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Institut Mines-Télécom, TELECOM ParisTech, CNRS UMR5141,

46 rue Barrault, 75634 Paris, France

*awwad@telecom-paristech.fr

Abstract: In this paper, we present a numerical, theoretical and exper-

imental study on the mitigation of Polarization Dependent Loss (PDL)

with Polarization-Time (PT) codes in long-haul coherent optical fiber

transmissions using Orthogonal Frequency Division Multiplexing (OFDM).

First, we review the scheme of a polarization-multiplexed (PolMux) optical

transmission and the 2× 2 MIMO model of the optical channel with PDL.

Second, we introduce the Space-Time (ST) codes originally designed for

wireless Rayleigh fading channels, and evaluate their performance, as PT

codes, in mitigating PDL through numerical simulations. The obtained

behaviors and coding gains are different from those observed on the wireless

channel. In particular, the Silver code performs better than the Golden code

and the coding gains offered by PT codes and forward-error-correction

(FEC) codes aggregate. We investigate the numerical results through a

theoretical analysis based on the computation of an upper bound of the

error probability of the optical channel with PDL. The derived upper bound

yields a design criterion for optimal PDL-mitigating codes. Furthermore,

a transmission experiment of PDL-mitigation in a 1000km optical fiber

link with inline PDL validates the numerical and theoretical findings. The

results are shown in terms of Q-factor distributions. The mean Q-factor is

improved with PT coding and the variance is also narrowed.

© 2013 Optical Society of America
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in coherent optical communications: How close to the fundamental limit?,” in proc. of ECOC’12, paper P4.13.

28. C. Xie, “Polarization-dependent loss induced penalties in PDM-QPSK coherent optical communication systems,”

in proc. of OFC/NFOEC’10, 1–3.
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1. Introduction

Taking advantage of the numerous degrees of freedom in an optical fiber is a key solution to

the exponentially increasing demand of capacity [1] over long-haul and metropolitan optical

fiber networks. Over the last years, coherent detection [2] replaced direct detection schemes

offering an enhanced receiver sensitivity and introducing multilevel modulation formats. Be-

sides, wavelength division multiplexing (WDM) enabled the transmission of many independent

wavelengths over the same fiber providing scalability and an important capacity growth to the

optical networks. Furthermore, coherent polarization division multiplexed (PDM) systems [1,3]

were considered to double the capacity of the optical link by sending two independent signals

on two orthogonal polarization states, thus using the amplitude, phase and polarization state of
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the transmitted signal. Moreover, in order to cope with the increasing number of internet users

and the outgrowth of new bandwidth-demanding services such as cloud computing and real-

time multimedia services, emerging research projects are studying new physical dimensions in

the fiber such as space-division multiplexing (SDM) that consists in using parallel transmission

paths per wavelength [1], ideally multiplying the capacity of the link by the number of paths.

However, the increase in the spectral efficiency of a multiplexed optical transmission comes

at the detriment of a reduction in performance of the transmission scheme. This is mainly

due to coupling effects and differential group delays such as polarization mode dispersion and

rotations of the polarization states in PDM systems [4], as well as differential losses between

the multiplexed channels such as polarization dependent loss (PDL) in PDM systems [5] and

mode dependent loss (MDL) in SDM systems [6]. These effects can be modeled using a multi-

input multi-output (MIMO) formalism [7] which paves the way to the adaptation of mature

digital signal processing (DSP) tools, initially designed for wireless MIMO transmissions and

the search for new MIMO techniques specific for the optical fiber channel.

In this paper, we will study the simplest multiplexed scheme which consists in a 2 × 2

polarization-multiplexed (PolMux) MIMO system. The implementation of these systems was

made possible with the use of DSP algorithms and the development of high-speed electronics

to recover the transmitted data at the receiver side in the electrical domain. The impairments

undergone by the high bitrate transmitted signal can be categorized into two classes: linear

and nonlinear. The major linear impairments are chromatic dispersion (CD), polarization-mode

dispersion (PMD), and polarization-dependent loss (PDL) that can all be modeled using 2×2

transfer matrices (Jones matrices) straightforwardly leading to a 2×2 MIMO system represen-

tation. As for nonlinear effects, they will not be considered in the numerical and theoretical

studies where we assess the penalties induced by the linear impairments. However, in the ex-

perimental study, we will observe the limitations caused by non-linear effects and determine

the optimal operating point of the transmission (in terms of optimal launched signal power).

Dispersive effects preserve the total energy of the transmitted signal and the equalization

of CD and PMD is very effective in a single-carrier context [2] and in multi-carrier systems

such as orthogonal frequency division multiplexing (OFDM) based systems [7]. On the other

hand, PDL remains the main limiting linear impairment. In current systems (both coherent and

non-coherent), PDL is not mitigated and system margins are considered to absorb the induced

penalties and ensure a target performance. In long-haul optical links, PDL is introduced by im-

perfect optical elements that unequally attenuate the polarization states of the incident signal

and induce energy loss and optical signal-to-noise ratio (OSNR) fluctuations. Recently [8–11],

space-time (ST) codes were suggested to mitigate PDL. In wireless MIMO channels, ST coding

improves the reliability of the transmission by sending multiple copies of a data symbol to the

receiver on different antennas and at different time slots expecting that the symbol will survive

the impairments of the channel in a good enough state to allow reliable decoding [12]. The per-

formance of ST codes, or more appropriately Polarization-Time (PT) codes in this context, such

as the Golden code [13], the Silver code and the Alamouti code were numerically evaluated on

an optical channel with PDL [8]. A preliminary experimental demonstration validated the nu-

merical results [9]. It was found that the Silver code performed better than the Golden code,

unlike the case of a wireless Rayleigh fading channel. Moreover, the performance of the Alam-

outi code was found to be independent of the amount of PDL in the link [10]. In this work,

we will recall these recent numerical results, theoretically explain them and demonstrate the

possibility to implement PT codes in a PolMux OFDM system and their potential in mitigating

PDL through a transmission experiment.

Accordingly, we start by defining the transmission scheme of a PT-coded coherent optical

OFDM system in Section 2 as well as defining the channel model of an optical link with PDL.
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In Section 3, we present the simulation results of the investigated ST codes showing their per-

formance and the coding gains in a linear regime. We will also examine the achieved coding

gains when a forward-error-correcting (FEC) code is added to the transmission scheme. After-

wards, in Section 4, we derive an upper bound of the error probability of an optical link with

PDL to interpret the simulated performance and check whether the used coding schemes are

optimal or better codes can be found. Finally, in Section 5, we experimentally validate the nu-

merical and theoretical results in the previous sections and also demonstrate the ability of PT

codes to mitigate in-line PDL in a 1000km-long optical link.

2. PT-coded coherent OFDM system model

In this section, we describe the general transmission scheme in which PT codes will be im-

plemented. We also define the channel model of an optical transmission with PDL that will be

considered in the simulations and the theoretical study.

2.1. PolMux coherent OFDM transmission scheme

OFDM 

Transmitter 

PBC 

PolMux 

I/Q 

Modulator OFDM 

Transmitter 

Polarization

-Time  

Coding 

M-QAM 

Modulation 
FEC Encoder 
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Receiver 
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Receiver 
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Decoding 
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Ϭϭϭ… 

ϬϭϬ… 

Fig. 1. General scheme of a PolMux OFDM transmission with Polarization-Time coding.

2.1.1. Transmitter side

In a conventional PolMux OFDM transmission [7], two independently modulated OFDM sig-

nals where each OFDM subcarrier carries an M-QAM symbol, are sent on two orthogonal

polarization states; while in a PT-coded OFDM system, the modulated polarization states are

correlated and carry a combination of M-QAM symbols. Indeed, PT coding consists in send-

ing a combination of different modulated symbols on two polarization states (Pol1,Pol2) during

several time slots. Hence, if we consider two consecutive time slots (T1,T2), the PT codeword

matrix X will be:

X =

[

XPol1,T1
XPol1,T2

XPol2,T1
XPol2,T2

]

(1)

This operation of combining modulated symbols is represented by the block “Polarization-

Time coding” in Fig. 1. The codeword matrices of the investigated coding schemes will be

examined in the next section. The first row of X modulates the first polarization state and the

second modulates the second orthogonal polarization state. The columns of X will be carried

by the same subcarrier of two consecutive OFDM symbols. After the assignment of symbols

to the different subcarriers, conventional OFDM processing is realized including an inverse

Fast-Fourier Transform (iFFT) and the insertion of a well-dimensioned cyclic prefix (CP) to

absorb all CD and PMD [7]. The main advantage of choosing OFDM to deal with dispersion

instead of single-carrier based solutions is the reduced complexity of the equalization step, at

the receiver side. Indeed, the use of a suitable CP allows to replace the multi-tap equalizer usu-

ally used to extract the useful symbol from the interfering symbols, with a single-tap frequency
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domain equalizer needed to correct any phase or amplitude distortion induced by the channel

and separate the two polarizations. Next, the signal is up-converted to the optical domain and a

polarization beam combiner combines the OFDM signals on two orthogonal polarization states.

2.1.2. Receiver side

At the receiver side, a polarization beam splitter splits the incident optical signal on two orthog-

onal states and a dual polarization coherent receiver down-converts the signal to the electrical

domain. Next, OFDM processing is carried including CP removal and an FFT. Each OFDM

subcarrier sees a non-dispersive channel and the received symbol is given by [7]:

Yk,i = Hk(ωk)Xk,i +Nk,i (2)

where Xk,i is the 2×2 matrix of transmitted symbols on the kth subcarrier (k = 1 . . .n) of the ith

OFDM symbol, Yk,i is the 2× 2 matrix of the received symbols. Hk(ωk) is the 2× 2 channel

matrix including laser phase noise, CD, PMD and PDL. Nk,i is a 2× 2 matrix representing

the additive noise. A training sequence known at the receiver is used to estimate the channel

matrix for each subcarrier [3]. Then, the common phase error induced by the laser phase noise

is corrected and finally the transmitted data symbols can be detected and demodulated. It is

important to note that ST codes were designed to bring coding and diversity gains to the MIMO

scheme when they are optimally decoded according to the maximum likelihood (ML) criterion

instead of using sub-optimal linear decoders. Considering the channel model in Eq. (2) and

assuming all codeword matrices X equiprobable, an ML decoder estimates the codeword X

with X′ according to the following criterion:

X′ = argmin
X∈C

‖Y−HX‖2 (3)

where C is the set of all possible codewords. The indices k and i were dropped for clarity. The

PT decoding can only be performed under the assumption of a constant H during the codeword

duration (2 time slots in this case) which is the case of the optical channel [14]. ML decoding is

performed by an exhaustive research with reasonable complexity when the considered modula-

tion symbols come from a 4-QAM constellation. We point out that the decoding complexity is

quite reduced with the use of OFDM at the cost of an increased overhead. PT coding could have

been implemented in a single-carrier context with time domain equalization [15,16]. However,

multi-taps channel matrices would be required increasing the decoding complexity.

2.2. Long-haul optical link

In this section, we focus on the properties of the long-haul optical channel. We consider a multi-

span optical link with NS spans where each span contains a fiber modeled as a concatenation of

random PMD elements and inline components with PDL as seen in Fig. 2. Each span is followed

by an Erbium doped fiber amplifier (EDFA) operating in constant power mode to raise the signal

power to the initially injected power at the transmitter. These amplifiers also add noise to the

signal caused by amplified spontaneous emission (ASE). The accumulated ASE noise at the end

of the link is the dominant noise source in the whole transmission scheme. In the following, the

channel model of the link will be described and simplified to carry the numerical and theoretical

studies of PDL mitigation with PT codes. We will, in particular, look at the statistics of PDL,

its frequency dependence and the noise properties at the receiver side. We do not consider CD

and phase noise because these two effects are polarization independent.

Each fiber span is modeled with a concatenation of M random PMD elements where each

element has a transfer matrix HPMD(ωk) defined as the product of a delay matrix and a rotation
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matrix as in [17]. These unitary effects cause no loss of energy to the transmitted signal unlike

PDL that induces OSNR fluctuations. The transfer matrix of a PDL element is given by:

HPDL = Rα

[

1 0

0
√

ε

]

R−1
α

=
1√

1+ γ
Rα

[ √
1+ γ 0

0
√

1− γ

]

R−1
α

(4)

The diagonal matrix gives the imbalanced attenuation values of the least and most attenuated

polarization states and Rα is a random rotation matrix. α is uniformly drawn in [0 : 2π]. ε and γ

are defined through ΓdB = 10log10
1+γ
1−γ =−10log10(ε) where ΓdB ≥ 0 is the PDL coefficient in

dB (or simply referred to as PDL) and consists of the ratio between the highest and the lowest

losses. The normalization factor in the model using the variable γ is commonly dropped in

literature [5, 18] because the diagonal matrix and the rotation matrices are enough to take into

account the OSNR inequality between the polarization states as well as their crosstalk.

The individual PDL value of each inline component is kept as low as possible , i.e.0 ≤ γ ≪ 1.

However, many of these components are interspersed in long-haul optical links leading to a sig-

nificant accumulated PDL. An overview of previous works on PDL, especially by Mecozzi et

al. [19] and Gisin [20], shows statistical descriptions of PDL. In [19], it is found that the prob-

ability density function of the global ΓdB of an optical link is a Maxwellian distribution when

we consider many low-PDL components. Yet, field measurements of PDL in [21] showed that

the probability distribution of ΓdB was truncated because of the presence of a limited number

of elements in the link having an appreciable PDL. In all cases, the global ΓdB is a random

variable depending on the number of PDL elements in the link and their individual PDL.

For each PDL element, γ is drawn from identical independently distributed (iid) normal dis-

tributions with mean and variance determined by the desired mean global ΓdB and the number

of PDL elements in the link as in [19]. The choice of the normal distribution is arbitrary be-

cause regardless of the distributions of the individual PDL elements, the statistics of the global

PDL [19] of the whole link approach a Maxwellian distribution when enough PDL elements

are inserted. These statistics were simulated with NS > 10 spans and M = 20 and the obtained

distributions perfectly fitted the expected theoretical Maxwellian distributions.

X G + 

N
1 

… PDL Y PDL G + 

N
Ns 

PDL PDL 

Fig. 2. Structure of the considered long-haul optical link.

Second, we look at the frequency dependence of the channel due to PMD which implies a

frequency dependence of the global PDL. Current optical fibers have a typical PMD coefficient

PMDc as low as 0.05ps/
√

km. If we consider a L = 2000km multi-span link, the root mean

square accumulated DGD σDGD is equal to PMDc

√
L = 2.2ps which induces no fluctuations to

the PDL experienced by the subcarriers of an OFDM signal occupying a bandwidth less than

the coherence bandwidth Bcoh of the optical channel (Bcoh ∝ σ−1
DGD [22]). Hence, in the rest

of our work, we will consider a narrow-band frequency independent channel model. Note that

the frequency dependence of ΓdB due to PMD in the wide-band case was reported in [23, 24].

In [24], authors found that an increased DGD (up to an accumulated DGD of 100ps) in the

optical link reduced the BER variations caused by PDL and not the degraded mean BER.
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Third, we look at the noise in a long-haul optical link. The noise which is added on each

amplification stage is modeled as an additive white Gaussian noise (AWGN). However, the

PDL elements in the link act as partial polarizers. The signal and the in-line injected noise

propagating through the link are both polarized by PDL. Given that the optical amplifiers are

operated in a constant output power mode, the received signal Yk at the output of the link can

be written in function of the input signal Xk and the in-line injected noise:

Yk =
H1→NS

√
2

(Tr(H1→NS
H

†
1→NS

))1/2
Xk

+Σ
NS−1
j=1

H j+1→NS

√
2

(Tr(H j+1→NS
H

†
j+1→NS

))1/2
N j +NNs

= HkXk +Nk

(5)

with H j→NS
= HNsHNs−1...H j+1H j and H j being the transfer matrix of the jth span. Each

component of the noise N j added after the jth span is white and Gaussian distributed with a

zero mean and a variance N0 per real dimension. Because of PDL, Nk will be polarized and its

coherency matrix Q = E

[

NkN
†

k

]

will not be proportional to the identity matrix. However, we

can still define an equivalent system given by [25]:

Yk = Q−1/2
Yk = HkXk +Nk (6)

where Nk is a zero-mean white Gaussian noise of variance σ2 = NSN0 per real dimension. The

effective PDL experienced by the signal and given by the ratio of the eigenvalues of HkH
†
k will

be smaller than the PDL given by the ratio of the eigenvalues of HkH
†

k but will also follow a

Maxwellian distribution.

Using a singular value decomposition, Hk can be written as a product of two unitary matrices

U and V and a diagonal matrix with
√

1+ γeq and
√

1− γeq on its diagonal representing the

different loss coefficients between the least and the most attenuated polarization states at the

end of the link:

Yk = U

[ √
λmax 0

0
√

λmin

]

VXk +Nk =
√

aU

[ √

1+ γeq 0

0
√

1− γeq

]

VXk +Nk (7)

with γeq = (λmax −λmin)/(λmax +λmin) and a = (λmax +λmin)/2 where λmax and λmin are the

eigenvalues of HkH
†
k . a is an inevitable loss coefficient induced by PDL. Being particularly

interested in the differential attenuation and crosstalk effects due to PDL and polarization ro-

tations, we will consider unitary rotation matrices. Moreover, knowing that the dynamics of

the optical channel present rather slow variations [14], we will only regard constant values of

ΓdB = 10log10
1+γeq

1−γeq
for the numerical and theoretical investigations. Hence, in the rest of the

paper, we will consider the following channel matrix H to model an optical link with PDL:

H = Rα

[ √

1+ γeq 0

0
√

1− γeq

]

R−1
α (8)

3. Numerical investigation of PDL mitigation

Many ST codes were designed for wireless MIMO channels. We will consider the most famous

ones that have proven to be the best-performing codes on 2×2 and 2×1 Rayleigh fading chan-

nels: the Golden code, the Silver code and the Alamouti code. In the following, the codeword

matrix X and the rate of each coding scheme is given. The rate of a code is defined as the num-

ber of transmitted symbols per time slot (ts). In an uncoded case, we simply fill the matrix with

4 different M-QAM symbols and the rate is equal to 2 M-QAM symbols/ts.
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3.1. PT codeword matrices

3.1.1. The Golden code

The Golden code [13] has the best performance on 2×2 MIMO Rayleigh fading channels. The

codeword matrix of the Golden code is:

XG =
1√
5

[

α (S1 +θS2) α (S3 +θS4)
iα

(

S3 +θS4

)

α
(

S1 +θS2

)

]

(9)

where θ = 1+
√

5
2

, θ = 1−
√

5
2

, α = 1+ i− iθ , α = 1+ i− iθ and S1, S2, S3, S4 are M-QAM sym-

bols. The Golden code achieves a full rate of 2 symbols/ts because 4 symbols are transmitted

during 2 symbol times. Hence, this code introduces no redundancy. Moreover, the determinant

of the codeword matrix (corresponding to a coding gain on a Rayleigh fading channel [12]) is

proportional to 1
5

which is the highest obtained value for a 2×2 ST code.

3.1.2. The Silver code

The Silver code has a slightly weaker performance than the Golden code but it has the advantage

of having a reduced decoding complexity due to its particular structure. The codeword matrix

of the Silver code is:

XS =

[

S1 +Z3 −S∗2 −Z∗
4

S2 −Z4 S∗1 −Z∗
3

]

[

Z3

Z4

]

=
1√
7

[

1+ i −1+2i

1+2i 1− i

][

S3

S4

]

(10)

where S1, S2, S3, S4 are M-QAM symbols. The determinant of this code is proportional to 1
7
.

The Silver code also achieves a full rate of 2 symbols/ts because 4 symbols are transmitted

during 2 time slots making it also a redundancy-free code.

3.1.3. The Alamouti code

The Alamouti code has the optimal performance on a 2× 1 MIMO Rayleigh fading channel

and can be also used for 2×2 MIMO channels. The codeword matrix of the Alamouti code is

defined by:

XA =

[

S1 −S∗2
S2 S∗1

]

(11)

where S1 and S2 are M-QAM symbols. Note that the codeword matrix has an orthogonal struc-

ture which makes the decoding straightforward. However, the Alamouti code introduces a re-

dundancy as it has a rate of only 1 symbol/ts (half-rate code).

3.2. Performance analysis of PT codes

The performance of a PT-coded OFDM transmission on an optical channel with PDL will

be investigated using the following frequency non-selective channel model with H defined in

Eq. (8):

Yk = HXk +Nk (12)

The noise Nk is modeled as additive white with iid circularly-symmetric complex Gaussian

components N (0,2σ2). At the transmitter, 4-QAM symbols will be used for the uncoded case

as well as to fill the codeword matrices of the Silver and the Golden code (full-rate codes). On

the other hand, 16-QAM symbols will be used for the Alamouti code (half-rate code) in order

to compare the schemes at the same spectral efficiency of 4 information bits/ts. At the receiver,
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ML decoding is performed by an exhaustive search with a reasonable complexity. In the case of

an uncoded scheme, there are 16 possible codewords in C . In case of the Silver or the Golden

code, C has 44 = 256 codewords. The Alamouti code benefits from its orthogonal structure

and achieves the ML criterion with a single decoding operation. Monte Carlo simulations are

carried in order to evaluate the performance of the different coding schemes in terms of BERs.
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Fig. 3. Performance of PT codes obtained through Monte Carlo simulations.

Figure 3(a) shows the BER evolution versus the SNRbit for a PDL of 6dB. Without PT cod-

ing, the SNR degradation induced by PDL is about 2.3dB at BER = 10−3. The SNR penalty -

defined as the SNR gap to the PDL-free case at a given BER - is only 0.6dB with the Golden

code and 0.3dB with the Silver code corresponding to a coding gain of 2dB. Apart from the im-

portant coding gains, these codes do not introduce any spectral efficiency penalties compared to

the uncoded case as they are by construction redundancy-free. On the other hand, looking at the

performance of the Alamouti code, we notice an SNR penalty of 3.6dB at BER = 10−3. This is

due to the use of 16-QAM symbols. In Fig. 3(b), we observe the performance of the Alamouti

code for 3 different levels of PDL. We notice that the code performs the same independently of

the amount of PDL. The SNR penalties at BER = 10−3 for different PDL values had been eval-

uated for the first time in [8] and the results were confirmed in [11]. For PDL values less than

4dB, the Silver code can mitigate almost all PDL effects and always performs better than the

Golden code. In [10], the performance of the Alamouti code was also found to be independent

of PDL. Moreover, experimental demonstrations of PDL mitigation with PT coding were also

realized in a back-to-back (no transmission) scenario [9]. However, all these observations were

still analytically unexplained.

3.3. Concatenation of FEC and PT coding

While PT coding technique uses the modulated symbols to form a codeword matrix and mitigate

some channel effects, other coding techniques, known as forward error-correcting (FEC) or

channel codes, operate on the information bits and add some redundancy in order to enhance

the performance over the noisy channel. The FEC block at the transmitter side precedes the

M-QAM modulation block and a corresponding FEC decoding unit at the receiver side follows

the demodulation block. Linear block codes are a major class of channel codes where a binary

information sequence of length k is mapped to a binary sequence of length n called a codeword.
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The code rate of a block code is denoted by Rc:

Rc =
k

n
< 1 (13)

The optimal decoding strategy of FEC codes is soft decision decoding (SDD) [26, Chap.7] that

receives at its input a real value indicating the reliability of each coded bit (e.g. log-likelihood

ratios) and computes the original information bits. A sub-optimal, yet computationally simple,

decoding strategy is hard decision decoding (HDD) [26, Chap.7] that consists in quantizing the

samples at the output of the PT demodulator before sending them to the FEC decoder.
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Fig. 4. Bit Error Rate as a function of the SNRbit for the uncoded scheme and the Silver

code, with or without FEC: (a) Hard decision decoding (HDD), (b) Soft decision decoding

(SDD). The simulated FEC is a BCH(63,45) code.

We are interested, in this section, in evaluating the total gain provided by FEC coding and PT

coding through Monte-Carlo simulations. The performance on an optical channel with ΓdB =
6dB of an uncoded 4-QAM scheme (no FEC, no PT) and a Silver-coded scheme is compared

with a Bose-Chaudhuri-Hocquenghem (BCH) coded binary sequence where n = 63, k = 45

and an error correction capability t = 3, followed by 4-QAM modulation and PT coding (Silver

code). The obtained BER curves are plotted in Fig. 4. At a BER= 10−4, the gain provided by the

Silver code alone is 2.4dB. When HDD is considered, the gain provided by the BCH code alone

is 1.8dB. The concatenation of both codes offer a total coding gain of 3.9dB, approximately

equal to the sum of the separate coding gains 2.4+ 1.8 = 4.2dB. The summation of the FEC

and PT coding gains is also observed when using SDD. In this case, the gain offered by the

BCH code alone at a BER = 10−4 is 2.8dB. The concatenation with the Silver code provides a

total gain of 4.9dB and the sum of the separate coding gains is 2.4+2.8 = 5.2dB.

4. Theoretical analysis of PDL mitigation

Three main results are retained when observing the previous numerical investigations:

• the Silver code performs better than the Golden code, unlike the case of the wireless

Rayleigh fading channel.

• the performance of the Alamouti code is independent of the amount of PDL in the link.

• the total coding gain obtained when using both a FEC code and a PT code is equal to the

sum of the separate coding gains.

#195015 - $15.00 USD Received 31 Jul 2013; revised 29 Aug 2013; accepted 30 Aug 2013; published 20 Sep 2013
(C) 2013 OSA 23 September 2013 | Vol. 21, No. 19 | DOI:10.1364/OE.21.022773 | OPTICS EXPRESS 22782



These findings show different behaviors of MIMO codes on the optical channel. Further

exploration of the mitigation of PDL with MIMO codes is required to understand the obtained

results and check whether the investigated codes are optimal or better codes can be found.

Many previous works have investigated the performance of PolMux schemes in presence of

PDL in terms of the outage probability [11, 25, 27]. However, an outage analysis only gives

the performance limits of a transmission scheme. The only properties of the transmitted signal

that appear in an outage analysis are the average symbol energy and the transmission rate. On

the other hand, an error probability analysis based on the calculus of an upper bound of the

probability that an ML decoder erroneously decodes the transmitted symbol takes into account

the codeword matrix of the transmitted symbols. It is an appropriate tool to extract the criteria

that a codeword matrix should satisfy in order to minimize or mitigate the channel impairments.

A well-known and extensively used error probability calculus in the case of a MIMO Rayleigh

fading channel can be found in [12]. This calculus revealed the design criteria that were used

to construct the Golden and the Silver codes for the wireless channel. In this section, we will

derive an upper bound of the error probability in the case of an optical channel with PDL.

4.1. Upper bound of the error probability

The error probability is defined as:

Perror = Pr{X′ 6= X}
= ∑

X∈C

Pr{X}Pr{X′ 6= X|X} (14)

For equiprobable codewords, using the union bound, the error probability is upper-bounded by:

Perror ≤
1

card(C ) ∑
X,X′∈C ,

X′ 6=X

Pr(X → X′) (15)

where card(C ) is the cardinality of C and Pr(X → X′) is the pairwise error probability (PEP)

supposing that X and X′ are the only possible codewords in the codeword space. To compute the

PEP, we define the conditional PEP that we average over all the possible channel realizations.

For an ML decoder, the conditional PEP is defined as:

Pr(X → X′|H) = Pr{‖Y−HX′‖2 ≤ ‖Y−HX‖2|X,H} (16)

Using the Gaussian properties of the noise N and applying Chernoff’s bound, the PEP can be

upper-bounded by [26, Chap.4]:

Pr(X → X′)≤ EH [exp(−‖H(X−X′)‖2

8σ2
)] (17)

where EH [] is the averaging operation over all possible channel realizations.

Averaging over H given in Eq. (8) where we consider constant values of ΓdB and a random

rotation angle that varies uniformly in [0 : 2π], we get:

Pr(X → X′)≤ exp(−‖X∆‖2

8σ2
)I0(

γeq

8σ2

√

a2 +b2) (18)

where I0(z) is the 0th order modified Bessel function of the first kind. X∆ = X−X′ =

(

~x1

~x2

)

,

~x1,2 being line vectors and:

a = ‖~x2‖2 −‖~x1‖2 (19)
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b = 2Re(〈~x1, ~x2〉) (20)

We can approximate the error probability expression in Eq. (18) for high SNR values by

using a first order approximation of I0(z) when z → ∞ and get:

Pr(X → X′)≈ exp(−‖X∆‖2 − γeq

√

a2 +b2

8σ2
) (21)

4.2. Design criterion

I0(z) being monotonously increasing for z ≥ 0, its minimum is at z = 0. This corresponds to

null ‘a’ and ‘b’ and the obtained error probability will be independent of PDL. Consequently:

Proposition 1 A Polarization-Time code completely mitigates PDL if and only if all codeword

differences satisfy:

1. a = ‖~x2‖2 −‖~x1‖2 = 0 and

2. b = 2Re(〈~x1, ~x2〉) = 0 .

When this design criterion is met, we recover the performance over two parallel AWGN

channels which is the best achievable performance:

perror,AWGN ≈ exp(−‖X∆‖2

8σ2
) (22)

The resulting criterion is completely different from the rank and the minimum determinant

criteria derived for a Rayleigh fading channel [12] and defining respectively a diversity gain

and a coding gain on the BER curves. If we compare the approximation of the error probability

expression at high SNR in Eq. (21) to the one obtained in the case of a 2×2 MIMO Rayleigh

fading channel, we notice different behaviors: the error probability of the Rayleigh fading chan-

nel decays as SNR−2r [12] where r is the minimum rank of the matrix X∆. The diversity of the

system is defined as the power of SNR−1 (2r in this case) and can be graphically discerned

as the slope of the BER curves at high SNR values. While the error probability of the PDL

channel decays exponentially as a function of the SNR as in the case of an additive white Gaus-

sian channel in Eq. (22). Hence, Space-Time codes, used as Polarization-Time codes, bring

no diversity gain to the optical channel with PDL. A coding gain that will be evaluated in the

following, is only brought, reducing the penalty induced by PDL.

4.3. Performance analysis of PT codes

The performance of both coded and uncoded schemes will be examined using the derived up-

per bound of the pairwise error probability expression in Eq. (21). To compare the different

schemes, we will compute the squared distance d2 = ‖X∆‖2 − γeq

√

a2 +b2 of all combinations

of codeword differences and compare the minimum values of d2, denoted d2
min, of the codes.

The best code is the one that maximizes this minimum value. In Table 1, we report the min-

imum values of ‖X∆‖2 − γeq

√

a2 +b2 analytically computed for each investigated PT code at

four different PDL values. To fill the table, we set a spectral efficiency of 4 bits per time slot

for all coding schemes and consider an average symbol energy Es = 1 for all constellations.

First, we notice that the Alamouti code has the same minimal distance for all PDL values

which explains why it performs the same independently of PDL in Fig. 3(b). This is due to the

orthogonality of its codeword matrix (Eq. (11)) that induces a= b = 0 for all possible codeword

differences. Hence, this code satisfies the criterion of Proposition 1. However, its performance

is affected by the use of 16-QAM symbols giving a squared minimal distance of 0.8.
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Table 1. d2
min for different coding schemes at different PDL values

Γ = 0dB Γ = 3dB Γ = 6dB Γ = 10dB

Silver Code 2 2 2 1.23

Golden Code 2 1.7 1.46 1.07

No Coding 2 1.34 0.8 0.38

Alamouti Code 0.8 0.8 0.8 0.8

Second, we note that the Silver code is not optimal in mitigating PDL since it does not satisfy

the derived design criterion. Unlike the Alamouti code, the Silver code has only some codeword

differences having a = b = 0. In Fig. 5, we plot the performance of the Silver code for different

PDL values. We see that the code mitigates almost all PDL when the PDL coefficient is equal

to 3dB and 6dB whereas for a PDL of 10dB, the code is not able to completely palliate PDL.

The computed d2
min in Table 1 explain the behavior of the Silver code. d2

min is given by the same

codeword difference with a = 0 and b = 0 at a PDL of 3dB and 6dB, and is equal to 2. Whereas

at a PDL of 10dB, it falls to 1.23 given by another codeword difference where a 6= 0 and b 6= 0.

−2 0 2 4 6 8 10 12 14
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR
bit

 (dB)

 

 

B
E

R

Silver Code, Γ
dB

 = 0dB

Silver Code, Γ
dB

 = 3dB

Silver Code, Γ
dB

 = 6dB

Silver Code, Γ
dB

 = 10dB

Fig. 5. Bit Error Rate as a function of the SNRbit for the Silver code, obtained through

Monte Carlo simulations.

Third, in Fig. 3(a), we saw that the Silver code outperforms the Golden code for ΓdB = 6dB,

and both reduce the penalty that PDL causes to the uncoded scheme. Again, this result can be

explained by looking at Table 1. Indeed, d2
min is the greatest for the Silver code followed by the

Golden code and then the uncoded scheme.

In conclusion, we were able to explain, in terms of error probability bounds, the performance

of the Alamouti, the Silver and the Golden codes on an optical channel with PDL. These codes

were designed to satisfy the rank and the minimum determinant criteria for a wireless channel

that are no more relevant for the optical channel.

4.4. Concatenation of FEC and PT coding

The numerical investigation of the performance of a PolMux scheme using both a FEC code

and a PT code showed that the total coding gain is equal to the sum of the separate coding
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gains brought by each. This result can be also theoretically explained and is mainly due to the

exponential decrease of the error probability as a function of SNR.

The bit error probability of a linear block code over an AWGN channel, and after hard de-

cision decoding, is determined by the minimum distance of the considered FEC code dmin,FEC

and the crossover probability p of the equivalent binary symmetric channel (BSC) [26, Chap.7]:

Pe,HDD ≤
n

∑
m=t+1

(

n

m

)

pm(1− p)n−m (23)

where t = ⌊ dmin,FEC−1

2
⌋ is the error correction capability of the linear block code and dmin,FEC

is the minimum Hamming distance between distinct codewords of this code. At high SNR, p

tends towards zero and Eq. (23) is dominated by the first term where m = t +1:

Pe,HDD ≤
(

n

t +1

)

pt+1 =

(

n

dFEC,HDD

)

pdFEC,HDD (24)

where dFEC,HDD = ⌈ dmin,FEC

2
⌉.

Had we considered soft decision decoding, the bit error probability would have been [26,

Chap.7]:

Pe,SDD ≤ (2k −1)pdFEC,SDD (25)

where dFEC,SDD = dmin,FEC.

p can be upper-bounded using Eq. (21) where the error probability is a codeword error prob-

ability. Given that a full-rate 2×2 PT codeword has 4log2 M bits, an error in decoding one PT

codeword implies that one bit is erroneous in the best case or all 4 log2 M bits are erroneous in

the worst case, hence:

1

4log2 M
Pr(X → X′)≤ p ≤ Pr(X → X′) (26)

At high SNR, the pairwise error probability of the closest neighbors predominates the other

terms in the union bound (Eq. (15)) and p is upper-bounded by:

p ≤ AdPT
exp(− d2

PT

8σ2
) (27)

where d2
PT = argmin

X,X′∈C

(‖X∆‖2 − γeq

√

a2 +b2) and AdPT
being the average number of codewords

located at the distance dPT of a given codeword. AdPT
is usually called the kissing number.

Replacing p by its upper bound and substituting the average symbol energy ES for the average

energy per information bit Eb using ES = 1 = rPT RcEb log2 M, we get:

Pe ≤ K(AdPT
)dFEC exp(−dFECd2

PT SNRbitrPT Rc log2 M

4
) (28)

where SNRbit =
Eb

2σ2 . K and dFEC are the constant and the power of the bit error probability of

p in Eq. (23) or (25) depending on the chosen FEC decoding strategy. rPT is equal to 1 for a

full-rate PT code and 0.5 for a half-rate code.

In order to evaluate the asymptotic gains provided by the concatenation of a FEC code and a

PT code, we compare the following two schemes: a first scheme NC without FEC (dFEC = 1 and

Rc = 1) and without PT coding (independent M-QAM symbols) and a second scheme FEC+
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PT using a linear block code and a full-rate PT code. At the same achieved error probability,

the coding gain G of the coded scheme is given by:

G =
SNRbit,FEC+PT

SNRbit,NC

=
RcdFECd2

PT

d2
NC

(29)

In decibels, we obtain GdB:

GdB = 10log10(RcdFEC)+10log10(
d2

PT

d2
NC

)

= GdB,FEC +GdB,PT

(30)

The first term denote the coding gain of the FEC code and the third term denotes the coding gain

provided by PT coding. Equation (30) shows that the total asymptotic gain obtained when con-

catenating a FEC code and a PT code is the sum of the gains provided by each code separately,

validating the third result of our numerical investigation.

5. Experimental validation of PDL mitigation

The numerical and theoretical validations of PDL mitigation using PT coding are limited to a

linear channel with a single-element or lumped PDL and AWGN noise at the receiver side. Ini-

tial experimental results limited to the linear regime also showed the efficiency of PT codes [9].

These simplifications allowed us to analyze the potential of MIMO codes for PolMux optical

transmission using a handy and well defined channel model. The final remaining step is to test

the ability of PT codes to mitigate inline PDL through a transmission experiment with dis-

tributed PDL taking into account the interactions of PDL with distributed ASE noise [28] and

non-linear effects [18].

5.1. Experimental setup

The transmission scheme, shown in Fig. 6, consists of a PolMux OFDM transmitter, a 1000 km

optical link and a dual-polarization coherent receiver. The OFDM signals are made of 256 sub-

carriers including 194 data subcarriers and 10 pilot subcarriers for common phase error estima-

tion. The data subcarriers are alternatively modulated with 4-QAM symbols, Silver-, Golden-

and 16-QAM Alamouti- coded symbols. An 18-sample CP is appended to each OFDM symbol

(7% overhead). A time-multiplexed training sequence [3] is periodically inserted for channel

estimation and time and frequency synchronizations. The total effective bitrate is 25 Gbit/s

while the raw bit rate is 36 Gbit/s taking into account the different transmission overheads.

The OFDM signals are generated by an arbitrary waveform generator (AWG) with two out-

puts. Hence, to emulate PolMux, we consider OFDM signals satisfying the Hermitian symme-

try property. Next, up-conversion to the optical domain is done using two single-drive Mach-

Zehnder modulators (MZM). Then the two optical signals are combined by a Polarization Beam

Combiner and multiplexed in the optical link among seven 50 GHz-spaced wavelengths. Fur-

ther details on the experimental setup can be found in [29].

The transmission line consists in a recirculating loop which contains 2 spans of 100 km

of SMF, a PDL element of 2dB, a polarization scrambler to randomize the polarization state

between successive loops and an optical band-pass filter. After additional ASE noise loading at

the receiver, the desired wavelength is filtered and the signal is detected with a dual-polarization

coherent receiver. The received signal is then acquired with a real-time Tektronix oscilloscope

and offline-processing [3, 7] ending with ML decoding is carried to measure the BER and the

corresponding Q-factor in dB, commonly used in optical communications:

BER = 0.5er f c(Q/
√

2) and QdB = 20log10(Q) (31)
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Fig. 6. Experimental setup. (ECL: External Cavity Laser, AWG: Arbitrary Waveform Gen-

erator, MUX: Multiplexer, AO: Acousto-Optical Modulator, PS: Polarization Scrambler,

OBPF: Optical Band-Pass Filter, ASE: Accumulated Spontaneous Emission source, LO:

Local Oscillator, OSA: Optical Spectrum Analyzer, OSC: Tektronix 50GS/s Oscilloscope).

5.2. Experimental Results

5.2.1. PT coding in non-linear propagation regime

We will transmit the PT-coded OFDM in the recirculating loop of Fig. 6 and replace the in-line

PDL element by an attenuator having the same insertion loss and emulate PDL at the transmitter

side by inserting an attenuator in one branch of the PolMux transmitter (this corresponds to the

worst case of OSNR degradation of one polarization tributary [18]). First, BER measurements

are carried out in a back-to-back setup [29] validating the previous simulated performance of all

coding schemes. Then, BERs are measured after a 1000km-transmission for input powers rang-

ing from -15 to 5dBm. The obtained bathtub-shaped curves are plotted in Fig. 7 for the 4-QAM

and Silver-coded schemes at a PDL of 0, 3 and 6dB. First, we notice that all curves have their

optimum operating point at an input power of -3dBm. However, the uncoded scheme suffers

severely from PDL (Q = 10.5dB at -3 dBm for PDL = 6dB) while the Silver code completely

compensates the penalty at PDL = 3dB and nearly all penalty at PDL = 6dB (Q = 12.3dB at

-3dBm). Second, the curves can be separated into three regimes: a linear regime, up to -6dBm,

where non-linear effects are negligible and the coding gains match the numerical results ob-

tained with a linear channel model; a moderate non-linear regime, between -6dBm and 0dBm,

where a minimum BER is reached; and a severe non-linear regime where the performance of all

schemes is deteriorated. An important result is that the PT-coded OFDM does not induce any

extra penalties in presence of non-linear effects. This experimental validation confirms a previ-

ous numerical investigation of the behavior of PT codes in non-linear propagation regime [30].
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Fig. 7. BER evolution versus launched input power after 5× 200km for the Silver-coded

and 4-QAM schemes, at three different PDL values at the transmitter: 0, 3 and 6dB.

5.2.2. Mitigation of distributed in-line PDL

We remove the emulated PDL at the transmitter side and insert the PDL element of 2dB into

the loop. 2000 Q-factor measurements are then carried out for the different coding schemes at

the optimum operating point. The measured OSNR at the receiver is 12dB after additional ASE

noise loading in order to evaluate the complete Q-factor distributions. The OSNR is propor-

tional to SNRbit that we used along this paper:

OSNR =
Rb

2Bre f

SNRbit (32)

where Rb is the total transmitted bitrate and Bre f is the reference spectral bandwidth of 0.1nm.

The obtained Q-factor distributions are shown in Fig. 8. We also show, in the inset, the meas-

ured probability distribution of PDL and the fitted theoretical distribution. PDL is measured

using the estimated 2×2 channel matrices and a Maxwellian probability distribution function

of PDL is obtained with a 4.2dB mean (the expected theoretical mean being 4dB [19]).

The Q-factor distribution for the 4-QAM-coded subcarriers is asymmetric with a large tail

towards the worst Q-factors and has a mean of 11.2dB and a standard deviation (std) of 0.55dB

whereas the distribution is symmetric and the mean Q-factor of the Silver- and Golden- coded

subcarriers is 11.8dB (the same observed value for the PDL-free case when OSNR = 12dB).

The Q-factor distributions are also narrower when PT codes are used. The Silver code gives

a distribution slightly narrower than the one obtained with the Golden code: std of 0.35dB

and 0.37dB respectively. For the Alamouti code, we observe a mean Q-factor of 8.3dB due to

the use of 16-QAM symbols to guarantee the same spectral efficiency of the other schemes.

However, its Q factor distribution is the narrowest of all with a std of 0.24dB. This is due to

the powerful orthogonal structure of the Alamouti codeword matrix that makes its performance

independent of the amount of accumulated PDL in the link, as found in the theoretical analysis

in section 4. The observed small variance of its Q-factor distribution can be ascribed to the

increased sensitivity of 16-QAM modulation to phase noise and non-linear effects.
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Fig. 8. Q-factor distribution after 5×200km at Pin =−3dBm (OSNR0.1nm = 12dB). Inset:

Experimental and theoretical probability distributions of PDL.

6. Conclusion

We have presented numerical and theoretical studies of PDL mitigation using redundancy-free

coding schemes. The Silver code can efficiently mitigate the PDL in current long-haul opti-

cal links where PDL values rarely exceed 6dB [21]. However, the theoretical study of PDL

mitigation showed that this code is not optimal. The established upper bound of the error prob-

ability for an optical channel with PDL yields the design criterion required to construct codes

that guarantee a PDL-independent error probability, restoring the performance over an additive

white Gaussian channel. These design rules open the way for the construction of optimal codes

dedicated to PDL mitigation in the optical channel. We have also shown that the total coding

gain of a concatenation of a FEC code and a PT code is the sum of the separate coding gains.

A transmission experiment with distributed in-line PDL was accomplished as well, validating

the results obtained with a simplified channel model. PT coding does not induce extra penal-

ties when non linear effects are considered and PT codes can both improve the mean and the

variance of the Q-factor distributions.
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