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Abstract

Finding the optimal number of groups in the context of a clustering

algorithm is a known as a difficult problem. In this article, we describe

and evaluate a heuristic thereof for the spectral clustering algorithm. Our

method is deterministic, and remarkable by its low computational burden.

We show its effectiveness in most cases. Some limits are identified though,

and serve to the formulation of perspectives to this work.

1 Introduction

Clustering a set of objects in a pre-defined number of groups is often difficult,
according to the chosen model and criterion. The optimal choice of the number
of groups itself (disambiguated as the variable k in the remainder) is maybe even
more complex. The generally accepted Occam’s Razor principle, under which
the number of clusters is as small as acceptable, forbids the exhaustiveness of
the clustering structure, no compromise between these antagonistic objectives
being valid a priori.

In practice, this parameter often has to be set manually by the practitioner,
even with recent data analysis software packages. For an exploratory approach,
with k likely to be unknown, a heuristic is desirable.

In this article, we restrict to the spectral clustering algorithm, and pro-
pose a new simple, cost-effective way of estimating k from the spectrum of the
Laplacian that characterizes this algorithm. Bartlett’s test for the equality of
variances is used since long for determining the number of factors to retain in the
context of a Principal Component Analysis (PCA) [3]. We show that a pretty
straightforward adaptation is possible for the estimation of k in the context of
the spectral clustering algorithm.

First, we recall the state of the art about spectral clustering, and k estimation
methods in this context. We then describe our method, coming up with a simple
algorithm. The efficiency of the method is illustrated by experiments using
synthetic and real data from the literature. A critical view of our results allows
us to formulate some perspectives, given in conclusion.
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2 Fundamentals of spectral clustering

The basics of spectral clustering emerge from the graph theory literature. This
technique was popularized by [6] and [5]. Given a collection of N elements,
represented by a symmetric pairwise similarity matrix1

S, the spectral clustering
algorithm in k groups of elements can be stated as follows:

- Compute the diagonal matrix D, with Dnn =
∑N

n′=1 Snn′ ;
- Compute the Laplacian L = D− S ;
- Eigen-decomposition of L ;
- With the k minor eigenvectors (i.e. associated to the k smallest eigen-
values) as columns, form the matrix Y ;
- Run the k-means algorithm on the rows of Y, obtaining the labels of
the respective elements of S. ;

Algorithm 1: The spectral clustering algorithm

Variants of this algorithm mostly differ from the Laplacian used. The de-
fault one, unnormalized, induces some practical difficulties (e.g. dependency on
the data domain and distribution) [7]. The following normalizations were thus
proposed in the literature:

symmetric version [5]: Lsym = I−D
− 1

2SD
− 1

2 , (1)

random walk version [6]: Lrw = I−D
−1

S, (2)

with I the N × N identity matrix. Let us note that the multiplicity of
the eigenvalue 0 in decomposing these Laplacians can be interpreted as the
number of connected components of the underlying graph [7], i.e. the number
of clusters formed by its vertices. Another notable normalization variant is
Lalt = D

− 1
2SD

− 1
2 [8]. A recent R implementation actually grounds upon the

latter [4]. The inspection of equation (1) shows that Lsym = I − Lalt. As
a consequence, the algorithm 1 is adapted to Lalt by considering the major
eigenvectors, and linking k to the multiplicity of the eigenvalue 1.

3 State of the art on determining the number of

clusters

The link between the parameter k of the algorithm 1, and the multiplicity of the
eigenvalue 0 in the spectrum of the normalized Laplacian is strictly valid only for
connected components. However, graphs considered here may contain several
components weakly connected with each other, but not completely disjoint: for
example, similarities computed by a Radial Basis Function (RBF) never equal
exactly 0, thus always inducing a single connected component for the whole data
set. The goal of the algorithm is then precisely to find this structure.

1These similarities can also be interpreted as edge weights, of kernel values, without loss

of generality. The diagonal of the matrix is conventionally 0.
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Figure 1: Minor eigenvalues profile for synth2 and synth1 (see Section 5 for a
description).

In the remainder, to handle the variability of data sets from both domain
and distribution points of view, we use the RBF variant proposed in [4]. The
latter adapts the radius of the function to each element according to the median
of the K nearest neighbors. As advocated by the authors, we retained K = 5
for our experiments, including the spectra shown in Figure 1.

Figure 1a shows that the profile of minor eigenvalues can inform us on the
probable optimal value for k. Intuitively, only the latest eigenvalue equals ex-
actly 0, k − 1 other are approximately equal to 0, and the rest is significantly
different from 0: the best value for k then emerges through the absolute differ-
ence between the kth and the (k + 1)th eigenvalue, named eigengap [7].

Most existing work determines the likely eigengap empirically, either by com-
paring candidates to an arbitrary threshold, or by analyzing the variation rate
of the eigenvalue profile via the scree test of Cattell [1]. Figure 1b illustrates
that even for rather simple data sets, applying this test in an automated setting
can be problematic. An iterative optimization procedure was also proposed,
but remains complex, both from the conceptual and computational points of
view [8]. We propose a simple and efficient alternative, by adapting Bartlett’s
test for equal variances to the spectral clustering case. Like the scree test, it
was originally employed for determining the number of factors to retain in the
context of a PCA [3].

4 Method description

Considering a sample of N elements described by p variables, the PCA computes
the q factors representative of the sample covariance matrix, using the implicit
hypothesis that uni-dimensional samples generated by any of the k = p − q
remaining factors must have an identically small variance. This null hypothesis
can be tested by a χ2 test. The following test statistic weas proposed in [3]:

−

(

N − 1− q −
k2 + 1

3k
+

q
∑

i=1

λ̄2
k

(λi − λ̄k)
2

)

ln(Vq) ∼ χ2
(k+2)(k−1)

2

, (3)

with λi the ith eigenvalue taken in decreasing order (as conventional with
PCA), λ̄k the mean of the k smallest eigenvalues, and Vq =

∏p

i=q+1(
kλi/

∑p

j=q+1 λj).
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Algorithm 2 is then a simple way to find the smallest acceptable value for q.
This algorithm is O(p2). As the eigen-decomposition is cubic, the computational
overhead is then modest.

Data: The vector of p eigenvalues, a risk level α, e.g. 5%
Result: The smallest acceptable q
q ← 0 ;
repeat

q ← q + 1 ;
s← statistic from Equation (3) ;
/* q < p− 1 because Equation (3) is defined for k > 1 */

until q = p− 2 or Pχ2(X < s) ≤ 1− α;
/* The minimal q that does not lead to rejecting the null hypothesis is
obtained */

Algorithm 2: A simple algorithm for determining the number of PCA factors

The determination of k for the spectral clustering algorithm is analogous to
that of estimating the number of PCA factors to be retained: instead of looking
for the q major eigenvalues of a covariance matrix, we focus on the k smallest
eigenvalues of a Laplacian (see Section 2). The algorithm 2 simply has to be
adapted to the search of the largest acceptable value for k = N − q (indeed,
N = p in a Laplacian). In the context of clustering, k << N : therefore it is more
efficient to have the search starting at k = 2, i.e. initialize q to p−2 in algorithm
2, and decrement at each iteration, with an adapted stopping criterion.

Furthermore, we empirically noticed that with k << N , the set of eigen-
values {λi}i≤q of the normalized Laplacian is very close to 1 in average: this
allows to approximate

∑q

i=1
λ̄2
k/(λi−λ̄k)

2 by qλ̄2
k/(1−λ̄k)

2 in Equation (3), leading
to a criterion depending only on the k minor eigenvalues. Interlacing Algorithms
1 and 2, an incremental extraction of the eigenvalue from the smallest can then
be stopped early, as soon as acceptable. AS k << N , we obtain a spectral
clustering algorithm in O(N2), that includes the automatic determination of k.

5 Experimental Results

Our method is implemented as a R package, speccalt2, i.e. an alternative to the
specc function from the kernlab R package. The interface is minimal, and only
requires a similarity matrix as input; k is optional, and automatically estimated
if absent. We used Lalt as the Laplacian for the clustering algorithm, as sug-
gested in [4, 8], as this leads to more numerical stability in practice. However,
Algorithm 2 is still based upon Lrw

3; those two distinct Laplacians have thus to
be independently decomposed. Yet complexities announced in Section 4 remain
valid, and then only change by a constant factor.

2http://cran.r-project.org/web/packages/speccalt/index.html.
3or indistinctly Lsym, both Laplacians sharing the same spectrum.
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Data sets Our State of the art corrected
(ground truth) method Rand index
synth1(3) 3 4 ± 0,00 0,88 ± 0,18
synth2(3) 3 5 ± 0,00 0,97 ± 0,12
synth3(3) 3 3 ± 0,00 0,90 ± 0,21
synth4(5) 5 5 ± 0,00 0,76 ± 0,18
synth5(4) 4 4 ± 0,00 0,89 ± 0,21
synth6(3) 2 4 ± 0,00 0,58 ± 0,00
iris(3) 2 4 ± 0,00 0,54 ± 0,00
isolet(5) 2 20 ± 0,00 0,39 ± 0,00

Figure 2: Top: Synthetic data sets from [8]. The ground truth is indicated
by glyph colors. Bottom: Synthesis of the experimental results. Means and
standard deviations of 20 independently computed Rand indexes are reported.
The same procedure is applied with the method from [8].

For the evaluation, we retrieved the 6 synthetic samples introduced in [8]
(see Figure 2), and used two well-known UCI data sets, iris (150 elements, 4
features) and the isolet vowels (1500 elements, 617 features). The synthetic
samples are named from synth1 to synth6, according to their position from
right to left in Figure 2. For these experiments, we used our implementation
of the spectral clustering algorithm with the automatic estimation of k. This
estimate, along with the corrected Rand index [2, section 7.2.4], are recorded
for erach data set. As a comparison, we also reported the respective estimates
obtained by the method in [8]4. As Algorithm 1 is sensitive to local minima
through its dependence on k-means, the corrected Rand index is averaged from
20 independent executions for each data set. The same procedure was performed
for the method in [8], as an account of its iterative nature. This was not needed
for our method, as Algorithm 2 is deterministic. Those results are presented in
Figure 2.

We first notice that our heuristic performs better than the method used as
a reference. The result is satisfactory for the first data sets, but less with isolet,
synth6, and iris (2 inferred clusters, against respectively 5, 3 et 3 according
to the ground truth). This is somehow reflected by a clear degradation of the
respective Rand indexes. The ground truth of isolet is not characterized by clear
decision frontiers, which leads our method to inferring the minimal number of
clusters. The cases of synth6 and iris are more subtle: by following exactly

4We used the Matlab code available at http://www.vision.caltech.edu/lihi/Demos/Self

TuningClustering.html.
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Algorithm 2, we would have found respectively 62 and 29 clusters. Actually,
our method does not penalize an excessive count of clusters, or their being very
small: each point in the loosely populated circle in synth6 is attributed to its
own cluster. The almost discrete nature of iris (i.e. all its values have at most
one decimal) also seems problematic. To handle this, our implementation of
Algorithm 2 explicitly bounds k from above by 20. If 1−α is not reached for any
k within the bounds, the threshold is lowered to the largest quantile measured
for k ∈ [2, 20]. For a fair comparison, the method in [8] is parameterized likewise.

6 Conclusion

In this article, we proposed a simple and effective method, with low compu-
tational cost, that automatically estimates k in the context of the spectral
clustering algorithm, as demonstrated by our experiments. However, we also
highlighted some limits to the approach, by its exclusive focus to the character-
ization of manifolds in data.

The spectral clustering algorithm uses k-means as an intermediate step: the
latter, equivalent to a mixture of isotropic Gaussians estimated by an EM algo-
rithm, opens a possibility of combining our method to a Bayesian estimation of
k, for example by deriving a prior distribution from our heuristic.
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