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This paper proposes a new approach of observer design for nonlinear systems described by a Takagi-Sugeno model. Its main contribution concerns models with premise variables depending on the system states which are completely or partially unknown. This case is more difficult than when the premise variables are known or measured. Indeed, in that case, weighting functions of the observer depend on state estimates and the state estimation error is then governed by a Lipschitz nonlinear system. Here, two main results are established. Firstly, relaxed stability conditions guaranteeing asymptotic stability of the observer by using a fuzzy Lyapunov function are provided. This aims to reduce the conservativeness compared to the existing works and enhance the maximal admissible Lipschitz constant for which the linear matrix inequality (LMI) conditions are feasible. Secondly, the Input-to-State Stability concept combined to a polyquadratic Lyapunov function are used for guaranteeing a bounded state estimation error which relaxes the conservativeness related to the Lipschitz constant. The robustness aspect is dealt with respect to some bounded modeling uncertainties and additive bounded perturbations. The stability conditions are expressed in terms of LMI.

I. INTRODUCTION

Observer design for nonlinear systems is a challenging problem which is intensively studied in control and diagnosis fields. Indeed, many approaches have been proposed in order to estimate the states of such systems. Firstly, in [START_REF] Thau | Observing the state of non-linear dynamic systems[END_REF], the author proposed a method for systems modeled by a linear part and a nonlinear Lipschitz one for which stability conditions were proposed. Thereafter, in [START_REF] Raghavan | Observer design for a class of nonlinear systems[END_REF], an iterative algorithm was proposed to deal with the problem of observer design, however the method may fail even if the system is observable. In [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF], the H ∞ formulation is exploited in order to provide necessary and sufficient conditions for stability of the state estimation error for Lipschitz systems. This work is extended in [START_REF] Pertew | H ∞ observer design for Lipschitz nonlinear systems[END_REF] for dynamic gain observer design for the same class of systems. Many other works were also proposed, namely, sliding mode observers which are interesting due to their insensitivity to modeling uncertainties and external perturbations [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF], or high gain observer which are based on a mathematical transformation of the system by using immersion techniques [START_REF] Hammouri | High gain observer for structured multi-output nonlinear systems[END_REF], [START_REF] Hammouri | High gain observers based on immersion technics[END_REF]. D. Ichalal is with the IBISC laboratory, Université d'Evry-Vald'Essonne, 40, rue du Pelvoux, Courcouronnes 91020 Evry Cedex, France {dalil.ichalal}@ibisc.univ-evry.fr B. Marx, J. Ragot and D. Maquin are with the Centre de Recherche en Automatique de Nancy, Université de Lorraine -CNRS, 2, avenue de la forêt de Haye 54516 Vandoeuvre-les-Nancy, France {benoit.marx, jose.ragot, didier.maquin}@univ-lorraine.fr

In these last years, the Takagi-Sugeno (T-S) approach, introduced in [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF], offered an interesting tool for studying nonlinear systems. This structure may represent or approximate strongly nonlinear systems with a simple mathematical representation consisting in several linear submodels weighted by nonlinear functions satisfying the convex sum property. These weighing functions may depend on measurable premise variables (input, output of the system or external variable as linear parameter variable (LPV) systems), or/and unmeasurable premise variables (UPV) as the state of the system. The T-S approach is interesting because it allows to extend some control and observation methods, previously dedicated to linear systems, to nonlinear ones [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF].

The problem of state estimation of nonlinear systems using T-S model approach has been addressed with different methods, the most of the published works considered T-S models with measurable premise variables [START_REF] Akhenak | Design of sliding mode unknown input observer for uncertain Takagi-Sugeno model[END_REF], [START_REF] Akhenak | Fault detection and isolation using sliding mode observer for uncertain Takagi-Sugeno fuzzy model[END_REF], [START_REF] Marx | Design of observers for Takagi Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF], [START_REF] Patton | Fuzzy observers for nonlinear dynamic systems fault diagnosis[END_REF]. Clearly the case of measurable premise variables offers a simpler way to generalize the methods already developed for linear systems. However, T-S models with UPV naturally arise when they are obtained from a nonlinear system ( ẋ = f (x, u)) by mathematical transformations. The most wellknown is the so-called sector nonlinearity transformation providing an exact T-S model with no loss of information, in a compact set of the state space. Furthermore, the T-S models with UPV may represent a larger class of nonlinear systems compared to the T-S model with measurable premise variables [START_REF] Yoneyama | H ∞ filtering for fuzzy systems with immeasurable premise variables: an uncertain system approach[END_REF].

However, T-S models with UPV are more difficult to deal with than those with measurable premise variables. Consequently, few works are devoted to this class of models despite of their advantages. Nevertheless, we can cite [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF] which is the first work dealing with the problem of observer design for this class of nonlinear systems. Extensions of this approach have also been published in [START_REF] Bergsten | Fuzzy observers[END_REF] and [START_REF] Palm | Sliding mode observers for Takagi-Sugeno fuzzy systems[END_REF]. Let us also mention [START_REF] Yoneyama | H ∞ filtering for fuzzy systems with immeasurable premise variables: an uncertain system approach[END_REF] where a filter estimating the state and minimizing the effect of disturbances is proposed. More recently, new approaches have been proposed in [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variables[END_REF], [START_REF] Ichalal | Design of observers for Takagi-Sugeno systems with immeasurable premise variables: an L 2 approach[END_REF], [START_REF] Ichalal | An approach for the state estimation of Takagi-Sugeno models and application to sensor fault diagnosis[END_REF], [START_REF] Ichalal | State estimation of Takagi-Sugeno systems with unmeasurable premise variables[END_REF]. In [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variables[END_REF], the differential mean value theorem is combined to sector nonlinearity transformation to re-write the state estimation error as an autonomous T-S system in order to be able to apply the classical stability studies developed for T-S systems. A similar problem is studied recently for a special case of discrete-time LPV systems with uncertain parameters in [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF] and [START_REF] Millérioux | Bounded State Reconstruction Error for LPV Systems With Estimated Parameters[END_REF].

In this work, observer design approaches are proposed for estimating the state of nonlinear systems represented by a T-S model with UPV. The contributions of this paper concern: the establishing of relaxed stability conditions by the use of a polyquadratic Lyapunov function, the increasing of the maximal admissible Lipschitz constant allowing to obtain a solution and finally, the combination of polyquadratic Lyapunov function with input-to-state stability (ISS) to ensure the bounded state estimation error which is used to deal with T-S systems with modeling uncertainties. The established inequalities are stated in an adequate form for applying several relaxations provided in the literature as Polya's theorem [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF], Tuan's lemma [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF], or the use of non quadratic Lyapunov functions [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF]. The paper is organized as follows: In section II, an observer ensuring asymptotic convergence is proposed by using a polyquadratic Lyapunov function and the Lipschitz condition. In section III, an approach combining polyquadratic Lyapunov function and ISS concept is proposed in order to overcome the problem related to the Lipschitz constant and finally, in the last section, conclusion and future works are discussed.

II. ASYMPTOTIC OBSERVER DESIGN

Let us consider a nonlinear system described by the following T-S model

   ẋ(t) = r ∑ i=1 µ i (x(t))(A i x(t) + B i u(t)) y(t) = Cx(t) (1) 
where x(t) ∈ R n is the state vector, u(t) ∈ R n u is the input vector and y(t) ∈ R n y represents the output vector. A i ∈ R n×n , B i ∈ R n×n y , C i ∈ R n y ×n are known matrices and r is the number of sub-models. The functions µ i (x(t)) are the weighting functions depending on the state variables x(t) which are non measurable variables. These functions verify the so-called convex sum properties

r ∑ i=1 µ i (x(t)) = 1, 0 ≤ µ i (x(t)) ≤ 1 ∀i ∈ {1, ..., r} (2) 
The output equation is chosen to be linear with regard the state, which is frequently the case in practice.

A. Observer structure

Let us first introduce the following notations

X µ = r ∑ i=1 µ i (x(t))X i , X µ µ = r ∑ i=1 r ∑ j=1 µ i (x(t))µ j (x(t))X i j (3) X μ = r ∑ i=1 μi (x(t))X i , X μ μ = r ∑ i=1 r ∑ j=1 μi (x(t)) μ j (x(t))X i j (4)
where X i and X i j stands for any matrices, e.g. A i or B i . Using these notations, the system (1) becomes

ẋ(t) = A µ x(t) + B µ u(t) y(t) = Cx(t) (5)
The proposed observer is given by

ẋ(t) = A μ x(t) + B μ u(t) + P -1 μ L μ (y(t) -ŷ(t)) ŷ(t) = C x(t) (6) 
where the matrices L i and the symmetric positive definite matrices P i are to be determined. The state estimation error e(t) = x(t)x(t) governed by the following nonlinear differential equation depending on the system state x(t), its estimate x(t), the system input u(t) and the state estimation error e(t)

ė(t) = Φ μ μ e(t) + δ (x, x, u) (7) 
where [START_REF] Ichalal | On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variables[END_REF] with P i = P T i > In this section, the following assumptions are made

Φ μ μ = A μ -P -1 μ L μC (8) δ (x, x, u) = f ( x, x, u) -f (x, x, u) (9) f ( x, x, u) = A μ x(t) + B μ u(t)
• A1. The function f in ( 10) is Lipschitz with respect to its first variable. Then, there exists a positive scalar η such that δ T (x, x, u)δ (x, x, u) ≤ η 2 e T (t)e(t). • A2. There exists positive scalars ρ i such that the weight- ing functions satisfy | μi ( x(t)| ≤ ρ i .

B. Stability analysis

First sufficient LMI conditions for asymptotic convergence of the state estimation error [START_REF] Hammouri | High gain observer for structured multi-output nonlinear systems[END_REF] are given in the next theorem.

Theorem 1: Under the assumptions A1 and A2, if there exists a matrix P 0 , symmetric and positive definite matrices P i , gain matrices L i and a positive scalar λ satisfying the following LMI

M i j < 0, i, j = 1, . . . , r (11) 
P i -P 0 ≥ 0, i = 1, . . . , r (12) 
where M i j = Ω i j P j P j -λ I [START_REF] Ichalal | State estimation of Takagi-Sugeno systems with unmeasurable premise variables[END_REF] and

Ω i j = A T i P j + P j A i -C T L T i -L i C + r ∑ i=1 ρ i (P i -P 0 ) + λ η 2 I
(14) then the state estimation error asymptotically converges towards zero.

Proof: To prove the stability of the state estimation error [START_REF] Hammouri | High gain observer for structured multi-output nonlinear systems[END_REF], let us consider the fuzzy Lyapunov function V (e(t)) = e T (t)P μ e(t) [START_REF] Lendek | Distributed Fuzzy and Stochastic Observers for Nonlinear Systems[END_REF] The matrices P i symmetric positive definite and the weighting functions satisfying (2), the function V (e(t)) is positive too. Its time derivative is given by V (e(t)) = ėT (t)P μ e(t) + e T (t)P μ ė(t) + e T (t) Ṗμ e(t) [START_REF] Marx | Design of observers for Takagi Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF] The derivative of P μ is given by

Ṗμ = r ∑ i=1 μi ( x)P i ( 17 
)
Substituting Ṗμ and ( 7) in ( 16), one obtains

V (e(t)) = e T (t) Φ T μ μ P μ + P μ Φ μ μ + Ṗμ e(t) + 2e T (t)P μ δ (x, x, u) (18)
With assumption A1 and since it is well known that the following inequality holds

X T Y +Y T X ≤ X T ΣX +Y T Σ -1 Y (19)
for any matrices X, Y and Σ = Σ T > 0, then, for any positive λ , it follows 2e T (t)P μ δ (x, x, u) ≤ λ η 2 e T (t)e(t) + λ -1 e T (t)P μ P μ e(t) (20) and, with assumption A2, Ṗμ is bounded by

Ṗμ ≤ r ∑ i=1 | μi ( x)| P i = r ∑ i=1 ρ i P i (21)
Moreover, due to (2), it obviously follows

r ∑ i=1 μi ( x) = 0 ⇒ r ∑ i=1 μi ( x)P 0 = 0 ( 22 
)
for any matrix P 0 which is a slack variable introducing an additional degree of freedom [START_REF] Mozelli | Reducing conservativeness in recent stability conditions of TS fuzzy systems[END_REF]. In the remaining of the paper, P 0 is chosen to be symmetric. Then, the time derivative of the Lyapunov function is bounded as follows

V (e(t)) ≤ e T (t)(Φ T μ μ P μ + P μ Φ μ μ + r ∑ i=1 ρ i (P i -P 0 ) + λ η 2 I + λ -1 P μ P μ )e(t) ≤ e T (t)(A T μ P μ P μ A μ -C T L T μ -L μC + r ∑ i=1 ρ i (P i -P 0 ) + λ η 2 I + λ -1 P μ P μ )e(t) (23) 
where P i -P 0 ≥ 0. The negativity of V (e(t)) is ensured if

A T μ P μ + P μ A μ -C T L T μ -L μC + r ∑ i=1 ρ i (P i -P 0 ) + λ η 2 I + λ -1 P μ P μ < 0 ( 24 
)
This inequality can be expressed as follows using the Schur complement

M μ μ < 0 ( 25 
)
where M i j is defined by [START_REF] Ichalal | State estimation of Takagi-Sugeno systems with unmeasurable premise variables[END_REF]. Since the weighting functions satisfy (2), the inequality (25) holds if the LMIs (11) are satisfied, which achieves the proof.

C. Relaxed LMI formulation of stability conditions of the state estimation error

Note that the negativity of ( 25) is largely studied in the literature. An intuitive and first result on stability of T-S systems is the negativity of each term of the sum [START_REF] Sontag | On the input-to-state stability property[END_REF], leading to the result presented above. This result may be very conservative; relaxed stability conditions have been provided using various approaches like Tuan's lemma [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF] and Polya's theorem [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]. Let us examine the use of Tuan's lemma. Inequality [START_REF] Sontag | On the input-to-state stability property[END_REF] holds if the following following inequalities are satisfied

M ii < 0, i = 1, ..., r 2 r-1 M ii + M i j + M ji < 0, j = i (26)
The power of this result is its significant conservatism reduction without adding slack variables to increase the number of degree of freedom.

Another less restrictive approach is given by simple manipulations of the sums in order to obtain the LMIs [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF], [START_REF] Ichalal | New fault tolerant control strategies for nonlinear Takagi-Sugeno systems[END_REF], in instance, by multiplying by one sum, one obtains

       M ii < 0, i = 1, ..., r M ii + M i j + M ji < 0, j = i M i j + M ji + M ik + M ki + M jk + M k j < 0, i = j, i = k, j = k (27)
Note also that most of relaxed stability approaches proposed recently are expressed as LMI with double summation indexes, as the LMI given in [START_REF] Sontag | On the input-to-state stability property[END_REF]. Consequently, one of the advantages of using polyquadratic Lyapunov functions is, especially, to find an inequality with a double sum as shown in [START_REF] Sontag | On the input-to-state stability property[END_REF].

III. GUARANTEED BOUNDED RECONSTRUCTION ERROR

In this section, a robust observer is designed for T-S systems with UPV. The objective is to provide LMI conditions where the Lipschitz constant η is not needed. The second objective is to design a robust observer with respect to modeling uncertainties. For that purpose, a bounded estimation error convergence is proven instead of asymptotic one, by considering ISS.

A. Bounded estimation error

Let us consider the system (5) and the corresponding proposed observer [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF]. The state estimation error dynamics is given by [START_REF] Hammouri | High gain observer for structured multi-output nonlinear systems[END_REF]. Consider also the same polyquadratic Lyapunov function defined in [START_REF] Lendek | Distributed Fuzzy and Stochastic Observers for Nonlinear Systems[END_REF] as well as the following assumptions

• A3. The input u(t) is bounded • A4. system is input-to-state stable (ISS), i.e. the system state x(t) is bounded for bounded input u(t) • A5. There exists positive scalars ρ i such that the weight- ing functions satisfy | μi ( x(t)| ≤ ρ i . These assumptions lead to a bounded perturbation term δ (x, x, u). For the sake of clarity, this term will be noted δ (t) in the following. One can note that the Lipschitz assumption of the function f ( x, x, u) is no longer needed. The convergence conditions of the state estimation error are established in the theorem 2.

Definition 1: The system ( 7) is said to be ISS if there exists a K L function β : R n × R → R and a K function α : R → R such that, for each input δ (t) satisfying δ (t) ∞ < ∞ and each initial condition e(0) ∈ R n , the trajectory of [START_REF] Hammouri | High gain observer for structured multi-output nonlinear systems[END_REF] associated with e(0) and δ (t) satisfies

e(t) ≤ β ( e(0) ,t) + α ( δ (t) ∞ ) , ∀t (28) 
Theorem 2: Under the assumptions A3, A4 and A5, given a scalar α > 0. If there exists a matrix P 0 , symmetric and positive definite matrices P i , gain matrices L i and a positive scalars γ and c solution to the following optimization problem min P 0 ,P i ,L i ,γ,c γ under the constraints

P i -P 0 ≥ 0, i = 1, . . . , r (29)        Ξ ii < 0, i = 1, ..., r Ξ ii + Ξ i j + Ξ ji < 0, j = i Ξ i j + Ξ ji + Ξ ik + Ξ ki + Ξ jk + Ξ k j < 0, i = j, i = k, j = k (30)
where Ξ i j is defined by

Ξ i j =   A T i P j + P j A i -L i C -C T L T i + r ∑ i=1 ρ i (P i -P 0 ) + αP j P j P j -cI   (31) c -αγ ≤ 0 (32)
then the error dynamics ( 7) is ISS with respect to δ (t) and satisfy the following inequality

e(t) 2 ≤ α 2 α 1 e(0) 2 e -α 2 t + c αα 1 δ (t) ∞ ( 33 
)
The gains L i of the observer are obtained directly and the attenuation level of the transfer from δ (t) to e(t) is c αα 1 . Proof: Let us consider the fuzzy Lyapunov function defined by [START_REF] Lendek | Distributed Fuzzy and Stochastic Observers for Nonlinear Systems[END_REF]. Following the same steps as in ( 16)-( 18), one obtains

V (e(t)) = e T (t) Φ T μ μ P μ + P μ Φ μ μ + Ṗμ e(t) + 2e T (t)P μ δ (t) (34) 
With ( 21)-( 22), the equality (34) is bounded as follows

V (e(t)) ≤ e T (t) Φ T μ μ P μ + P μ Φ μ μ + r ∑ i=1 ρ i (P i -P 0 ) e(t) +2e T (t)P μ δ (t) (35) 
From assumptions A3, A4 and A5, the term δ (t) is bounded. The inequality (35) is equivalent to

V (e(t)) ≤ e T a (t)Ξ μ μ e a (t) -αe T (t)P μ e(t) + cδ T (t)δ (t) (36) where

Ξ μ μ =   Φ T μ μ P μ + P μ Φ μ μ + r ∑ i=1 ρ i (P i -P 0 ) + 2αP μ P μ P μ -cI  
(37) and α, c are positive scalars and e a (t) = [e T (t) δ T (t)] T . If the inequality (30) holds, the inequality Ξ μ μ < 0 is also satisfied, then, it follows

V (e(t)) ≤ -αe T (t)P μ e(t) + cδ T (t)δ (t) (38) ≤ -αV (e(t)) + cδ T (t)δ (t) (39) 
One obtains

V (e(t)) ≤ V (0)e -αt + c t 0 e -α(t-s) δ (s) 2 2 ds (40)
Due to the fact that the weighting functions µ i ( x) satisfy (2), then it is easy to derive that, for any e(t) ∈ R n , it holds

α 1 e(t) 2 ≤ V (e(t)) ≤ α 2 e(t) 2 , ∀e(t) ∈ R n (41)
where α 1 = min 1≤i≤r λ min (P i ) and α 2 = max 1≤i≤r λ max (P i ), where λ min (M) (resp. λ max (M)) denotes the minimal (resp. max- imal) eigenvalue of the matrix M. The inequality (40) becomes

α 1 e(t) 2 2 ≤ α 2 e(0) 2 2 e -αt + c α δ (t) 2 ∞ (42)
which leads to

α 1 e(t) 2 2 ≤ α 2 e(0) 2 2 e -αt + c α δ (t) 2 ∞ (43)
Finally, using the square root on equation ( 43), on obtains

e(t) 2 ≤ α 2 α 1 e(0) 2 e -α 2 t + c αα 1 δ (t) ∞ ( 44 
)
From this equation, we conclude that if δ (t) ∞ = 0 then e(t) 2 → 0 when t → ∞. Moreover, in the presence of the perturbation δ (t), the error e(t) 2 is bounded by γ δ (t) ∞ where γ = c αα 1 in the steady state. As a conclusion, the Input-To-State (ISS) stability is proven with the inequality (44).

Note that the size of the convergence set D depends of the selected matrices P i and the parameters α and c. The set D should be made as small as possible to ensure a good accuracy of convergence. The choice of α, c and P providing a small set of convergence is not obvious because the problem is not convex. In the next, a technique is proposed to transform the non convex problem to a convex one under LMI constraints. Let us consider the following inequality

c αα 1 ≤ √ γ ( 45 
)
where γ is a positive scalar to minimize. Let us consider the assumption that P i ≥ I, then α 1 = min 1≤i≤r λ min

(P i ) = 1. It follows, form (45) that c -αγ ≤ 0 (46) 
Then, by fixing the parameter α > 0, the optimization problem given in the theorem 2 are obtained, which ends the proof.

B. Robustness with respect to modeling uncertainties

The observer proposed in the last section guarantees bounded estimation error. It is easy to prove that this observer is robust for some bounded modeling uncertainties. Indeed, the uncertainties can be included in the disturbance-like term obtained from the fact that the weighting functions of the T-S model are unmeasurable. Consider the uncertain system:

ẋ(t) = (A µ + ∆A µ )x(t) + (B µ + ∆B µ )u(t) y(t) = (C + ∆C)x(t) (47) 
with the observer (6), the state estimation error obeys to the differential equation

ė(t) = Φ μ μ e(t) + δ (x, x, u) (48) 
where

Φ μ μ = A μ -P -1 μ L μC and δ (x, x, u) = A µ -A μ + ∆A µ -P -1 μ L μ ∆C x(t) + B µ -B μ + ∆B µ u(t) (49)
Note that the state estimation error (48) has the same form as that given in [START_REF] Hammouri | High gain observer for structured multi-output nonlinear systems[END_REF]. All the uncertain terms are included in the disturbance-like term δ (x, x, u). This fact allows to use the result obtained in the last section and hence to prove the ISS from δ to the state estimation error. The only difference concerns the bound of this perturbation term. Then by minimizing the effect of δ (x, x, u) a robust observer is obtained with respect to some modeling uncertainties.

Remark 1: It is known that using a fuzzy Lyapunov function is less conservative than using a quadratic one, especially when the T-S model contains a large number of sub-models. Furthermore, the LMI problem can be solved for larger Lipschitz constant compared to the existing results (see the example) [START_REF] Bergsten | Thau-Luenberger observers for TS fuzzy systems[END_REF], [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF], [START_REF] Lendek | Distributed Fuzzy and Stochastic Observers for Nonlinear Systems[END_REF].

Remark 2: The second result aims to provide LMI conditions without needing any calculation of the Lipschitz constant. Then, this last has a larger domain of applicability compared to the first one. However, the price to pay is the loss of asymptotic convergence which is replaced by an ISS property.

Remark 3: The proposed results are firstly given in the form of double sums inequalities represented in general by

M μ μ < 0 (50) 
This is an adequate form to use the recent result on conservatism reduction, namely the Polya's theorem which provides asymptotic necessary and sufficient stability conditions. It is easy to derive these conditions (as given in the theorem 2) (for more details, the reader can refer to [START_REF] Ichalal | New fault tolerant control strategies for nonlinear Takagi-Sugeno systems[END_REF], [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]). Remark 4: The ISS is also preserved if any bounded additive disturbances ω(t) and v(t) respectively affect the state dynamics and measurement equations. Indeed, it can easily be seen that the term δ (x, x, u) can include the disturbances as follows

δ (x, x, u) = A µ -A μ x + B µ -B μ u + ω + P -1
μ L μ v (51) For bounded ω(t) and v(t), then δ (x, x, u) is still bounded. In addition, the proposed observer can take into account uncertainties on the premise variables.

Remark 5: Note that the results are easily extended to systems with nonlinear output equation given by

y(t) = r ∑ i=1 µ i (x)C i x(t) (52)
Remark 6: In the first proposed approach, asymptotic convergence of the state estimation error is sought, based on the (assumed) Lipschitz property of the disturbance-like term. This can only be ensured for some values of the Lipschitz constant (feasibility of the LMIs). In the second approach, the goal is no longer asymptotic convergence, but only convergence in a ball. In that case, the Lipschitz assumption is not needed.

IV. SIMULATION EXAMPLE Due to space limitation, only the second approach is illustrated and discussed. Let us consider the Rossler chaotic system modeled in the form of (1) with two sub-models (r = 2) defined as follows

A 1 =   -10 10 0 28 -1 -x 1 max 0 x 1 max -0.37   , A 2 =   -10 10 0 28 -1 -x 1 min 0 x 1 min -0.37   , B 1 = B 2 =   0 0 0   , C = 0 1 0 0 0 1
The premise variable is x 1 (t) which is bounded by x 1 min = -9.8693 and x 1 max = 13.8164. The weighting functions are defined by

µ 1 (x(t)) = x 1 (t) -x 1 min x 1 max -x 1 min µ 2 (x(t)) = x 1 max -x 1 (t) x 1 max -x 1 min
The time derivatives of µ i (x), i ∈ {1, 2} are bounded by ρ 1 = ρ 2 = 4.5. The Lipschitz constant of the term δ is computed and given by η = 173.35. The approach given in [START_REF] Bergsten | Thau-Luenberger observers for TS fuzzy systems[END_REF] A second simulation is performed with a centered measurement noise ν(t) in the range -0.33 and 0.33. This case corresponds to a perturbation term δ (t) given in equation (51) with ω(t) = 0. The norms e(t) 2 and γ δ (t) ∞ are depicted in the figure 2 and illustrates that the norm of the error is always less than γ δ (t) ∞ . 

V. CONCLUSIONS AND FUTURE WORKS

In this paper, some advances in observer design for Takagi-Sugeno systems with UPV are proposed. A focus has been made on some problems, namely, the conservativeness of the existing results on observer design for T-S systems with UPV and the maximal admissible Lipschitz constant allowing to solve the LMI constraints, and the robustness with respect to bounded modeling uncertainties and bounded additive perturbations. The first problem is dealt with by using a polyquadratic Lyapunov function and asymptotic stability conditions are provided. For the second problem, the polyquadratic Lyapunov function and ISS concept are combined. The obtained results are expressed in terms of LMIs and optimization problem with LMI constraints. For future work, it is interesting to extend the results for both state and unknown input estimation for possible application in fault diagnosis and fault tolerant control of nonlinear systems. AN extension of some recent results will be considered for LMI conditions independent from derivative bounds of the weighting functions.
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 1 Fig. 1. State variables (blue line) and their estimates (red dashed lines)

Fig. 2 .

 2 Fig. 2. Time evolution of ||e(t)|| and γ||δ (t)|| with noised measurement

  does not provide any solution to this example, since solution can only be obtained for Lipschitz constant smaller than 29.73. The LMIs given in the theorem 1 of the present paper are feasible for a maximal value of the Lipschitz constant η max = 476.87 which is larger than the real Lipschitz constant η = 173.35. Maximization of the Lipschitz constant can take into account some uncertainties in the nonlinear term δ (t).

		On the other
	hand, solving the optimization problem given in the theorem 2 with SEDUMI (YALMIP), the LMIs are feasible for α = 10 and the attenuation level of the transfer of δ (t) towards e(t) is √ γ = 0.0549 which is greater than or equal to c αα 1 (in this example, the obtained γ is exactly the same as the
	quantity	c αα 1 ). The result of the state estimation is depicted
	on figure 1.