
HAL Id: hal-00868709
https://hal.science/hal-00868709v1

Submitted on 16 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal modelling and analysis of behaviour grading
within a peer-to-peer storage system

Samira Chaou, Franck Pommereau

To cite this version:
Samira Chaou, Franck Pommereau. Formal modelling and analysis of behaviour grading within a peer-
to-peer storage system. Theory of Modeling and Simulation: DEVS Integrative M and S Symposium
2012 (DEVS 2012), Part of the 2012 Spring Simulation Multiconference (SpringSim 2012), Mar 2012,
Orlando, FL., United States. pp.212–219. �hal-00868709�

https://hal.science/hal-00868709v1
https://hal.archives-ouvertes.fr

Formal Modelling and Analysis of Behaviour Grading within a

Peer-to-peer Storage System

Samira Chaou

UbiStorage, 20 av. Claudel, 80000 Amiens, France

samira.chaou@ubistorage.com

Franck Pommereau

IBISC, University of Évry, 91000 Évry, France

franck.pommereau@ibisc.univ-evry.fr

Keywords: peer-to-peer storage, security protocols, mali-

cious peers detection, Petri nets, model-checking, simulation

Abstract
In this paper, we extend a peer-to-peer based storage system

in order to cope with malicious nodes. To do so, we introduce

a grading system allowing peers to evaluate the outcome of

their transactions with others, and consequently allowing to

detect misbehaving peers.

We evaluate this extension by two means. On the one hand,

we have built a formal model of the system and used model-

checking to verify whether malicious peers can be always de-

tected or not. On the other hand, we have implemented the

system and used simulation to assess malicious peers detec-

tion in realistic situations.

Thanks to this analysis, we can guarantee that some attacks

are necessarily detected while others remain undetected and,

worse, may yield false positive (i.e., some peers are graded as

being malicious while they are not). We propose solutions to

improve this situation at the end of the paper.

1. INTRODUCTION

Ubiquitous Storage (UbiStorage) implements and commer-

cialises a storage solution based on a peer-to-peer network al-

lowing each user to securely store and retrieve data [2, 1]. The

system is provided to customers as a Linux server running the

peer-to-peer software as well as end-users services.

In [14], the security of the underlying protocols has been

assessed from a qualitative point of view, resorting to a formal

modelling of the protocols combined with automated model-

checking of typical scenarios as well as a manual proof. This

allowed to discover and fix flaws in the protocols in presence

of a Dolev-Yao attacker [5], that is by definition external to

the peer-to-peer network. Then, in [3], we considered attack-

ers within the system, i.e., malicious peers, and showed by

simulation the intrinsic resistance of the system to such mis-

behaving nodes.

To tackle the problem of malicious peers, one solution pro-

posed in [3] was to introduce a grading system allowing peers

to evaluate the outcome of their exchanges with others. With

such a system, when a peer is misbehaving, others will be

able to lower its grade and hopefully identify it as malicious.

In the current paper, we introduce and evaluate this grading

system. The work is twofold: on the one hand we have imple-

mented the grading system and evaluated it with simulations

similar to those presented in [3]; on the other hand, we have

formally modelled the protocol, including grading, and used

model-checking to verify if malicious nodes are systemati-

cally detected. Both works have been related in the sense that

interesting traces of the model have been manually checked

to be effectively realisable in the implementation. The conclu-

sions of our analysis is that systematics attacks on the data it-

self necessarily lead to lowering grades in such a way that ma-

licious nodes are detected. But attacks on meta-information

remain undetected and, worse, lead to false positive, i.e., hon-

est nodes are graded as malicious ones. Several solutions to

this problem are proposed at the end of the paper.

In the sequel we focus on the modelling and analysis of

the system, its implementation and simulation is a straight-

forward extension of that described in [3] and thus will be

treated more briefly. The rest of the paper is organised as fol-

lows. In the next section, we present the UbiStorage system.

Then, section 3 presents the formal model, section 4 compare

honest and malicious agents modelling, section 5 introduces

the grading system, and section 6 discusses the analysis we

conducted. We finally conclude with some perspectives.

2. THE UBISTORAGE SYSTEM

The system developed by UbiStorage is fully distributed

using peer-to-peer (P2P) communication. Each peer in the

system is a network node that runs the various services and

clients composing the system. The system is structured in

three layers:

• the application layer is directly queried from the end-

user interface and is based on three basic primitives:

primitive Put is used to store a file in the system, primi-

tive Get to get back a stored file, and primitive Delete to

remove a file from the system. Each primitive is imple-

mented as a corresponding protocol;

• the communication layer consists of a distributed hash

table (DHT) that stores all the information needed by

the application layer;

mailto:samira.chaou@ubistorage.com
mailto:franck.pommereau@ibisc.univ-evry.fr

Client MIS MonS RecS StrS

fragments

meta-informationServer peer

Client

Client peer

user interface StrSStrSStrS Other

peers

Figure 1. Internal organisation of peers and their communications. A disk stores data as well as meta-information about data.

• the routing layer uses a key-based routing protocol to

dispatch the messages exchanged within the DHT.

Each peer is identified by a unique 128 bits identifier called a

PeerID, it is responsible for storing files in a given range of

file identifiers (128 bits FileIDs), and it can allocate FileIDs

for its own files in another range (under the responsibility of

other peers).

The application layer is composed of five services also de-

picted in Fig. 1:

• the client service, depicted as Client, is responsible for

executing the Put, Get and Delete primitives in response

to requests from the end-user;

• the storage service (StrS) receives data fragments to be

stored from other peers or sends them back when re-

quested;

• the meta-information service (MIS) stores all the meta-

information related to the data fragments locally stored.

Each MIS is also responsible to keep all the meta-

information for a range of FileIDs, the corresponding

files being stored within the leaf-set composed of the

peer’s neighbours in the network. Notice that each peer

belongs to several leaf-sets as a storer but to only one as

a MIS;

• the monitoring service (MonS) monitors the MIS and

issues warnings when critical files are found, i.e., files

for which there exists just enough data fragment to allow

reconstruction;

• the reconstruction service (RecS) is responsible for ac-

tually reconstructing files and redistributing fragments

within the leaf-set when an alert is raised by the moni-

toring service.

Each file stored in the system is actually split into s+r frag-

ments using the Reed-Solomon code [13], which allows to re-

construct the whole file from any s fragments (the remaining r

fragments are for redundancy). Each storage service normally

holds only one fragment of any file, identified by its FragID

and the corresponding FileID. A meta-information service is

thus responsible for remembering the storers that hold the

fragments of a given FileID. This information can also be re-

constructed from the storers themselves (which occurs when

a peer, and thus its MI service, goes offline or crashes).

Communication in the system is based on the distributed

hash table (DHT) Pastry [8]. More details about communica-

tion can be found in [3], for our current purpose, it is enough

to note that a message sent by s to a node identified by i is

routed through the network and eventually received by the

peer whose identifier j is the closest to i among the peers that

are actually online when the communication occurs. This is

sketched in Fig 2.

0

2128−1

s

i j

Figure 2. Organisation of the Distributed Hash Table. White

dots denote online peers and black squares denote offline

peers. The dotted region corresponds to the leaf-set of s.

3. FORMAL MODELLING

The UbiStorage system has been modelled using the

ABCD formalism [11, sec. 5.2] that is an algebra of coloured

Petri nets, i.e., a process algebra with a coloured Petri net

semantics. In this case, the colour domain is Python lan-

guage [12], i.e., data and computation are expressed in

Python. For concision, we introduce ABCD directly while

presenting the model, the required notions will be presented

as needed. More details about ABCD may be found in [11].

Moreover, we will present only simplified excerpts of the

model in order to focus on its most important aspects.

An ABCD process comprises a number of buffers that store

data and can be accessed and shared by processes. The most

primitive process is an atomic action that performs accesses

to buffers, possibly guarded by a Boolean condition. Then,

processes can be combined using control flow operations: se-

quence (operator “;”), choice (operator “+”), iteration (op-

erator “*”) and parallel composition (operator “|”). In order

to bring modularity, one can use parametrised sub-processes

that can be later instantiated. Our modelling makes an exten-

sive use of sub-processes in order to structure the model in a

way similar to the structure of the real system.

Fig. 3 shows a fragment of our model. Let us first

concentrate on the net declarations that define processes

(with nested declarations allowed): a process declaration

UbiSystem (lines 3–49) includes two sub-processes decla-

rations Peer (lines 7–44) and User (lines 46–47), to model

a node in the P2P network and its user. At the end of

UbiSystem, one instance of Peer and one instance of User

are composed in parallel (line 49) to define the behaviour of

process UbiSystem. A Peer declaration includes the declara-

tion of the main services shown in Fig. 1, except that we omit

the reconstruction part (and so monitoring and reconstruction

services) as well as file deletion, but we include a Router

sub-process responsible for passing messages throughout

the P2P network. Monitoring and reconstruction has been

omitted because we have abstracted away peers churning

(i.e., peers that transiently go offline) to concentrate our

analysis on finite executions (e.g., the storage of one file

followed by its retrieval). Without churn, reconstruction and

thus monitoring are simply pointless because no file ever

needs reconstruction. Deletion has been omitted because it

is very similar to the Get primitive: the only difference is

that fragments are discarded by storers instead of being sent

back. Routing has been modelled as an abstraction of the

reality: as shown below, a message destinated to peer k is

sent through k− 1 that will forward it to k, so we have only

one hop while in the real system there may be a lot more;

moreover, a message always reaches its exact destination

instead of the closest online peer as in the real system.

At the end of Peer declaration (lines 41–44), its sub-

processes are instantiated, each is put into an infinite loop

1 buffer nw : object = ()
2

3 net UbiSystem (n, this, tasks, •••):
4 buffer params : str*int = ()
5 •••
6

7 net Peer () :
8 •••
9

10 net Router () :
11 [nw-(s,this,d,m), nw+(s,d,m)]
12

13 net Client () :
14

15 net GetClient () :
16 buffer fileid : int = ()
17 buffer storers : tuple(int) = ()
18 buffer frags : int*tuple(str) = ()
19

20 [params-("Get", Fid),
21 frags+(Fid, ()), fileid+(Fid),
22 nw+(this, (Fid-1) % n, Fid % n,
23 (Fid,•••,"MSG_GETFMI"))]
24

25 ; [fileid?(Fid), storers+(strs),
26 nw-(src, this, (Fid,•••,strs))]
27

28 ; •••
29

30 net PutClient () :
31 •••
32

33 (GetClient() + PutClient()) * [False]
34

35 net Storer () :
36 •••
37

38 net MIService () :
39 •••
40

41 (Client() * [False])
42 | (Storer() * [False])
43 | (MIService() * [False])
44 | (Router() * [False])
45

46 net User () :
47 [params<<(tasks)]
48

49 Client() | User()
50

51 UbiSystem(6, 1, (("Get", 2), •••), •••)
52 | •••

Figure 3. Excerpt of the ABCD model of the UbiStorage

system. Symbol “•••” denotes parts that have been skipped

for the sake of clarity. Like in Python, indentation is used

as the blocks delimiter. This fragment also includes simplifi-

cations for the sake of clarity (e.g., management of sessions

numbers is not shown).

and the resulting processes are composed in parallel. For in-

stance, Client()*[False] is a loop that allows to execute

Client() repeatedly, the loop being able to exit whenever the

corresponding exit action, here [False], is executed. But, in

ABCD, [False] is an atomic action that can never be ex-

ecuted. So we have an infinite repetition of Client(), i.e.,

we have a service that repeatedly handles requests without

terminating.

Process Client is itself split into the two basic sub-

processes PutClient and GetClient modelling the corre-

sponding primitives. Delete primitive has been omitted as ex-

plained above. The main process for Client is a choice (+)

between a Put and a Get, infinitely repeated.

Let us look now at the process parameters and buffers dec-

larations. Process UbiSystem is parametrised by n the num-

ber of peers in the system, this the identity of the peer that

will be instantiated from this declaration, and tasks a list

of operations that the user of this node will request to the

client service. Line 4, a buffer params is declared, its type

is str*int which denotes the Cartesian product between str

and int, i.e., the buffer can hold pairs whose first compo-

nents are strings and second components are integers, and it

is initially empty (as denoted by “=()”). This buffer is filled

by process User line 47: atomic action [params<<(tasks)]

denotes that buffer params is populated by the content of col-

lection tasks, i.e., tasks is iterated over and every of its val-

ues in it is added to the buffer. We can see line 51 that when

UbiSystem is instantiated, tasks is actually a tuple of pairs

(whose type is indeed str*int).

Let us now examine sub-process Router and buffer nw. The

latter is used to model network communication, messages to

be routed are exchanged as tuples (s,r,d,m) where s is the

source, r is the router, d is the destination and m is the mes-

sage content. Direct messages are simply exchanged as tu-

ples (s,d,m), such a message is consumed from nw and used

directly at its destination. Usually, a node is first contacted

through message routing, and the answer is sent directly since

the node receives its peer’s address within the message. A

Router process whose identity this is r repeatedly consumes

4-tuples (s,r,d,m) from nw and produces 3-tuples (s,d,m) in-

stead, which models routing and corresponds to the atomic

action line 11: nw-(· · ·) is a consumption on buffer nw while

nw+(· · ·) is the production of a value onto nw.

Finally, let us discuss sub-process GetClient that models

the execution by a client service of the Get primitive. Fig. 3

shows only the two first actions of this execution, which is

enough to demonstrate how protocols are modelled. After

three buffer declarations, sub-process GetClient is defined

as a sequence (“;”) of atomic actions. In the first one, the fol-

lowing accesses to buffers are atomically performed (if this

possible, otherwise the action is blocked and none of its ac-

cess is performed):

• line 20, a pair whose first element is string "Get" and

second element is bound to variable Fid is consumed in

buffer params. This models the receiving of a Get re-

quest from the user;

• at the beginning of line 21, a pair whose first value is the

freshly bound Fid and second value is an empty tuple is

produced in buffer frags. This will be used to store the

file fragments received during the Get protocol in order

to reconstruct the requested file;

• at the end of line 21, Fid is also saved to buffer fileid

so it can be reused in the sequel of the process;

• lines 22–23, a message is sent onto the network by

producing a tuple in buffer nw following the pattern

(s,r,d,m) explained above where here s is this, the cur-

rent peer, r is (Fid-1) % n, the peer that immediately

precedes the target (peers are organised as a ring, so

we need the modulo “%n”), d is the peer that has the

same number as the file (modulo n) and m is a triple

(f , i, t) where f is a FileID, i is a session identifier (not

shown here), and t a string indicating the type of the

message ("MSG_GETFMI" reads as “message get file meta-

information”).

This message will be routed and eventually reach the MI ser-

vice responsible for the requested file that will answer provid-

ing a list of storers holding fragments for this file. In the sec-

ond action of the sequence, this answer is retrieved from nw:

• line 25, the FileID is retrieved from buffer fileid

and bound to variable Fid. Using fileid? instead of

fileid- allows to get the value without consuming it;

• line 26, the message is received (and consumed) from

the network, the message part being a triple composed

of the FileID, the session number and the expected list

of storers;

• this list is saved into buffer storers at the end of line 25.

The protocol continues in a similar way, requesting fragments

from the storers, gathering them in buffer frag and finally re-

constructing the file from the retrieved fragments. The whole

model is about 300 lines long, following the same principles.

Further details about Storer and MIService are given in the

next section.

4. MALICIOUS PEERS
Various malicious behaviours have been considered in [3]

and their impact have been evaluated through simulation. We

recall now the malicious behaviours we have considered and

describe how malicious services have been modelled using

ABCD, comparing them with the model of the corresponding

honest services.

A meta-information service is responsible for maintaining

a list of nodes that store fragments of the files added to the

P2P system, this list is sent to a client during the execution

of the Get protocol so that the client can query the appropri-

ate storers to get back the required fragments. A malicious

MI service can send an invalid list of storers and thus block a

client from retrieving its files. The information is not lost and

can be retrieved from the storers themselves, but this is not

feasible for the client that only knows a FileID, and its only

contact in the network for it is the corresponding peer run-

ning the MI service. This peer is the only one in the network

that exactly knows which other peers form its leaf-set and can

possibly store fragments for this FileID.

A storage service is responsible for storing a fragment of

a file. One possible malicious behaviour, that we call mali-

cious success on store, is when the storage service pretends it

stores a fragment but it actually does not. When requested for

this fragment, it sends dummy data instead. This may lead to

file loss since the number of fragments actually stored in the

system is lower than expected.

Another possible malicious behaviour for a storage service

is the malicious fail on store where the service pretends that

it fails to store a fragment while it actually succeeds. Because

of the declared failure, the storage service is not recorded as

holding a fragment for this file and may be proposed later on

another fragment for the same file. By repeatedly failing, the

malicious service may try to collect enough fragments so that

it can reconstruct the file. We have shown in [3] that this at-

tack is statistically hard to achieve, moreover, since files are

encrypted before to be fragmented, this is not a dangerous at-

tack. However, our purpose in this paper is to assess whether

using a grading system can help to detect the attack or not, so

we have modelled this attack also.

1 net MIService():
2 buffer meta : int*tuple(int) = •••
3

4 ([nw-(src, this, (Fid,ids,"MSG_GETFMI")),
5 meta?(Fid,str),
6 nw+(this, src, (Fid,ids,str))]
7 + [nw-(src,this, (Fid,ids,"MSG_GETSTRLST")),
8 nw+(this, src, (Fid,ids,•••))]
9 + [nw-(src, this, (Fid,src,"MSG_PUBFMI")),

10 meta-(Fid,s), meta+(Fid,s+(src,))])
11 * [False]

Figure 4. Simplified model of a honest MI service, which

should be inserted line 38 in the model of Fig. 3. Two levels

of indentation have been removed for the sake of legibility.

1 net MaliciousMIService():
2 buffer fakedmeta : int*tuple(int) = •••
3

4 ([nw-(src, this, (Fid,ids,"MSG_GETFMI")),
5 fakedmeta?(Fid,str),
6 nw+(this, src, (Fid,ids,str))]
7 + [nw-(src,this, (Fid,ids,"MSG_GETSTRLST")),
8 nw+(this, src, (Fid,ids,•••))]
9 + [nw-(src, this, (Fid,src,"MSG_PUBFMI"))])

10 * [False]

Figure 5. Simplified model of a malicious MI service, in-

tended to replace that shown in Fig. 4.

4.1. Meta-information service
The ABCD model of a honest MI service is shown in

Fig. 4. Line 2, a buffer meta is declared to store the meta-

information as pairs (i,s) where i is a FileID and s a tuple

of storers. This buffer is initialised with pairs (i,()) for all i

in the leaf-set of the MIService instance (which is not shown

here). Type int*tuple(int) denotes the set of pairs whose

first components are integers and whose second components

are tuples of integers. Then, the process is basically an in-

finitely repeated choice between three actions:

• handle a request from a GetClient that needs meta-

information (lines 4–6): a message is received lines 4,

requesting for the meta-information associated to FileID

Fid, with a session number ids; the requested informa-

tion is retrieved line 5 from buffer meta; the answer is

sent back line 6, all within the same atomic action;

• handle a request from a PutClient that needs a list of

storers available to store new fragments (lines 7–8): the

request is received line 7 and immediately answered

line 8, the list of storers, not shown here, is computed

from the set of this peer’s neighbours (i.e., its leaf-set);

• handle a request from a Storer that declares it stores a

fragment for a file (lines 9–10): the request is received

line 9 and processed line 10 by getting the current meta-

information for file Fid in buffer meta and updating the

second part of the pair by adding the PeerID src of the

storer that has sent the message.

The actual model is a bit more complex because it han-

dles the coupling of the second and third actions: when a

"MSG_GETSTRLST" message is handled, the MI service sends

a number of storers identifiers to the client that will request

them to store a fragment; so, the MI service shall expect as

many "MSG_PUBFMI" messages (or timeouts not shown here)

from exactly the same storers and for exactly the same FileID.

With respect to the honest MI service, the malicious one

differs on essentially three points as show in Fig. 5:

• line 2, buffer meta is replaced with fakedmeta that plays

the same role but is initialised with dummy data;

• line 5, the answer to a "MSG_GETFMI" message is taken

from buffer fakedmeta, but the request handling is oth-

erwise the same;

• line 9, "MSG_PUBFMI" messages are received but then dis-

carded so that buffer fakedmeta is never updated.

4.2. Storage service
The model of a honest storage service is shown in Fig. 6

and consists of an infinite repetition of two actions:

1 net Storer():
2 buffer data : int*str = ()
3

4 ([nw-(src, this, (Fid,ids,"MSG_GET")),
5 data?(Fid,frag),
6 nw+(this,src,(Fid,ids,frag))]
7 + [nw-(src, this, (Fid,ids,"MSG_PUT",frag)),
8 data+(Fid,frag),
9 nw+(this, Fid%n, (Fid,this,"MSG_PUBFMI")),

10 nw+(this, src, (Fid,ids,"MSG_OK"))])
11 * [False]

Figure 6. Simplified model of a honest storage service,

which should be inserted line 35 in the model of Fig. 3. Like

in Fig. 4, indentation has been shortened.

1 net WriteKOStorer () :
2 ([nw-(src, this, (Fid,ids,"MSG_GET")),
3 nw+(this, src, (Fid,this,"MSG_TIMEOUT"))]
4 + [nw-(src, this, (Fid,ids,"MSG_PUT",frag)),
5 nw+(this, Fid%n, (Fid,this,"MSG_TIMEOUT")),
6 nw+(this, src, (Fid,ids,"MSG_KO"))])
7 * [False]

Figure 7. Simplified model of a malicious storage service

that fails on store, which should replace code shown in Fig. 6.

1 net WriteOKStorer () :
2 ([nw-(src, this, (Fid,ids,"MSG_GET")),
3 nw+(this, src, (Fid,ids,"DUMMY"))]
4 + [nw-(src, this, (Fid,ids,"MSG_PUT",frag)),
5 nw+(this, Fid%n, (Fid,this,"MSG_PUBFMI")),
6 nw+(this, src, (Fid,ids,"MSG_OK"))])
7 * [False]

Figure 8. Simplified model of a malicious storage service

that fakes success on store, which should replace code shown

in Fig. 6.

• lines 4–6, a request to send a fragment is handled: the

request message is first received line 4, then, the corre-

sponding fragment is retrieved from buffer data line 5,

and the answer is sent back line 6;

• lines 7–10, a request to store a fragment is handled: the

corresponding message is received line 7, storage takes

place line 8, and two messages are sent back. Line 9, a

"MSG_PUBFMI" message is sent to the MI service so it can

record that the storer now holds a fragment for this file;

line 10, an acknowledgement is sent to the client that

requested the storage.

Like previously, we have not shown the possibility of a time-

out. Since ABCD does not include an explicit notion of time,

this is simply modelled with a non-deterministic choice be-

tween success and timeout. Notice also that, from the decla-

ration of buffer data line 2, we can deduce that fragments are

modelled as strings.

The malicious storage service comes in two flavours, re-

spectively shown in Fig. 7 and Fig. 8. The former always

fails on store as show in the answers lines 3, 5, and 6. The

latter always pretends it succeeds on store but returns dummy

data on a Get request as show line 3. In both cases, we do

not need a buffer data at all since no fragment is ever stored.

This would be useful only to model attempts to reconstruct

data from accumulated fragments. But we did not model this

aspect because this is a very combinatorial operation and, as

already explained, this is a worthless attack because data is

encrypted before to be fragmented.

5. GRADING SYSTEM
Peers can be extended with an evaluation of the outcome of

their exchange with others, allowing to build a grading sys-

tem. Each peers stores for each other a grade in interval [0,1]
and update this value on each communication. If a grade low-

ers below 0.5 then the corresponding peer is considered as

potentially malicious. Conversely, those peers with a grade

greater than 0.5 are considered as probably honest.

Two exchanges can be basically evaluated, corresponding

to the Get and Put protocols. Indeed, in both cases, the out-

come can be evaluated as satisfactory or not. The question of

evaluating exchanges with the MI service is more complex

(except if the MI service is unresponsive, which is a trivial

case but also not a good strategy for a malicious node). In

every case, the MI service is supposed to send a list of stor-

ers (to put or to get fragments), but, if some of these storers

do not provide the service as expected (for instance, they fail

to send back a fragment), this may be because they are mali-

cious or because the MI service had wrongly provided them

in its response. And actually, we will see later on that this lat-

ter case occurs in our model. Because of this ambiguity, we

do not consider here the grading of MI services and this is left

to future works.

Modelling grades is made by adding a buffer grade to ev-

ery peer, initialised with all grades set to 0.5 and stored as

pairs (i,g) where i is a peer identity and g its grade. Then,

each communication outcome is evaluated, either by raising

or by lowering the grade by steps of ±0.1. For instance, Fig. 9

shows the reception of the last message of a Put by the client

(i.e., the reception of, e.g., the message sent on line 10 in

Fig. 6 or that sent on line 6 in Fig. 7). As one can see, this

is a very simple grading system, yet it is already quite useful

as we shall see below.

1 ([nw-(src, this, (Fid,ids,"MSG_OK")),
2 grade-(this,src,x), grade+(this,src,x+0.1),
3 •••]
4 + [nw-(src, this, (Fid,ids,"MSG_KO")),
5 grade-(this,src,x), grade+(this,src,x-0.1),
6 •••])

Figure 9. Adjusting the grade of a storer during the execu-

tion of the Put protocol.

The evaluation of a Get is a bit more complex since the

client first tries to reconstruct the file before to evaluate

whether the fragments retrieved from storers allowed to do

so or not.

It is worth noting that a real failure of a peer (i.e., a failure

that is not faked) results in lowering its grade. Fortunately,

this is not a problem because in the case of a temporary fail-

ure, the lowering will be compensated by a raising at the next

successful exchange; and in the case of a permanent failure,

the peer will be banned because it will be considered as ma-

licious while it is actually crashed or damaged. But both sit-

uations require UbiStorage to manually check the peer and

possibly replace it. So, banning peers is just an automated

way to eliminate nodes that are broken in one or another way.

6. ANALYSIS
Several variants of our ABCD model have been consid-

ered, including one or another combination of malicious peers

(including none), and considering various execution scenar-

ios consisting of series of Get and Put. The Petri net seman-

tics has been computed using the ABCD compiler distributed

with SNAKES toolkit [10]. Then, this net has been passed to

Neco compiler [6] that could build an optimised implemen-

tation of the Petri net allowing to accelerate its state space

exploration. A typical state space for our models has about

400,000 states that can be computed in about 10 minutes on

an Intel R© CoreTM i5-520M CPU at 2.40GHz equipped with

4Gb of RAM; then, 2 to 4 additional minutes are typically

needed to analyse the state space.

In every case, we could verify that a malicious storer can-

not avoid obtaining a bad evaluation from the peers it inter-

acts with, i.e., in every execution, whenever a storer sends a

dummy fragments or fails storing a fragment, the requester

will necessarily lower this peer’s grade. From this it results

that a systematic malicious behaviour of a storage service is

necessarily detected. However, a storer that would alternate

between the correct and malicious behaviour would be able

to keep an average grade (globally over the nodes).

This results from the formal verification of the abstract

model have been compared with a concrete implementation

of the grading system within the actual UbiStorage system.

The software has been extended similarly to the model and

the simulation infrastructure used in [3] has been reused, al-

lowing to observe that malicious peers were indeed detected

by other peers thanks to the grading system. By excluding

from the network a peer detected as malicious by enough

other peers, we could actually reduce the number of files lost

during simulations.

However, the overall situation is not as good as it could

appear. Indeed, being a systematic approach that checks ev-

ery possible execution, model-checking allowed to discover

situations where honest storers would get bad grades even if

they do not fail at any time during the execution. This occurs

when a malicious MI service sends a wrong list of storers to

answer a "MSG_GETFMI" message. When doing so, the client is

amened to ask honest storers for fragments they do not have,

which results in lowering their grades.

One obvious reason for this situation is that we do not

model a reputation system (like, e.g., [4, 7]), in which peers

exchange the grades each gives and aggregate them to com-

pute a reputation that reflects the overall perception of each

peer’s honesty from the others’ point of view. This is some-

how what we implemented in our simulation since peers’

grades have been observed from the simulation engine, al-

lowing to combine local results into a more global view. How-

ever, this was possible within a simulation but cannot be re-

alised this way in a real implementation that is distributed.

We intend to extend our grading system so it becomes a

reputation system, in particular, we would like to reuse the

two-level reputation system defined and analysed in [9]: one

level is a reputation that is built over a grading system like

ours, a second level is a confidence about reputations that

each peer builds by comparing the reputation it computes

with that computed by others. It is shown in [9] that using

these two levels allows a faster detection of malicious peers,

including when some peers are “protecting” others (i.e., they

are honest in their data exchange, but dishonest when grad-

ing malicious peers in order to hide that these peers are ma-

licious). We believe that our problem is similar to this be-

haviour (instead of malicious peers being reported as honest

in [9], honest peers are reported as malicious in our case) and

so that the good results of [9] should also hold in our case.

Two additional solutions are envisaged to cope with this

false positive problem. First, we could distribute the grades

updating over the peer running the storage service and the

peer running the MI service when the failure of the former

may come from the latter. If a MI service is honest, is would

get bad marks because of dishonest or failing storers, but this

will be compensated by the good marks it will get also by

providing the correct storers. Similarly, a honest storer will

get bad marks when it is wrongly proposed by a MI service,

but, in a reputation system that does not rely on a single peers

grades, this will be compensated by the other marks it gets

from other transactions.

Another solution would be to change the Get protocol so

that a list of storers is sent by a MI service together with

proofs that these storers actually hold the fragment they are

supposed to hold. This proof could be for instance a digital

signature of the fragment by the storer, that the MI service

would receive with the "MSG_PUBFMI" message (see Fig. 4,

line 9). Using such a system, a MI service sending a wrong

list of storers would be detected as doing so because it would

not be possible for it to produce faked signatures.

7. CONCLUSION
We have shown how a peer-to-peer based storage system

can be formally modelled in order to design and assess its ex-

tension with a grading system. This system allows each peer

to evaluate the outcome of its transactions with others in or-

der to detect misbehaving peers, in particular malicious ones.

By using formal verification, we could show that malicious

peers are necessarily detected if their incorrect behaviour is

systematic and directly concerns data storage. This conclu-

sion has been confirmed using simulations of the real system,

extended with grading. Formal verification also allowed to

discover that peers lying about meta-information may intro-

duce false positive in the detection of malicious peers. We

have proposed three complementary ways to solve this prob-

lem: extending grading to a fully fledged reputation system,

distributing bad marks on data storers and meta-information

services when a fault could come from both, and resorting to

cryptographic signature to validate meta-information.

Future work will consider these extensions, following the

same methodology as in this paper, i.e., formal modelling and

analysis followed by implementation and simulation. The for-

mer approach allows to quickly obtain results since the model

is used as a prototype, and formal verification provides a good

confidence with respect to the qualitative properties of the

system. Then, simulation allows to check the feasibility of

the abstract model and to assess quantitative properties of the

system.

REFERENCES
[1] SPREADS project. http://www.spreads.fr.

[2] Ubiquitous Storage. http://www.ubistorage.

com.

[3] S. Chaou, F. Pommereau, and G. Utard. Evaluating

a peer-to-peer storage system in presence of malicious

peers. In Proc. of SPCLOUD/HPCS’11, IEEE Digital

Library. IEEE, 2011.

[4] T. Cholez, I. Chrisment, and O. Festor. A distributed and

adaptive revocation mechanism for P2P networks. In

Proc. of the 7th International Conference on Network-

ing. IEEE Computer Society, 2008.

[5] D. Dolev and A. Yao. On the security of public key

protocols. IEEE Transactions on Information Theory,

29(2), 1983.

[6] Ł. Fronc and F. Pommereau. Optimising the compila-

tion of Petri net models. In Proc. of SUMO’11, volume

726 of Workshop proceedings. CEUR, 2011.

[7] F. Lesueur, L. Mé, and V. Viet Triem Tong. Detect-

ing and excluding misbehaving nodes in a P2P network.

Studia Informatica Universalis, 7(1), 2009.

[8] R. Mahajan, M. Castro, and A. Rowstron. Controlling

the cost of reliability in peer-to-peer overlays. In Proc.

of IPTPS’03, 2003.

[9] M. Morvan and S. Sené. A distributed trust diffusion

protocol for ad hoc networks. In Proc. of ICWMC’06.

IEEE Press, 2006.

[10] F. Pommereau. Quickly prototyping Petri nets tools

with SNAKES. Petri net newsletter, October 2008.

[11] F. Pommereau. Algebras of coloured Petri nets, and

their applications to modelling and verification. LAM-

BERT Academic Publishing, 2010.

[12] Python Software Foundation. Python programming lan-

guage. http://www.python.org.

[13] I. S. Reed and G. Solomon. Polynomial codes over cer-

tain finite fields. SIAM journal on applied mathematics,

8(2), 1960.

[14] S. Sanjabi and F. Pommereau. Modelling, verification,

and formal analysis of security properties in a P2P sys-

tem. In Proc. of COLSEC’10, IEEE Digital Library.

IEEE, 2010.

http://www.spreads.fr
http://www.ubistorage.com
http://www.ubistorage.com
http://www.python.org

	INTRODUCTION
	THE UBISTORAGE SYSTEM
	FORMAL MODELLING
	MALICIOUS PEERS
	Meta-information service
	Storage service

	GRADING SYSTEM
	ANALYSIS
	CONCLUSION

