
HAL Id: hal-00868711
https://hal.science/hal-00868711

Submitted on 7 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ontology Based Log Content Extraction Engine for a
posteriori Security Control

Hanieh Azkia, Nora Cuppens-Boulahia, Frédéric Cuppens, Gouenou Coatrieux

To cite this version:
Hanieh Azkia, Nora Cuppens-Boulahia, Frédéric Cuppens, Gouenou Coatrieux. Ontology Based Log
Content Extraction Engine for a posteriori Security Control. Studies in Health Technology and Infor-
matics, 2012, 180, pp.746-750. �hal-00868711�

https://hal.science/hal-00868711
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Ontology Based Log Content Extraction

Engine for a posteriori Security Control

Hanieh AZKIA
a,1

, Nora CUPPENS-BOULAHIA
a
, Frédéric CUPPENS

a
,

Gouenou COATRIEUX
a
IT/Telecom Bretagne, 2 Rue de la Châtaigneraie 35576 Cesson Sévigné, France

Abstract. In a posteriori access control, users are accountable for actions they

performed and must provide evidence, when required by some legal authorities for

instance, to prove that these actions were legitimate. Generally, log files contain

the needed data to achieve this goal. This logged data can be recorded in several

formats; we consider here IHE-ATNA (Integrating the healthcare enterprise-Audit

Trail and Node Authentication) as log format. The difficulty lies in extracting

useful information regardless of the log format. A posteriori access control

frameworks often include a log filtering engine that provides this extraction

function. In this paper we define and enforce this function by building an IHE-

ATNA based ontology model, which we query using SPARQL, and show how the

a posteriori security controls are made effective and easier based on this function.

Keywords. Access Control, Log, IHE-ATNA, Ontology, SPARQL

Introduction

In information systems like Healthcare systems, where environment is supposed to be

trustworthy, policy makers prefer to specify minimum security checks during the

operations. Security controls are made later. This kind of control is called a posteriori

security control. It lets users continue their work, without blocking them due to some

security policy rules. However, policies are checked after granting access by a security

controller. According to a posteriori access control approaches [1, 2], this kind of

control requires three components: (1) a log process records the history of actions that

have been executed, (2) a log analysis identifies abnormal actions through the

verification of logs, and (3) an accountability procedure takes as input abnormal actions

and verifies whether the dysfunction was authorized or not. In this paper, we focus on

the log process and particularly on the log content extraction engine. The log process

takes as input a log format, here IHE-ATNA, and rewrites it in a common knowledge

representation format. This transformation makes easier the investigation of different

logs independently of their original log formats. The log content extraction engine,

using a query language, takes the logged data in this rewritten format and generates as

output some useful data. The analysis process, based on these log extraction results,

determines whether the logged actions are consistent with the security policy.

In our study we focus on healthcare systems and use IHE-ATNA (Integrating the

Health care Enterprise [3] - Audit Trail and Node authentication [4]), a log structure

1
 Corresponding Author. Hanieh Azkia is funded by a grant from the Britany region and the ANR

SELKIS project, email : hanieh.azkia@telecom-bretagne.eu

1

standard in medical information systems. The approach is based on building ontology

of logs. This avoids dealing with specific (logical or physical) information system

design. So the logged data can be easily compared to the attributes of the security

policy by exporting, translating and querying them and thus checking if the logged data

are compliant with the security policy. In this paper, for the sake of clarity, the security

policy is represented by a set of quadruples <subject; action; object; interval> which

represent a subject is permitted to execute an action on an object on a given time

interval. Since the security policy is checked using an a posteriori process, the time

interval refers to time when the permission was active.

The reminder of this paper is organized as follows. Section 1 explains how we

build ontology of logs. Section 2 presents an ontology example based on the IHE-

ATNA standard. Section 3 presents the log engine enforcement and extraction

processes, and shows how to query logged data for security investigation purpose.

Finally, section 4 concludes and presents future works.

1. Security and logs

The core idea of our approach is to perform extraction and filtering of data that can be

mapped onto or abstracted into security policy concepts and attributes. As the log

structure and policy structure are generally different, we need to reconcile the log and

policy concepts. The kind of data must be generated in the logs are configured either by

an administrator or governed by some norms and standards. So to define our

ontological representation of logs, we need the following necessary inputs:

• Terminology used in the target domain: most of the ontology classes are

derived from this terminology to represent explicitly and assign consistent

meaning to the target domain concepts. In a medical context, such significant

concepts are for instance: Physician, Patients Records, etc.

• Log structure of the target system: this second source of concepts enriches the

ontology classes and relations. It might be based on standards, standards de

facto or simply built-in structures, like the structure of log provided by IHE-

ATNA. Each ATNA log record is a triple: (1) the original “Host”, a specific

hardware, software where the action occurred, (2) A “TimeStamp”, which

determines the time when an action in an auditable scenario occurred, and (3)

a fixed number of “Auditable events” with parameters (e.g. PatientRecord

event which generates logs whenever a patient record is created, modified or

accessed.). From these three elements, we derive the main classes, object

properties and data properties to be added to the log ontology.

• Security policy model: we draw on the language and concepts on which this

model rests. Existing security models like RBAC [5] or OrBAC [6, 7] have

their own concepts which are not similar to those of ATNA logs. For instance,

the RBAC model is based on the concept of role whereas OrBAC introduces

other concepts like organization and context. However, all these models have

in common that they provide means to derive if a given subject is permitted to

execute a given action on a given object at a given time. For the sake of clarity

and conciseness, we use in this paper a less expressive security model than

RBAC or OrBAC, close to the discretionary model where we cover the

concepts of subject, action and object plus a temporal context.

2

2. Ontology example

Using the three aforementioned inputs, figure 1 shows a part of the log ontology related

to one of the most important ATNA Auditable event named, “BeginStoringInstances”.

This log record is generated whenever a system begins to transfer a set of medical

studies from one node to another node.

Figure 1. An excerpt of the whole ontology: “BeginStoringInstances”ontology

Once the log ontology is built, it can be queried to obtain information needed to

make decision or to check any dysfunction in the information system. The ontology

querying process may be triggered periodically or not. In periodic case, the query will

be activated every day, week, month, etc. Otherwise, some causes will trigger the

query, for example, an auditor request due to a security problem. This process is

synchronized with the analysis process. In periodic case the scope of investigation is

wide and the analysis must consider all the logged events and actions since the last

audit. But in non periodic case, the analysis investigates only the logs related to a

specific subject, action or object concerned by the activated event.

3. Querying the log for security investigation

A general schema for “Log Engine Model” is depicted in figure 2. The main process,

after building the log ontology, is querying the log. This step uses SPARQL queries

that are sent to a middleware called “adapter” which evaluates them. The main

objective of this adapter is to perform a mapping between logged data which are stored

in some built-in or native log format and which will be rewritten in our ontology

model. In other words, the adapter takes a SPARQL query as input regardless

compatibility between logged data format and the query language, evaluates it and

returns the result in a desired format. There are four types of SPARQL query that we

can use to query logged data: (1) “SELECT”, the adapter returns a set of tuples, (2)

“ASK”, the result is a Boolean and (3) “CONSTRUCT” or (4) “DESCRIBE” it returns

an RDF graph. We now illustrate some examples of “SELECT” queries and we discuss

how each of them helps auditor to find an effective or potential violation in logged data.

3

Figure 2. Log Engine Model

Query for monitoring purpose: this kind of query covers the wide investigation

objective. It is usually used for security and quality controls. In the case of the

“BeginStoringInstances” scenario, this query returns all users who perform an action

on an object in this ATNA auditable event. The result obtained is displayed in triple

format <subject; action; object>, see Figure 3:

Figure 3. Results of a monitoring query

In this case, there is not a security problem but the auditor verifies query results to

find a potential violation or a system dysfunction. For example, the object number

“12234” has been modified by “Bob” and “Alice”. The auditor will verify the

authorized and legal accesses of both users in the security policy.

Query in the case of dysfunction: this kind of queries has a specific scope of

investigation. It is issued by the auditor for a particular security reason, for instance

creation of an unknown patient record. In this case, the auditor must find subjects who

performed “create action” of this patient record and verify the consistency between the

query result and policy rules. Thus, the auditor checks if these subjects were allowed to

perform this action. In Figure 4, an “order Filler” subject has created a patient record

“05KAHNA”. This action seems abnormal because “order Filler” is an application that

manages the working list and accepts or rejects the scheduled work orders.

Figure 4. Results of query about dysfunction

Query in the case of violation: let Ted be a patient who complains for an unexpected

modification in his study. In this case, the query interrogates which subjects and actions

have accessed to Ted’s study. In Figure 5, there are three actions performed by three

4

different users on Ted’s study. The auditor verifies in the set of security rules, who was

authorized to modify Ted’s study.

Figure 5. Results of query to detect violations

4. Conclusion

Formalizing logged data and querying them provides efficient means to perform a

posteriori access control. An ontology modelling of logs brings several benefits with

regards to flexibility, adaptability and work efficiency. It lets us interrogate logged data

using query languages such as SPARQL and detect potential policy violations. There

are several interesting perspectives to this work. One of them is to use logged data to

manage changes in more advanced security policy. For example, we can use logged

data to check policy updates, detect creation of user sessions, activation of roles in

these sessions or verify context changes. Since standard log formats were not initially

designed to audit such security related actions, this is not a trivial extension that will be

addressed in a forthcoming paper.

References

[1] Corin R, Etalle S, J.den Hartog, Lenzini G, Staicu I. Logic for auditing accountability in decentralized

systems, Formal Aspects in Security and Trust Springer. Berlin 2004; 173: 187-202

[2] Azkia H, Cuppens-Boulahia N, Cuppens F, Coatrieux G. Reconciling IHE- ATNA Profile with

aposteriori Contextual Access and Usage Control Policy in Healthcare Environment, 6th IEEE

International Conference on Information Assurance and Security. Atlanta, USA 2010; 197-203

[3] Integrating the Healthcare Enterprise, IHE IT Infrastructure Technical Framework Supplement 2004-

2005 Audit Trail and Node Authentication Profille (ATNA), August 2004.

[4] Integrating the Healthcare Enterprise, IHE IT Infrastructure Technical Framework Volume I (ITI TF-1)

Integration Profiles, August 2009. www.ihe.net/Technical_Framework/index.cfm#IT

[5] Ferraiolo DF, Sandhu R, Gavrila S, Kuhn DR, Chandramouli R. Proposed NIST Standard for Role-

Based Access Control. ACM Transactions on Information and System Security, 2001; 4(3):224-274

[6] Abou El Kalam A, El Baida R, Balbiani P, Benferhat S, Cuppens F, Deswarte Y, Miège A, Saurel C,

Trouessin G. Organization Based Access Control Policy 03 Proceedings of the 4th IEEE International

Workshop on Policies for Distributed Systems and Networks. June 2003; 120-131

[7] Cuppens F, Cuppens-Boulahia N. Modeling contextual security policies. International Journal of

Information Security 2008; 7(4):285-305

5

