{-1,2}-hypomorphy and hereditarily hypomorphy are the same for posets - Archive ouverte HAL
Article Dans Une Revue Contributions to Discrete Mathematics Année : 2009

{-1,2}-hypomorphy and hereditarily hypomorphy are the same for posets

Youssef Boudabbous
Hamza Si Kaddour
  • Fonction : Auteur
  • PersonId : 831747

Résumé

Let $P$ and $P'$ be two finite posets on the same vertex set $V$. The posets $P$ and $P'$ are {\it hereditarily hypomorphic} if for every subset $X$ of $V$, the induced subposets $P(X)$ and $P'(X)$ are isomorphic. The posets $P$ and $P'$ are $\{-1,2\}$-{\it hypomorphic} if for every subset $X$ of $V$ with $\vert X \vert \in \{2,\vert V\vert -1\}$, the subposets $P(X)$ and $P'(X)$ are isomorphic. P. Ille and J.X. Rampon \cite{Il-Ra} showed that if two posets $P$ and $P'$, with at least $4$ vertices, are $\{-1,2\}$-{hypomorphic}, then $P$ and $P'$ are isomorphic. Under the same hypothesis, we prove that $P$ and $P'$ are hereditarily hypomorphic. Moreover, we characterize the pairs of hereditarily hypomorphic posets.
Fichier non déposé

Dates et versions

hal-00868411 , version 1 (01-10-2013)

Identifiants

  • HAL Id : hal-00868411 , version 1

Citer

Youssef Boudabbous, Hamza Si Kaddour. {-1,2}-hypomorphy and hereditarily hypomorphy are the same for posets. Contributions to Discrete Mathematics, 2009, 4 (1), pp.12-20. ⟨hal-00868411⟩
69 Consultations
0 Téléchargements

Partager

More