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Abstract

We focus on the Discrete Duality Finite Volume (DDFV) method whose

particularity is to allow the use of unstructured or nonconforming meshes.

We deal with the Laplacian problem on nonconvex domains. We show

how appropriate refinement conditions on the diamond mesh lead to an

optimal order of convergence as for smooth solutions. These theoretical

results are illustrated by some numerical applications.
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1 Introduction

Let Ω be a bounded open set of R
2 whose polygonal boundary is denoted by Γ. We

note by Hm(Ω), with m ∈ {1, 2}, the usual Sobolev spaces with norm ‖.‖Hm(Ω) and
Lp(Ω), with p ≥ 1, the usual Lebesgue spaces with norm ‖.‖Lp(Ω). We consider the
following problem: given f ∈ L2(Ω), let φ ∈ H1(Ω) be the variational solution of
the Laplace equation with Dirichlet homogeneous boundary conditions:

{
−∆φ = f in Ω,

φ = 0 on Γ,
(1)

or Neumann homogeneous boundary conditions:





−∆φ = f in Ω,
∇φ · n = 0 on Γ,∫
Ω φ dx = 0.

(2)

1This work was performed at the CEA Saclay, DANS/DM2S/SFME/LMPE, 91191 Gif sur
Yvette.



DDFV for corner singularities

A necessary condition for existence of a solution to (2) is given by
∫
Ω f(x)dx = 0.

It is well known that when Ω is convex, the solutions of the problems (1) and (2)
are smooth [CIA 78] and belong to H2(Ω). However, Ω is rarely convex in prac-
tice. Therefore, many studies have been conducted on polygonal domains presenting
reentrant corners and we know [GRI 92, WAH 84, LAA 57, DAU 88, KS 87] that the
solutions of (1) and (2) have singularities which lead to a loss of regularity near the
nonsmooth parts of the boundary (here, the reentrant corners), even if the datum f
is smooth on Ω.
More precisely, when Ω has at least one angle ωc ∈]π, 2π[, associated to a corner
noted by c, then the solution φ of the problems (1) and (2) can be rewritten as:

φ = φ̃+
∑

ωc>π

νc φc, (3)

where φ̃ ∈ H2(Ω) is the smooth part, φc /∈ H2(Ω) is the singular part associated
to the corner c whose angle ωc belongs to ∈]π, 2π[ and νc is a real-valued number.
In this case, according to [GRI 92, KON 67, BR 72, KS 87], the singular part φc is
defined in polar coordinates (rc, θc) as:

φc(rc, θc) = η(rc) r
π
ωc sin

(
πθc

ωc

)
for the problem (1), (4)

and

φc(rc, θc) = η(rc) r
π
ωc cos

(
πθc

ωc

)
for the problem (2), (5)

where η(rc) = 1 in a neighborhood of the corner c and 0 otherwise. Consequently,
we notice that, for any neighborhood Vc of the corner c, the solution φ belongs to
H2(Ω \ Vc) for both problems. More precisely, we know [GRI 92] that φ belongs to
H1+ π

ω
−ǫ(Ω) with ǫ > 0 and ω = max

ωc>π
ωc.

In what follows, we assume that, without loss of generality, Ω has an unique corner
such that ω > π whose vertex S is located at the origin (0,0). Such a configuration
is displayed in figure 1.

Now, we introduce a family called weighted Sobolev spaces Hm,α(Ω) with m ∈
N \ {0} and α ≥ 0 such that

Hm,α(Ω) =



φ ∈ Hm−1(Ω) : |φ|2Hm,α(Ω) =

∑

|β|=m

‖rαDβφ‖2
L2(Ω) < +∞



 ,

where r := r(x) = d(x, S) is the distance from x ∈ Ω to the origin S. In addition,
for m ∈ N \ {0}, α ∈ [0, 1[, we define a norm on Hm,α(Ω) by

‖φ‖2
Hm,α(Ω) = ‖φ‖2

Hm−1(Ω) + |φ|2Hm,α(Ω).

We easily check that H2(Ω) ⊂ H2,α(Ω) and that the functions φc defined in (4) and
(5) belong to H2,α(Ω) under the condition α ∈

]
1 − π

ω ,
1
2

[
. Therefore, the solution

φ ∈ H1(Ω) of each problem (1) and (2) belongs to H2,α(Ω) when Ω is nonconvex.
This loss of regularity leads to a loss of accuracy near the corner for the standard

International Journal on Finite Volumes 2



DDFV for corner singularities

x

1

2

Sw

x

Ω

Figure 1: The domain Ω with only one corner.

discretization techniques. Indeed, [GRI 92, WAH 84, LAA 57, BKP 79] have shown
that a quasi-uniform sequence of triangulations of Ω will not lead to optimal rates of
convergence for the Galerkin approximation φh of the solution. Moreover, [DNT 02]
numerically observes a loss of accuracy for the cell-centered finite volume method
[EGH 00, HEI 94, RP 80], and for the conforming and nonconforming [BR 87, CAI
91, CHA 02, CHA 99] finite volume-element methods (called also box methods)
which combine the finite element methods and the finite volume methods. At last,
[CL 05] have proved theoretically the loss of accuracy of a finite volume-element
method.
In fact, there is an extensive literature about the corner singularities (there exists
also a lot of works on edge singularities [AN 98] in 3D or other weighted Sobolev
spaces [BNZ 05] for example, but here we focus on corner singularities in 2D). The
studies on the loss of regularity for the Laplacian problem are mainly based on a
theoretical or numerical, finite element based, point of view, but, to our knowledge,
this problem has not been much studied for the finite volume methods (see [HEI 94,
DNT 02]), although these methods are interesting for the approximation of various
physical phenomena (computational fluid dynamics or convection-diffusion problems
for example).
In what follows, we are interested in a finite volume method, called the discrete du-
ality finite volume (DDFV) method [DO 05, DDO 05]. The interest of this method
is its ability to deal with arbitrary polygonal meshes such as nonconforming meshes
or unstructured meshes without constraints of orthogonality, such as those used by
[EGH 00] for example. The price to pay for that is the addition of unknowns. There-
fore, for the Laplacian problem, the unknowns are located at the barycenters and at
the vertices of the mesh, since the Laplacian equation is integrated both on the cells
of the mesh (called primal mesh) and on a second mesh, called dual mesh, whose
cells are centered at the vertices of the primal mesh.
We have also remarked a loss of accuracy for the Laplacian problem discretized by
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the DDFV method in the presence of reentrant corners (see [DDO 07]). That is
why we study here the ability of an appropriate local refinement to restore optimal
convergence for this finite volume method, like it was shown for the finite elements
methods in [RAU 78, GRI 85]. In addition, the same techniques of refinement
have succeeded (see [DNT 02]) on the cell-centered method, and on conforming and
nonconforming finite volume-element methods. Therefore, in order to obtain the
corresponding error estimates, we combine the error analysis of the DDFV scheme
given in [DO 05] for smooth solutions of the Laplacian problem, with the error anal-
ysis of the Galerkin method for nonsmooth solutions described in [GRI 85, RAU 78]
in addition to some ideas of [DNT 02]. The main difference for the DDFV method
is that the analysis is given on a third mesh, called diamond mesh, which will be
specified later, instead of on the primal mesh as usual [GRI 85, RAU 78, DNT 02].
This paper is organized as follows: in Section 2, we explain the construction of the
primal, dual and diamond meshes and we present the associated notations. Then,
we detail the definitions of the discrete differential operators used to discretize the
Laplace operator and the discrete scalar products, and we recall the finite volume
scheme for the Laplacian problem obtained in [DO 05]. Section 3 is devoted to the
error analysis for nonsmooth solutions. We show how appropriate refinement con-
ditions on the diamond mesh lead to an optimal order of convergence as for smooth
solutions. These theoretical results are illustrated in Section 4 by some numerical re-
sults: firstly, on unstructured meshes without refinement and secondly on structured
and unstructured meshes with appropriate refinement near the reentrant corner.

2 Definitions, notations and discrete schemes for the

Laplacian

2.1 Construction of the primal mesh

We consider a first partition of Ω (named primal mesh) composed of elements Ti,
with i ∈ [1, I], supposed to be convex polygons. With each element Ti of the mesh,
we associate the center of gravity Gi. The area of Ti is denoted by |Ti|. We denote
by J the total number of edges of this mesh and JΓ the number of these edges which
are located on the boundary Γ and we associate with each of these boundary edges
its midpoint, also denoted by Gi with i ∈ [I + 1, I + JΓ].

2.2 Construction of the dual mesh

Further, we denote by Sk, with k ∈ [1,K], the nodes of the polygons of the primal
mesh. To each of these points, we associate a polygon denoted by Pk, obtained by
joining the points Gi associated to the elements of the primal mesh (and possibly
to the midpoints of the boundary sides) of which Sk is a vertex, to the midpoints of
the edges of which Sk is an extremity. The cells Pk constitute a second partition of
Ω, referenced as dual mesh. The area of Pk is denoted by |Pk|. Figure 2 displays an
example of primal mesh and its associated dual mesh.
Moreover, we suppose that the set [1,K] is ordered so that k ∈ [1,K − JΓ] if Sk is
not on Γ and k ∈ [K − JΓ + 1,K] for nodes Sk belonging to Γ.

International Journal on Finite Volumes 4
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Figure 2: An example of a primal mesh and its associated dual mesh.

2.3 Construction of the diamond mesh

With each side of the primal mesh, denoted by Aj (whose length is |Aj |), for j ∈
[1, J ], we associate a quadrilateral named “diamond cell” and denoted by Dj. When
Aj is not on the boundary, this cell is obtained by joining the points Sk1(j) and
Sk2(j), which are the two nodes of Aj , with the points Gi1(j) and Gi2(j) associated to
the elements of the primal mesh which share this side. When Aj is on the boundary
Γ, the cell Dj is obtained by joining the two nodes of Aj with the point Gi1(j)

associated to the only element of the primal mesh of which Aj is a side and to the
point Gi2(j) associated to Aj (i.e. by convention i2(j) is element of [I + 1, I + JΓ]
when Aj is located on Γ). The cells Dj constitute a third partition of Ω, which we
name “diamond mesh”. The area of the cell Dj is denoted by |Dj|. Such a cell is
displayed in figure 3.

Gi1

2

S

Gi

1

2k

Sk jD
G

G

1i

S 2k
Sk1i2

Dj

Figure 3: Examples of diamond cells.
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2.4 Definitions of geometrical elements

The unit vector normal to Aj is denoted by nj and is oriented so that Gi1(j)Gi2(j) ·
nj ≥ 0. We further denote by A′

j the segment [Gi1(j)Gi2(j)] (whose length is |A′
j |)

and by n′
j the unit vector normal to A′

j oriented so that Sk1(j)Sk2(j) · n′
j ≥ 0 (see

Fig. 4).
We note by Mj the middle point of Aj , A

′
j1 (respectively A′

j2) the edge [Gi1(j)Mj ]
(resp. [MjGi2(j)]) and n′

j1 (resp. n′
j2) the unit vector normal to A′

j1 (resp. A′
j2)

oriented such that:
|A′

j |n′
j = |A′

j1|n′
j1 + |A′

j2|n′
j2 . (6)

We define for each i ∈ [1, I] the set V(i) of integers j ∈ [1, J ] such that Aj is a side

i2

G
1

S
Sk1

G

i

2k
An

n’

jD

j
j

j

A’j k 1
S

A’j
n’j

G i 1

A’j2
n’j2

i 2
G

Sk 2
jM

j1A’ n’j1

Figure 4: Notations for the diamond cell.

of Ti and for each k ∈ [1,K] the set E(k) of integers j ∈ [1, J ] such that Sk is a node
of Aj .
We define for each j ∈ [1, J ] and each k such that j ∈ E(k) (resp. each i such that
j ∈ V(i)) the real-valued number s′jk (resp. sji) whose value is +1 or −1 whether n′

j

(resp. nj) points outwards or inwards Pk (resp. Ti). We define n′
jk := s′jkn

′
j (resp.

nji := sjinj) and remark that n′
jk (resp. nji) always points outwards Pk (resp. Ti).

At last, for j ∈ [1, J − JΓ] as on Fig. 5, we denote by Dj,1 and Dj,2, the triangles
Sk1(j)Gi1(j)Sk2(j) and Sk2(j)Gi2(j)Sk1(j). In the same way, we denote by D′

j,1 and
D′

j,2, the triangles Gi2(j)Sk1(j)Gi1(j) and Gi1(j)Sk2(j)Gi2(j). In what follows, we shall
suppose that all diamond cells are convex so that we can split each interior diamond
cell Dj into two triangles in two ways: either Dj = Dj,1

⋃
Dj,2 or Dj = D′

j,1

⋃
D′

j,2.
For diamond cells located on the boundary, let us note that we have Dj,1 = Dj and
Dj,2 = ∅. Thus, we have Dj = Dj,1

⋃
Dj,2 = D′

j,1
⋃
D′

j,2.

2.5 The discrete operators

We only need the definition of the discrete gradient (resp. divergence) operator on
the diamond cells (resp. on the primal and dual cells) to discretize the continuous
Laplacian operator. The construction of these two operators is given in [DO 05] but
we can find in [DDO 07] the expansion of discrete differential scalar and vector curl

International Journal on Finite Volumes 6
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Figure 5: A diamond cell can be split into two distinct ways.

operators defined on the primal, dual and diamond meshes which allow to obtain a
Laplacian operator as well.

Definition 2.1 The discrete gradient ∇
D
h is defined by its values on the diamond

cells Dj :

(∇D
h φ)j :=

1

2 |Dj |

{[
φP

k2
− φP

k1

]
|A′

j |n′
j +

[
φT

i2 − φT
i1

]
|Aj |nj

}
. (7)

Note that formula (7) is exact for an affine function φ if we set φP
kα

:= φ(Skα
) and

φT
iα := φ(Giα), for α ∈ {1; 2}. Computing the discrete gradient only requires the

values of φ at the nodes of the primal and dual meshes. The operator ∇
D
h thus acts

from R
I+JΓ × R

K into
(
R

J
)2

.
Next, we define the discrete divergence of a vector field u by its values both on the
primal and dual cells of the mesh. Supposing that the vector field u is given by its
discrete values uj on the cells Dj , we state the definition of the discrete divergence
∇T

h · on each Ti and the discrete divergence ∇P
h · on each Pk.

Definition 2.2 The discrete divergence ∇T,P
h · := (∇T

h ·,∇P
h ·) is defined by its values

over the primal cells Ti and the dual cells Pk:

(∇T
h · u)i :=

1

|Ti|
∑

j∈V(i)

|Aj |uj · nji ,

(8)

(∇P
h · u)k :=

1

|Pk|




∑

j∈E(k)

(
|A′

j1 |n′
jk1

+ |A′
j2 |n′

jk2

)
· uj

+
∑

j∈E(k)∩[J−JΓ+1,J ]

1

2
|Aj |uj · nj


 .

International Journal on Finite Volumes 7
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where we recall that V(i) (resp. E(k)) is the set of integers j ∈ [1, J ] such that Aj

(resp. A′
j) is a side of Ti (resp. Pk) and that nji (resp. n′

jk) is the unit vector
orthogonal to Aj (resp. A′

j) pointing outward Ti (resp. Pk).

The operator ∇h· acts from
(
R

J
)2

into R
I ×R

K . Remark that if the node Sk is not
on the boundary Γ (i.e. if k ∈ [1,K−JΓ]), then the set E(k)∩[J−JΓ+1, J ] is empty.
On the contrary, if Pk is a boundary dual cell, then the set E(k) ∩ [J − JΓ + 1, J ] is
composed of the two boundary edges which have Sk as a vertex.
For a given function u, it is straightforward to check that these formulae are the
exact mean-values of ∇ · u over Ti (respectively over an inner Pk) if uj · nji (resp.
uj · n′

jk) represents the mean-value of u · nji over Aj (resp. of u · n′
jk over A′

j).
Moreover, for a given vector field u, it is straightforward to check that the formulae
(8) are the exact mean-values of ∇ · u over Ti, respectively over inner Pk, if

|Aj |uj · nji =

∫

Aj

u · nji ds , (9)

respectively if

(
|A′

j1 |n′
jk1

+ |A′
j2 |n′

jk2

)
· uj =

∫

A′

j1

u · n′
jk1

ds+

∫

A′

j2

u · n′
jk2

ds. (10)

Note also that we can replace
(
|A′

j1|n′
jk1 + |A′

j2|n′
jk2

)
by |A′

j |n′
jk since these quan-

tities are equal.

2.6 Definitions of the discrete scalar product and norm on the di-

amond mesh

As will be seen in what follows, we shall associate with each edge Aj (j ∈ [1, J ])
discrete values. This leads us to the definition of the following discrete scalar product
on the diamond cells.

Definition 2.3 (The discrete scalar product) We define a discrete scalar product
on the diamond mesh: for all (u,v) = ((uj), (vj)) ∈

(
R

2J
)
×

(
R

2J
)

(u,v)D :=
∑

j∈[1,J ]

|Dj|uj · vj . (11)

Further, for any φ ∈ R
I+JΓ × R

K , we shall define a discrete H1-seminorm on the
diamond mesh with the help of the discrete gradient operator defined above (see Eq.
(7)):

|φ|1,D :=
(
∇

D
h φ,∇

D
h φ

)1/2

D
.

2.7 Discrete Laplacian

In this section, we describe the discrete schemes obtained for the Laplacian problem
with the DDFV method. The construction of these schemes is explained in [DO

International Journal on Finite Volumes 8
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05]. The Laplacian problem with homogeneous Dirichlet boundary conditions (1) is
discretized in the following way

−(∇T
h · ∇D

h φ)i = fT
i , ∀i ∈ [1, I], (12)

−(∇P
h · ∇D

h φ)k = fT
k , ∀k ∈ [1,K − JΓ], (13)

φ
T
i = φ

P
k = 0, ∀i ∈ [I + 1, I + JΓ],∀k ∈ [K − JΓ + 1,K], (14)

where fT
i and fP

k are the mean-values of f over Ti and Pk defined by:

fT
i =

1

|Ti|

∫

Ti

f(x) dx and fP
k =

1

|Pk|

∫

Pk

f(x) dx.

The linear system (12)–(14) has a unique solution φ ∈ V D, with V D defined by:

V D :=
{
φ =

(
(φ

T
i ), (φ

P
k )

)
∈ R

I+JΓ × R
K :

φ
T
i = 0, ∀i ∈ [I + 1, I + JΓ] and φ

P
k = 0, ∀k ∈ [K − JΓ + 1,K]

}
.

(15)

The existence and the uniqueness of the solution are proved in [DO 05]. Moreover,
[DO 05] shows that this scheme is equivalent to a finite element method and gives
the error estimates for continuous solutions in H2(Ω). In the same way, the problem
(2) with homogeneous Neumann boundary conditions is discretized by

−(∇T
h · ∇D

h φ)i = fT
i , ∀i ∈ [1, I], (16)

−(∇P
h · ∇D

h φ)k = fT
k , ∀k ∈ [1,K], (17)

(∇D
h φ)j · nj = 0, ∀j ∈ [J − JΓ + 1, J ] (18)

∑

i∈[1,I]

|Ti| φT
i =

∑

k∈[1,K]

|Pk| φP
k = 0. (19)

The linear system (16)–(19) has a unique solution φ ∈ V N , with V N defined by:

V N :=



φ =

(
(φ

T
i ), (φ

P
k )

)
∈ R

I+JΓ × R
K :

∑

i∈[1,I]

|Ti| φT
i =

∑

k∈[1,K]

|Pk| φP
k = 0



 ,

(20)
which implies

∫
Ω f(x) dx = 0. Moreover, these two schemes with non homogeneous

boundary conditions are studied in [DDO 07]. In what follows, we need the projec-
tion of continuous functions on the discrete space to express the error estimates.

Definition 2.4 We define, for any continuous function φ, the following element Πφ
by

∀i ∈ [1, I + JΓ], (Πφ)Ti = φ(Gi), (21)

∀k ∈ [1,K], (Πφ)Pk = φ(Sk). (22)

At last, we define below an operator, noted by δ.

International Journal on Finite Volumes 9
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Definition 2.5 Let φ be a continuous function. On each diamond cell Dj , we define
the constant vector (δφ)j by the following scalar products:

(δφ)j · nj =
1

|Aj |

∫

Aj

∇φ · nj(ξ) dξ (23)

and

(δφ)j · n′
j =

1

|A′
j |

∫

A′

j

∇φ · n′
j(ξ) dξ. (24)

3 Error estimate

In section 3.1, we first recall a theorem (theorem 3.1) proved in [DO 05] for smooth
solutions on convex domains and then, we state a new theorem (theorem 3.2) which
is the analogue of theorem 3.1 but on nonconvex domains for nonsmooth solutions.
Subsections 3.2 to 3.4 provide the tools used to prove theorem 3.2 in section 3.5.

3.1 Main results

When obtaining error estimates, we will use the following assumption concerning
the angle between diagonals of diamond cells (see Fig. 6).

k
k

i

S

G

S
jθ

Gi

2

1

1

2

Figure 6: Angle between diagonals of a diamond cell.

Hypothesis 1 The angles between the diagonals of the diamond cells are greater
than an angle θ∗ which is strictly positive and independent of the mesh:

∃ θ∗, 0 < θ∗ <
π

2
such that θj ≥ θ∗,∀j ∈ [1, J ]. (25)

We estimate the H1-seminorm of the error between φ the element of V D (resp. V N )
solution of the system (12)–(14) (resp. (16)–(19)) and the projection of the exact
solution Πφ (see Definition 2.4). When the domain is convex, denoted by Ωconv, [DO
05] has proved the following theorem for the Laplacian with homogeneous Dirichlet
boundary conditions:

International Journal on Finite Volumes 10
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Theorem 3.1 If all diamond cells are convex, f ∈ L2(Ωconv), and under Hypothesis
1, there exists a constant C(θ∗) independent of the step of the mesh hconv such that

|φ− Πφ|1,D ≤ C(θ∗) hconv‖f‖L2(Ω).

A similar analysis to [DO 05] allows to obtain an analogous estimate for the discrete
Laplacian problem with homogeneous Neumann boundary conditions. However,
when the domain Ω is nonconvex, we have numerically established in [DDO 07] (see
also Fig. 8 of section 4) that the order of convergence is non-optimal.
The aim of what follows is to state a similar theorem, for nonsmooth solutions, over
nonconvex domains, by using appropriate refinements which allow to restore the
optimal order of convergence, and then to prove this theorem.

We shall work on half-diamonds Dj,γ (resp. D′
j,γ) of Fig. 5 which are supposed

to be open and which represent a triangulation Th (resp. T ′
h) of Ω.

As in Hypothesis 1, we assume that the Dj,γ (resp. D′
j,γ) cannot degenerate when

h tends to 0.

Hypothesis 2 The families (Th)h>0 and (T ′
h)h>0 of triangulations of Ω are regular

in the sense of Ciarlet [CIA 78], which means that

∃ σ > 0 such that
hj,γ

ρj,γ
≤ σ, ∀Dj,γ ∈ Th, ∀h > 0, (26)

∃ σ′ > 0 such that
h′j,γ
ρ′j,γ

≤ σ′, ∀D′
j,γ ∈ T ′

h, ∀h > 0, (27)

where hj,γ (resp. h′j,γ) is the diameter of Dj,γ (resp. D′
j,γ), whereas ρj,γ (resp. ρ′j,γ)

is the diameter of the inscribed circle in Dj,γ (resp. D′
j,γ). Moreover, we note by

h = max
j∈[1,J ],γ∈{1,2}

hj,γ .

Remark that according to [BKP 79] or [Lemma 8.4.1.2, GRI 85], the set H2,α(Ω)
is continuously imbedded into C0(Ω) if α < 1, which implies that φ ∈ C0(Ω) and
then Πφ is meaningful. Now, we have the necessary notations to state theorem 3.2,
where we recall that r(x) is the distance from x to the origin of the domain:

Theorem 3.2 Let φ ∈ H2,α(Ω), with α ∈ [0, 1
2 [, the solution of problem (1) or (2).

Assume that the diamond cells are convex and verified the Hypothesis 1, then if
triangulations Th and T ′

h satisfy Hypothesis 2 and following hypotheses of refinement:

hj,γ ≤ ζ h1/1−α, if (0, 0) ∈ Dj,γ, (28)

hj,γ ≤ ζ h

[
inf

x∈Dj,γ

r(x)

]α

, if (0, 0) /∈ Dj,γ , (29)

h′j,γ ≤ ζ h1/1−α, if (0, 0) ∈ D
′
j,γ, (30)

h′j,γ ≤ ζ h

[
inf

x∈D′

j,γ

r(x)

]α

, if (0, 0) /∈ D
′
j,γ , (31)

with ζ > 0, there exists C(θ∗) > 0 such that:

|φ− Πφ|1,D ≤ C(θ∗) h |φ|H2,α(Ω) . (32)
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Remark 1 Hypotheses (28) to (31), defined on half-diamond cells, are the analogue
of those used in [RAU 78,GRI 85,DNT 02] on the primal cells.

3.2 Preliminary bound

Let ωj,1 (resp. ωj,2) be the first-order interpolating polynomial of φ on the triangle
Dj,1 (resp. Dj,2) whose value at each of the three nodes of Dj,1 (resp. Dj,2) is equal
to the value of the function φ at this point. The following lemma can be deduced
from [DO 05, Lemma 5.9] and also using some ideas of the proof of [DO 05, Lemma
5.10]. These ideas can be applied here because they are independent of the fact that
Ω is convex or not. Let us define on each diamond cell Dj the quantity

ej(x) := (δφ)j − ∇φ(x). (33)

Then, we have a first bound of the left-hand side of (32):

Lemma 3.3 Under Hypothesis 1, for convex diamond cells, we have the following
inequality

|φ− Πφ|1,D ≤
√

2

sin θ∗




∑

j∈[1,J ]

2∑

γ=1

[∫

Dj,γ

(ej · nj)
2dx +

∫

D′
j,γ

(ej · n′
j)

2dx

]


1/2

+




∑

j∈[1,J ]

2∑

γ=1

∫

Dj,γ

|∇φ(x) − ∇ωj,γ|2 dx




1/2

. (34)

Proof We start from [DO 05, Lemma 5.9], which states

|φ−Πφ|1,D ≤




∑

j∈[1,J ]

∫

Dj

|ej |2dx




1/2

+




∑

j∈[1,J ]

2∑

γ=1

∫

Dj,γ

|∇φ(x) − ∇ωj,γ|2 dx




1/2

.

Using the respective scalar products of ej with nj and n′
j, the term |ej|2 can be

bounded (see the proof of [Lemma 5.10, DO 05]) by

|ej|2 ≤ 2

1 − (nj · n′
j)

2

[
(ej · nj)

2 + (ej · n′
j)

2
]
.

Moreover, the equality 1 − (nj · n′
j)

2 = (sin θj)
2 ≥ (sin θ∗)2, under Hypothesis 1,

completes this proof. �

3.3 Results on the reference triangle T̂
We consider T̂ the reference triangle whose vertices are Ŝ1(0, 0), Ŝ2(1, 0) and Ŝ3(0, 1).
Moreover, we note by Â an edge of T̂ .
As H1,α(T̂ ) is continuously imbedded into L2(∂T̂ ) (see [proof of Lemma 3.4, DNT
02]), which is a subset of L1(∂T̂ ), we can state the following lemma whose proof is
quite classical:
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Lemma 3.4 There exists Ĉ > 0 such that for any v̂ ∈ H1,α(T̂ ), with α ∈ [0, 1[,

satisfying

∫

bA
v̂(ξ) dξ = 0, we have

‖v̂‖L2(bT ) ≤ Ĉ |v̂|H1,α(bT ) . (35)

According to [BKP 79] or [GRI 85, Lemma 8.4.1.2], the set H2,α(T̂ ) is continuously

imbedded into C0(T̂ ) if α < 1, which implies that φ̂ ∈ C0(T̂ ) and φ̂(Ŝl), with l =
1, 2, 3, is meaningful. Thus, we can interpolate φ̂ with a one order polynomial: let
P1(T̂ ) be the set of first-order polynomials restricted to T̂ , then for all φ̂ ∈ H2,α(T̂ ),
with α ∈ [0, 1[, there exists a unique ω̂ ∈ P1(T̂ ) such that

ω̂(Ŝl) = φ̂(Ŝl), l = 1, 2, 3. (36)

In what follows, we need the following lemma, provided by [GRI 85].

Lemma 3.5 If α ∈ [0, 1[ and ω̂ defined in (36), then there exists Ĉ > 0 such that

‖φ̂− ω̂‖H1(bT ) ≤ Ĉ |φ̂|H2,α(bT ),∀φ̂ ∈ H2,α(T̂ ). (37)

3.4 Similar results over triangle Tj,γ

After a change of variables, we shall apply the results of section 3.3 to terms of the
right-hand side of the inequality (34). We define below the one-to-one mapping from
T̂ into Dj,γ.

Definition 3.6 Let Th be the triangulation of Ω, composed of half-diamonds Dj,γ ,

defined in section 3.1. We consider Dj,γ ∈ Th whose vertices are Sj,γ
l with l = 1, 2, 3

and the reference triangle T̂ . Then, there exists a one-to-one mapping

Φj,γ :
T̂ −→ Dj,γ

(x̂1, x̂2)
t 7−→ (x1, x2)

t = Bj,γ (x̂1, x̂2)
t + bj,γ

, (38)

built such that Φj,γ(Ŝl) = Sj,γ
l , l = 1, 2, 3, where

Bj,γ = (Sj,γ
2 −Sj,γ

1 , Sj,γ
3 −Sj,γ

1 ) is a matrix in R
2×2 and bj,γ = Sj,γ

1 is a vector in R
2.

In the same way, we define a one-to-one mapping Φ′
j,γ from T̂ into D′

j,γ ∈ T ′
h, using

a matrix denoted by B′
j,γ .

Proposition 3.7 Let α ∈ [0, 1
2 [. Then, there exists C > 0 such that for all φ ∈

H2,α(Ω), we have

‖ej · nj‖L2(Dj,γ ) ≤ C ‖B−1
j,γ ‖α

2 ‖Bj,γ‖2 |φ|H2,α(Dj,γ ) , if (0, 0) ∈ Dj,γ (39)

‖ej · nj‖L2(Dj,γ ) ≤ C ‖Bj,γ‖2 |φ|H2(Dj,γ) , if (0, 0) /∈ Dj,γ (40)

‖ej · n′
j‖L2(D′

j,γ ) ≤ C ‖B′−1
j,γ‖α

2 ‖B′
j,γ‖2 |φ|H2,α(D′

j,γ) , if (0, 0) ∈ D′
j,γ (41)

‖ej · n′
j‖L2(D′

j,γ ) ≤ C ‖B′
j,γ‖2 |φ|H2(D′

j,γ) , if (0, 0) /∈ D′
j,γ (42)

‖∇φ− ∇ωj,γ‖L2(Dj,γ ) ≤ C ‖B−1
j,γ ‖1+α

2 ‖Bj,γ‖2
2 |φ|H2,α(Dj,γ) , if (0, 0) ∈ Dj,γ (43)

‖∇φ− ∇ωj,γ‖L2(Dj,γ ) ≤ C ‖B−1
j,γ ‖2 ‖Bj,γ‖2

2 |φ|H2(Dj,γ ) , if (0, 0) /∈ Dj,γ (44)
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where ‖.‖2 is the Euclidean norm associated to a matrix and ωj,γ ∈ P1(Dj,γ) is such

that ωj,γ(S
j,γ
l ) = φ(Sj,γ

l ), l = 1, 2, 3.

Proof Using the one-to-one mapping Φj,γ defined in (38), we verify that

∇φ(x) = (Bt
j,γ)−1

∇φ̂(x̂) (45)

with x̂ = Φ−1
j,γ(x). While φ ∈ H2,α(Dj,γ), then (δφ) · nj − ∇φ · nj belongs to

H1,α(Dj,γ). On the other hand, integral of (δφ) · nj − ∇φ · nj over Aj is zero. We
shall set v = (δφ) ·nj −∇φ ·nj and do the following change of variables v(x) = v̂(x̂).
Thus,

‖v‖2
L2(Dj,γ ) = 2 |Dj,γ | ‖v̂‖2

L2(bT )
.

After, we can apply Lemma 3.4 to v̂ whose average is zero over Â = Φ−1
j,γ(Aj) since

triangle Dj,γ is not degenerate. Thus, there exists C > 0 such that

‖(δφ) · nj − ∇φ · nj‖2
L2(Dj,γ ) ≤ C |Dj,γ |

∫

bT
r̂2α(x̂) |∇v̂|2dx̂ . (46)

If (0, 0) ∈ Dj,γ , we assume, without loss of generality, that Sj,γ
1 = (0, 0), then we

can write
r̂(x̂) = ‖x̂‖2 = ‖B−1

j,γ x‖2 ≤ ‖B−1
j,γ ‖2 r(x) , (47)

where r̂(x̂) is the distance from x̂ ∈ T̂ to Ŝ1(0, 0). By a change of variables in (46),
using (47) and (45), we obtain

‖(δφ) · nj − ∇φ · nj‖2
L2(Dj,γ) ≤ C ‖B−1

j,γ ‖2α
2

∫

Dj,γ

r2α(x) |(Bt
j,γ)∇v|2dx

≤ C ‖B−1
j,γ ‖2α

2 ‖Bt
j,γ‖2

2

∫

Dj,γ

r2α(x) |∇v|2dx ,

which can be rewritten as ‖Bj,γ‖2 = ‖Bt
j,γ‖2,

‖(δφ) · nj − ∇φ · nj‖2
L2(Dj,γ ) ≤ C ‖B−1

j,γ ‖2α
2 ‖Bj,γ‖2

2 |v|2H1,α(Dj,γ) .

Replacing v by its expression and since (δφ) · nj is a constant over Dj,γ and nj is a
unit vector, previous inequality finally gives

‖(δφ) · nj − ∇φ · nj‖2
L2(Dj,γ) ≤ C ‖B−1

j,γ ‖2α
2 ‖Bj,γ‖2

2 |φ|2H2,α(Dj,γ) , (48)

and we deduce (39). Obviously, in the same way with (δφ) · n′
j − ∇φ · n′

j on D′
j,γ ,

we deduce the existence of C > 0 such that

‖(δφ) · n′
j − ∇φ · n′

j‖2
L2(D′

j,γ
) ≤ C ‖B′−1

j,γ‖2α
2 ‖B′

j,γ‖2
2 |φ|2H2,α(D′

j,γ
) , (49)

which implies (41). On the other hand, by a change of variables, then using Lemma
3.5 and ‖Bj,γ‖2 = ‖Bt

j,γ‖2, we obtain
∫

Dj,γ

|∇φ− ∇ωj,γ|2 dx = 2 |Dj,γ |
∫

bT

∣∣∣(Bt
j,γ)

−1
(
∇φ̂− ∇ω̂

)∣∣∣
2
dx̂

≤ 2 |Dj,γ | ‖(B−1
j,γ )t‖2

2 ‖φ̂− ω̂‖2
H1(bT )

≤ C |Dj,γ | ‖B−1
j,γ ‖2

2

∣∣∣φ̂
∣∣∣
2

H2,α(bT )
. (50)
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Now, we use the Hessian matrix and the Schur norm which satisfy
∑

|β|=2

∣∣∣Dβφ̂
∣∣∣
2

=

‖Ĥ(φ̂)‖2
S , then we have

∣∣∣φ̂
∣∣∣
2

H2,α(bT )
=

∫

bT
r̂2α(x̂) ‖Ĥ(φ̂)‖2

S dx̂.

Moreover, ‖Bj,γ‖2 = ‖Bt
j,γ‖2 and in finite dimension, the norms are equivalent,

which implies the existence of two real numbers C1 > 0 and C2 > 0 such that

‖Ĥ(φ̂)‖S = ‖Bt
j,γH(φ)Bj,γ‖S ≤ C1 ‖Bj,γ‖2

2 ‖H(φ)‖2 ≤ C2 ‖Bj,γ‖2
2 ‖H(φ)‖S ,

and by changing variables, we obtain from the previous line and from (47) that

∫

bT
r̂2α ‖Ĥ(φ̂)‖2

S dx̂ ≤ C2
2

2 |Dj,γ |
‖B−1

j,γ ‖2α
2 ‖Bj,γ‖4

2

∫

Dj,γ

r2α(x) ‖H(φ)‖2
S dx,

which can be rewritten as

∣∣∣φ̂
∣∣∣
2

H2,α(bT )
≤ C2

2

2 |Dj,γ |
‖B−1

j,γ ‖2α
2 ‖Bj,γ‖4

2 |φ|2H2,α(Dj,γ ) , (51)

and, with (50), we obtain (43). Now, if (0, 0) /∈ Dj,γ , then H2,α(Dj,γ) = H2(Dj,γ)
in (51) and we can choose α = 0, which implies the following estimate

∣∣∣φ̂
∣∣∣
2

H2(bT )
≤ C2

2

2 |Dj,γ |
‖Bj,γ‖4

2 |φ|2H2(Dj,γ) . (52)

We obtain (44) using (50) and (52). In the same way, if (0, 0) /∈ Dj,γ (resp. (0, 0) /∈
D′

j,γ), we can choose α = 0 in (48) (resp. (49)), which gives (40) (resp. (42)). �

3.5 Proof of theorem 3.2

Let us set αj,γ = α if (0, 0) ∈ Dj,α and αj,γ = 0 otherwise. In the same way, let us

set α′
j,γ = α if (0, 0) ∈ D

′
j,α and α′

j,γ = 0 otherwise. Applying the proposition 3.7,
there exists C > 0 such that

∑

j∈[1,J ]

2∑

γ=1

‖ej · nj‖2
L2(Dj,γ) ≤ C

∑

j∈[1,J ]

2∑

γ=1

‖B−1
j,γ ‖

2αj,γ

2 ‖Bj,γ‖2
2 |φ|2H2,αj,γ (Dj,γ)

, (53)

∑

j∈[1,J ]

2∑

γ=1

‖ej · n′
j‖2

L2(D′
j,γ) ≤ C

∑

j∈[1,J ]

2∑

γ=1

‖B′−1
j,γ‖

2α′

jγ

2 ‖B′
j,γ‖2

2 |φ|2
H

2,α′

j,γ (D′

j,γ)
, (54)

for all γ ∈ {1, 2}. On the other hand, there also exists C > 0 such that

∑

j∈[1,J ]

2∑

γ=1

‖∇φ− ∇ωj,γ‖2
L2(Dj,γ) ≤ C

∑

j∈[1,J ]

2∑

γ=1

‖B−1
j,γ ‖

2+2αj,γ

2 ‖Bj,γ‖4
2 |φ|2H2,αj,γ (Dj,γ )

.

(55)
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Applying Hypothesis 2, the Euclidean norm ‖.‖2 of the matrices Bj,γ and B′
j,γ, and

their inverses can be bounded by (see [theorem 3.1.3, CIA 78])

‖Bj,γ‖2 ≤
√

2 hj,γ , ‖B′
j,γ‖2 ≤

√
2 h′j,γ ,

‖B−1
j,γ ‖2 ≤

√
2

ρj,γ
≤

√
2 σ

hj,γ
, ‖B′−1

j,γ‖2 ≤
√

2

ρ′j,γ
≤

√
2 σ′

h′j,γ
,

which implies, using Hypothesis 2, that (53), (54) and (55) can be rewritten as

∑

j∈[1,J ]

2∑

γ=1

‖ej · nj‖2
L2(Dj,γ) ≤ C

∑

j∈[1,J ]

2∑

γ=1

h
2−2αj,γ

j,γ |φ|2
H2,αj,γ (Dj,γ )

, (56)

∑

j∈[1,J ]

2∑

γ=1

‖ej · n′
j‖2

L2(D′
j,γ) ≤ C

∑

j∈[1,J ]

2∑

γ=1

h′
2−2α′

j,γ

j,γ |φ|2
H

2,α′

j,γ (D′

j,γ)
, (57)

∑

j∈[1,J ]

2∑

γ=1

‖∇φ− ∇ωj,γ‖2
L2(Dj,γ) ≤ C

∑

j∈[1,J ]

2∑

γ=1

h
2−2αj,γ

j,γ |φ|2
H2,αj,γ (Dj,γ )

. (58)

We can split the right-hand sides of (56) and (58) (resp. (57)) into two sums ac-

cording to (0, 0) ∈ Dj,γ (resp. (0, 0) ∈ D
′
j,γ) or not.

If (0, 0) ∈ Dj,γ , then αj,γ = α. Therefore, Hypothesis (28) implies:

h2−2α
j,γ ≤ ζ2−2α h2.

In the same way, if (0, 0) ∈ D
′
j,γ, then α′

j,γ = α and applying Hypothesis (30), we
obtain

h′
2−2α
j,γ ≤ ζ2−2α h2.

If (0, 0) /∈ Dj,γ, then αj,γ = 0 and H2,0(Ω) = H2(Ω). Therefore, introducing α 6= 0,
Hypothesis (29) implies:

h2
j,γ |φ|2H2(Dj,γ) = h2

j,γ

∫

Dj,γ

r−2α r2α ‖H(φ)‖2
S dx

≤ h2
j,γ

[
inf

x∈Dj,γ

r(x)

]−2α ∫

Dj,α

r2α ‖H(φ)‖2
S dx

≤ ζ2 h2 |φ|2H2,α(Dj,γ) .

In the same way, we deduce from Hypothesis (31) that

h′
2
j,γ |φ|2H2(D′

j,γ) ≤ ζ2 h2 |φ|2H2,α(D′

j,γ).

Consequently, the right-hand sides of (56), (57) and (58) are bounded by

∑

j∈[1,J ]

2∑

γ=1

h
2−2αj,γ

j,γ |φ|2
H2,αj,γ (Dj,γ )

≤ max{ζ2−2α, ζ2} h2 |φ|2H2,α(Ω).
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∑

j∈[1,J ]

2∑

γ=1

h′
2−2α′

j,γ

j,γ |φ|2
H

2,α′

j,γ (D′

j,γ)
≤ max{ζ2−2α, ζ2} h2 |φ|2H2,α(Ω).

Finally, we close the proof using Lemma 3.3 and combining the previous line with
(56), (57) and (58).

4 Numerical results

The domain of computation is Ω =] − 1; 1[2\]0; 1[2, so that Ω has a nonconvex
corner at (0,0) with interior angle ω = 3π

2 . The data and boundary conditions are
chosen so that the analytic solutions ψ of the Laplacian with Dirichlet boundary
conditions and φ of the Laplacian with Neumann boundary conditions, expressed in
polar coordinates centered on (0, 0), are given by

ψ(r, θ) = r2/3 sin

(
2

3
θ

)
and φ(r, θ) = r2/3 cos

(
2

3
θ

)
+ c,

with c a real number such that
∫
Ω φ = 0. These functions correspond to the singular

parts φc defined previously in (4) and (5) but extended to the full domain Ω. We
notice that ψ and φ belong to H1(Ω) but are not in H2(Ω). More precisely, ψ and
φ belong to H1+s(Ω) with s < π

ω , in other words s < 2/3 here (see [GRI 92] for more
explications). In what follows, we evaluate the discrete error in the H1-seminorm
on the diamond cells defined by:

e2(h) :=

∑

j∈[1,J ]

|Dj | |(∇D
h φ)j − (∇D

h Πφ)j |2

∑

j∈[1,J ]

|Dj | |(∇D
h Πφ)j |2

,

where φ and φ respectively are the continuous and the numerical solutions.

4.1 Unstructured meshes without local refinement

First, we use a family of five unstructured triangular grids. The first two meshes of
this family are displayed in figure 7, while the error curves of ∇ψ and ∇φ in the
discrete L2-norm are shown in figure 8, together with a reference line of slope 2/3.
The order of convergence of the scheme seems to be 2/3 in this case, as in [BP 04,
DDO 07].

4.2 Structured meshes with local appropriate refinement

For the second family of meshes, we follow the construction of the refinement de-
scribed in [RAU 78] and [GRI 85]. At first, we divide Ω into coarse triangles (in
our case, there are six structured triangles). Then, each of the triangles of which
(0,0) is not a vertex is divided into n2 triangles with n = 2, 4, 8, 16, 32 in a uniform
way. At last, the triangles which have a vertex at (0,0) are divided in the follow-
ing way: the sides having (0,0) as an extremity are divided according to the ratios
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Figure 7: Unstructured meshes.
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Figure 8: Errors of ∇ψ and ∇φ in the L2 norm for the unstructured meshes.

(
i
n

) 1
(1−α) , i = 1, ..., n, while the third side is divided in n subsegments of the same

length. For each i = 1, ..., n, we join the points
(

i
n

) 1
(1−α) belonging to the two sides

having (0,0) as an extremity with a line divided into i subsegments of the same
length. Then, we join the different points as on Fig. 9.

(1/2;1/2)

(3/4;1/4)

(1/4;3/4)

(0;1/8)

(0;1/64)

(1/64;0) (1/8;0) (27/64;0)
(1;0)(0;0)

(0;1)

(0;27/64)

Figure 9: Construction of an α-refined triangle whose vertices (0, 0), (1, 0) and (0, 1)
with n = 4.

Thus, by construction, the primal mesh, called α-refined mesh, is regular in the
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sense of [CIA 78] and satisfies the hypotheses

hi ≤ ζ h1/1−α, if (0, 0) ∈ T i, (59)

hi ≤ ζ h

[
inf
x∈Ti

r(x)

]α

, if (0, 0) /∈ T i, (60)

(see [RAU 78, GRI 85]), where we note by hi the diameter of Ti. Remark that h
defined in Hypothesis 2 verifies h = max

i∈[1,I]
hi. Moreover, note by ρi the diameter of

the inscribed circle of Ti.

Now, it remains to check that triangles Dj,γ and D′
j,γ , ∀j ∈ [1, J ],∀γ ∈ {1, 2} satisfy

hypotheses of Theorem 3.2:
(a) Convexity. By construction, two adjacent cells of the α-refined mesh make up
a convex quadrilateral (knowing coordinates of points, we can compute equations
of diagonals of primal cells and check they intersect inside these cells), so that the
diamond cell Dj which is located inside of this quadrilateral is necessarily convex.
(b) Hypotheses of refinement. AsGi is the center of gravity of Ti and a vertex ofDj,γ ,
we have obviously hj,γ ≤ hi and h′j,γ ≤ hj,1 + hj,2. Consequently, as the α-refined
mesh verifies the hypotheses (59) and (60), it implies that the half-diamondsDj,γ and
D′

j,γ contained in this mesh satisfy the hypotheses (28) to (31) (if (0, 0) ∈ Ti, then

for each triangle Dj,γ ⊂ Ti such that (0, 0) /∈ Dj,γ , we have hj,γ ≤ c
(

1
n

) 1
1−α , where

c > 0 is a constant. On the other hand,
(

1
n

) 1
1−α =

(
1
n

)
·
(

1
n

) α
1−α ≤ C h

[
inf
x∈Ti

r(x)

]α

,

with C > 0).
(c) Hypotheses 1 and 2. Let Dj,γ be an half-diamond contained in a triangle Ti of
the α-refined mesh. As Gi is the center of gravity of Ti, then |Ti| = 3 |Dj,γ |. On

the other hand, Heron formula in triangle Dj,γ gives: |Dj,γ | = ρj,γ
perimeter of Dj,γ

2 ,

and in Ti we have also: |Ti| = ρi
perimeter of Ti

2 . Since perimeter of Dj,γ is smaller
than perimeter of Ti, we deduce that ρi ≤ 3 ρj,γ. Combining this inequality with
hj,γ ≤ hi, then the regularity in the sense of [CIA 78] of α-refined mesh implies (26).
In other words, according to [Hypothesis (3.1.43), CIA 78], angles of half-diamonds
Dj,γ are all greater than an angle θ0. Since primal and diamond cells are convex, we
deduce angles of half-diamonds D′

j,γ are also bounded, which implies (27) and angles
of the half-diamonds D′

j,γ are all greater than an angle θ1. Finally, we conclude that
the angle θj of figure 6 is bounded down by θ∗ independent of mesh. Thus, the
diamond cells Dj contained in this mesh satisfy Hypothesis 1.

Figure 10 displays the meshes obtained for n = 4 and n = 8. The error curves
of ∇ψ and ∇φ are shown in figure 11, together with a reference line of slope 1. It
seems the order of convergence of the scheme is a little more than 1 in both cases.

4.3 Unstructured meshes with local appropriate refinement

At last, we also test the method on a third family which is only locally α-refined:
the three coarse triangles having (0,0) as a vertex are refined like those built in
the second family with n = 2, 4, 8, 16, then the rest of the domain Ω is composed
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Figure 10: α-refined meshes with n=4 and n=8.
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Figure 11: Errors of ∇ψ and ∇φ in the L2-norm for the α-refined meshes.

of unstructured triangles. This family of meshes is particularly interesting because
it shows a local refinement is enough to obtain the optimal order of convergence,
without other constraint on the mesh. Thus, it proves the origin of the loss of
convergence order is the singularity. Figure 12 displays the first two meshes of this
family. The order of convergence of the scheme seems to be 1 for ∇ψ and ∇φ
according to figure 13.

Figure 12: Unstructured α-refined meshes with n=2 and n=4.
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Figure 13: Errors of ∇ψ and ∇φ in the L2-norm for the unstructured α-refined
meshes

5 Conclusion

Many elliptic problems include the Laplacian, such as convection-diffusion problems,
fluid problems or div-curl problems. We have shown in this study that when the
solution of the Laplacian problem is singular, then we numerically observe a loss
of accuracy. However, we have proved that a local refinement allows us to restore
the optimal rate of convergence. Moreover, we can apply directly the results of this
study to the div-curl problems [DDO 07].
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