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Abstract—In this paper, we present a method for automatically
segmenting the walls of retinal arteries in adaptive optics images.
To our best knowledge, this is the first method adressing this
problem in such images. To achieve this goal, we propose to model
these walls as four curves approximately parallel to a common
reference line located near to the center of vessels. Once this
line detected, the curves are simultaneously positioned as near
as possible to the borders of walls using an original tracking
procedure to cope with deformations along vessels. Then, their
positioning is refined using a deformable model embedding a
parallelism constraint. Such an approach enables us to control
the distance of the curves to their reference line and improve the
robustness to image noise. This model was validated on healthy
subjects by comparing the results against segmentations from
physicians. Noticeably, the variability introduced by this model
is smaller or very near to the inter-physicians variability.

Keywords: Active contours model, adaptive optics, ap-
proximate parallelism, retina imaging.

I. INTRODUCTION

Arterial hypertension (AH) and diabetic retinopathy (DR)
mainly and precociously affect the physiology and structure of
retinal blood vessels of small diameter (i.e. less than 150µm).
According to the Public Health Agency of Canada, AH and
DR affected 15 to 20% of the world’s adult population in
2009. These modifications can result in a thickening or a
narrowing of walls and are predictive of end-organ damage
such as stroke or visual loss [4], [3]. For instance, the authors
of [13] estimate that 98% of visual damages could be avoided
if DR was treated in time [13]. Accurate measurements of
walls are therefore of crucial importance to better prevent the
DR and the complications of AH. However, classical fundus
photographs and Doppler-based measurements cannot capture
such level of details due to their limited spatial resolution.

Adaptive-Optics (AO) based cameras improve the lateral
resolution of fundus photographs, thus enabling the visualiza-
tion of microstructures such as photoreceptors [10], capillar-
ies [11] and vascular walls [1], noninvasively. In the present
study, the camera rtx1 [14] is used to acquire 2D images by
flood illumination at 10Hz using a 850nm LED light source
with a pixel-resolution of 0.8µm. Flood-illumination systems
usually produce noisy images making walls hardly visible.
A commonly used solution is to register these images and
average them to increase the signal-to-noise ratio [9]. In the
latter, blood vessels appear as dark elongated structures with a
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Figure 1: A mean image obtained with [9] (left) and a detailed
view of an artery (right).

bright linear axial reflection, over a textured background. Outer
borders of walls are however only visible along arteries and the
present study will therefore focus on them. Parietal structures
(arterial walls) appear as a gray line along both sides of the
lumen (blood column), with a typical thickness of about 15%
of the latter [7] (see Figure 1).

In this paper, we propose an automatic procedure for
segmenting arterial walls in a selected region of interest 1 in
the mean images produced by [9]. To our best knowledge,
this is the first method adressing this problem in such images.
This task is challenging for multiple reasons: (i) background
is highly textured, (ii) lumens are globally dark but with
significant intensity variation along them, (iii) axial reflections
may locally show discontinuities or poor contrast, (iv) outer
borders of walls are low-contrasted, (v) segments can be
locally blurred due to the geometry of the retina, and (vi)
deformations can occur along vessels in case of pathologies.

To overcome these difficulties, we propose a strategy
exploiting geometric, radiometric and topological a priori
information of vessels. More precisely, we model arterial walls
as four curves approximately parallel to a common reference
line located near to the axial reflection. Once this line detected,
the curves are simultaneously positioned as near as possible to
the borders of walls using a tracking procedure to cope with
deformations along vessels. Then, their positioning is refined
using [5] where curves evolve towards large image gradients
under a parallelism constraint. Such an approach enables us
to control the distance of the curves to their reference line
and improve the robustness to image noise. We also mention
that this work has permitted to establish relationships between
morphometric measurements and clinical parameters [8].

1In particular, we do not aim at segmenting the whole vascular tree. This
problem will be the subject of a forthcoming paper.



The remaining of this paper is organized as follows. In
Section II, we first summarize the steps for detecting axial
reflections. Then, we detail in Section III the procedure for seg-
menting the arterial walls. Finally, we evaluate the relevance
of the approach in Section IV and conclude in Section V.

II. AXIAL REFLECTION DETECTION

In this section, we consider images as functions mapping
points from Ω ⊂ Z2 into the interval [0, 1].

A. Pre-processing

The original image (see Figure 2(a)) is first enhanced by
applying a median filter followed by a non-linear diffusion
filter [15]. This combination of filters allows us to denoise
the image and smooth the blood vessels while preserving the
contrast along their edges. We denote by IP the resulting image
(see Figure 2(b)).

B. Detection of bright elongated structures

To enhance the bright elongated structures, a white top-
hat transform is applied on the pre-processed image IP with
a binary disk whose radius is 6 pixels (denoted by IT , see
Figure 2(c)). We binarize the resulting image IT by hysteresis
thresholding and denote it by IES (see Figure 2(d)). Parts of
the axial reflection of vessels are thus extracted, but also other
bright areas of the textured background. Further processing
steps are therefore necessary to discard these undesired areas.

C. Detection of the darkest areas

K-means classification (k = 3) is performed on the pre-
processed image IP (see Figure 2(e)) and the cluster of lowest
center provides a first binary image of the darkest regions. It is
then post-processed with morphological operations to get the
main connected components of the dark areas of lumens. The
resulting image is denoted by IDA (see Figure 2(f)).

D. Extraction of vascular segments by information fusion

A first selection of vascular segments is performed based
on a simple measure of the tortuosity. Let us denote by ILES the
binary image of a tested connected component of the image
IES . This component is retained if

♯ILES

♯(ILES • S)
> 0.8, (1)

where ♯ denotes the cardinality of a set, • denotes the closing
operator and S is a binary disk whose radius is 15 pixels.
Moreover, a segment of axial reflection must lie inside a dark
area, and conversely, a dark region of the lumen must contain
at least one axial reflection segment. We denote by IES′ the
binary image made of the components satisfying (1) and ILES′

a tested connected component of it. Such a component is kept
as part of an axial reflection segment if

♯(IDA ∩ (ILES′ ⊕ S′)) >
♯ILES′

5
, (2)

where ⊕ denotes the dilation operator and S′ is a binary disk
whose radius is 15 pixels (in accordance to the minimum
size of the vessels that are studied). We denote by IES′′

the binary image made of the components satisfying (2) (see
Figure 2(g)). Morphological operations are applied to IDA,
including reconstruction by dilation with the marker IES′′ , in
order to get the final lumen mask ILM (see Figure 2(h)).

E. Segment labeling and reconnection

We first compute the skeleton of the image IES′′ to get
the end-points of the retained segments (see Section II-D).
These end-points are then reconnected using minimal path
techniques [2], [12]. Theses techniques aim at extracting curves
of minimal length, in a Riemannian metric computed from the
image and depending on the targeted application. A minimal
path C connecting two end-points p and q is obtained by
minimizing the following functional:

L[C] =

∫ q

p

P(C(s)) ds,

where s denotes the curvilinear abscissa and P is a potential
inducing the metric defined as

P(x) = w1(1− IT (x))
2 +w2(1− ISM (x))2 +w3, ∀x ∈ Ω,

where ISM is the spurred skeleton of the lumen mask ILM fil-
tered by a Gaussian of standard deviation σ and w1, w2, w3 ∈
R

+ are free parameters. These parameters are empirically set
with σ = 10, w1 = 0.5, w2 = 0.45 and w3 = 0.05. In the latter
expression, the first term is derived from the top-hat image IT
(considering that the values should ideally be close to one
along the axial reflection) while the second one encourages
the path C to pass near the middle of the lumen mask ILM .
The last term is a regularization constant. The combination of
the above criteria allows to have a good robustness against the
variety of the encountered images.

Two end-points form a candidate pair for reconnection if
they belong to the same connected component in the lumen
mask ILM and if they do not belong to the same connected
component in the image IES′′ . The candidate pairs are then
processed by decreasing order of the Euclidian distance (to
start with points that are close to each other) and reconnected
using the above procedure. A new skeleton is then calculated,
providing the axial reflection of the vessels, and the vessel
branches are then labeled (see Figure 2(i)). The vessel branchs
are individually regularized using a classical parametric active
contour [6] with Gradient Vector Flow [16]. The lumen mask
ILM is also labeled such that every non-null pixel receives the
label of the closest branch (see Figure 2(j)).

III. SEGMENTATION OF ARTERIAL WALLS

For convenience, we detail the procedure for segmenting
arterial walls on a single regularized vessel branch obtained at
the end of the axial reflection detection step (see Section II).
We denote this regularized branch as the reference line V (s) =
(x(s), y(s))T of the vessel, parameterized by s. Once obtained,
this line is considered to be fixed and will therefore no longer
evolve in the subsequent steps. Additionally, we choose to
model the walls as four curves approximately parallel to this
line. We respectively denote by V1, V2 and V3, V4 the inner
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Figure 2: Steps for axial reflection detection: The source image (a) is first pre-processed (b). Dark elongated structures are
detected from (b) by top-hat filtering (c) followed by hysteresis thresholding (d). Darkest areas are detected from (b) by k-means
classification (e) followed by post-processing (f). Axial segments (g) and dark regions of lumens (h) are extracted from (d) and
(f). Axial segments (i) and dark regions of lumens (j) are finally labeled from (c), (g) and the spurred skeleton of (h).

Figure 3: Parametric representation of the proposed model.

and outer borders of walls, and define them by










V1(s) = V (s) + b1(s)~n(s)
V2(s) = V (s) − b2(s)~n(s)
V3(s) = V (s) + b3(s)~n(s)
V4(s) = V (s) − b4(s)~n(s),

where ~n(s) is the normal vector to the curve V and bk(s)
is the local distance between the reference line V and the
curve Vk, ∀k ∈ {1, . . . , 4} (see Figure 3). This model allows a
direct correspondence between each curve Vk and the reference
line V . In what follows, we describe a tracking procedure for
roughly positioning these curves near to the borders of walls.
Next, we detail the model used to refine their positioning.

A. Pre-segmentation

First, we discretize the reference line V in m equally
spaced points and denote by Vi = (x(s = ih), y(s = ih))T

the discrete coordinates at the point Vi and ~ni the associated
normal vector (h is the discretization step). We also discretize
the curves representing the walls with











V 1
i (b

int
i ) = Vi + binti ~ni

V 2
i (b

int
i ) = Vi − binti ~ni

V 3
i (b

ext
i ) = Vi + bexti ~ni

V 4
i (b

ext
i ) = Vi − bexti ~ni,

(3)

where bint and bext respectively denote the half-diameter of the
inner and outer borders. Such definition assumes that the inner
and outer borders lie at the same distance from the reference
line V . Although this assumption could appear to be strong,
it is verified for a large number of the images presented in
Section I. Also, the presegmentation described below leads to
a preliminary result which will be refined in Section III-B.

Let us now denote by I a grayscale image with values in
[0, 1]. We denote by D~uI(p) the derivative of I in the direction
~u at the point p. Moreover, for an half-diameter b ∈ R

+, a
point Vi and a window of size (2r + 1), we define the mean
intensity along the curves V 1 and V 2 by

Īint(b, i, r) =
1

2(2r + 1)

+r
∑

j=−r

(

I(V 1
i+j(b)) + I(V 2

i+j(b))
)

,

(4)
the mean local gradient along the curves V 1 and V 2 by

D̄int(b, i, r) =
1

2(2r + 1)

+r
∑

j=−r

(

D~ni+j
I(V 1

i+j(b))+

D−~ni+j
I(V 2

i+j(b))
)

, (5)

and the mean local gradient along the curves V 3 and V 4 by

D̄ext(b, i, r) =
1

2(2r + 1)

+r
∑

j=−r

(

|D~ni+j
I(V 3

i+j(b))|+

|D−~ni+j
I(V 4

i+j(b))|
)

. (6)

Increasing the window radius r makes gradient measures more
robust to noise but less reliable where strong deformations
occur along vessels. This parameter therefore requires a trade-
off. Not using absolute values on directional derivatives in (5)
allows to distinguish negative derivatives (near to the axial
reflection) from positive ones (near to the inner borders of
walls). We detail below the steps necessary to estimate the
half-diameters bint and bext in (3).
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Figure 4: Benefit of using a presegmentation with varying half-
diameters (a),(b) against constant ones (c),(d) for a pathologi-
cal case. Here, we set r = 10 and α = 0.95. In (a) and (c), the
image is superimposed with the presegmentations while it is
superimposed in (b) and (d) with the segmentations obtained
using the model described in Section III-B.

Step 1

We jointly search for a constant half-diameter of inner and
outer borders maximizing the mean gradient divided by the
mean intensity along the curves V 1 and V 2 plus the mean
gradient along the curves V 3 and V 4. Using Equations (4),
(5) and (6), such half-diameters are given by

(b′int
∗

, b′ext
∗

) = argmax
b′int,b′ext

b′int<b′ext

[

∑

i D̄
int(b′int, i, r)

∑

i Ī
int(b′int, i, r)

+

1

m

∑

i

D̄ext(b′ext, i, r)
]

, (7)

where we remind that m is the number of discrete points
on V . Dividing by the intensity encourages gradients in dark
areas. To speed up this step, the search interval for b′ext is
restricted, using typical wall-to-lumen ratio values 2 [7]. Such
a simplistic approach can however fail to accurately segment
the walls when deformations occur along vessels. Estimating
varying half-diameters for inner and outer borders is therefore
crucial to take into account these deformations (see Figure 4).

Step 2

We search for the position along the vessels having the
largest contrast along the curves defined by the half-diameters
b′int

∗

and b′ext
∗

found at Step 1. This position is given by

i∗ = argmax
i

1

2

(

D̄int(b′int
∗

, i, r) + D̄ext(b′ext
∗

, i, r)

)

.

Step 3

Finally, we jointly search for a variable half-diameter of
inner and outer borders whose difference (the wall thickness)
is constant and having the largest contrast along the curves
defined by the half-diameters b′int

∗

and b′ext
∗

found at Step 1.
These half-diameters are constructed iteratively under a regu-
larity constraint from each side of the position i∗ found at Step
2. For a fixed gap e, the half-diameter of inner borders b′′int

∗

2The wall-to-lumen ratio refers to the ratio between the measurement of the
total wall thickness over the measurement of the inner diameter (or lumen).

is constructed as follows:

b′′int
∗

i =







b′int
∗

if i = i∗

argmaxb′′int
i

E(b′′inti , b′′int
∗

i−1 , i, e, r) if i > i∗

argmaxb′′int
i

E(b′′inti , b′′int
∗

i+1 , i, e, r) if i < i∗,
(8)

with

E(b′′inti , b′′int
∗

j , i, e, r) = α

(

D̄int(b′′inti , i, r)

Īint(b′′inti , i, r)

+ D̄ext(b′′inti + ē+ e, i, r)

)

+ (1− α)(b′′inti − b′′int
∗

j )2,

(9)

where ē = (b′ext
∗

− b′int
∗

) and α ∈ [0, 1] a parameter
controlling the amount of regularity. In (9), notice that the term
on the left has the same form as (7), except that it concerns a
single point. Finally, we search for the best gap with

e∗ = argmax
e

∑

i>0

E(b′′int
∗

i , b′′int
∗

i−1 , i, e, r), (10)

and where b′′int
∗

is constructed using (8) and (9). Notice that
the discretization step the search intervals of (8) and (10) is
divided by two. The half-diameters estimates of inner and outer
borders are finally respectively given by bint = b′′int

∗

and
bext = b′′int

∗

+ ē + e∗. Rough estimates of inner and outer
borders are now fully defined using (3).

B. Refined segmentation

The model proposed in [5] simultaneously evolves two
curves under a parallelism constraint. In what follows, we
describe an extension of this model for extracting four curves
V1, V2, V3 and V4 almost parallel to a reference line V . Since
this line is fixed in our situation, the energy becomes

E(V1, . . . , V4, b1, . . . , b4) =
4

∑

k=1

(

EImage(Vk) +R(Vk, bk)
)

,

(11)
where the term

EImage(Vk) =

∫ 1

0

P (Vk(s)) ds

is designed to attract the curve Vk towards large intensity
gradients (see [6]). In this context, the term EImage is based on
the Gradient Vector Flow [16]. The role of the term R in (11)
is to control the variation of the distance bk, thus imposing a
local parallelism to the reference line V . The authors of [5]
proposed a function of the derivative of bk with

R(Vk, bk) =

∫ 1

0

Q(s, b′k) ds =

∫ 1

0

ϕk(s)(b
′
k(s))

2 ds,

where ϕk(s) ∈ R
+ are application-dependent parameters that

locally control the strength of the parallelism of the curve Vk

with respect to the reference line V . More precisely, the larger
the parameter ϕk(s) is, the more strict is the parallelism to
the reference line V . Notice also that the distance between
them has not to be known as prerequisite. It is adjusted during
the evolution process and can vary along boundaries. Notice
that the energy (11) does not ensure that b1(s) < b3(s) and



b2(s) < b4(s). However, we never encountered such behavior
in our experiments (and for those detailed in Section IV).

Since (11) does not have crossing terms involving different
curves, the minimization can be independently done for each
curve Vk. For any k ∈ {1, . . . , 4}, the Euler-Lagrange equation
expresses the minimization of (11) with respect to bk(s)

∂P (Vk(s))

∂bk
−

d

ds

∂Q(s, b′k)

∂b′k
= 0,

and the evolution of the distance bk to the line V is driven by

〈~n,−∇P (Vk(s))〉 − 2[ϕk(s)b
′′
k(s) + ϕ′

k(s)b
′
k(s)] = 0. (12)

The latter equation is solved by discretizing it and introducing
the time variable using standard numerical approximations of
derivatives (central difference in space, backward difference in
time). The resolution of the above equations stops when

max
k∈{1,...,4}

{max
s

|bnk (s)− bn−1

k (s)|} ≤ ε.

In the latter expression, bnk (s) is the estimate of the distance of
the curve Vk to the reference line V at iteration n and ε ≃ 0
is an accuracy parameter. An example of resolution using this
model is illustrated in Figure 4(c).

IV. EVALUATION

Thirteen images from healthy subjects were manually de-
lineated by three physicians 3. These physicians have several
years of experience in AO image interpretation. The images
were selected to ensure the representativeness of the quality
and the noise levels encountered by physicians during routine
clinical. Let us respectively denote by V M and V A a manual
and automatic segmentation. For each image, we measure
using the same axial reflection, the absolute relative difference
on inner and outer diameters as well as total wall thickness (i.e.
the absolute difference between outer and inner diameters),
resp. defined for each point by

δint(V
M , V A) =

|dint(V
M )− dint(V

A)|

dint(V M )
× 100, (13)

δext(V
M , V A) =

|dext(V
M )− dext(V

A)|

dext(V M )
× 100, (14)

δwt(V
M , V A) =

|dwt(V
M )− dwt(V

A)|

dwt(V M )
× 100, (15)

where dext, dint and dwt denote the outer diameter, the inner
diameter and the total wall thickness, respectively. Notice that
δwt is of great importance for us due to its high sensitivity. For
consistency, the above measures are only calculated where no
bifurcation occurs with other blood vessels (see Figure 5(f)).
For the parameters, we set ε = 0.1, α = 0.9, r = 10 and
ϕk = 100, ∀k ∈ {1, . . . , 4}, for all experiments. Since not
enough data were available for measuring the intra-physician
variability, we choose the most experienced one as a reference
(denoted by PhysRef ). For each image, we then calculated the
mean and standard deviation 4 of (13), (14) and (15) along
vessels, between manual segmentations as well as between
the segmentation obtained by the automatic procedure and the

3Pathological subjects will be evaluated in a forthcoming paper.
4For convenience, we will refer to "error" for both in what follows.

manual segmentations from PhysRef . The results are detailed
in Table I and illustrated in Figure 5. To put in perspective
these results, we also provide between parentheses in Table I,
these statistics for a displacement of one pixel all along a
curve. In that case, the numerator of (13), (14) and (15)
becomes equal to one. Due to the size of arterial walls, we first
remark that the error is larger for total wall thickness than for
inner and outer diameters. Additionally, the error introduced
by the automatic procedure is smaller than the inter-physicians
error for total wall thickness and inner diameter. Although
this error is larger than the inter-physicians error for inner
diameter, it remains reasonably near from it. We do believe
the poor results obtained for some Subjects (e.g. 3 and 12) are
mainly due to a lack of accuracy in the delineation of manual
segmentations. Due to the poor contrast along walls and the
size of these structures, it is indeed difficult for physicians to
precisely delineate them (see Subject 5 in Figure 5(h)). Also,
the outer border of walls from the automatic procedure can be
sometimes slightly different from manual segmentations. This
can be for instance the case when "double contour" occur all
along the outer wall border (see Subject 3 in Figure 5(f)).
However, there is no clear consensus among physicians about
the correct position of the outer wall border in such a situation.

V. CONCLUSION

In this paper, we have presented a method for segment-
ing arterial walls in adaptive optics images. Noticeably, the
variability introduced by this method is smaller than the inter-
physicians variability for wall thickness. We plan to improve
the detection of axial reflections and improve the segmentation
of walls by introducing extra energy terms in parallel snakes.
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Figure 5: Positive (a),(b),(c),(d) and negative (e),(f),(g),(h)
segmentation results against PhysRef for Subjects 7 (a),(b),
11 (c),(d), 3 (e),(f) and 5 (g),(h). Automatic segmentations are
drawn in red while manual ones are drawn in blue. Green
dashed lines correspond to the reference line V . Orange and
cyan arrows respectively point misplacement of curves in
automatic and manual segmentations.

Subject Inter-physicians Our method / PhysRef

1 2.29 ± 1.54 (1.13 ± 0.04) 2.07 ± 1.06 (1.13 ± 0.04)
2 3.50 ± 2.37 (2.47 ± 0.16) 4.17 ± 3.29 (2.47 ± 0.16)
3 2.86 ± 2.57 (1.37 ± 0.04) 1.63 ± 1.31 (1.37 ± 0.04)
4 2.29 ± 1.7 (0.75 ± 0.03) 3.16 ± 1.65 (0.75 ± 0.03)
5 2.79 ± 1.91 (0.89 ± 0.05) 3.21 ± 2.09 (0.89 ± 0.05)
6 3.75 ± 2.8 (1.13 ± 0.05) 2.14 ± 2.34 (1.13 ± 0.05)
7 2.82 ± 2.38 (0.87 ± 0.04) 2.51 ± 2.64 (0.87 ± 0.04)
8 2.84 ± 2.41 (0.97 ± 0.03) 3.78 ± 2.92 (0.97 ± 0.03)
9 3.26 ± 2.65 (0.87 ± 0.03) 4.58 ± 3.19 (0.87 ± 0.03)
10 3 ± 2.08 (0.8 ± 0.02) 1.87 ± 1.96 (0.8 ± 0.02)
11 2.75 ± 1.8 (0.84 ± 0.02) 2.36 ± 1.88 (0.84 ± 0.02)
12 2.7 ± 2.26 (0.9 ± 0.04) 2.51 ± 2.05 (0.9 ± 0.04)
13 3.38 ± 2.27 (0.84 ± 0.05) 6.07 ± 4.25 (0.84 ± 0.05)

Avg 2.92 ± 2.24 (0.99 ± 0.35) 3.06 ± 2.73 (0.99 ± 0.35)

Subject Inter-physicians Our method / PhysRef

1 2.08 ± 1.69 (0.91 ± 0.02) 2.06 ± 1.83 (0.91 ± 0.02)
2 2.2 ± 1.76 (1.7 ± 0.07) 3.86 ± 1.92 (1.7 ± 0.07)
3 2.16 ± 1.53 (1.05 ± 0.03) 5.64 ± 2.82 (1.05 ± 0.03)
4 2.8 ± 1.94 (0.6 ± 0.02) 1.57 ± 1.04 (0.6 ± 0.02)
5 2.94 ± 2.19 (0.67 ± 0.03) 2.28 ± 1.66 (0.67 ± 0.03)
6 5.11 ± 3.81 (0.74 ± 0.03) 3.05 ± 2.1 (0.74 ± 0.03)
7 4.05 ± 2.59 (0.65 ± 0.01) 1.96 ± 1.38 (0.65 ± 0.01)
8 1.93 ± 1.36 (0.69 ± 0.02) 2.23 ± 1.34 (0.69 ± 0.02)
9 2.93 ± 1.84 (0.62 ± 0.01) 2.33 ± 1.01 (0.62 ± 0.01)
10 3.03 ± 1.97 (0.6 ± 0.01) 1.67 ± 1.45 (0.6 ± 0.01)
11 2.18 ± 1.95 (0.68 ± 0.01) 2.19 ± 1.33 (0.68 ± 0.01)
12 2.48 ± 1.54 (0.69 ± 0.03) 5.04 ± 2.27 (0.69 ± 0.03)
13 1.7 ± 1.28 (0.68 ± 0.02) 2.95 ± 2.68 (0.68 ± 0.02)

Avg 2.83 ± 2.31 (0.74 ± 0.24) 2.7 ± 2.16 (0.74 ± 0.24)

Subject Inter-physicians Our method / PhysRef

1 10.57 ± 8.1 (4.68 ± 0.59) 9.12 ± 6.33 (4.68 ± 0.59)
2 8.78 ± 6.59 (5.53 ± 0.58) 9.79 ± 6.03 (5.53 ± 0.58)
3 11.63 ± 9.54 (4.63 ± 0.45) 23.11 ± 13.1 (4.63 ± 0.45)
4 14.52 ± 11.95 (3.04 ± 0.43) 13.52 ± 8.35 (3.04 ± 0.43)
5 17.46 ± 14.5 (2.8 ± 0.57) 15.62 ± 11 (2.8 ± 0.57)
6 14.32 ± 10.93 (2.2 ± 0.29) 10.9 ± 7.87 (2.2 ± 0.29)
7 16.12 ± 10.57 (2.54 ± 0.33) 9.82 ± 8.59 (2.54 ± 0.33)
8 9.85 ± 7.64 (2.46 ± 0.22) 12.22 ± 6.22 (2.46 ± 0.22)
19 14.77 ± 12.36 (2.17 ± 0.32) 11.42 ± 5.6 (2.17 ± 0.32)
10 13.17 ± 8.52 (2.36 ± 0.23) 7.4 ± 5.87 (2.36 ± 0.23)
11 15.98 ± 13.26 (3.67 ± 0.36) 15.15 ± 13.8 (3.67 ± 0.36)
12 12.58 ± 10.11 (2.88 ± 0.22) 25.52 ± 8.41 (2.88 ± 0.22)
13 15.69 ± 10.53 (3.5 ± 0.4) 14.68 ± 11.8 (3.49 ± 0.4)

Avg 14.09 ± 11.34 (3.1 ± 0.98) 13.84 ± 10.52 (3.1 ± 0.98)

Table I: From top to bottom: inter-physicians and automatic
/ PhysRef absolute relative error for inner diameter (see
Equation (13)) outer diameter (see Equation (14)) and total
wall thickness (see Equation (15)). The numbers between
parentheses denote a unit displacement all along the curve.
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