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ABSTRACT
In this paper, a new approach is presented for accurately de-
lineating the artery walls in adaptive optics images. To the
best of our knowledge, this is the first paper addressing this
problem in this context. To achieve this goal, we propose an
automatic two-steps process. The position of inner walls of
each vessel is first roughly estimated. Then, a deformable
model embedding a parallism constraint is used to refine their
positioning and localize the outer walls. Such an approach en-
ables us to model the walls as approximate parallel contours
and to control their distance with respect to their common
reference line. This model leads to four independent energy
functionals, minimized by gradient descent. Noticeably, the
evaluation of this new model on healthy subjects shows an
overall error smaller than the inter-physicians variability.

Index Terms— Active contours model, adaptive optics,
approximate parallelism, retina imaging.

1. INTRODUCTION

Arterial hypertension affects the physiology and structure of
small vessels of the retina, which may lead to visual loss. Ac-
cording to the Public Health Agency of Canada, arterial hy-
pertension affects 15 to 20% of the world population. Typi-
cally, arterial hypertension results in a thickening of arterial
walls, which is predictive of future damage such as stroke [1,
2]. It is therefore of great importance to quantify as accurately
as possible the thickness of the arterial wall to document arte-
riolar damage. But classical fundus photographs cannot cap-
ture this level of details due to technological limitations.

Adaptive-Optics (AO) is an opto-electronic technology,
first developed in astronomy, which improves the lateral res-
olution of fundus imaging. AO-based fundus cameras en-
able the visualization of microstructures such as photorecep-
tors [3] and capillaries [4]. In the present study, a procedure
based on flood-illumination near infrared has been recently
developed by ImagineEyes [5]. The images acquired with
this device have a pixel-resolution of 0.8µm. Blood vessels
appear as black elongated structures with a linear axial reflec-
tion revealing the center of the vessel. Parietal structures are

Fig. 1: Image of a retinal vessel acquired by the rtx1 [5].

visible in arterioles as small as 20 microns. The arterial walls
appear as a gray line along both sides of the blood column,
with a typical thickness equal to about 15% of the lumen (i.e.
radius, see Figure 1). In this paper, we propose an automatic
procedure to accurately delineate these walls. To the best of
our knowledge, this is the first paper addressing this issue in
this context. The following two-steps process is proposed: the
position of the inner walls of each vessel is first roughly es-
timated. Then, a deformable model (Parallel Double Snakes
or PDS) embedding a parallelism constraint [6] is used to re-
fine their positioning and localize the outer walls. Such an
approach enables us to model the walls as approximate paral-
lel contours and to control their distance with respect to their
common reference line. This model leads to four independent
energy functionals, minimized by gradient descent.

The rest of this paper is as follows. In Section 2, we
briefly remind a variant of the PDS model with a single al-
most parallel curve. Then, we detail in Section 3 the two-steps
process using this new model and evaluate it in Section 4.

2. PARALLEL DOUBLE SNAKES MODEL

In [6], a parametric active contour model (PDS) has been pro-
posed that simultaneously evolves two curves under a paral-
lelism constraint. In what follows, we propose a variant of
this model for extracting a single curve V1 that is almost par-
allel to a fixed reference line V (s) = (x(s), y(s))T . Using



Fig. 2: Parametric representation of a variant of the PDS model.

the same notations, we define the curve

V1(s) = V (s) + b(s)n(s), (1)

where n is the normal vector to the curve V (s) and b is the
local distance between V and V1 (see Figure 2). This model
allows a direct correspondence between the points of the ref-
erence line V and those of the curve V1. Since the reference
line is fixed, the energy of the PDS model reduces to

E(V1, b) = EImage(V1) +R(V1, b), (2)

where the term

EImage(V1) =

∫ 1

0

P (V1(s))ds,

is designed to attract the curve V1 towards large intensity gra-
dients in the image I (see [7]). In this context, the term
EImage is defined as in [8]. The role of the term R in (2)
is to control the variation of the distance b, thus imposing a
local parallelism. The authors of [6] proposed a function of
the derivative of b with

R(b) =

∫ 1

0

ϕ(s)(b′(s))2ds,

where ϕ(s) ∈ R+ is an application-dependent parameter
(which be tuned later on) that locally controls the strength of
the parallelism of the curve V1 with respect to the reference
line V . More precisely, as the parameter ϕ(s) increases, the
curve V1 becomes progressivelly strictly parallel to the refer-
ence line V . Notice that the distance between them has not to
be known as prerequisite. It is adjusted during the evolution
process and can vary along boundaries.

Finally, the evolution of the distance b is driven by

〈n,−∇P (V1(s))〉 − 2[ϕ(s)b′′(s) + ϕ′(s)b′(s)] = 0. (3)

The latter equation is solved by discretizing it and introducing
the time variable using standard numerical approximations of
derivatives (central difference in space, backward difference
in time). The resolution of the above equation stops when the
maximum of the absolute difference between two successive
estimates of b is smaller than some ε ' 0.

3. AUTOMATIC SEGMENTATION OF WALLS

3.1. Pre-segmentation

The source image (see Figure 3(a)) is first enhanced by ap-
plying a median filter followed by a non-linear diffusion fil-
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Fig. 3: Segmentation of the parietal structure of a retinal
artery: (a) source image; (b) detection of the axial reflection
(white) and binary mask of the vessel (light gray); (c) initial-
ization of the active contour model with parallelism constraint
(V1 and V2 are strictly parallel to V and at equal distance); (d)
final segmentation and point correspondence (in yellow) al-
lowing easy and accurate measurements.

ter [9]. This filter allows smoothing the blood vessels while
preserving the contrast along their edges. The first step of
the segmentation is based on the enhancement of the bright-
est linear structures and the search for the darkest regions, by
respectively applying morphological operations and k-means
classification (k = 3). Both kinds of information are then
combined in order to select the linear bright structures corre-
sponding to the vessel axial reflection and compute a binary
mask of the vessel (see Figure 3(b)). The vessel is then mod-
eled by the regularized skeleton (denoted by V (s)) of its axial
reflection [7, 8]. It will serve as reference in all what follows.

The second step of the pre-segmentation process aims at
locating the inner borders of the artery. Each border is approx-
imated by a curve parallel to the reference line V (as in (1),
with b constant) and is respectively denoted by V1 and V2 (see
Figure 3(c)). The mean distance b between a side contour and
the reference line (i.e. the vessel radius or lumen) is derived
from the preprocessed images, by maximizing the mean in-
tensity value of the area delimited by V1 and V2 over the mean
intensity along them. Dividing by the mean intensity allows
pushing these curves towards large image gradients while re-
maining in dark areas. Thus, these curves are placed as near
as possible to the internal side of the parietal structure.

The next step aims at refining the position of V1, V2 and
at localizing the outer sides of the artery wall, respectively
denoted by V1b and V2b.

3.2. Accurate delineation of the walls

Several strategies can be considered to segment arterial walls
using the PDS model. A first possible way would consist in
using pairwise almost parallel curves with multiple reference



lines. Although this model ensures that no crossing occurs
between curves, it is computationally heavy to solve and the
main reference line is expected to be different from the one
found during the pre-segmentation step. To overcome these
difficulties, we adopt another (simpler) strategy: use sequen-
tially the variant of the PDS model described in Section 2
(see (3) and (2)). Indeed, the regularized skeleton V of the
central reflection marks the centerline of the vessel segment
and constitutes a very good reference line, with respect to
which we can search for the boundaries of the vessel wall: the
inner edges of the arterial walls, V1 and V2, on each side of
the central reflection V , the outer edges of the arterial walls,
V1b and V2b, also on each side of V :{

V1,2(s) = V (s) ± b1,2(s)n(s)
V1b,2b(s) = V (s) ± b1b,2b(s)n(s).

Although this approach does not ensure no crossing between
curves, we never observed such a behavior during experi-
ments. The variant of the PDS model is first applied twice,
sequentially, using the pre-segmentation results as initializa-
tion (b1(s) = b2(s) = b, see Figure 3(c)), in order to refine
the position of the curves V1 and V2 (see Figure 3(d)). So, an
accurate localization of the inner edges is obtained. Then, the
curve V1 is translated, by increasing the local radii b1(s) by a
distance d (b1b(s) = b1(s) + d), so that the average gradient
along the curve is maximized. This translated curve serves
as an initialization for the parallel snake, allowing to get the
accurate position of the outer side V1b of the artery wall. The
same process is repeated for V2b.

4. EXPERIMENTS AND DISCUSSION

Fourteen images from healthy subjects were manually de-
lineated by three physicians. These physicians have several
years of experience in the field of AO image interpretation.
The images were selected to ensure the representativeness of
the quality and the noise levels encountered by physicians
during examinations. The evaluation protocol is as follows:
for each selected image, we manually define regularly spaced
points on the axial reflection and connect them with a cubic
spline 1. Once regularized by a classical snake as for the pre-
segmentation step in Section 3.1, it is then both provided to
the automatic procedure and to physicians. Using a common
reference line aims to considerably ease the measurements on
the arterial walls. Let us now denote by VM and V A a manual
segmentation and an automatic one, respectively. To compare
them, we choose to measure the absolute relative difference
of external and internal diameter as well as the walls thick-
ness (i.e. difference between external and internal diameters),
resp. defined for each point by

δi(V
M , V A) =

|di(VM )− di(V A)|
di(VM )

× 100, (4)

1The robustness of the automatic reference line detection in the pre-
segmentation (see Section 3.1) will be evaluated in a forthcoming paper.

Subject Inter-physicians Our method / PhysRef
1 2.25 ± 1.61 (1.14 ± 0.04) 1.88 ± 1.08 (1.13 ± 0.04)
2 3.42 ± 2.51 (2.45 ± 0.14) 2.62 ± 1.5 (0.91 ± 0.02)
3 3.45 ± 3.06 (1.38 ± 0.06) 4.41 ± 3.7 (2.47 ± 0.16)
4 3.22 ± 2.42 (2.15 ± 0.09) 1.75 ± 1.21 (1.37 ± 0.04)
5 2.6 ± 1.98 (0.76 ± 0.03) 3.07 ± 2.48 (2.15 ± 0.08)
6 2.57 ± 1.84 (0.89 ± 0.05) 3.3 ± 2.11 (0.89 ± 0.05)
7 4.09 ± 2.98 (1.14 ± 0.06) 2.98 ± 1.64 (0.75 ± 0.03)
8 2.64 ± 2.21 (0.88 ± 0.03) 2.22 ± 2.41 (1.13 ± 0.05)
9 2.87 ± 2.36 (0.97 ± 0.03) 2.44 ± 3.03 (0.87 ± 0.04)
10 3.54 ± 2.76 (0.87 ± 0.03) 3.7 ± 2.94 (0.97 ± 0.03)
11 2.87 ± 2.17 (0.81 ± 0.03) 4.12 ± 2.47 (0.87 ± 0.03)
12 2.88 ± 2.02 (0.84 ± 0.03) 2.19 ± 2.11 (0.8 ± 0.02)
13 3.17 ± 2.44 (0.91 ± 0.05) 1.65 ± 1.04 (0.84 ± 0.02)
14 3.75 ± 2.49 (0.85 ± 0.04) 1.53 ± 0.97 (0.9 ± 0.04)

Avg 3.05 ± 2.39 (1.04 ± 0.41) 2.68 ± 2.3 (1.04 ± 0.41)

Subject Inter-physicians Our method / PhysRef
1 2.04 ± 1.6 (0.91 ± 0.02) 2.62 ± 1.5 (0.91 ± 0.02)
2 2.37 ± 1.76 (1.7 ± 0.08) 4.14 ± 2.05 (1.7 ± 0.07)
3 2.17 ± 1.63 (1.05 ± 0.03) 5.32 ± 2.39 (1.05 ± 0.03)
4 2.53 ± 2.22 (1.74 ± 0.05) 1.42 ± 1.09 (1.72 ± 0.03)
5 3.03 ± 2.11 (0.61 ± 0.02) 2.37 ± 1.81 (0.6 ± 0.02)
6 2.61 ± 2.12 (0.67 ± 0.03) 2.21 ± 1.52 (0.67 ± 0.03)
7 5.04 ± 3.73 (0.77 ± 0.03) 3.13 ± 1.56 (0.74 ± 0.03)
8 3.63 ± 2.64 (0.66 ± 0.02) 1.98 ± 1.59 (0.65 ± 0.01)
9 2.08 ± 1.49 (0.7 ± 0.02) 2.61 ± 1.14 (0.69 ± 0.02)
10 3.09 ± 2.28 (0.62 ± 0.02) 3.03 ± 1.86 (0.62 ± 0.01)
11 3.01 ± 2.2 (0.61 ± 0.02) 1.84 ± 1.33 (0.6 ± 0.01)
12 2.39 ± 2.01 (0.68 ± 0.02) 2.51 ± 1.27 (0.68 ± 0.01)
13 2.23 ± 1.57 (0.69 ± 0.02) 1.83 ± 1.18 (0.69 ± 0.03)
14 1.84 ± 1.48 (0.68 ± 0.03) 1.47 ± 1.12 (0.68 ± 0.02)

Avg 2.79 ± 2.33 (0.78 ± 0.3) 2.51 ± 1.82 (0.78 ± 0.29)

Subject Inter-physicians Our method / PhysRef
1 10.1 ± 8.01 (4.71 ± 0.5) 10.66 ± 10.57 (4.68 ± 0.59)
2 9.16 ± 6.76 (5.62 ± 0.56) 10.04 ± 6.1 (5.53 ± 0.58)
3 12.09 ± 10.43 (4.53 ± 0.5) 20.88 ± 11.6 (4.63 ± 0.45)
4 19.55 ± 18.78 (9.57 ± 1.8) 16.34 ± 9.65 (8.95 ± 1.61)
5 15.75 ± 14.43 (3.11 ± 0.48) 11.49 ± 7.2 (3.04 ± 0.43)
6 14.73 ± 12.33 (2.82 ± 0.4) 14.48 ± 10.65 (2.8 ± 0.57)
7 16.12 ± 13.93 (2.41 ± 0.35) 11.52 ± 5.86 (2.2 ± 0.29)
8 17.78 ± 14.32 (2.79 ± 0.38) 10.36 ± 9.8 (2.54 ± 0.33)
9 10.81 ± 9.23 (2.51 ± 0.28) 7.32 ± 4.99 (2.46 ± 0.22)
10 16.64 ± 12.66 (2.17 ± 0.32) 12.6 ± 7.26 (2.17 ± 0.32)
11 14.84 ± 10.73 (2.47 ± 0.3) 9.56 ± 6.26 (2.36 ± 0.23)
12 16.27 ± 13.44 (3.57 ± 0.53) 10.29 ± 10.4 (3.67 ± 0.36)
13 14.4 ± 10.34 (2.99 ± 0.39) 7.11 ± 5.55 (2.88 ± 0.22)
14 14.85 ± 9.88 (3.39 ± 0.45) 10.7 ± 8.88 (3.49 ± 0.4)

Avg 14.69 ± 12.43 (3.38 ± 1.55) 11.67 ± 9.13 (3.31 ± 1.48)

Table 1: From top left to bottom right: inter-physicians and
automatic vs reference relative error for internal diameter (see
equation (4)), external diameter (see Equation (5)) and walls
thickness (see Equation (6)). The numbers between parenthe-
ses denote a unit displacement all along the curve (see text).

δe(V
M , V A) =

|de(VM )− de(V A)|
de(VM )

× 100, (5)

δw(V
M , V A) =

|wt(VM )− wt(V A)|
wt(VM )

× 100, (6)

where de, di andwt denote the external diameter, the internal
diameter and the walls thickness of a segmentation, respec-
tively. These measures were only taken into account when no
bifurcation occurs in vessels (see Figure 4) and when data are
available for all physicians. We empirically set ϕ(s) = 100
and ε = 0.25 for all the subsequent experiments. Since not
enough data were available for measuring the intra-physician
variability, we choose the most experienced one as a refer-
ence (denoted by PhysRef ). Then, we calculated the inter-
physicians variability and the error between the automatic
segmentation and segmentation performed by the reference
physician. The results of this comparison are detailed in Ta-
ble 1 and illustrated in Figure 4. To put in perspective these
results, we also provide between parentheses, the error for



which a displacement of one pixel occurs all along a curve.
In that case, the numerator of (4), (5) and (6) becomes equal
to one. Due the size of arterial walls, we first remark that the
error is considerably larger on walls thickness than on internal
and external diameters. For some images, the inter-physicians
variability is larger than the error between our method and the
physician reference. However, this error remains smaller for
11 images out of 14. We do believe that this is mainly due to
the lack of accuracy in manual segmentations. Due to the poor
contrast along walls and the size of these structures, it is in-
deed difficult for physicians to precisely delineate them (see
Subject 6). Also, the computed external wall can be some-
times can be slightly different from manual segmentations.
This can be for instance due to a double contour (see Subject
3). Nevertheless, the overall variability of our method against
the physician reference is always lower for all measures.
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Fig. 4: From top to bottom: positive (half-up) and negative
(half-down) results against the reference physician PhysRef

for Subjects 8, 12, 3 and 6 (see Table 1). The manual and the
automatic segmentation are drawn in blue and red, respec-
tively. The green dashed line is the reference line. The origi-
nal images are provided in the left column while they are su-
perimposed to the segmentations in the right column. Yellow
and cyan arrows point misplacement of borders in automatic
and manual segmentations, respectively.


