (3.11) and (3.15) that

N i=1 |u(x i , t) -u(x i+1 , t)| ≤ C N i=1 - y + (0, t + (x i+1 , t)) t + (x i+1 , t) -- y + (0, t + (x i , t)) t + (x i , t) ≤ C N i=1 1 t + (x i , t) |y + (0, t + (x i+1 , t)) -y + (0, t + (x i , t))| + N i=1 C |y + (0, t + (x i+1 , t))| 1 t + (x i ,t) - 1 t + (x i+1 ,t) ≤ C N i=1 |y + (0, t + (x i+1 , t)) -y + (0, t + (x i , t))| + N i=1 CK 1 t + (x i ,t) - 1 t + (x i+1 ,t) ≤ CK + CK 1 t + (x 1 ,t) - 1 t + (x N +1 ,t) ≤ CK(1 + 2 t ). (3.22) 
So for t > T 0 ,

T V (u(•, t), 0 < x < M ) ≤ C(M, t). (3.23) Since L 1 (t) = 0, so for -M < x < 0, u(x, t) = g * x -y -(x, t) t ,
where y -(x, t) is a non-decreasing function of x. Hence from (3.9)

T V (u(• , t) : -M < x < 0) ≤ C(M, t). (3.24)
Hence (3.1) follows.

From the finite speed of propagation, we know ( see Lemma 4.2, page no. 38 in [START_REF] Adimurthi | Conservation laws with discontinuous flux[END_REF]) that there exist a S > 0 such that dξ dθ ∞ ≤ S for all ξ ∈ ch(x, t).

(3.25)

By (3.25) it is clear that characteristic originating from the point (K, 0) of x axis can travel with speed at most S and characteristic originating from the point (-K, 0) can travel with speed not less than -S. Since Supp u 0 ⊂ [-K, K], therefore for each t > 0, there exists l(t) > 0 such that u(x, t) is constant outside (-l(t), l(t)). Choosing M = l(t) in (3.23), we conclude

T V (u(• , t) : IR) ≤ C + C( , t). (3.26) Case 2 : L 1 (t) = L 2 (t) < 0, R 1 (t) ≥ 0.
In this case R 2 (t) = 0, so for x ∈ (0, R 1 (t)), u(x, t) = f -1 g(θ g ), hence u(x, t) is bounded variation in (0, R 1 (t)). From the explicit formulas, we get

u(x, t) = g * x t-t -(x,t) if 0 > x > -> L 1 (t), = u(0-, t -(x, t)) = g -1 f f * -y -(0-,t -(x,t)) t -(x,t) [by R-H condition] = f -1 g(u 0 (y -(x, t))) (3.27)
where t -(x, t) is a non-decreasing function of x and y -(0, z) is a non-decreasing function of z < 0.

If y -(0, t -(x, t)) > K, for some x ∈ (L 1 (t), 0), then u is of bounded variation in (-, 0) (choosing = -x). So we let 0 ≤ y -(0, t -(x, t)) ≤ K, for all x ∈ (L 1 (t), 0). Claim:

|t -(x, t)| ≤ C if x ∈ (L 1 (t), 0), t > T 0 , ( 3.28) 
for some constants C, T 0 > 0.

Suppose for some > 0,

t -(x, t) → ∞ as t → ∞ if x ∈ (-, 0). (3.29)
Therefore we deduce

f * -y -(0, t -(x, t)) t -(x, t) → θ f as t → ∞ [since f * (0) = θ f ]. (3.30)
By (3.29), there exists a small δ 2 (t) and a large T 0 > 0 such that

f * -y -(0, t -(x, t)) t -(x, t) ∈ (θ f -δ 2 (t), θ f ) if x ∈ (-, 0), t > T 0 . (3.31) If x ∈ (-, 0), then from (3.27), g(u(x, t)) = f f * - y -(0, t -(x, t)) t -(x, t) ≤ θ [since g(θ g ) > f (θ f )],
which contradicts (3.31). Hence the claim.

Let -M = x N +1 < x N < • • • < x 1 < 0 be a partition then by (3.27) N i=1 |u(x i , t) -u(x i+1 , t)| = N i=1 g * x i t -t -(x i , t) -g * x i+1 t -t -(x i+1 , t) ≤ C N i=1 x i t -t -(x i , t) - x i+1 t -t -(x i+1 , t) .
(3.32)

Now by using (3.28) and monotoncity of t -, we conclude

x i+1 t -t -(x i+1 , t) - x i t -t -(x i , t) ≥ x i+1 -x i t -t -(x i+1 , t) (3.33)
and

x i+1 t -t -(x i+1 , t) - x i t -t -(x i , t) ≤ x i+1 (t -(x i+1 , t) -t -(x i , t)) (t -t -(x i+1 , t))(t -t -(x i , t)) ≤ x i+1 (t -(x i+1 , t) -t -(x i , t)) (t -C)(t -C) .
(3.34) By using, (3.33) and (3.34) we deduce that for t > T 0 , N i=1

x i t-t -(x i ,t) - x i+1 t-t -(x i+1 ,t) ≤ C Max { 1 t , }. (3.35) Hence for t > T 0 , T V (u(•, t), -M < x < 0) ≤ C(M ).
From (3.24), we obtain

T V (u(•, t), I(M )) ≤ C(M, t). (3.36)
Since Supp u 0 ⊂ [-K, K], hence from (3.25) and (3.36) we conclude

T V (u(•, t), IR) ≤ C(t). Case 3 : L 1 (t) = 0, R 1 (t) = 0. In this case u(x, t) =    f * x-y + (x,t) t if x > 0, g * x-y -(x,t) t if x < 0.
(3.37)

By using Lipschitz continuity of f * , g * and monotoncity of y + , y -it is easy to see that for t > 0,

T V (u(•, t) : -M < x < M ) ≤ C(M, t).
Again using (3.25) and Supp u 0 ⊂ [-K, K], we derive

T V (u(•, t), IR) ≤ C(t).
This proves (i).

Proof of (ii) and (iii).

It is enough to prove the result for the case when L 1 (t) = 0, R 1 (t) ≥ 0, other cases follows similarly. Let 0 < < R 2 (t). To prove (3.3), atfirst we prove total variation of u in (0, ) then in ( , R 2 (t)). Consider a characteristic ξ ∈ ch( , t). Then by monotoncity of t + and y + we have the following 

t + ( , t) ≤ t + (x, t) if x ∈ (0, ), (3.38) t + ( , t) ≥ t + (x, t) if x ∈ ( , R 2 (t)), (3.39) y + (0, t + ( , t)) ≥ y + (0, t + (x, t)) if x ∈ (0, ), (3.40) y + (0, t + ( , t)) ≤ y + (0, t + (x, t)) if x ∈ ( , R 2 (t)). (3.41) Let 0 < x 1 < x 2 < • • • < x N +1 = < R 2 (t)
ε (R 1 (z),z) + (R 1 (z)),0) y ( (K,0) t=0 t ζ ζ
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- y + (0, t + (x, t)) t + (x, t) / ∈ (θ g -δ 3 (t), θ g + δ 3 (t)) if x ∈ (0, ). (3.42)
Therefore from (3.42), we conclude that -y + (0,t + (x,t))

t + (x,t)
avoids critical point of g, for

x ∈ (0, ), so it is easy to see that for x ∈ (0, ), g * -y + (0,t + (x,t))

t + (x,t)
is Lipschitz continuous. Again from (3.42), there exists a δ 4 (t) > 0 such that

g g * - y + (0, t + (x, t)) t + (x, t) / ∈ (g(θ g ) -δ 4 (t), g(θ g ) + δ 4 (t)) if x ∈ (0, ). (3.43)
Since g(θ g ) = f (θ f ), hence from (3.43), we deduce that f -1 g g * -y + (0,t + (x,t))

t + (x,t) is f g θ θ f g Figure 6:
Lipschitz continuous for x ∈ (0, ), t > 0. Now from (3.15) and above arguments we estimate similarly as in (3.22) to obtain

N i=1 |u(x i , t) -u(x i+1 , t)| = N i=1 f -1 g(g * (- y + (0, t + (x i+1 , t)) t + (x i+1 , t) )) -f -1 g(g * (- y + (0, t + (x i , t)) t + (x i , t) )) ≤ C(t)|y + (0, t)| + C(t)|y + (0, t)| 1 t + (x N +1 ,t) -1 t + (x 1 ,t) ≤ C(t). (3.44) Therefore T V (u(•, t) : 0 < x < ) ≤ C(t). (3.45)
From (3.39), there exists δ 5 (t) > 0 such that 

x t -t + (x, t) / ∈ (θ f , θ f + δ 5 (t)) if x ∈ (0, ), t > 0. (3.46) Hence f * x t-t + (x,t) is Lipschitz continuous for x ∈ ( , R 2 (t)), t > 0. Let = x 1 < x 2 < • • • < x N +1 = R 2 (t) be a partition. Therefore N i=1 |u(x i , t) -u(x i+1 , t)| = N i=1 f * x i t -t + (x i , t) -f * x i+1 t -t + (x i+1 , t) (3.
x i t -t + (x i , t) - x i+1 t -t + (x i+1 , t) ≤ Max{ 1 t -t + ( , t) , R 2 (t)} (3.48)
Then from (3.47) and (3.48) we have , for t > 0,

N i=1 |u(x i , t) -u(x i+1 , t)| ≤ C(t). (3.49) Hence T V (u(•, t) : 0 < x < R 2 (t)) ≤ C(t). (3.50)
This proves (3.3).

If M < R 1 (t), then (3.3) follows from (3.50), so let M > R 1 (t). In this case (3.3) follows by using Lipschitz continuity of f * and monotoncity of y + . (3.4) follows similarly as in (3.26). This proves (ii).

In addition, if u 0 ∈ BV (IR) (see Theorem (2.13), (ii) in [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF]) then for t > 0,

T V (u(•, t) : |x| > ) ≤ C( , t)T V (u 0 ) + 4 u 0 ∞ (3.51)
Hence (3.6) follows from (3.3) and (3.51). This proves (iii).

Construction of the counter example

In this section we focus on the counter example of the blow up of TV bound for large time. In order to provide the example we need to use the following Lemma.

LEMMA 4.1 Consider the following problem

u t + f (u) x = 0 if x > 0, t > 0, u t + g(u) x = 0 if x < 0, t > 0, (4.52)
where f (u) = (u -1) 2 -1, g = u 2 and the initial data u 0 is given by

u 0 (x) =    0 if x < c 1 < 0, ū0 (x) if c 1 < x < 0, ṽ if x ≥ 0 (4.53) 0 (c ,0) (x) ṽ 0 ṽ ṽ L (t) L (t) L (t) (c ,0) 0 u (x) 0 u 0 u 0 (x) g( u 0 (y))-g(g -1 f( v)) u 0 (y)-g -1 f( v) g(0)-g(g -1 0-g -1 f( v) L (t)= g (g -1 f( v)) (t)= L ~f( v)) ~. . 1 1 1 (c ,0) 2 2 2 2 2 
. L 2 (t)= where c 1 < 0, c 2 > 0 are constants and ū0 , b satisfies the following property g (ū 0 (x)) < 0 for all x ∈ (c 1 , 0) (4.54) g -1 f (ṽ) < 0, f (ṽ) < 0, g (ṽ) < 0, (4.55)

|u 0 (x) -g -1 f (ṽ)| > c 2 for all x ∈ (c 1 , 0), (4.56) 
then there exists a m < 0, such that the solution of (4.52) and (4.53) is given by

u(x, t) = g -1 f (ṽ) if mt < x < 0, ṽ if x > 0. (4.57) 
PROOF : Since g (ū 0 (x)) < 0, g (ṽ) < 0 and g (0) = 0, so L 2 (t) < 0. Hence by RH condition we have

L2 (t) = g(L 2 (t)-)-g(L 2 (t)+) (L 2 (t)-)-(L 2 (t)+) or g (g -1 f (ṽ)) (see Figure 7) = g(ū 0 (z))-g(g -1 f (ṽ)) ū0 (z)-g -1 f (ṽ) or g(0)-g(g -1 f (ṽ)) 0-g -1 f (ṽ)
or g (g -1 f (ṽ)). then by R-H condition the solution is given by

u(x, t) = g -1 f (ṽ) if mt < x < 0, ṽ if x > 0. (4.61)
Hence the Lemma.

Counter Example : If we do not assume Supp u 0 ⊂ [-K, K], for some K > 0, then for a certain choice of fluxes f, g there exists We have devided this proof into several steps.

u 0 ∈ L ∞ (IR) ∩ BV (IR) such that T V (u(• , T n )) = ∞,
Step 1: In order to construct this counter example, first we study the following initial value problem

u t + f (u) x = 0 if x > 0, t > 0, u t + g(u) x = 0 if x > 0, t > 0, (4.62) 
where f = (u -1) 2 -1, g(u) = u 2 with the initial data u 0 as follows

u 0 (x) =        0 if x < 0, a 1 if 0 < x < x 1 , a 2 if x 1 < x < x 2 , a 3 if x > x 2 , (4.63) 
where 0 < x 1 < x 2 , a 1 < a 2 < 0, a 2 > a 3 and we are going to choose x i , a i in a proper way.

Since a 1 < a 2 and a 2 > a 3 , so it creats a rarefaction at x = x 1 and a shock at x = x 2 . Now we choose a 1 , a 2 , a 3 such a way that characteristics do not meet in x > 0, t > 0. Therefore for x > 0, the solution of (4.62), (4.63) is given by

u(x, t) =        a 1 if 0 < x < 2(a 1 -1)t + x 1 , 1 2 x-x 1 t + 2 if 2(a 1 -1)t + x 1 < x << 2(a 2 -1)t + x 1 , a 2 if 2(a 1 -1)t + x 2 < x < (a 2 + a 3 -2)t + x 2 , a 3 if x > (a 2 + a 3 -2)t + x 2 .
(4.64)

Since g (0) = 0 and f (a i ) < 0 for all i = 1, 2, 3, so (4.64) yields

u(0+, t) =          a 1 if 0 < t < x 1 2(1-a 1 ) = t 1 (say), 1 2 
x 1 t + 2 if x 1 2(1-a 1 ) < t < x 1 2(1-a 2 ) = t 2 (say), a 2 if x 1 2(1-a 2 ) < t < x 2 2-(a 2 +a-3) = t 3 (say), a 3 if x 2
2-(a 2 +a 3 ) < t.

(4.65)

x -x1 = 2 ( a 1 -1 ) t x -x1 = 2 ( a 2 -1 ) t x -x2 = ( a 2 + a 3 -2 ) t x = 2 b 2 ( t -t 2 ) (x,t) T=1 a 3 t 1 b 1 x=0 0 a 1 a 3 (x 1 ,0) (x 2 ,0) a 3 t 2 t 3 T=0 0 b 2 b 3 x = ( b 2 + b 3 ) ( t -t ) 3 x = 2 b 1 ( t -t 1 ) x = b 1 t
Figure 8:

By R-H condition, (4.65) yields

u(0-, t) =        g -1 f (a 1 ) = b 1 say if 0 < t < t 1 , g -1 f 1 2 -x 1 t + 2 if t 1 < t < t 2 , g -1 f (a 2 ) = b 2 (say) if t 2 < t < t 3 , g -1 f (a 3 ) = b 3 (say) if t 3 < t.
(4.66) u(0+, t) is an increasing function of t in the interval (t 1 , t 2 ) so as u(0-, t), therefore the outgoing characteristic from (t 1 , t 2 ) will never intersect. Now we modify a 1 , a 2 , a 3 (such a modification is obvious) such a way that characteristics do not meet in 0 < t ≤ 1, x ∈ IR.

Then the solution of (4.62),(4.63) at T = 1 is given by

u(x, 1) =                0 if x < b 1 , b 1 if b 1 < x < 2b 1 (1 -t 1 ), u(0-, t + (x, 1)) if 2b 1 (1 -t 1 ) < x < 2b 2 (1 -t 2 ), b 2 if 2b 2 (1 -t 2 ) < x < (b 2 + b 3 )(1 -t 3 ), b 3 if (b 2 + b 3 )(1 -t 3 ) < x < 0, a 3 if x > 0.
(4.67)

where t + (x, 1) is an increasing function of x (this is possible due to the fact that u(0-, t) is an increasing function of t in (t 1 , t 2 )).

See Figure [START_REF] Adimurthi | Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients[END_REF] for clear illustrations.

Step 2 : Let us denote

D =    1 (i + 1) 2 + 1 2 -1, 1 (i + 1) 4 + 1 2 -1 : i ∈ N    .
Let v 1 < 0, such that

v 1 < -1 (i+1) 2 for all i ≥ i 0 , |v 1 | < 1 2 l 0 for some l 0 ∈ N, v 1 / ∈ D, (4.68) 
where i 0 ∈ N is large and we are going to choose it later.

Let T 1 > 0 be a positive no. which is going to be choose later. Let us Denote

A 1 = 2T 1 , a 2i-1 = - 1 (i + 1) 2 , a 2i = - 1 (i + 1) 4 , b i = g -1 f (a i ) for i ≥ 1, x 1,2i 0 -1 = A 1 - ∞ j=2i 0 -1 1 j 3/2 , x 1,i = x 1,2i 0 -1 + i j=2i 0 1 j 3/2 , for i ≥ 2i 0 , s 1 = (v 1 -1) 2 -1 v 1 , B 1 = 1 -(v 1 -1) 2 v 1 T 1 .
Then by definition,

x 1,2i 0 -1 < x 1,2i 0 < • • • < A 1 , and A 1 = ∞ j=2i 0 -1 x 1,j .
Now consider the following initial data

u 0 (x) =                0 if x ≤ 0, a 2i 0 -1 if 0 < x < x 1,2i 0 -1 , a 2i if x 1,2i-1 < x < x 1,2i , for i ≥ i 0 , a 2i+1 if x 1,2i < x < x 1,2i+1 , for i ≥ i 0 , 0 if A 1 < x < B 1 , v 1 if x ≥ B 1 .
(4.69)

Since a 2i-1 < a 2i , a 2i > a 2i+1 , so it creats rarefaction at x = x 1,2i-1 and shock at x = x 1,2i . For i ≥ i 0 , let ti be the time when the lines x = 2(a 2i -1)t + x 1,2i-1 and x = (a 2i + a 2i+1 -2)t + x 1,2i meets, then we have

t1,i = x 1,2i -x 1,2i-1 a 2i -a 2i+1 = 1(2i) 3/2 -1 (i+1) 4 + 1 (i+2) 2 . (4.70)
Let t1,i be the time when the lines x = (a 2i + a 2i+1 -2)t + x 1,2i and x = 2(a 2i+1 -1)t + x 1,2i+1 meets, then we have Since a i < 0, for all i, hence there will be no shocks at x = A 1 and the characteristic speed at x = A 1 is given by f (0) = -2. This characteristic hits the line x = 0 at time t = T 1 . Again v 1 < 0, so at x = B 1 it creats a shock with speed s 1 and this shock also hits the line x = 0 at time t = T 1 . By (4.72) we see that for x ≥ 0 no characteristics intersects before t = T 1 , i.e. shocks and rarefactions do not meet before the time t = T 1 .

t1,i = x 1,2i+1 -x 1,2i a 2i -a 2i+1 = 1(2i + 1) 3/2 -1 (i+1) 4 + 1 (i+2) 2 . ( 4 
For x > 0, t < T 1 , the solution of (4.62),(4.69) is given by

u(x, t) =                            a 2i 0 -1 if 0 < x < 2(a 2i 0 -1 -1)t + x 1,2i 0 -1 , 1 2 x-x 1,2i-1 t + 2 if 2(a 2i-1 -1)t + x 1,2i-1 < x < 2(a 2i -1)t + x 1,2i-1 , i ≥ i 0 , a 2i if 2(a 2i -1)t + x 1,2i-1 < x < (a 2i + a 2i+1 -2)t + x 1,2i , i ≥ i 0 , a 2i+1 if (a 2i + a 2i+1 -2)t + x 1,2i < x < 2(a 2i+1 -1)t + x 1,2i+1 , i ≥ i 0 , 0 if A 1 -2t < x < s 1 + B 1 , v 1 if x > s 1 + B 1 .
(4.73)

For i ≥ i 0 , let t 1,i be the time when the characteristics originating from x = x 1,i hits the line x = 0, then

t 1,3i = x 1,2i 2 -(a 2i + a 2i+1 ) , t 1,3i-1 = x 1,2i-1 2(1 -a 2i ) , t 1,3i-2 = x 1,2i-1 2(1 -a 2i-1 )
.

Since no characteristic intersects in the region {(x, t) : x > 0, 0 < t < T 1 }, therefore

t 1,3i-2 < t 1,3i-1 < t 1,3i < T 1 for all i ≥ i 0 . (4.74)
Now f (a i ) < 0 for all i ≥ 1, therefore by using (4.73), we obtain

u(0+, t) =            a 2i 0 -1 if 0 < t < x 1,2i 0 -1 2(1-a 2i 0 -1 ) = t 1,3i 0 -2 , 1 2 - x 1,2i-1 t + 2 if t 1,3i-2 < t < t 1,3i-1 , for i ≥ i 0 , a 2i if t 1,3i-1 < t < t 1,3i , for i ≥ i 0 , a 2i+1 if t 1,3i < t < t 1,3i+1 , for i ≥ i 0 , v 1 if t > T 1 . (4.75)
R-H condition and (4.75) yields

u(0-, t) =            b 2i 0 -1 if 0 < t < t 1,3i 0 -2 , g -1 f 1 2 - x 1,2i-1 t + 2 if t 1,3i-2 < t < t 1,3i-1 , for i ≥ i 0 , b 2i if t 1,3i-1 < t < t 1,3i , for i ≥ i 0 , b 2i+1 if t 1,3i < t < t 1,3i+1 , for i ≥ i 0 , g -1 f (v 1 ) = w 1 (say) if t > T 1 . (4.76) Since b 2i > b 2i+1 , it creats shock at t = t 1,3i . g -1 f 1 2 - x 1,2i-1 t
+ 2 is an increasing function of t in (t 1,3i-2 , t 1,3i-1 ), so outgoing characteristic from (t 1,3i-2 , t 1,3i-1 ) will never meet. Let t 1,i be the time when the lines x = (b 2i + b 2i+1 )(t -t 1,3i ) and x = 2b 2i (t -t 1,3i-1 ) meets, then we have

t 1,i = x 1,2i 2+ 1 (i+1) 2 + 1 (i+1) 4   1 (i+1) 2 +1 2 -1 1 (i+1) 4 +1 2 -1 + 1   - x 1,2i-1 1+ 1 (i+1) 4   1 (i+1) 2 +1 2 -1 1 (i+1) 4 +1 2 -1 -1   (4.77) Since lim i→∞ 1 (i+1) 2 + 1 2 -1 1 (i+1) 4 + 1 2 -1 = ∞. Therefore lim i→∞ t 1,i = lim i→∞ x 1,2i 2 + 1 (i+1) 2 + 1 (i+1) 4 . ( 4 

.78)

Let t 1,i be the time when the lines x = (b 2i + b 2i+1 )(t -t 1,3i ) and x = 2b 2i+1 (t -t 1,3i+1 ) meet, then we have

t 1,i = -x 1,2i+1 (1+ 1 (i+1) 2 ) + x 1,2i 2+ 1 (i+1) 4 + 1 (i+1) 2   1 (i+1) 4 +1 2 -1 1 (i+1) 2 +1 2 -1 + 1     1 (i+1) 4 +1 2 -1 1 (i+1) 2 +1 2 -1 + 1   (4.79) Since lim i→∞ 1 (i+1) 2 + 1 2 -1 1 (i+1) 4 + 1 2 -1 = 0, therefore lim i→∞ t 1,i = lim i→∞ -x 1,2i+1 (1+ 1 (i+1) 2 ) + x 1,2i 2+ 1 (i+1) 4 + 1 (i+1) 2 = lim i→∞ - x 1,2i 2 . 
(4.80)

From (4.77) and (4.78), there exists a large ĩ0 (denoting ĩ0 by i 0 only) and a T 1 > 0 such that 

t 1,i > T 1 > 0 for all i ≥ i 0 . ( 4 
u(x,T ) u(x,T ) t=T t=T t=0 v 0 0 u (x) 1 1 2 1 1 2 v 1 ,0) (A 1 (B ,0) 1 x = m 1 ( t- T 1 ) FREE REGION Figure 9: u(x, B 1 ) = u 1 (x) =                            0 if 0 < b 2i 0 -1 T 1 , b 2i 0 -1 if b 2i 0 -1 T 1 < x < 2b 2i 0 -1 (t -t 1,3i 0 -2 ), u(0-, t + (x, T 1 )) if 2b 2i-1 (t -t 1,3i-2 ) < x < 2b 2i (t -t 1,3i-1 ), for i ≥ i 0 , b 2i if 2b 2i (t -t 1,3i-1 ) < x < (b 2i + b 2i+1 )(t -t 1,3i ), for i ≥ i 0 , b 2i+1 if (b 2i + b 2i+1 )(t -t 1,3i ) < x < b 2i+1 (t -t 1,3i+1 ), for i ≥ i 0 , v 1 if x > 0, (4.84) 
where t + (x, T 1 ) is an increasing function of x (this is possible due to the fact that u(0-, t) is an increasing function of t in (t 1,3i-2 , t 1,3i-1 )).

Step 3 : From (4.84) we can choose a partition such that

P 1,2i 0 -1 < P 1,2i 0 < • • • < 0, with lim j→∞ P 1,j = 0 such that u(P 1,i , T 1 ) = b i for all i ≥ 2i 0 -1. Hence T V (u(• , T 1 )) ≥ ∞ j=2i 0 -1 |u(P 1,j , T 1 ) -u(P 1,j+1 , T 1 )| = ∞ j=2i 0 -1 |b j -b j+1 | ≥ ∞ j=2i 0 -1 1 + 1 (j + 1) 2 2 -1 - ∞ j=2i 0 -1 1 + 1 (j + 1) 4 2 -1 ≥ ∞ j=2i 0 -1 1 j + 1 - ∞ j=2i 0 -1 1 + 1 (j + 1) 4 2 -1 = ∞. (4.85)
Now our aim is to find a T 2 > T 1 and a u 0 ∈ BV (IR) such that u(x, T 1 ) / ∈ BV as well as u(x, T 2 ) / ∈ BV.

Step 4 : Consider the following problem

u t + ((u -1) 2 -1) x = 0 if x > 0, t > T 1 , u t + (u 2 ) x = 0 if x < 0, t > T 1 , u(x, T 1 ) = u 1 (x) for all x ∈ IR.
(4.86) Now u 1 (x) satisfies all the condition of Lemma 3.2, therefore there exists a m 1 < 0 such that the solution of (4.86) satisfies u(x, t) = g -1 f (v 1 ) = w 1 (say) if m 1 (t -T 1 ) < x < 0, = v 1 if x > 0. (4.87)

The lines x = g (g -1 f (v 1 ))(t -Ã1 2(1-v 1 ) ) and x = m 1 (t -T 1 ) meet at time

t = 2 (v 1 -1) 2 -2 Ã1 2(v 1 -1) + m 1 T 1 m 1 -2 (v 1 -1) 2 -1 . (4.92)
From (4.91) and (4.92) it is clear that if we choose Ã1 large such that Ã1 > 1, then the above lines do not intersects before time T 2 = δ + Ã1 2(1-v 1 ) , for some δ > 0, which we are going to choose later. Denote for i ≥ i 1 , t 2,i be the time when the characteristics originating from x = x 2,i hits the line x = 0, then

t 2,3i = x 2i + Ã1 2 -(a 2i + a 2i+1 ) , t 2,3i-1 = x 2i-1 + Ã1 2(1 -a 2i ) , t 2,3i-2 = x 2i-1 + Ã1 2(1 -a 2i-1
) .

Let the lines x = 2(a 2i -1)t+ Ã1 +x For m 1 (t -T 1 ) < x, t = T 2 , u(x, T 2 ) = u 2 (x) = Step 6 : In general, we consider the following problem to get free region u t + ((u -1) 2 -1) x = 0 if x > 0, t > T n , u t + (u 2 ) x = 0 if x < 0, t > T n , u(x, T n ) = u n (x) for all x ∈ IR.

                                   g -1 f (v 1 ) if m 1 (T 2 -T 1 ) < x < 2β(T 2 -β1 ), u(0+, t + (x, T 2 )) if 2β(T 2 -β1 ) < x < 2γ(T 2 -γ1 ), b 2i 1 -1 if b 2i 1 -1 B 1 < x < 2b 2i 1 -1 (T 2 -t 2,3i 1 -2 ), u(0-, t + (x, T 2 )) if 2b 2i-1 (T 2 -t 2,3i-2 ) < x < 2b 2i (T 2 -t 2,3i-1 ), for i ≥ i 1 , b 2i if 2b 2i (T 2 -t 2,3i-1 ) < x < (b 2i + b 2i+1 )(T 2 -t 2,3i ), for i ≥ i 1 , b 2i+1 if (b 2i + b 2i+1 )(T 2 -t 2,3i ) < x < b 2i+1 (T 2 -t 2,3i+1 ), for i ≥ i 1 , v 2 if x > 0.
(4.99) Now u n (x) satisfies all the condition of Lemma 4.1, therefore there exists a m n < 0 such that the solution of (4.99) satisfies

u(x, t) = g -1 f (v n ) = w n (say) if m n (t -T n ) < x < 0, = v n if x > 0. (4.100) Let Ãn > B n , T n+1 > Ãn 2(1-vn) then A 1 < B 1 < Ã1 < A 2 < B 2 < Ã2 < A 3 < • • • < B n < Ãn ,
where n < Ãn and we are going to be choose Ãn , T n+1 in a suitable way. We choose v n+1 such that

v 1 < v 2 < ...... < v n < v n+1 < -1 (i+1) 2
for all i ≥ i n , |v n+1 | < 1 2 ln and v n+1 / ∈ D, for some l 1 ∈ N with l 0 < l 1 < .... < l n-1 < l n , (4.101) where i n is a large natural number with i n > i n-1 and we are going to choose i n later. x n+1,j .
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 11 See Figure (3) for clear illustrations.
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 4 58)for some z ∈ (c 1 , 0). In any case , by(4.54), (4.55), (4.56) and (4.58) we have L2 (t) < m < 0, for some m < 0. (4.59) Hence by (4.59) we have L 2 (t) < mt < 0. (4.60)

  for all n, with lim n→∞ T n = ∞ ( This violets Theorem 3.1 (i) without those assumptions).

  93) the solution of (4.59), (4.90) as follows (see Figure10) u(x, T 1 ) = u 1 (x) for all x.

(4. 94 )

 94 Now by (4.94) we can choose a partition such thatP 2,2i 1 -1 < P 2,2i 1 < • • • < 0, with lim j→∞ P 2,j = 0 such that u(P 2,i , T 2 ) = b i , for all i ≥ 2i 1 -1.(4.95)

DenoteAÃn 1 -a 2in- 1 , 1 j 3 / 2 ,

 11132 n+1 = 2T n+1 , B n+1 = T n 1 -(v n+1 -1) 2 v n+1 , s n+1 = (v n+1 -1) 2 -1 v n+1 , β n = 2 (v n -1) 2 -1, βn = Ãn 1 -v n , γ n = 2 (a 2in-1 -1) 2 -1, γn = Ãn + x n+1,2in-1 = A n+1 -2i = x n+1,2in-1 -i j=2i for i ≥ i n .Then by definitionx n+1,2in-1 < x n+1,2in < ........... < x n+1,i ..... < A n+1 and A n+1 = ∞ j=2in-1

  .71) It is clear from (4.70) and (4.71) that we can choose a large i 0 such that t1,i , t1,i > T 1 for all i ≥ i 0 .(4.72)

  2,2i-1 and x = (a 2i +a 2i+1 -2)t+ Ã1 +x 2,2i meet at time t = t2,i , the lines x = (a 2i +a 2i+1 -2)t+ Ã1 +x 2,2i and x = 2(a 2i+1 -1)t+ Ã1 +x 2,2i+1 meet at time t = t2,i , the linesx = (b 2i + b 2i+1 )(t -t 2,3i ) and x = 2b 2i (t -t 2,3i ) meet at time t = t 2,i , the lines x = (b 2i + b 2i+1 )(t -t 2,3i) and x = 2b 2i+1 (t -t 2,3i+1 ) meet at time t = t 2,i , then similarly as in (4.72), (4.81), (4.82) it is clear that there existsT 2 > Ã1 2(1-v 1 )and a large i 1 ∈ N such that no characteristics insersects in the region

(say) F 2 = {(x, t) : m 1 (t -T 1 ) < x < 0, T 1 < t < T 2 }.
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So we do get a free region (see Figure 9). Let Ã1 > B 1 , T 2 > Ã1

2 (1-v 1 ) , where Ã1 , T 2 are going to be choose in a proper way. We choose v 2 such that 1 2 l 1 and v 2 / ∈ D, for some l 1 ∈ N with l 0 < l 1 , (4.88)

where i 1 is a large natural number with i 1 > i 0 and we are going to choose i 1 later. Denote

Then by definition

Now consider the following initial value problem

with initial data u 0 as follows

(4.90)

The lines x = f (v 1 )t + Ã1 and x = s 1 t + T 1 meet at time

Figure 10:

Step 5 : Again we Consider the following problem

Now u 2 (x) satisfies all the condition of Lemma 3.2, therefore there exists a m 2 < 0 such that the solution of (4.97) satisfies

Then we can proceed as in Step 4 to get

Denote for i ≥ i n , t n+1,i be the time when the characteristics originating from x = x n+1,i , hits the line x = 0, then

) .

Finally we consider the following initial value problem

with the general initial data u 0 as follows

By similar methods as in Step 4, we can choose T n+1 and a i n large so that no characteristic intersects in the region (say)

Therefore by (4.104) the solution of (4.62), (4.103) as follows

Now from (4.105) (similarly as in step 3) we can choose a partition such that 44)), we have for x > 0,

(5.110) Then we have the following two cases. Case I: R(t) = 0. In this case u(x, t) = f * x-y + (x,t) t for all x > 0, hence by using the Lipschitz continuity of f * and monotonicity of y + , we obtain T V (u((• , t), I( ) ∪ I(M, )) ∩ IR + ) ≤ C t .

(5.111)

Where the constant depends only on the f * and M.

Case II: R(t) > 0. From Lemma 2.10 of [START_REF] Adimurthi | Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux[END_REF], we have f (λ + ) > f (B), when B = θ f . Again R-H condition yields g(λ -(t)) = f (λ + (t)). Since f (λ + (t)) > f (B) and g (λ -(t)) < A, hence the characteristics speed is never zero near interface, which allows λ + (t + (x, t)) = f * -y + (t + ) t + ∈ BV by using the Lipschitz continuity of f * and the monotoncity of t + , y + . Hence the result.