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STABILITY BY RESCALED WEAK CONVERGENCE FOR THE
NAVIER-STOKES EQUATIONS

HAJER BAHOURI, JEAN-YVES CHEMIN, AND ISABELLE GALLAGHER

ABSTRACT. We prove a weak stability result for the three-dimensional homogeneous incom-
pressible Navier-Stokes system. More precisely, we investigate the following problem : if
a sequence (uo,n)nen Of initial data, bounded in some scaling invariant space, converges
weakly to an initial data uo which generates a global regular solution, does wo,, generate a
global regular solution ? A positive answer in general to this question would imply global
regularity for any data, through the following examples uo,n = nyo(n-) or uo,n = @o(- — Tn)
with |z,| — co. We therefore introduce a new concept of weak convergence (rescaled weak
convergence) under which we are able to give a positive answer. The proof relies on profile
decompositions in anisotropic spaces and their propagation by the Navier-Stokes equations.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

1.1. The Navier-Stokes equations. We are interested in the Cauchy problem for the three
dimensional, homogeneous, incompressible Navier-Stokes system

du+u-Vu—Au=—-Vp in R xR3

(NS) divu =0

u‘t:o = ug,
where p = p(t,z) and v = (u',u?,u?)(t,z) are respectively the pressure and velocity of an
incompressible, viscous fluid.
We shall say that u € L2 ([0,T] x R?) is a weak solution of (NS) associated with the data ug

if for any compactly supported, divergence free vector field ¢ in C>([0, T] x R3) the following
holds for all ¢t < T

¢
/ u- @(t,x)dr = / uo(z) - #(0, x)dx + / / (u-Ap+u®u:Vo+u-d)drdt,
R3 R3 0 JR3
with
u®u: Vo def Z wubog’ .
1<5,k<3
As is well-known, the (NS) system enjoys two important features. First it formally conserves

the energy, in the sense that smooth enough solutions satisfy the following equality for all
times ¢t > 0:

1 t 1
(L.1) 5 )72 ) + /0 IVa(t) 2 a) dt’ = 5 lwol7 ) -

Weak solutions satisfying the energy inequality
1 t 1
(1.2) 5”“@)”%2([@3) +/0 Hvu(t/)ui%ﬂw) dt’ < 5”“0‘@2([@3)

Key words and phrases. Navier-Stokes equations; anisotropy; Besov spaces; profile decomposition.
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2 H. BAHOURI, J.-Y. CHEMIN, AND I. GALLAGHER

are said to be turbulent solutions, following the terminology of J. Leray [38]. The energy
equality (1.1) can easily be obtained noticing that thanks to the divergence free condition,
the nonlinear term is skew-symmetric in L?: one has indeed (u(t)- Vu(t)+ Vp(t)|u(t)) ., = 0.

Second, (NS) enjoys a scaling invariance property: defining the scaling operators, for any
positive real number A and any point zg of R3,
def 1 /1t x—xo def 1 /t =

(1.3) Axzod(t ) = XQS(F’ T) and  Ax¢(t,z) = ng(ﬁ, X) ’
if u solves (NS) with data ug, then Ay ;,u solves (NS) with data Ay z,uo. We shall say that a
familly (X7)7>0 of spaces of distributions over [0,T] x R? is scaling invariant if for all T > 0
one has

VA > 0,Vzg € Rs, u € Xr < A,\,xou € Xy-2p with HUHXT = ||A>\7xou||x

A—27 "
Similarly a space Xg of distributions defined on R? will be said to be scaling invariant if
YA >0,z € R®, ug € Xg <= Ay oo € Xo  with  [lugllx, = [|Axzotolx -

This leads to the definition of a scaled solution, which will be the notion of solution we shall
consider throughout this paper: high frequencies of the solution are required to belong to a
scale invariant space. In the following we denote by F the Fourier transform.

Definition 1.1. A vector field u is a (scaled) solution to (NS) associated with the data ug if
it is a weak solution, such that there is a compactly supported function x € C*(R3), equal
to 1 near 0, such that

.7:71((1 — X)]-"u) c Xr

where X1 belongs to a family of scaling invariant spaces.

The energy conservation (1.1) is the main ingredient which enabled J. Leray to prove in [3§]
that any initial data in L?(R?) gives rise to (at least) one global turbulent solution to (NS),
belonging to the space L>(RT; L?(R3)), with Vu in L?>(RT; L?(R%)). Along with that fun-
damental result, he could also prove that if the initial data is small enough in the sense
that [luo|| L2(r3)[|Vuoll f2gs) is small enough, then there is only one such solution, and if the

data belongs also to H!' with no such smallness assumption then that uniqueness property
holds at least for a short time (time at which the solution ceases to belong to H!).

It is important to notice that the quantity |[uol 2(gs)[[Vuoll2(rs) is invariant by the scal-
ing operator Ay ;,. Actually in dimension 2 not only does the global existence of turbulent
solutions hold, but linked to the fact that [lu(¢)||;2gz2) is both scale invariant and bounded
globally in time thanks to the energy inequality (1.2), J. Leray proved in [39] that those
solutions are actually unique, for all times whatever their size. In dimension three and more,
the question of the uniqueness of Leray’s solutions is still an open problem, and in relation
with that problem, a number of results have been proved concerning the existence, global in
time, of solutions under a scaling invariant smallness assumption on the data. Without that
smallness assumption, existence and uniqueness often holds in a scale invariant space for a
short time but nothing is known beyond that time, at which some scale-invariant norm of
the solution could blow up. The question of the possible blow up in finite time of solutions
to (NS) is actually one of the Millenium Prize Problems in Mathematics.

We shall not recall all the results existing in the literature concerning the Cauchy problem
for (NS), and refer for instance to [2], [37], [42] and the references therein, for recent surveys
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on the subject. Let us simply recall the best result known to this day on the uniqueness of
solutions to (NS), which is due to H. Koch and D. Tataru in [36] : if

1

def 1 i
[uollByo-1 (m2) = luoll g1 (me) + sup —3</ (e uo) (8, y)[? dydt)2
' zcR3 R2 [0,R2]x B(z,R)
R>0

is small enough, then there is a global, unique solution to (NS), lying in BMO~! N X for all
times, with X another scale invariant space to be specified — we shall not be using that space
in the sequel. In the definition of BMO~! above, the norm in Bgofoo(R?’) denotes a Besov
norm, which is the end-point Besov norm in which global existence and uniqueness is known

143
to hold for small data, namely Bpp:" for finite p (see [45]). Let us note that (NS) is illposed
for initial data in Bo_ol,oo(Rg) (see [10] and [25]).

We are interested here in the stability of global solutions. Let us recall that it is proved in [1]
(see [21] for the Besov setting) that the set of initial data generating a global solution is open
in BMO™!. More precisely, denoting by VMO ™! the closure of smooth fucntions in BMO ™1,
it is proved in [1] that if uy belongs to VMO~! and generates a global, smooth solution
to (NS), then any sequence (ug ., )nen converging to ugp in the BMO™! norm also generates a
global smooth solution as soon as n is large enough.

In this paper we would like to address the question of weak stability:

If (uo,n)nen, bounded in some scale invariant space Xy, converges to ug in the sense of
distributions, with uy giving rise to a global smooth solution, is it the case for ug, when n
is large enough ?

A first step in that direction was achieved in [4], under two additional assumptions to the
weak convergence, one of which was an assumption on the asymptotic separation of the
horizontal and vertical spectral supports: we shall come back to that assumption in Sec-
tion 3, Remark 3.6. As remarked in [4], the first example that may come to mind of a
sequence (ug,n)neny bounded in a scale invariant space X, and converging weakly to 0 is

(1.4) Uom = A®o(M\n ) = Ay, Po with  lim ()\n n i) — 0.

’ n n—00 An
with ®g an arbitrary divergence-free vector field. If the weak stability result were true, then
since the weak limit of (ug)nen is zero (which gives rise to the unique, global solution which
is identically zero) then for n large enough ug, would give rise to a unique, global solution.
By scale invariance then so would ®g, and this for any ®¢, so that would solve the global
regularity problem for (NS). Another natural example is the sequence

(1.5) un = Po(- — xn) = A g, Po

with (2,)nen a sequence of R? going to infinity. Thus sequences built by rescaling fixed
divergence free vector fields according to the invariances of the equations have to be excluded
from our analysis, since solving (NS) for any smooth initial data seems out of reach. This
leads naturally to the following definition of rescaled weak convergence, which we shall call R-
convergence.

Definition 1.2 (R-convergence). We say that a sequence (¢, )nen R-converges to ¢ if for
all sequences (Ap)nen of positive real numbers and for all sequences (zp)nen in R3, the
sequence (A, 2, (¢n — ©))nen converges to zero in the sense of distributions, as n goes to
infinity.
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Remark 1.3. Consider the sequences defined by (1.4) and (1.5): if it is assumed that they R-
converge to zero, then clearly ®y = 0. On the other hand the sequence

(1.6) U () = o (1, 22, %)

is easily seen to R-converge to zero for any ®( satisfying ®o(x1,x2,0) = 0.

In this paper we solve the weak stability question under the R-convergence assumption instead
of classical weak convergence. Actually following Remark 1.3, the choice of the function space

in which to pick the sequence of initial data becomes crucial, as for instance contrary to the
3

examples (1.4) and (1.5), the sequence of initial data defined in (1.6) is not bounded in Bp;: r
for finite p (it can actually even be made arbitrarily large in BMO ™1, see [14]). On the other
hand it is bounded in anisotropic spaces of the type L?(R?; L>°(R)). We are therefore led to
describing sequences of initial data, bounded in anisotropic, homogeneous function spaces. A
celebrated tool to this end are profile decompositions.

1.2. Profile decompositions and statement of the main result. The study of the
defect of compactness in Sobolev embeddings originates in the works of P.-L. Lions (see [40]
and [41]), L. Tartar (see [50]) and P. Gérard (see [23]) and earlier decompositions of bounded
sequences into a sum of “profiles” can be found in the studies by H. Brézis and J.-M. Coron
n [11] and M. Struwe in [49]. Our source of inspiration here is the work [24] of P. Gérard
in which the defect of compactness of the critical Sobolev embedding H*® C L? is described
in terms of a sum of rescaled and translated orthogonal profiles, up to a small term in L?
(see Theorem 1 for a statement in the case when s = 1/2). This was generalized to other
Sobolev spaces by S. Jaffard in [30], to Besov spaces by G. Koch [35], and finally to general
critical embeddings by H. Bahouri, A. Cohen and G. Koch in [3] (see also [6, 7, 8] for Sobolev
embeddings in Orlicz spaces and [19] for an abstract, functional analytic presentation of the
concept in various settings).

In the pionneering works [5] (for the critical 3D wave equation) and [43] (for the critical 2D
Schrodinger equation), this type of decomposition was introduced in the study of nonlinear
partial differential equations. The ideas of [5] were revisited in [34] and [20] in the context
of the Schrodinger equations and Navier-Stokes equations respectively, with an aim at de-
scribing the structure of bounded sequences of solutions to those equations. These profile
decomposition techniques have since then been succesfully used in order to study the possible
blow-up of solutions to nonlinear partial differential equations, in various contexts; we refer
for instance to [22], [28], [31], [32], [33], [46], [48].

Before stating our main result, let us analyze what profile decompositions can say about
bounded sequences satisfying the assumptions of Definition 1.2. In dimension three, the

scale-invariant Sobolev space associated with (NS) is H 2 (R3), defined by

s ey ([ 11700 )

where fis the Fourier transform of f. The profile decomposition of P. Gérard [24] describing
the lack of compactness of the embedding H %(R?’) C L3(R3) is the following.

Theorem 1 ([24]). Let (¢n)nen be a sequence of functions, bounded in H%(Rg) and con-
verging weakly to some function ¢°. Then up to extracting a subsequence (which we denote

in the same way), there is a family of functions (¢7);>1 in H: (R?), and a family (ﬂ:%)jzl of
sequences of points in R3, as well as a family of sequences of positive real numbers (hh)j>1,
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orthogonal in the sense that if j # k then

. hj hk : & \xﬁ — xﬁl
either hk—l———)oo asn—oo, or hl=h, and ——5—— — 00 asn— oo
n n
def L
such that for all integers L > 1 the function ¢£ = on —@° — Z Ah%,%@] satisfies
j=1

lim sup Hl/Jf;HLa(Ra) —0 as L — .
n—oo

Moreover one has
(1.7) A(hﬁ;)*l,—(h{;)*lmi‘p" —~ ¢, asn— 0.

If a sequence of divergence free vector fields ug,, bounded in H %(R?’), R-converges to some
vector field ug as defined in Definition 1.2, then applying the result (1.7) of Theorem 1 implies
that ¢/ is identically zero for each j, which in turn implies that there are no non zero profiles
entering in the decomposition of ug,. This means that 1/1,% = up,, — ug and therefore the
convergence of ug, to ug is in fact strong in L3(R3). The strong stability result of [21] then
implies immediately that for n large enough, ug 5, gives rise to a global unique solution to (NS)
if that is the case for uy. The same reasoning, using the profile decompositions of [3] and

—143
again the strong stability result [21], shows that if ug, is bounded in B, , *(R?) for finite g,
and R-converges to some vector field ug then as soon as ug generates a global smooth solution,
then so does ug ,, for n large enough.

In order to obtain a result which is not a direct consequence of profile decompositions and
known strong stability results, the question of the function space in which to choose the initial
data becomes a key ingredient in the analysis. As explained in the previous paragraph,
one expects that under the R-convergence assumption, a relevant function space in which
to choose the initial data should scale like L2(R?; L°(R)). To our knowledge there is no
wellposedness result of any kind for (NS) in L?(R?; L>®(R)) so we shall assume some regularity
in the third direction, while keeping the L*° scaling, and this leads us naturally to introducing
anisotropic Besov spaces. These spaces generalize the more usual isotropic Besov spaces,
which are studied for instance in [2, 9, 47, 51, 52].

Definition 1.4. Let X (the Fourier transform of x) be a radial function in D(R) such
that X(t) = 1 for |t| < 1 and X(t) = 0 for |t| > 2. For (j,k) € Z?, the horizontal trun-
cations are defined by

SEFE) T2k (6, &) f(©) and AR gh _gh

and the vertical truncations by

def ~

Vdf A%
SVf— X279 f(€)  and AY 2 HEE

For all p in [1,00] and q in ]0,00], and all (s,s’) in R?, with s < 2/p,s’ < 1/p (or s < 2/p
and s’ < 1/p if ¢ = 1), the anisotropic homogeneous Besov space Bp'q is defined as the space
of tempered distributions f such that

def

£l e %

In all other cases of indexes s and s', the Besov space is defined similarly, up to taking the
quotient with polynomials.

< 00.

ks+js’ h
’2 s+js ‘|AkAij\|Lp y
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Notation. To avoid heaviness, we shall in what follows denote by B the space B‘;:f/, by B*

21

_1+ ) .
the space B> and by B, the space By, * *. In particular By = B°.

Let us point out that the scaling operators (1.3) enjoy the following invariances:

[1Ax 20l = ll¢ll5,,, and

Vr € [1,00], HAA,JEO®”LT(R+;B;;+%+%,%) = H(I)HLT(R+;B;;+%+%’%)’
and also the following scaling property:
g
(1.8) Vr e [1,00] , Vo € R, HA)‘,:BO®”LT(R+;B;;+%+%_U’%) A HCI)HLT(RﬂB;;-F%-’_%_U’%) .

The Navier-Stokes equations in anisotropic spaces have been studied in a number of frame-
works. We refer for instance, among others, to [4], [18], [27], [29], [44]. In particular in [4] it
is proved that if ug belongs to BY, then there is a unique solution (global in time if the data is
small enough) in L2([0,T]; B'). That norm controls the equation, in the sense that as soon as
the solution belongs to L?([0,T]; B'), then it lies in fact in L" ([0, T); B%) for all 1 <r < o0.
The space B! is included in L™ and since the seminal work [38] of J. Leray, it is known
that the L2([0,77]; L) norm controls the propagation of regularity and also ensures weak

uniqueness among turbulent solutions. Thus the space B? is natural in this context. Our

main result is the following.

Theorem 2. Let g be given in ]0,1] and let ug in By, generate a unique global solution
to (NS). Let (uon)nen be a sequence of divergence free vector fields bounded in By 4, such
that ug , R-converges to ug. Then for n large enough, ug , generates a unique, global solution
to (NS) in the space L*(R™; B').

Acknowledgments. We want to thank very warmly Pierre Germain for suggesting the
concept of rescaled weak convergence.

2. STRUCTURE AND MAIN IDEAS OF THE PROOF

To prove Theorem 2, the first step consists in the proof of an anisotropic profile decom-
position of the sequence of initial data. To state the result in a clear way, let us start by
introducing some definitions and notations.

Definition 2.1. We say that two sequences of positive real numbers (AL)nen and (A2),en
are orthogonal if

AL A2
)\—g—i-)\—rf—)oo, n— 0o.

A family of sequences (()\Zl)neN)j is said to be a family of scales if \) =1 and if M, and e
are orthogonal when j # k.

Definition 2.2. Let p be a positive real number less than 1/2, fixed from now on.
We define D,, d:ef[—Q—l—,u, 1—p)x[1/2,7/2] and ]_N?ﬂ d:ef[—l—i—,u, 1—p] x[1/2,3/2]. We denote
by S, the space of functions a belonging to ﬂ B** such that
(s,8")EDy
def

lalls, = sup lal|g.s < o0
s,s")e€Dy,
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Remark 2.3. Everything proved in this paper would work choosing for D,, any set of the
type [—2 + u, 1 — p] x [1/2, A], with A > 7/2. For simplicity we limit ourselves to the case
when A = 7/2.

Notation. For all points © = (x1,29,23) in R and all vector fields v = (u',u?,u?), we

denote their horizontal parts by

Th def (x1,29) and uP def (ut,u?).

We shall be considering functions which have different types of variations in the x3 variable
and the x) variable. The following notation will be used:

[f]ﬁ(l“) dzeff(%,ﬁﬂ?:s)-

Clearly, for any function f, we have the following identity which will be of constant use all
along this paper:

_1
(2.1) 135l e ~ 8751 s

In all that follows, € is a given function in D(Bgs(0,1)) which has value 1 near Bgs(0,1/2).
For any positive real number 7, we denote

(2.2) 0,(2) ¥ 0(nz) and Oy, (zy) 2 0, (2n,0).

In order to make notations as light as possible, the letter v (possibly with indices) will
always denote a two-component divergence free vector field, which may depend on the vertical
variable xj3.

Finally we define horizontal differentiation operators Vh (81, 02) and leh = Vh as well

as Ap def 2 0% + 02, and we shall use the following shorthand notation: X1,Y := X(RZ; Y (R))

where X is a function space defined on R? and Y is defined on R.

Theorem 3. Under the assumptions of Theorem 2 and up to the extraction of a subse-
quence, the following holds. There is a family of scales (()\%)neN)jeN and for all L > 1

there is a family of sequences ((hj )nGN) jen going to zero such that for any real number «

in ]0,1[ and for all L > 1, there are fam111es of sequences of divergence-free vector fields

0,00 0,00 0,loc
(for j ranging from 1 to L), (v naL)neN7 (w ZLa,L)neN7 (v n,a7L)neN7 (wo,n,a,L)n€N7 (UO7n,a7L)neN

and (wg i?(; 1 )nen all belonging to S,,, and a smooth, compactly supported function ug o such
that the sequence (uon)nen can be written under the form

_ 0. 0,00,h 0,00,3 0,loc 0, .0,loc,h 0,loc,3
Uo,n = U0, + [(UOnozL +h wOnozL’wOnaL)]h% + [(vOnaL +h wOnaL’wo,n,a,L)]h%
§ ' , 7,3 ,
+ A)\ZL [ n,a, L + hn n,a, L’ wn,a,L)] hl, + Pn,a,L
=1

where ug o, approximates ug in the sense that
(2.3) lim fJug,o —uoll5,,, =0,
where the remainder term satisfies

2.4 lim lim 1 =
(2.4) Jim lim lfflso%pne 2 pnonrll 2@ sy =0,
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while the following uniform bounds hold:

M d—efsuP sup Sup(H UOnaL7w(0]:Z?f,L)HBO +|( ”glsz’wg:}f,ifL)HBO
L>1 a€l0,1] neN

(2.5) I A

+ luoallso + 3N 0 gl Dl ) < 00

j=1
and for all « in |0, 1],
def 0,00,3 0,1 0,loc,3
Mo = igli 15‘1% (H V0L W0 mon L) HsH + | (vg ;zuwo,,ﬁz,ﬂ“su
(2.6) neN
+ luoalls, + 10 0 prw?2 Dlls,)

is finite. Finally, we have

0,loc 0,loc,3
(27) th};o Ol[%hgljup H vOnaL’wOnaL) HBS1 (R?) 0,
(2.8)V(a, L), In(e, L) ) ¥y < m(a, L) ,Vn € N, (1 — Hh,n)(vg iffx L,wgzizf)f’L) = 0, and

0,00 0,00,3

(29) V(Oé7L777)7 Hn(avan)/ Vn > n(a7L7n)7 thn(vo,n,a,L’wO,Zc,)a,L) = 0.

The proof of this theorem is the purpose of Section 3.

Theorem 3 states that the sequence v, is equal, up to a small remainder term, to a finite
sum of orthogonal sequences of divergence-free vector fields. These sequences are obtained
from the profile decomposition derived in [4] (see Proposition 3.2 in this paper) by group-
ing together all the profiles having the same horizontal scale \,, and the form they take
depends on whether the scale ), is identically equal to one or not. In the case when A,
goes to 0 or infinity, these sequences are of the type Ay, [(vg + hnwg, wi)] b with hy, a se-
quence going to zero. In the case when )\, is identically equal to one, we ‘deal with three

types of orthogonal sequences: the first one consists in ug o, an approximation of the weak

. . loc,h 0, loch 1oc 3 . . .
limit wug, the second one given by [(UO mal T h n 0.1, 0.1 W0 o L)] ho 18 uniformly localized

in the horizontal variable and vanishes at x3 = 0, while the horizontal support of the third
oo,h w® 3

one [(US?A?Q,L + h? nWo .1 Wo.m o L)]hg goes to infinity.

Note that in contrast with classical profile decompositions (as stated in Theorem 1 for in-
stance), cores of concentration do not appear in the profile decomposition given in Theorem 3
since all the profiles with the same horizontal scale are grouped together, and thus the de-
composition is written in terms of scales only. The price to pay is that the profiles are no
longer fixed functions, but bounded sequences.

Let us point out that the R-convergence of ug, to ug arises in a crucial way in the proof of
Theorem 3. It excludes in the profile decomposition of u ,, sequences of type (1.4) and (1.5).

The choice of the function space B, with p = 1 and ¢ < 1 for the initial data is due to
technical reasons. Indeed, the propagation of the profiles by (NS) is efficient in B, , only
1

if p < ¢ (see also [22] in the isotropic case). Since the one-dimensional Besov space Bj4(R)
is an algebra (and a Banach space) only if ¢ < 1, this forces the choice p = 1, and finally for
the remainder term to be small in a space with index g equal to one, we need the original
sequence to belong to a space with index ¢ strictly smaller than one.

Once Theorem 3 is proved, the main step of the proof of Theorem 2 consists in proving that
each individual profile involved in the decomposition of Theorem 3 does generate a global
solution to (NS) as soon as n is large enough. This is mainly based on the following results
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h 3 ' o
oL f@,a,L)]hi;’ with )\, going
to 0 or infinity, and the profiles of horizontal scale one, see respectively Theorems 4 and 5.
Then, an orthogonality argument leads to the fact that the sum of the profiles also generates
a global regular solution for large enough n.

concerning respectively profiles of the type AA% [(vi arL T hlw w

In order to state the results, let us define the function spaces we shall be working with.

Definition 2.4. — We define the space A%% = L>®(R™; Bs’s/) NL2(RT; BSH’S/) equipped with

the norm
def
lall g Nl e et ey + lall s

1
and we denote A% = A%2.

— We denote by Fss any function space such that

HLOJCHL2(R+;Bs+1,s’) S Hf”}'s,s’

where, for any non negative real number 7, L.f is the solution of OL.f — AL,f = f

with er\tzr = 0. We denote F* = ]—“Sv%,

Examples. Using the smoothing effect of the heat flow as described by Lemma 6.2, it is
easy to prove that the spaces L'(R*; B%") and L'(RT; B5+1¥'~1) are continuously embedded
in 5. We refer to Lemma 6.3 for a proof, along with other examples.

In the following we shall designate by 7o(A, B) a generic constant depending only on the
quantities A and B. We shall denote by 77 a generic non decreasing function from R
into RT such that

(2.10) lim sup Tilr) < 0,

r—0 r
and by 73 a generic locally bounded function from R into RT. All those functions may vary
from line to line. Let us notice that for any positive sequence (an)nen belonging to £, we
have

(2.11) > Tilan) < To(Dan).

The notation a < b means that an absolute constant C' exists such that a < Cb.

Theorem 4. A Iocally bounded function ; from RT into RY exists which satisfies the
following. For any (vo,w3) in S, (see Definition 2.2), for any positive real number 3 such
that 8 < &1(||(vo, w)|ls,), the divergence free vector field

def _
®y = [(vo — BV"AOsw, wi)]
generates a global solution ®g to (NS) which satisfies
(2.12) 195]l40 < Ti(ll(vo, wi)llso) + B T2(ll(vo, wg)ls,.) -
Moreover, for any (s,s’) in [-1+ u,1 — u] x [1/2,7/2], we have, for any r in [1, 0],

1
L] 5%

_1
2

3
(2.13) 1951, g 2.0, < Tollw0, )5,
The proof of this theorem is the purpose of Section 4. Let us point out that this theorem is a
result of global existence for the Navier-Stokes system associated to a new class of arbitrarily
large initial data generalizing the example consider in [14], and where the regularity is sharply
estimated, in particular in anisotropic norms.
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The existence of a global regular solution for the set of profiles associated with the horizontal
scale 1 is ensured by the following theorem.

Theorem 5. Let us consider the initial data, with the notation of Theorem 3,

def 0,00 0. .0,00,h 0,00,3 0,loc 0 0,loc,h 0,loc,3
q)OnaL - Uo,a‘i‘ [(UOnaL+h wOnaL’wOnaL)]h%—i_ [(UOnaL+h wOnaL7w0no¢L)]h

There is a constant &g, depending only on ug and on M, such that if hY < &g, then the initial
data <I>87n7a7L generates a global smooth solution @27Q7L which satisfies for all s in [—14p, 1 — p]
and all r in [1, 00],

(2.14) < To(ug, Ma) -

0
Hq)n7a7LHLT(R+;BS+%)

The proof of this theorem is the object of Section 5. As Theorem 4, this is also a global
existence result for the Navier-Stokes system, generalizing Theorem 3 of [15] and Theorem 2
of [16], where we control regularity in a very precise way.

Proof of Theorem 2. Let us consider the profile decomposition given by Theorem 3. For
a given positive (and small) e, Assertion (2.4) allows to choose «, L and Ny (depending of
course on ¢) such that

(2.15) Vn > No, [l€" pnaLll2@+s) < €

From now on the parameters a and L are fixed so that (2.15) holds. Now let us consider the
two functions €1, 71 and T (resp. €9 and 7p) which appear in the statement of Theorem 4
(resp. Theorem 5). Since each sequence (h#)nen, for 0 < j < L, goes to zero as n goes to
infinity, let us choose an integer N7 greater than or equal to Ny such that

Then for 1 < j < L (resp. j = 0), let us denote by ®7, . (resp. @9 ) the global solution of (NS)
associated with the initial data
naL n naL’ n,o, L/ 1 hJ,
. 0 000h 0,003 0,1 0 0loch  0]oc,3
<reﬁp- Uo,a + [(Uo na,L T h nWo, Zoa L Wo, Zoa L)]hg + [(”0 7?; Lth n W, r?fx L wO,rZZ,L”h%)

given by Theorem 4 (resp. Theorem 5). We look for the global solution associated with ug
under the form

def ;
Up = upt? + Ry with  wpPP = = Z Ay®) o+ etApn,a,L ;

recalling that )\0 =1, see Deﬁnition 2.1. As recalled in the introduction, AAj @%,5 solves (NS)
with the initial data A,; [( Up ot hw 3r3

naL’ n,o, L
Stokes equations. Plugglng this decomposition into the Navier-Stokes equation therefore

w )] ,; by scaling invariance of the Navier-
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gives the following equation on R, .:

atRn,s - ARn,z—: + diV(Rn ce@Rpec+ Rype® uapp + uapp ® Ry, 5) + Vpn e
=Fo.=F, .+ F..+F},  with
def .
Fy;g :e dlv(etApnvavL ® etApnyavL)
L
2.17 def . j '
( ) Fg,e :e Z div (A)\ZL ‘1)%,5 ® etApn,a,L + 6tAPn,oz,L ® A)\% ‘1)%,5) and

F2LES div(a, @) @Ak )

0<j k<L
j#k

and where (le (u®wv) Z Ok ( uwok

We shall prove that there is an integer N > N such that with the notation of Definition 2.4,
(2.18) Vn>N, |Fuelr <Ce,

where C only depends on L and M. In the next estimates we omit the dependence of all
constants on « and L, which are fixed.

Let us start with the estimate of Fﬁﬁ. Using the fact that B! is an algebra, we have

[ phap ® etAPn,avLHLl(RﬂBl) S HetAp”va’LHi?(R*;Bl) ’

SO

[ divia ("0} 0.2 ® € prac) i) S €™ pnactl] s,
and

105 (08 0.2 oneat) s gty S 16 Pt 2o
According to the examples page 9, we infer that
(2.19) 1Fncllzo S 11 ol o) -
In view of Inequality (2.15), Estimate (2.19) ensures that
(2.20) >Ny, |FLle S €

Now let us consider Fia. By the scaling invariance of the operators A,; in L*(R*;BY) and
again the fact that B! is an algebra, we get

(2.21) 1455 @ @ €2 pnar + € pnat ® Mgy ]| 1 e

S Hq)zz,aHLQ(R‘*;Bl)HetApn,a,LHL?(R‘*;Bl) :

Next we write, thanks to Estimates (2.12) and (2.14),

L
Z H(P‘ZL,EHLQ(]R"';BI) < To(uo, Ma)

j=0

+Z (7-1(”(1)51,04@’ naL)”BO) +hj7-2(”( naL’wnOzL)”Su)>

Jj=1
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which can be written due to (2.11)
L .
ZH(I)?%EHB(RﬁBI) < To(uo, Ma) + T2o(M +Zh]7§
Jj=0

Using Condition (2.16) on the sequences (h})nen implies that

HZ

It follows (of course up to a change of 7T2) that for small enough ¢

(2.22) Hi i
=0

Thanks to (2.15) and (2.21), this gives rise to
(2.23) V> Ni,  |[F llpo < e (Touo, Ma) + T2(M)) .

Finally let us consider Fg’,e. Recalling that o and L are fixed, it suffices to prove in view of
the examples page 9 that there is Ny > Ny such that for alln > Ny and forall0 < j #£ k < L,

[y @ @ Ay ®

< %(UOaMa) + 7-2(-/\/() +e

L2 Rt Bl)

< 76(“07 Moz) + 7-2(M) :

LQ(R+;81)

n€HL1 (R*;B1) Se.

Using the fact that B! is an algebra along with the Holder inequality, we infer that for a
small enough ~ in |0, 1],

HAA% e ® A)\k cI)n 5”[,1 (R+:B1) < HA)\;L EHL1+ 5 (R+; Bl)HA)\k (I)n 6HLW(R+ B
The scaling invariance (1.8) gives
) ~ J\Y
HA)\{L nsH (]R"' BY) (An) H n5HL1+ 7 (RT;BL) and
1

For small enough ~, Theorems 4 and 5 imply that

N
HA)\%(I) ®A)\k(1)n 5HL1 ]R+ :B1) 5 <)\_ﬁ>’y :

We deduce that

R s 3 min2e2)

0<4,k<L
i#k

As the sequences (M) )nen and (AF),en are orthogonal (see Definition 2.1), we have for any j
and k such that j # k

i win{ 3} 0
Thus an integer N» greater than or equal to N; exists such that

Vn> Ny, |[F2llro S
Together with (2.20) and (2.23), this implies that

n> Ny = ||Fpcllr0 Se

~ Y

which proves (2.18).
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Now, in order to conclude the proof of Theorem 2, we need the following result.

Proposition 2.5. A constant Cy exists such that, if U is in L*(R™; Bl), ug in B and f in F°
such that

1 oo
ol + 1170 < - exp(~Co [~ 100 Eude)
Co 0
then the problem

ou+diviu@u+ueU+UQu)—Au=—-Vp+ f
(NSy)

divu=0 and Ujg=0 = Up
has a unique global solution in L?(R™; B) which satisfies

lull 2@+;p1y < llwollo + [ fllFo -
The proof of this proposition can be found in Section 6.

Conclusion of the proof of Theorem 2. By definition of up’y we have

+ HetApma,LHm(R*;Bl) :

L
P ey < || D Ay @i

L2(Rt+:BL
= (®*:BY)

Inequalities (2.15) and (2.22) imply that for n sufficiently large
[un? | 2+ 1) < To(uo, Ma) + T2(M) + Ce.

Because of (2.18), it is clear that, if € is small enough,

1
1B ellz < G exp(~Colluif2 e 1))

which ensures that ug, generates a global regular solution and thus concludes the proof of
Theorem 2. O

The paper is structured as follows. In Section 3 we prove Theorem 3. Theorems 4 and 5
are proved in Sections 4 and 5 respectively. Section 6 is devoted to the recollection of some
material on anisotropic Besov spaces. We also prove Proposition 2.5 and an anisotropic
propagation of regularity result for the Navier-Stokes system (Proposition 4.8).

3. PROFILE DECOMPOSITION OF THE SEQUENCE OF INITIAL DATA: PROOF OF THEOREM 3

The proof of Theorem 3 is structured as follows. First, in Section 3.1 we write down the
profile decomposition of any bounded sequence of divergence free vector fields R-converging
to zero, following the results of [4]. Next we reorganize the profile decomposition by grouping
together all profiles having the same horizontal scale and we check that all the conclusions of
Theorem 3 hold: that is performed in Section 3.2.

3.1. Profile decomposition of divergence free vector fields, R-converging to zero.
In this section we start by recalling the result of [4], where an anisotropic profile decompo-
sition of sequences of By 4 is introduced. Then we use the assumption of R-convergence (see
Definition 1.2) to eliminate from the profile decomposition all isotropic profiles. Finally we
study the particular case of divergence free vector fields. Under this assumption, we are able
to restrict our attention to (rescaled) vector fields with slow vertical variations.
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3.1.1. The case of bounded sequences. Before stating the result proved in [4], let us give
the definition of anisotropic scaling operators: for any two sequences of positive real num-
bers (en)nen and (Y )nen, and for any sequence (,)nen of points in R3, we denote

def 1 Th — Tph T3 — Tn,3
R $() 2 —qs( mh 3 — Tn )
En Tn

Observe that the operator A, ., z, is an isometry in the space B, 4 for any 1 < p < oo
and any 0 < g < oco. Notice also that when the sequences ¢, and v, are equal, then the
operator Ac, -, », reduces to the isotropic scaling operator A, ., defined in (1.3), and such
isotropic profiles will be the ones to disappear in the profile decomposition thanks to the
assumption of R-convergence. We also have a definition of orthogonal triplets of sequences,
analogous to Definition 2.1.

Definition 3.1. We say that two triplets of sequences (¢!, x%),en with £ belonging
to {1,2}, where (g%, 7%)en are two sequences of positive real numbers and z!, are sequences
in R3, are orthogonal if, when n tends to infinity,
1 2 1 2
€
either —g+—"+fy—g+7—?—>oo
E'ﬂ

1
€n n n

1 .1 1 .1
or (e, 7m) = (eny7) and  |(xy )" — (a7)7 77| = oo,

¢ l
wn,h xn,?))
, .
e m

We recall without proof the following result.

k vk def
where we have denoted (z!)*n7n = <

Proposition 3.2 ([4]). Let (¢n)nen be a sequence belonging to By 4 for some 0 < ¢ < 1,
with ¢, converging weakly to ¢° in By, as n goes to infinity. For all integers { > 1 there
is a triplet of orthogonal sequences in the sense of Definition 3.1, denoted by (¢, 7%, %) nen
and functions ¢' in Bi,4 such that up to extracting a subsequence, one can write the se-
quence (¢p)nen under the following form, for each L > 1:

L
(3.1) on = 0"+ At g ae 6"+ 0y,
/=1

where VL satisfies

(3.2) limsup ||¢L]g — 0, L —o00.
n—oo

Moreover the following stability result holds:

¢
(3.3) > ¢t lls, , S sup lenls,, + leolls,, -
>1 "

Remark 3.3. As pointed out in [4, Section 2], if two scales appearing in the above decom-
position are not orthogonal, then they can be chosen to be equal. We shall therefore assume
from now on that is the case: two sequences of scales are either orthogonal, or equal.

Remark 3.4. By density of smooth, compactly supported functions in By 4, one can write
' = o +ro with [rills, <o
where gbf; are arbitrarily smooth and compactly supported, and moreover

¢ ¢
(3.4) > (68115, , + I74l181,) S sup lenlis,, + leolls,, -
>1 n
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Next we consider the particular case when ,, R-converges to ¢°, in the sense of Definition 1.2.
Let us prove the following result.

Proposition 3.5. Let ¢, and ¢y belong to By 4 for some 0 < ¢ < oo, with ¢, R-converging
to ¢¥ as n goes to infinity. Then with the notation of Proposition 3.2, the following result
holds:

(3.5) ve>1, lim (ve)71el € {0, 00} .

Remark 3.6. This proposition shows that if one assumes that the weak convergenceis actu-
ally an R-convergence, then the only profiles remaining in the decomposition are those with
truly anisotropic horizontal and vertical scales. This eliminates profiles of the type n¢(nz)
and ¢(- — x,,) with |z, | — oo, for which clearly the conclusion of Theorem 2 is unknown in
general. This also shows that the assumption of R-convergence is equivalent to the one of
anisotropic oscillations introduced in [4] and defined as follows: a sequence ( f,)nen, bounded
in By 4, is said to be anisotropically oscillating if for all sequences (ky, jn) in ZN x 7N,

(386)  liminf 29 [AL AY fullpen =C >0 = lim jo — k| = oo

Proof of Proposition 3.5. To prove (3.5) we consider the decomposition provided in Proposi-
tion 3.2 and we assume that there is k£ € N such that (Wﬁ)_leﬁ goes to 1 as n goes to infinity.
We rescale the decomposition (3.1) to find, choosing L > k,

k L
€ (SD SDO) ZAfn W Zkgb +ALL7ﬁ’lpn
where
gk defﬂU xﬁ
€k

Now let us take the weak limit of both sides of the equality as n goes to infinity. By Defi-
nition 1.2 we know that the left-hand side goes weakly to zero. Concerning the right-hand
side, we start by noticing that

gt gt

n n

ok — 0 or v — 00 = AE% A4 “gb
n n k;7k7’ﬂ

as n tends to infinity, for any value of the sequences 7%, z!,, and z¥. So we can restrict the

sum on the right-hand side to the case when &% /e¥ — 1. Then we write similarly

l

S
—’z—>oo=>A a4 Mqﬁ — 0,

n Z

so there only remain indexes ¢ such that ¢/ /v — 0 or 1. Finally we use the fact that
if £ /4t — 1, then the weak limit of Ay ek #* can be other than zero only if xg’ — abF e R3,

and similarly if €% /42 — 0, then the weak limit of A L

Z

if 2% h—)ah b eR?, and (zf, 5 —aF )/’yn—>a € R. So let us define

e ,#" can be other than zero only

l
SI’L(k:)def{1<£<L/€ ek xfl’k%aé’keR?’,e—’Z—)l} and
Tn

Ens nh Y4
n

def SOk mgzs_xks 0k el
SOL(k) = 1<t <L/)et =¢&F —af eRY, 23 gl e R, 2 500 .
Tn
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Actually by orthogonality the set S''(k) only contains one element, which is k. So for
each L > 1, as n goes to infinity we have finally

0,k 0,k
At Y ).

0eSO-L (k)

Since the left-hand side tends to 0 in B as L tends to infinity, uniformly in n € N, we deduce
that ¢* must be independent of x3. That means that there is no vertical scale ’yﬁ, which
proves the result.

3.1.2. The case of divergence free vector fields. Putting together Propositions 3.2 and 3.5
along with Remark 3.4 and the fact that wug, is divergence free we obtain the following
result.

Proposition 3.7. Under the assumptions of Theorem 2, the following holds. For all inte-
gers 6 > 1 there is a triplet of orthogonal sequences in the sense of Definition 2.1, denoted
by (e n,'yn, “Vnen and for all o in ]0,1[ there are arbitrarily smooth divergence free vector
fields (gba ,0) and (— thhlag%, ¢',) with an and ¢!, compactly supported, and such that
up to extracting a subsequence, one can write the sequence (ugn)nen under the following
form, for each L > 1:

l
“’hvé_g_" ha—-1 14 14 ¢ ¢
(3.7) Uon = to + Z Act it at (% 7ﬁv A0 +78), 05 + ra>

+ (W — VA0 )
where QZE’L and % are independent of a and satisfy

(3:8) timsup ([93% g0 + 65l ) =0, L= oo,
n—oo

while 7" and rt are independent of n and L and satisfy for each £ € N
~h,¢ l
(3.9) [7a 1814 +lIralls, <o

Moreover the following properties hold:

ve>1, lim (y,)"'e, € {0,00},

3.10
(3.10) and lim (7%)7e! =00 = ¢ =1! =0,

n—o0

as well as the following stability result, which is uniform in a:

Th,¢ £ ¢
(3.11) > (o081, + T I8y, + 10518, + Iralls,,) S sup [uo,nllBy, + [luolls,,, -
>1

Proof of Proposition 3.7. Note that due to Proposition 3.5 which asserts that the hypothe-
sis of R-convergence is equivalent to the one of anisotropic oscillations required in [4] (see
Remark 3.6), Proposition 3.7 is nothing else than Proposition 2.4 in [4]. Let us recall the
argument. First we decompose the third component ugm according to Proposition 3.2 and
Remark 3.4: with the above notation, this gives rise to

(312) —UO+ZA oo (0 +7L) + L

with lim sup |12 || g0 %% 0. Moreover thanks to Proposition 3.5, we know that for all £ > 1,

n—o0

we have hm (v2) "Ll belongs to {0,00}.
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Next thanks to the divergence-free assumption we recover the profile decomposition for ugn.

Indeed there is a two-component, divergence-free vector field VhLCovn such that
b, = VM Cop — VAL Bl ,
where VB = (=01, 02), and some function ¢ such that
ud = Vtho — VIA 0503

. . . . € .
Now since 83u87n = —divy ug,n and ul} , is bounded in Bj,, we deduce that V" Cp,, is a

bounded sequence in B; , and similarly for VhJ‘go. Thus, applying again the profile decom-
position of Proposition 3.2 and Remark 3.4, we get

L

1 ~ ~
(3.13) V' Cop = Viyp = ZAégp},{,i«g( WO+ TR) Ot
/=1
with limsup [|¢¥2%|| go 2% 0. Moreover Proposition 3.5 ensures that for all £ > 1, we

n—o0

have lim (3£)71el € {0, 00}.

Flnally, by the divergence free assumption, uo ., is bounded in BO 2 which implies that neces-

sarily ¢f, = r’ =0 in the case when 11_>m (v£) el = oo (see Lemma 5.3 in [4]).
n—0o0

Up to relabelling the various sequences appearing in (3.12) and (3.13), Proposition 3.7 fol-
lows. O

3.2. Regrouping of profiles according to horizontal scales. With the notation of
Proposition 3.7, let us define the following scales: € = 49 = 1, and z¥ = 0, so that one
has ug = Aegﬁgwgu().

In order to proceed with the re-organization of the profile decomposition provided in Propo-
sition 3.7, we introduce some more definitions, keeping the notation of Proposition 3.7. For

a given L > 1 we define recursively an increasing (finite) sequence of indexes ¢ € {1,...,L}
by
def def = g
3.14) %0, g, % min{ze {1, L}/ 50 and £¢ | rL(eﬁk/)},
771 k'=0

where for 0 < ¢ < L, we define (recalling that by Remark 3.3 if two scales are not orthogonal,
then they are equal),

(3.15) TL(el) def{z/ (1,...,L} /e’ =<' and 65('yfl/)71—>0,n—>oo}.

We call £(L) the largest index of the sequence (¢;) and we may then introduce the following
partition:

(3.16) {ee{1,....L}/eb(vE)™ —>O}_UFL by,

We shall now regroup profiles in the decomposition (3.7) of ug, according to the value of
their horizontal scale. We fix from now on an integer L > 1.
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3.2.1. Construction of the profiles for £ = 0. Before going into the technical details of the con-
struction, let us discuss an example explaining the computations of this paragraph. Consider
the particular case when ug, is given by

uom(m) = uo(.%') + (Ug(.%'h, 2_n.%'3) + wg’h(xh, 2_2n1‘3), 0) + (7)8(.%'1 +n,x9, 2_"363), 0) ,

with v8 and wg’h smooth (say in Bf’;l for all s,s" in R) and compactly supported. Let us
assume that (ug,)nen R-converges to ug, as n tends to infinity. Then we can write

ug.n(z) = up(x) + (vgzifc(xh, 2*”333),0) + (vng(xh, 27 "x3), 0) ,

with vgjifc(y) = v8(y)+w8’h(yh, 27 "ys3) and ngzo(y) = v9(y1+2", 92, y3). We notice that vgjifc

and vgflo are uniformly bounded in B; 4, but also in B‘f:;l for any s in R and s’ > 1/2.

Moreover since up, — ug as n goes to infinity, we have that v](zy,0) + wg(xh,O) =0,

hence vg’if “(xn,0) = 0. The initial data ug,y has therefore been re-written as

up () = up(x) + (vgjfc(xh, 27"x3),0) + (vgﬁo(mh, 27"x3),0) with vgz,lfc(xh,O) =0

and where the support in xp, of vg’lfc(xh, 27"z3) is in a fixed compact set whereas the support

in xy of vg’flo (zn,27"x3) escapes to infinity. This is of the same form as in the statement of
Theorem 3.

When considering all the profiles having the same horizontal scale (1 here), the point is
therefore to choose the smallest vertical scale (2" here) and to write the decomposition in
terms of that scale only. Of course that implies that contrary to usual profile decompositions,
the profiles are no longer fixed functions in By 4, but sequences of functions, bounded in B 4.

In view of the above example, let £, be an integer such that 'yf{’ is the smallest vertical scale
going to infinity, associated with profiles for 1 < ¢ < L, having 1 for horizontal scale. More
precisely we ask that

I .
v = min
¢eTL(1)

L

no
where according to (3.15),
FL(l):{EIE{l,...,L}/ef;E and vf;,—>oo,n—>oo}.

Notice that the minimum of the sequences %l; is well defined in our context thanks to the fact
that due to Remark 3.3, either two sequences are orthogonal in the sense of Definition 2.1,
or they are equal. Remark also that ¢; is by no means unique, as several profiles may have
the same horizontal scale as well as the same vertical scale (in which case the concentration
cores must be orthogonal). Now we denote

(3.17) ho oy

"0 —

and we notice that h2 goes to zero as n goes to infinity for each L. Note also that O depends
on L through the choice of £, since if L increases then £; may also increase; this dependence
is omitted in the notation for simplicity. Let us define (up to a subsequence extraction)

4
X
(3.18) a* % Jim <xfl,h,L’3>-

n—00 fyf;
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We then define the divergence-free vector fields

¢
0loc,h , \ def Th0 ¢ Y3 Ln,3
(3.19) vO,rZZz,L(y) = Z bq (yh_xn,h7w - ,;L—g)
terL(1) n In n
a£€R2
and
l
wfloe ) ST (= VAT B 6L) (s — a2
- - ) - hs70 ¢~ ~—_p |-
(20)  omesl) T 2 TR S 0 S U T e T o
af}eRQ
By construction we have
0,loc,h ha-1 0,loc,3
o,éz,L =-V Ah 03 OSZ,L
Similarly we define
¢
0,00,h def Tht ¢ Y3 Tn,3
(3.21) vO,fL?oz,L(y) = Z ba (yh_xn,h7w - ,;L—g)
terL(1) n In n
|a£\:oo
and
¢
0,00 def 18 . Y3 Ln,3
(3 22) wO,n,a,L(y) - Z h 7/ ¢ ¢ Yn — nh7 ho 700 ¢ )
: ert(1) nIn nIn Tn
\a£|:oo
By construction we have again
0,00,h ha-1 0,00,3
Wy ZoocL =-V'Ap 831”0,2?0@-

Moreover recalling the notation
def

[f1no (x) = f(zn, hpws)

def 1 — Tph T3 — Tp3
AEny'Yn@n(p( ) :e ¢< = ’ = ) )
En Tn

and

one can compute that

~ 1
ht ha—lq 40 o0 OJoch |, ;0. Oloch  0loc,3
(3.23) Z Ayt at, (gbo/ - ,Y_zv Ay 83%’%) = [(Wgmar T B0 a L’wo,rzz,L)]h%
n

LeT k(1)
aheR2
and
L Chain 0 0,00,h 0 000h 0,003
(3.24) Z Ay e at, (% - 'VV Ay 0304, ¢ | = [( off’aﬁrh wOSLOaL7wO,Z?a,L)]h%
ZGI‘L(I "
Iah‘*

0,loc,h 0,loc 0,00,h 0,00 . . .
Let us now check that V'na. Wonars v ; and Wy o 1, satisfy the bounds given in

0,n,a,
the statement of Theorem 3. We shall only study vo IOChL and wg loc o1, s the other study

777

is very similar. On the one hand, by translation and scale invariance of Bi,, and using
definitions (3.19) and (3.20), we get

0loc,h 0 0,loc,3 ¢
(3.25) vgmapllB, <Y Ioh s, and Jwgwals., <> I64s., -
>1 >1
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By (3.11), we infer that

loc,h It . .
(3.26) ||v8:r:),(;;,L||Bl,q + ngerZ?LHBl,q < C uniformly in a,L,n.

Moreover for each given «, the profiles are as smooth as needed, and since in the above sums
. o )
by construction 'yn? . < ’yf;, one gets also after an easy computation

0,loc

(3.27) VseR,¥s' >1/2, [o0lch r+ HUO,n,a,L”B?S’ < C(a) uniformlyinn,L.
»q

0,n,a,L ”Biz
Estimates (3.26) and (3.27) give easily (2.5) and (2.6).

Finally let us estimate vg’i?ghL(-, 0) and wg’i?g;gL(-, 0) in BSJ(RQ) and prove (2.7). On the one
hand by assumption we know that ug, — ug in the sense of distributions. On the other hand
we can take weak limits in the decomposition of ug, provided by Proposition 3.7. We recall

that by (3.10), if €/ /7, — oo then ¢!, =, = 0. Then we notice that clearly
L

€n

l
—0ore, 200 = A o0 f =0
for any value of the sequences v, 2 and any function f. Moreover
’}/fl -0 = A1,7£7mﬁf —0

for any sequence of cores z!, and any function f, so we are left with the study of profiles such
that £ = 1 and 742 — co. Then we also notice that if 7% — oo, then with Notation (3.18),

(3.28) laf| =00 => Ay ¢ o f = 0.

Consequently for each L > 1 and each « in |0, 1[, we have in view of (3.12) and (3.13), as n
goes to infinity

0
. — x 3
ug,n - T/),[L/ - Z ’I“(l;(' - xfz,ha rygm ) - ug + Z gbg{( - CL;;,O)

¢eTL(1) " tert(1)
s.t. af‘GRQ
b,
1 Th,L ~h,0 ¢ n, 1 h,¢ ¢
vh CO," ¥ T Z Ta ( — Ty hs ,yg ) - vh()@ + E ¢a ( — Qp, 0) :
¢erL(1) n LeTk(1)
s.t. aﬁeR2

By hypothesis the sequence (Uan)neN converges weakly to uj and the sequence (VﬁCo,n)neN
converges weakly to Vﬁgp, so for each L > 1 and all « in 0, 1[, we have as n goes to infinity

¢
-—x 3
—pf — Z Tfy('—xfhh,Tn’)é Z o (- — aj,,0)

fert(1) " 0eTL(1)
4 2
(329) s.t.ap €R
gl
Th,L ~h,¢l ¢ n, “h,t l
_wn - E Ta ( — Tnho ,yg ) - E ¢a ( - ah70) .
KEFL(l) n ZGFZL(I)2
s.t.ap €R

Now let 7 > 0 be given. Then thanks to (3.8) and (3.9), there is Ly > 1 such that for
all L > Lg there is ap < 1 (depending on L) such that for all L > Ly and o < «p, uniformly
inneN
~ht 0 ¢ T Tng
g T H > ,ra)(-—wn,h,T’)(
LerL(1) n

<n.

[ @t k)

BO
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Using the fact that B° is embedded in L>(R; Bg71(R2)), we infer from (3.29) that for L > Ly
and a < aq

“h K
(3.30) | > a0, g <o
EeFL(l
s.t.ay L cR?
and
3.31 H £ ( .
(3.31) > 6L —a},0) ) @) S
KeFL(l
s.t.ap £ cR?
But by (3.19), we have
0,1 h z, 3
oc¢C, n,
UO n,q, L Z ¢ ( n Jho ™ fy—€>
eerk(1) "
aheR2
and by (3.20) we have also
.
0,1 3 14 3
Wo' ot Z Pa < nh’_;—z)'
0eTE(1) "
ay, €]R2
It follows that we can write for all L > Ly and o < «y,
. 0,loc,h ¢
hyrln_)solip |’UO77:),(;7L( ”Bg 1(]R2 < H Z ¢ — Qp, 0){’3871([@2)
LeTk(1)
ay, 6]R2

=7

thanks to (3.30). A similar estimate for wg’i?g;gL(-, 0) using (3.31) gives finally

01 7h 071 3
(3.32) Lh_r)n (}gr%)h,?j;l,p (Hvo 7:;7L(-,O)HBS’1(R2) + ||w0’72(;’L(.,O)HBS’I(RQ)) =0.

The results (2.8) and (2.9) involving the cut-off function 6 are simply due to the fact that
the profiles are compactly supported.

3.2.2. Construction of the profiles for £ > 1. The construction is very similar to the previous
one. We start by considering a fixed integer j € {1,...,£(L)}. Then we define an integer £

so that, up to a sequence extraction,
0
: l
o= min -y,
LeTk(e,?)

where as in (3.15)

r (6n)def{€'€{1 L} /el =<4 and 6f;(7f;/)_1—>0,n—>oo}.

n

Notice that necessarily el # 1. Finally we define

‘ o
R, d:efef;’(y J )_1 .

n
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e
By construction we have that k), — 0 as n — oo (recall that 6n = ¢ ). Then we define
for j < £(L)

j.h xfz h 655 l“fz 3
(333) vnaL Z ¢ < - g;. ’h] £y3 - ’Yé )
eTE (e e nTn "
and
Z l 0 4
i def h 1 Y, Ty h & Tn3
wfwé,L(y) = Z ( H ZV Ay D3¢, ¢a) (?/h - T;j ’hjnzyg ;Lg >
(ert(e,) e i "
and we choose
(3.34) LIL)<j<L = thL_O and w] wrn =0.
We notice that
J,h th 18
wn « L 3wn ,a,L
Defining
A def ¢

- n I

a computation, similar to that giving (3.23) implies directly that

~ 2\
h,e n—ha—1g 0 0
2 Ay (O - SrVha o 00
(335) ZGFL(Eij)
3
= A)\% [( n,a, L + hj na L’wiz,a,L)]h{'L '
Notice that since aﬁj % 1 as recalled above, we have that )\% — 0 or oo as n — 0.

The a priori bounds for the profiles (v’
vious paragraph: let us prove that

ih i3
Z (vaz,a,LHBl,q + Hwﬁz,a,LHBLtz) S C’ and
Jj=1

VseR, Vs >1/2, Z(vaLHBSS,Hy naLHBss)g(Z’(a).
j>1

i3 . .
(A w;,a,L)lﬁjﬁL are obtained exactly as in the pre-

(3.36)

We shall detall the argument for the first inequality only, and in the case of vna ; as the

study of w’’ ol 18 similar. We write, using the definition of v’ L in (3.33),
£

" ¢
h € Ln,3
ZHnaL”qu ZH Z o (yh— o h]" Y3 — T})‘

Tn
I=1 eri(etd)

)
Bi,q

so by definition of the partition (3.16) and by scale and translation invariance of B , we find
thanks to (3.11), that there is a constant C' independent of L such that

“h,t
Z anaL”BIq < Z H¢o¢ ”qu < C.

The result is proved.
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3.2.3. Construction of the remainder term. With the notation of Proposition 3.7, let us first
define the remainder terms

L
(3.37) A "A ¢t at VEAT Oyrt — VA Oy
/=1
and
def ~
(3.38) fa L < ZA%% 2 ) + ZAee et (0,75) + (P1E kY.

Observe that by construction, thanks to (3.2) and (3.9) and to the fact that if rf{ # 0,
then !, /7% goes to zero as n goes to infinity, we have

Jin_lim lim sup HmeH -1 =0,

(3.39)
and ngréoigrbhmsup\\panLHBo =0.

Then we notice that for each ¢ € N and each « €]0, 1], we have by a direct computation

1

N

N(l)
1,—-1 Y
BY "2 54

We deduce that if £, /7% — oo, then A€£,7£7f£(5§’£,0) goes to zero in BY"3 as n goes to
infinity, hence so does the sum over ¢ € {1,...,L}. It follows that for each given « in ]0, 1]
and L > 1 we may define

def -
PS,L,L = PS,?;Z,L"‘ Z At e o n(¢ 0)

n/vn—wo

“Tht
o

g e @0

1 .
B2

and we have

(3.40) lim lim hmsup Hpna a1 =0.

L—ocoa—0 p_y BY "z

Finally, as D(R3) is dense in B ,, let us choose a family (ugq)a of functions in D(R?) such
that [Jug — up,al|B,, < a and let us define

def (1 2
(3.41) Prol = P((J,)n,L + P,S,L,L + uo — Up,q -

Inequalities (3.39) and (3.40) give

(3.42) Lh_r)réool[lir%]hnmsup 1€ provpll 12 ®+:1) = 0.

3.2.4. End of the proof of Theorem 3. Let us return to the decomposition given in Proposi-
tion 3.7, and use definitions (3.37), (3.38) and (3.41) which imply that

l
o~ E _
= U0, + Z A Nm n ((bgl - ,erl VhAh 133¢£, ¢£> + Pn,o,L -
n
n/vn—>0

We recall that for all £ in N, we have lim,, o (75) 7'’ € {0,00} and in the case where the
ratio £, /7% goes to infinity then ¢, = 0. Next we separate the case when the horizontal scale
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is one, from the others: with the notation (3.15) we write

o= 5 b (e )
n

zerL(1)
V4
€ _
+ Z A vk at < - _?thh 1(93¢i, gbg{) + Pn,a,L -
(=1 Tn
ef #1
5 /7h—0

With (3.23) this can be written

_ 0,loc,h 0, .0,loc,h 0,loc,3 0,00,h 0. 0,00,h 0,00,3
uom—uo@—i- [(UOnaL+h wOnaL’wOnaL)]hO + [(UOnaL+h wOnozL7w0nozL)]h

+ Z Ao e at (‘ﬁh ! TelthEla?’(Zﬁga ¢g> + Pna,L -
n
n%’l
/70
Next we use the partition (3.16), so that with notation (3.14) and (3.15),

_ 0,loc,h 0, 0,loc,h 0,loc,3 0,00,h 0. 0,00,h 0,00,3
uO,n—UO,a+[(U0naL+hwonaLa OnaL)]h0+[(UOnaL+hwOnozL’MOnocL)]h

b
+ Z 3 A (G- SO o) +
7=1 zerL( 7 n
z—:n #1
Then we finally use the identity (3.35) which gives

_ 0,loc,h 0. 0,loc,h 0,loc,3 0,00,h 0 0,00,h 0,00,3
Uo,n = U0, + [(UO n,o, L + hn 0,n,a,L> wO,n,a,L)] ho + [(UO n,o, L +h wO n,a, L wO,n,oz,L)] h

i3
+ Z A)\J L + hn n,a, L’ w‘ZLOé,L)]h‘ZL + pn,oz,L N

The end of the proof follows from the estimates (3.26), (3.27), (3.32), (3.36), along with (3.42).
Theorem 3 is proved. O

4. PROPAGATION OF PROFILES: PROOF OF THEOREM 4

The goal of this section is the proof of Theorem 4. Let us consider (vp, wg) satisfying the

assumptions of that theorem. In order to prove that the initial data defined by
def _
®o = [(vo — BV AL Oz, wi)] 4

generates a global smooth solution for small enough £, let us look for the solution under the
form

(4.1) By = PP 4y with %P L (v 4 fub w?)],

where v solves the two-dimensional Navier-Stokes equations
Ov—+v-VPo—Apw =—-VPp in RT x R?
(NS2D),, divpy =0
V=0 = vo(*, 23) ,
while w? solves the transport-diffusion equation

(Ty) {(9tw3+v-vh 3 Apw® — 203w =0 in RT xR?
B

3 — a3
Wii_y = Wo
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and w" is determined by the divergence free condition on w which gives w" def —VhA}: L9gw3.

In Section 4.1 (resp. 4.2), we prove a priori estimates on v (resp. w), and Section 4.3 is
devoted to the conclusion of the proof of Theorem 4, studying the perturbed Navier-Stokes
equation satisfied by .

Before starting the proof we recall the following definitions of space-time norms, first intro-
duced by J.-Y. Chemin and N. Lerner in [17], and which are very useful in the context of the
Navier-Stokes equations:

(4.2) &

’2ks+]8 IARAY fIl £ (0,77 10)

Mz oy les-

Notice that of course L"([0,T]; B3 ) = L7([0,T); B;;f ), and by Minkowski’s inequality, we
have the embedding L" ([0, T]; By, ,) C L"([0,T); Bpg ) if r > q.

4.1. Two dimensional flows with parameter. Let us prove the following result on v, the
solution of (NS2D),_,

Proposition 4.1. Let vy be a two-component divergence free vector field depending on the
vertical variable x3, and belonging to S,,. Then the unique, global solution v to (NSQD):E3
belongs to A° and satisfies the following estimate:

(4.3) [0l 40 < Ta(l[vollgo) -
Moreover, for all (s,s') in D,,, we have
(4.4 Vr € L,00], ol e ges 2.0y < Tollols,).

Proof. This proposition is a result about the regularity of the solution of (NS2D) when
the initial data depends on a real parameter x3, measured in terms of Besov spaces with
respect to the variable x3. Its proof is structured as follows. First, we deduce from the
classical energy estimate for the two dimensional Navier-Stokes system, a stability result
in the spaces L"(R+;H5+%(R2)) with r in [2,00] and s in | — 1,1[. This is the purpose of
Lemma 4.2, the proof of which uses essentially energy estimates together with paraproduct
laws.

Then we have to translate the stability result of Lemma 4.2 in terms of Besov spaces with
respect to the third variable (seen before simply as a parameter), namely by propagat-
ing the vertical regularity. First of all, this requires to deduce from the stability in the
spaces LT(R+;H5+%(R2)) with 7 in [2,00], the fact that the vector field v, now seen as a
function of three variables, belongs to L™(R™; Lgo(Hs+%(R2)) again for r in [2,00]. This is
the purpose of Lemma 4.3, the proof of which relies on the equivalence of two definitions of
Besov spaces with regularity index in |0, 1[: the first one involving the dyadic decomposition
of the frequency space, and the other one consisting in estimating integrals in physical space.

Finally for s in | — %, %[ and s’ > 0 a Gronwall type lemma enables us to propagate the

regularities. When s’ > = product laws enable us to gain horizontal regularity up to | — 2,1]

and to conclude the proof of Proposition 4.1.
Let us state the first lemma in this proof.

Lemma 4.2. For any compact set I included in | — 1,1], a constant C' exists such that, for
any r in [2,00] and any s in I, we have for any two solutions vy and v of the two-dimensional
Navier-Stokes equations

(4.5) o1 = 02l g e iy S 101 (0) = 220 e ety Fir2(0),
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where we define
def
E12(0) = exp C([lv1(0)]|72 + [lv2(0)]]72) -

Proof. In the proof of this lemma, all the functional spaces are over R? and we no longer men-
tion this fact in notations. Moreover, the constant which appears in the definition of Ej2(0)

can change along the proof. Defining v12(t) def v1(t) — vao(t), we get
(46) atU12 + vy - th12 — Ah’l}lQ = —V12 " Vh’Ul — Vhp .

In order to establish (4.5), we shall resort to an energy estimate making use of product laws
and of the following estimate proved in [12, Lemma 1.1]:

(4.7) (v-Vala) g S IV pellall s IV a] e,

available uniformly for any s in [—2 + u, 1 — p].
Let us notice that thanks to the divergence free condition, taking the H® scalar product with
v12 in Equation (4.6) implies that

1d

55\@12@)“%# + VP02 () |77 = — (v2(t) - VP0r2(t)[012(1)) 1o — (vi2(t) - VP01 (8)[012(t)) 1 -

Whence, by time integration we get
¢ t
[o12 () || s + 2/ [V 019 (t") | Fs dt’ = [lvr2(0) |7+ — 2/ (va(t) - V™o () v12(t)) 5y, dt’
0 0

-2 /Ot (v12(t') - V00r () J12(t)) . i’

Now using Estimate (4.7), we deduce that there is a positive constant C' such that for any s
in I, we have

t
2‘/ (Ug(t/)-thlg(t/)lvlz(t,))Hsdt/
0
t
(4.8) SC/ 012 ()| 1o |V 02 () | 2| V012 (8) | 12 !
0
l ! h (12 / C_2 ! (12 h 12 /
<3 ; IV 012 () [0 d” + = ; [v12(E) = [V 02 (8)[| 72 dt”
Noticing that
t t
/ (”12@/)'thl(f'ﬂvlz(t/))mdf'S/ IV 012(t) | 125 lo12(') - VP01 (¢)]| rs-1 dt’ |
0 0

we deduce by Cauchy-Schwarz inequality and product laws in Sobolev spaces on R? that as
long as s is in 0, 1],

t
2 ‘ /0 (Ulg(t/) . thl (tl)’Um (t/))Hsdtl
t
(4.9) <c / V50 (8 | e 012 () 22|V () | 2
0

1 /[t CZ t
< 5/0 thmz(t’)‘ﬁ{s dt/—i_?/o Hvlz(t/)”%{sthvl(tl)H%Q dt .
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When s = 0 we simply write, by product laws and interpolation,

2 ( /O (vra(t) - VVor (¢) [v12(E)) ot

t
(4.10) SCAHMMN@NWW%V%MN@;W

1 [t o2 [t
< 5/0 ||Vh2}12(t/)||%2 dtl_|_7/0 ||U12(tl)‘|%2th’l)l(t/)H%Q dt/

Finally in the case when s belongs to | — 1, 0], we have

2 ‘/0 (012(t') - V0L (¢) [v12(t)) et

t
(4.11) < C/ o2 ()| s [[v12(t) - V01 () || = dt’
0

1 [t o2 [t
< 5/0 ||Vh2}12(tl)||%{s dtl_|_7/0 ||U12(tl)‘|%{sthvl(t/)H%g dt/

Combining (4.8) and (4.9)-(4.11), we infer that for s in | — 1, 1],
t
12 (®)l7rs +/0 IV 1o (t) 7 dt” S [lor2(0) 17

t
ﬁéwmwﬁmw%ww;+w%mw;wﬂ

Gronwall’s lemma implies that there exists a positive constant C' such that
t ¢
lvi2(t) 1 +/0 IV 012 (¢) 7=t < Jlo12(0)13 eXPC/O (IV o1 ()72 + [V 02(t) 172 ) dt’ -

But for any 7 in {1,2}, we have by the classical L? energy estimate

t
1
(412) | I st < o).

Consequently for s in | — 1,1],

t
12 (8)][7+ +/0 IV 012 (#) |77+t < [[012(0) 17+ Er2(0)
which leads to the result by interpolation. O

Continuation of the proof of Proposition 4.1. Using Lemma 4.2, we are going to establish the

~ 2
following result, which will be of great help to control all norms of v of the type L"(R™"; B¥)
for r in [4, oo] thanks to a Gronwall type argument.

Lemma 4.3. For any compact set I included in ] — 1,1[, a constant C' exists such that, for

any r in [2,00] and any s in I, we have for any solution v to (NS2D),_,

. def
HvHLr(W_Lw(Hﬁ%))gHvOHBsE(O) with E(0) = eXp(CHv(O)H%SOLﬁ).
v h

Proof. We shall use the characterization of Besov spaces via differences in physical space: as
is well-known (see for instance Theorem 2.36 of [2]), for any Banach space X of distributions
one has

Jiay u = (T—2u)llL2(x) dz
(4.3 @A 183l 200) oy ~ [

|22 2]




28 H. BAHOURI, J.-Y. CHEMIN, AND I. GALLAGHER
where the translation operator 7_, is defined by

(T—2f)(t, 2p, x3) def flt,xn, zs + 2).

The above Lemma 4.2 implies in particular that, for any r in [2,00], any s in I and any
couple (z3,2) in R?, if v solves (NSQD)mS then

. def +2
o = 7—vllve < llvo — 720l E(O)  with  ¥® < LT(RT H ' 7).

Taking the L? norm of the above inequality with respect to the x5 variable and then the L'
3
norm with respect to the measure |z|~2dz gives

V— T,V s\ d Vo — T—2V0||1.2(Hs) d
(4.14) I 2 IHL%(YT)_Z < | v HLV(Hh)_ZE(O).
R 2|2 2| ™~ Jr 2|2 2|

Returning to the characterization (4.13) with X =Y, we find that

HU - T*szLQ(YS) dz

AR 2))|

z|’ | Lr(RY02(Z; L)) || 1

Similarly we have

ZQ H 2k8||AVA UOHLﬁ)kH@?(Z;L%)’

/ [[vo — T—zUOHL2 HE) dz
JEZ

2|2 [l

so by the embedding from ¢1(Z) to ¢%(Z), we get

lvo — 7—zvoll 2 ary) dz _ oAy
/ EEIDY 289h% | AY Al | 2 g5

1
|22 (j,k)eZ?

Therefore, we deduce from Estimate (4.14) that

>

JEL

H (2k(8+%)A}7A2?}(t7 g Z)) k‘

LT(R+;62(Z;Lﬁ))‘ L2 S Ilvolls- £(0).

As r > 2, Minkowski’s inequality implies that

>o

JEZ

[ (2FC+D AY ARt < Jlvollss E(0).

,'))kH@(Z;L?) Lr(RY)

Bernstein’s inequality as stated in Lemma 6.1 implies that
i
18T ARt Moo 12y S 22187 AR(E )]lze

thus we infer that

[Ca

188z 22) il |, ey S lolls E(0).

Permuting the £2 norm and the L norm thanks to Minkowski’s inequality again, concludes
the proof of the lemma. O

Remark 4.4. Let us remark that thanks to the Sobolev embedding of H? (R?) into L*(R?),
we have, choosing s =0 andr =4 orr = 2,

”U”L4(R+;L°°(L n t [vll 2 (RT;Lge(HY)) < llvollgo E(0) -
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Continuation of the proof of Proposition 4.1. Now our purpose is the proof of the following
inequality: for any v solving (NS2D), , for any 7 in [4,00] and any s in }—%, %{ and any

" /
positive s°,

(4.15) M@Wﬁﬁﬁswwwwqﬂcmwm%%»wagwm@.

The case when r is in [2,4] will be dealt with later. We are going to use a Gronwall-type
argument. Let us introduce, for any nonnegative A, the following notation: for any function F'
we define

t
) & Pty exp (-2 /0 o)t} with (1) E o(t) 5 oy + (O]

Notice that thanks to Remark 4.4, we know that
¢
(416) [ o®)ae < Bl + lwolie)-

Then we write, using the Duhamel formula and the action of the heat flow described in
Lemma 6.2, that

v —C k v
1AS ARoA(®)][ 12 < Cem || A Afuo 2
(4.17) t t
+ 2 / exp(—c(t — )22k _ ) gb(t”)dt”) IAYAR (v @ 0)\(¢)]| 2dt .
0 4

Notice that (v ® v)y = v ®vy. In order to study the term ||A}’A2(v @ v)A(t")|| 12, we need an
anisotropic version of Bony’s paraproduct decomposition. Let us write that

4
ab = ZTg(a,b) with
/=1

T'(a,b) = Y SySpaAjARD,

i,k
(4.18) T%(a,b) = Y SyARaATSE, b,
4.k
T3a,b) = Y AYSpaS), AR,
i,k
T'(a,b) = Y AJARaSY, Spb.
7.k

We shall only estimate T and T2, the other two terms being strictly analogous. By definition
of T, using the definition of horizontal and vertical truncations together with the fact that
the support of the Fourier transform of the product of two functions is included in the sum
of the two supports, and Bernstein’s and Hoélder’s inequalities, there is some fixed nonzero
integer Ny such that

v 5 M
HAjAng(v(t),v,\(t))HL? S 22 HAJAETI(U@)’vA(tDHL?(L%)
v h

k h h
S 2z E 155/ Skrv ()| oo £y 1AT Afsva(E) ] 22
§'>j—No
k'>k—No
k h
S 22 fo@llpeeqray D, IATAROAD)|L -

3'>j—No
k'>k—No
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ey ¥ 1o
By definition of L*(R™; B5T2%) we get

v —k'(s 1 —ilg! T
IAYART (u(t), vr ())”L2<22H”>\”L4(R+Bs+gs lo@)llrge ey Do 27MEHD27% ()

J'>j—No
k'>k—No
where f:’ﬁk’ (t), defined by
~ def _ Y
Firw(®) = oAl A A INANINOI TS

TARY; BSFE 'y
is on the sphere of ¢1(Z?; L*(R™")). This implies that
27525 | ATART (u(t), vr (1)) |2
ol g [0y 30 270D ),
J'>j—No

k'>k—No

1
Since s > 5 and s’ > 0, it follows by Young’s inequality on series, that

22| ATART (u(t), 0 (1)) |2 S oAl 2 ot o oy 10Ol e ) £ (E)

where f;1(t) is on the sphere of ¢}(Z% L*(RT)). As ¢(t) is greater than |jv(t)||*

Irge gy we
infer that

7—1 def i js oks ! o2k ! A/
ika(t) = 2°27%2 exp(—c(t —1)2% —X [ ¢(t")dt
0 t/

< JAYART (o(t'), oA ()| 2’
(4.19)

< ”U)\HL4 R+ BS+§ ,s’ )

t
X Qk/ exp(—c(t —t/)2%F — A
0

Using Holder’s inequality, we deduce that

t ;
_ __+\92k
Ta®) S 10l ooy ([ € i)

t t
2k< <ol —c(t — #1922k _ ) " dt ,%d/>
x /Oep< ot —t) t,qﬁ(t)t)(ﬁ(t) t

Then Holder’s inequality in the last term of the above inequality ensures that

t 1
O(L")dt" ) 6 () (1)t

¢/

3
4

1
1 t (o 41\o2k 1
(4.20) E}m(t) < )\_i</0 p—c(t—t)2 ﬁk(t/)dtl> HUAHZ4(R+;BS+%7S/)'

Now let us study the term with 72. Using again that the support of the Fourier transform
of the product of two functions is included in the sum of the two supports, let us write that

IAYART? (w(®), ox()ll2 S Y 1S5 AR vl pee (22 1A Sp oA O L2 (12e)
3'>3—No
k'>k—No

Combining Lemma 6.1 with the definition of the function ¢, we get

(4.21) 155 ARl e (z2) S 27 o) | Lo a1y S 2763 ().
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Now let us observe that using again the Bernstein inequality, we have

HA;’Sl}cl’-f—lU)\(t)HL%(Lﬁo) < Z HA}/’AE"UA@)”L%(LEO)
k‘"ﬁk"

S D 2 AL AR oA e -
k”gk’

By definition of the Z4(R+; BS‘%’S,) norm, we have

i's! k! 1 h Kk — k:” 1
2j ® 2 (S 2) “A;’Sk/+1vA(t)|’L%(L?) rS Hv}‘|’Z4(R+;BS+%’SI) Z 2( 8 )f ’k‘"( )
k<K'

where ij/ (1), on the sphere of (Y(Z2; L*(R")), is defined by

def

k,ll
lloall =} AR PN PN ANGI TS

LART; Bt )

ij’7/<:"( )
Since s < %, this ensures by Young’s inequality that

18388 10r @2y S 27727 D orl g Frae ()

31

where E’Ck’(t) is on the sphere of ¢*(Z?; L*(R")). Together with Inequality (4.21), this gives

s s v 1
294D |ASART0(0), 03 D)2 S 6O 0] s (D).
where f;(t) is on the sphere of £!(Z?; L*(R™)). We deduce that

7—2 def i js' oks ! o2k ! AT/
Sra(t) = 272772 | o —c(t—t)2% — X [ o(t")dt
t/

< JAYALT (o(#), v () | 12 dF
(4.22) < Jloall-

La(r+iBet )
t t
x 2% / exp(—c(t — )22k ) ¢(t“)dt”)¢(ﬂ)% Fin()dt
0 t’
Using Hélder’s inequality twice, we get
2 ! t—t')22F o4 i
—c(t—t' N 34!
Toa® S Il oot ([ €O attrar
t t 1
k No2k 1N 3401 n2 o \?
x 23 exp(—c(t — )22k A | p(t")at )¢(t )adt
0 t’
1 ! —c(t—t")22F 4 (41N 740 1
42 5 ol e ([ o o)
As T3 is estimated like 7' and T is estimated like 72, this implies finally that
y

- - o __ 92k
2725 | AT ARoA (B[] 2 S 27725 e T AT Ao | 2

t 1
—e(t—t')22k i/ 1 1
+(/Oe f ( )dt) <)\4+>\ >” )\HL4R+83+25)'
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1
00 t , lu4 1
< / ( / e~ b (ar' ) dt) = ¢l
0 0

t 1
and sup (/0 emelt=t)2* ﬁk(t/)dt'> t = ks withd;, € 01(Z%),
teR

As we have

we infer that
j s’ v k v
27 QRS(HAJAEUAHLOO(W;B) + 22 HA]'AEU/\HLAL(RtL?))
-, 1 1
k v Ah
S PUNA A lze + di (S + )10 g e

Taking the sum over j and k and choosing A large enough, we have proved (4.15).
Let us gain L?-integrability in ¢. Using (4.19) and (4.22) with A = 0, we find that

. -/ __ 92k

235/ 1) | AY ARy (1) 2 S 299/ 2D = | AY Ay | 1

t —c(t—t' 2k _k
+22kHUHE4(R+;BS+5’S/)/O e T ((gya ) + 272 hya(t))
where g; . (resp. hjy) are in £1(Z%; L?(R")) (resp. El(Z2;L%(R+))), with

1 1
Y lNgiklla@s) SIglf and Y- 1rsikll g gy S N

(j,k)ezZ? (4,k)eZ?

Laws of convolution in the time variable, summation over j and k and (4.15) imply that

‘|U‘|E2(R+;Bs+1,s’) S HUOHBS,S’ eXP<C/O ¢(t)dt> .

This implies by interpolation in view of (4.15) that for all r in [2,00], all s in | —
positive s’

(424) 1915, 2.4y S ool exo(C [ ™ ottrar)

which in view of (4.16) ensures Inequality (4.3) and achieves the proof of Estimate (4.4) in

the case when s belongs to ] — 2, 1],

1. 3[ and all

Now we are going to double the interval, namely prove that for any s in | —1,1[, any s’ > 1/2
and any r in [2, 00| we have

(4.25) 1ollz, gt sy S lv0llgesr + lvoll g lvoll 55 exp(Cllvollso o) -
LT (RT;B B

Proposition 6.4 implies that for any s in | — 1,1 and any s’ > 1/2, we have
[o(t) @ v()l[gs.sr S N0 gagr 0] gyt oo

The smoothing effect of the horizontal heat flow described in Lemma 6.2 implies therefore
that, for any s belonging to | — 1,1[, any s’ > 1/2 and any r in [2, o],

ol g sty S Neollgeet + 110 vl et
S eollgear + 10l gt 10l et o -

Finally Inequality (4.15) ensures that for any s in | — 1, 1[, any s’ > 1/2 and any 7 in [2, 00,

LART; B LA(RT;B

(4.26) 1Nz, g+ ger 2y S Nv0llgess + llvollgs [[voll 5. exp(Cllvoll 0 £(0))

This concludes the proof of Inequality (4.25).
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Now let us conclude the proof of Estimate (4.4). Again Proposition 6.4 implies that, for any s
in ] —2,0] and any s’ > 1/2, we have

[0() @ v(®)l| g1 S (0@l g3 4allo@)]l g541.0 -
This gives rise to
HU ® U“Ll(R+;BS+1,S’) SJ HUHL2(R+;B%+1)HUHLQ(R-F;B§+1,S’) .
The smoothing effect of the heat flow gives, for any r in [1,00] and any s in | — 2,0],
001 g g2, S 100l 00 2 o 10l gt 1 -

Inequality (4.26) implies that, for any r in [1,00] and any s in | —2,0] and s’ > 1/2 ,

(4.27) 1017, s e 2.y S o0l + w0l l1v0ll 5.0 xp(Clvollio Eo) -
This proves the estimate (4.4) and thus Proposition 4.1. O

4.2. Propagation of regularity by a 2D flow with parameter. Now let us estimate the
norm of the function w? defined as the solution of (Tj3) defined page 24. This is described in
the following proposition.

Proposition 4.5. Let vy and v be as in Proposition 4.1. For any non negative real number 3,
let us consider w3 the solution of

(Ts) O +v- Viw? — Ayw? — g203w® =0 and w‘izo = wp .

Then w? satisfies the following estimates where all the constants are independent of 3:

(4.28) lw?|| a0 S llwg llso exp(Ti(llvollgo))
and for any s in [—2 + p,0] and any s’ > 1/2, we have
(4.29) 1w l| g S (105l + [[w5 1o T2llvolls;,)) exp (Ti(l[volls0)) -

Proof. This is a question of propagating anisotropic regularity by a transport-diffusion equa-
tion. This propagation is described by the following lemma, which will easily lead to Propo-
sition 4.5.

Lemma 4.6. Let us consider (s,s’) a couple of real numbers, and Q a bilinear operator
which maps continuously B' x B*t15" into B*'. A constant C exists such that for any two-
component vector field v in L>(R*; BY), any f in LY(RT;B>%), any ag in B%%" and for any
non negative 3, if Ag d:efAh + %202 and a is the solution of

oa —Aga+ Q(v,a) = f and ay—g = ao,

then a satisfies

Vr € [1,00], ||QHET(R+;55+%,S') < C(HGOHBS’S’ + HfHLl(RﬂBs,s’)) eXP(C/O Hv(t)H%ldt) :

Proof. This is a Gronwall type estimate. However the fact that the third index of the Besov
spaces is one, induces some technical difficulties which lead us to work first on subintervals I
of R™ on which vl z2(r;B1) is small.

Let us first consider any subinterval I = [rg,71] of RT. The Duhamel formula and the
smoothing effect of the heat flow described in Lemma 6.2 imply that

— 22k (t—1 v
IARAYa(t)]| 2 < e )| AR AYa(ro) | 2

+ C/t o2 (t=t")
70

ARAY(QW(E'),at))) + F() | 2’
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After multiplication by 285175" and using Young’s inequality in the time integral, we deduce
that

2 (| AR A all o 1.2y + 22 AR AT all L1 12)) < O25 | AR AYa(7o) | 12

t
+C/ di i (1) ()5 la) | gerrer + 1 )l ge.sr )t
70

where for any ¢, dj j(t) is an element of the sphere of ¢}(Z?). By summation over (k, j) and
using the Cauchy-Schwarz inequality, we infer that

(4.30) HG’HEOO(I;BS,S') + HGHL1(1;85+2,S') < Clla(7o)lgs.sr + CHJCHLl(I;Bs,s’)

+ CHUHLQ(I;Bl)||aHL2(1;Bs+1,s’) .

Let us define the increasing sequence (7, )o<m<n+1 by induction such that Ty = 0, Tps41 = 00
and

Tm+1 o
Ym < M, / |v(t)||dt = co and / [v(t) |5 dt < co,
Tm

T
for some given ¢y which will be chosen later on. Obviously, we have
0 T
(4.31) / o(t)| % dt > / o) [Zadt = Meo .
0 0

Thus the number M of T},s such that T,, is finite is less than ¢y 1\\1}\@2 (BB Applying
Estimate (4.30) to the interval [T),,, Tpn+1], we get
lall oo (B gy T M0l L 13 1 mo2ry S Ml 2, 70400
+ C(Ha(Tm)HBs,s’ + CHfHLl([Tm,TmH};Bs,s’))
if ¢ is chosen such that C'\/cyg < 1. As

1 1
ez gy, ity SNl a,, g, e 0 L gy 1, ey

we infer that
lall oo (7 7y 21050y H L1y 00029
< 2C(Ha(Tm)HBs,s/ + HfHLl([Tm,TmH];Bs,s’)) :
Now let us us prove by induction that
lall e 0.2, ey < O™ (laollgewr + 111107150
Using (4.32) and the induction hypothesis we get

(4.32)

lall oo @ gaiyiseery S 20l oz, gmesry + 11 3 0180)
< (2C)m+1 (||a0||Bs,s’ + HfHLl([o,TmH},Bs,s’)) )
provided that 2C > 1. This proves in view of (4.31) that

mmﬂwﬁwSCWM@y+wmmumywﬂcArwm@w)
We deduce from (4.32) that
mmw%mmﬁ%%scmm@yﬂmmwwwnwchrwm@a)

+ Ol (g3 1 1s85)

Once noticed that ze®” < ecllﬂ, the result comes by summation over m and the fact that

the total number of m’s is less than or equal to ¢y * HUH%Q (R*51)" The lemma is proved. O
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Conclusion of the proof of Proposition 4.5. We apply Lemma 4.6 with Q(v,a) = divy(av),
f=0,a=w? and (s,s') = (0,1/2). Indeed since B is an algebra we have

1Q(v, a)llgo < llavligr S llallsr[|v]lst-
So Lemma 4.6 gives
o
Lo S lufllooexp(C [ Io(oluar).
Thanks to Estimate (4.3) of Proposition 4.1 we deduce (4.28).

Now for s belonging to [~2 + u, 0], we apply Lemma 4.6 with a = w3, Q(v,a) = div,(T)a),
and f = divy(T)v), where with the notations of Definition 1.4

(4.33) T)a defZSV 1wAa, R (a def Z Aj_,aAjv  and TV v def T v+ R%(a,v).
7 1<t
Lemma 6.5 implies that for any s in [—-2 + u, 0] and any s’ > 1/2,
|17y w || gosrer S 0llgr w0 g -

We infer from Lemma 4.6 that, for any r in [1, co],
(4.34) 10?1, gt o 2y S (05 llgo.sr + 1 diva (Ty )|l 1 g+ o) € (Ti (oo lg0)) -
But we have, using laws of anisotropic paraproduct given in Lemma 6.5,

| divi (F0) s ey IS0l s o

< [lw? HL?(W;Bl)HUHL2(R+;58+LS’)-

Applying (4.28) and (4.4) gives (4.29). Proposition 4.5 is proved. O

As w" is defined by w® = -VihA, L9sw?, we deduce from Proposition 4.5, Lemma 6.1 and
the scaling property (2.1), the following corollary.

Corollary 4.7. For any s in [—2 + p,0] and any s’ > 1/2,

h
0™ gerr-1 S (1§l ges + w5 llso T2(llwolls,.)) exp(Ti(llvollgo)) -

4.3. Conclusion of the proof of Theorem 4. Using the definition of the approximate
solution ®*PP given in (4.1), we infer from Propositions 4.1 and 4.5 and Corollary 4.7 that

(4.35) 197 2t g1y < Tilll(vo, w§)llso) + BTl (vo, wg)|ls,,) -

Moreover, the error term 1 satisfies the following modified Navier-Stokes equation, with zero
initial data:

4
Ot + div(y @ ¢ + OPP @ ¢ + 1) @ D) — Ay = —Vgz + »_Ef  with
(=1
B} < 330, m + ﬁ( (9ap])
(4.36) B3 [ (whay + (VAT dividy (ve), 0) ) | ,

B

(v
3def {(wh Vi(v,w?) +v - V(wh 0))} and
[( B b () 0) + w38, (w" 0))}6
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If we prove that

(4.37) Hi Ef;Hfo < BT2(Il(vo, wp)ls,.) »
(=1

then according to the fact 1;—o = 0, Proposition 2.5 implies that ¢ exists globally and
satisfies

(4.38) 11l L2 e 1) S B T2(ll(vo, wi)lls,) -

This in turn implies that ®, generates a global regular solution ®5 in L?*(R™;B') which
satisfies

(4.39) 1212+ 51 < Ta (Il (w0, wd)llgo) + BT (Il (vo, wi)lls,.) -

Once this bound in L*(R™; B) is obtained, the bound in A° follows by heat flow estimates,
and in A5 by propagation of regularity for the Navier-Stokes equations as stated in Propo-
sition 4.8 below.

So all we need to do is to prove Inequality (4.37). Let us first estimate the term 93[(v,0)]s.
This requires the use of some L?(RT; 8%*) norms. We get

2
192018072 g -y S 008l g ot

Using the vertical scaling property (2.1) of the space BO’%, this gives
2
1081015 2 03, S 100 g
Using Proposition 4.1, we get

(4.40) 165 [v] ) < BTa(llvolls,) -

ol s ot

Now let us study the pressure term. By applying the horizontal divergence to the equation
satisfied by v we get, thanks to the fact that divyv =0,

2
Osp = =M, > 0O (V™) .

lm=1
Using the fact that A 1940, is a zero-order horizontal Fourier multiplier (since ¢ and m
belong to {1,2}), we infer that
1105p18]| 11 + 0y = 193Pll 1 e+ s0)
S [[v03v| L1 (r+ 309 -
Laws of product in anisotropic Besov as described by Proposition 6.4 imply that
[0(t)d3v(t) g0 < llv(E)lsrl|Osv(E)] 50

which gives rise to

10sp)s]| 1 gm0y S I0llL2er i) 19050 Lo o)
(441) S H/UHLQ(R-F;BI)||v||L2(R+;BO’%) .

Combining (4.40) and (4.41), we get by virtue of Proposition 4.1 and Lemma 6.3
(4.42) 125170 < B Ta(llwolls,) -
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Now we estimate Eg Applying again the laws of product in anisotropic Besov spaces (see
Proposition 6.4) together with the action of vertical derivatives, we obtain

lw? ()03 (v, w?)(B)llge S 1lw? (1) 52 105 (v, w?) (E) ]| g0
S Hw?’(t)HslH(v,w?’)(t)HBo,g-
Thus we infer that

(4.43) w0 (v, 0 e oy S N0l o s 100 o e oy

For the other term of Eg, using the fact that VhAg L divy, is an order 0 horizontal Fourier
multiplier and the Leibniz formula, we infer from Lemma 6.1 that

IVEAL! divy 93 (vw®) (t)llge S [193(vw?) (1) 0

< o®)sw?(t)]go + I’ (1)5v(t) 5o -

In view of laws of product in anisotropic Besov spaces and the action of vertical derivatives,
this gives rise to

IV AL divi 93 (vw?) () lso S No(®)lls 1w (@)]] o3 + w® @)l o)
Together with (4.43), this leads to

HBO,%‘

1ES 21 ety S Bl e |00 g ot
3
+B Hw HL2(R+;BO,%)”U|’L2(R+;Bl)’
hence by Propositions 4.1 and 4.5 along with Lemma 6.3
(4.44) IEZ |70 < BT2(II(vo, wd)]ls,.) -

Let us estimate Eg Again by laws of product and the action of horizontal derivatives, we
obtain

Hwh . Vh(v, w3)HL1(R+;BO) ,S ||wh||L2(R+;Bl) ||Vh(v, 'LU3)||L2(R+;BO)
S ”wh”L2(R+;Bl)”(U7ws)HL2(R+;BI)-
Corollary 4.7 and Propositions 4.1 and 4.5 imply that
(4.45) [w® - Va (v, w?)| gt g0y < Ta(ll(vo, wd)lls,.) -
Following the same lines we get
h/, h
lo- VP (", 0) 11 0y < Ta(ll(vo, wp)lls,) -
Together with (4.45), this gives thanks to Lemma 6.3
(4.46) 1EZ 70 < IES | s 0y < B T2(ll(vo, w))ls,,) -
Now let us estimate Eg. Laws of product and the action of derivations give
h h, h h h, h
[w™ - Vil prgeipoy S 10 2@ sy VW ()| L2 @+ 0)
(4.47) P
In the same way, we get
h h
lw? (£)03w0™ || 1 0y S 110”2250y |0 I -4y -
Together with (4.47), this gives thanks to Corollary 4.7 and Propositions 4.5
1E3 ]| 2 0y < B T2(Il(vo, wd)s,.) -
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Lemma 6.3 implies that
1E5 70 < B2 Ta(ll(vo, wi)lls,.) -
Together with Inequalities (4.42), (4.44) and (4.46), this gives

1E5]l 70 < B T2(ll(vo, wp)ls,.) -
Thanks to Proposition 2.5 we obtain that the solution ®4 of (NS) with intial data

o) = [(vo — ﬁVhAglagwg, wg)]ﬁ

is global and belongs to L?(R™"; B!). The whole Theorem 4 follows from the next propagation
result proved in Section 6. U

Proposition 4.8. Let u be a solution of (NS) which belongs to L*(R"; B') and with initial
data ug in BY. Then u belongs to A° and satisfies

(4.48) ol ey + 1l g ) S Tl + el -
Moreover, if the initial data ug belongs in addition to B* for some s in [—1 + pu,1 — p], then

(4.49) vr € [100], flull g gy < Tillluolls) To(lluollso, llull L2+ s1)) -

Finally, if ug belongs to B**" for some s’ greater than 1/2, then

(4.50) vr € [Loo], flull , g+ 2.0y < Tillluoll o) To(lluollso, l[ull L2+ -

5. INTERACTION BETWEEN PROFILES OF SCALE 1: PROOF OF THEOREM 5

The goal of this section is to prove Theorem 5. In the next paragraph we define an
approximate solution, using results proved in the previous section, and Paragraph 5.2 is
devoted to the proof of useful localization results on the different parts entering the definition
of the approximate solution. Paragraph 5.3 concludes the proof of the theorem, using those
localization results.

5.1. The approximate solution. Consider the divergence free vector field
0 dﬁf 0,00 0, .0,00,h 0,00,3 0,loc 0. 0,loc,h 0,loc,3
Q01,01 = U0,a Tt [(Uo,n,a,L + hnwo,n,a,L’ wo,n,a,L)]hg + [(vo,n,a,L + hnwo,n,a,L’ wO,n,oz,L)]h% )

with the notation of Theorem 3. We want to prove that for Y small enough, depending

only on ug and on || (g £y wWomarr )|, as well as [[(vg;, 2 whmar

global smooth solution to (NS) with data <I>8’n7a7L.

)HS , there is a unique,
w

Let us start by solving globally (NS) with the data ug . By using the global strong stability

of (NS) in By, (see [4], Corollary 3) and the convergence result (2.3) we deduce that for o

small enough there is a unique, global solution to (NS) associated with g o, which we shall
1 1

denote by u, and which lies in L?(R™; Bff) Moreover by the embedding of Bff into B!

we have u, € L*(R*; BY).

Next let us define

£ 0
vO,n,a,L + hnwO,n,a,L’ 0,n,a,L

0 [0+ )

Thanks to Theorem 4, we know that for A smaller than & (H(vg’ffa L wgd )|l ) there is
) ) ) ) ) ) 14

a unique global smooth solution (1)2,20 ; associated with @8’;’004 1» which belongs to Ag, and
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using the notation and results of Section 4, in particular (4.1) and (4.38), we can write

@O0 def g0coapp ¢ ar With

n,a, L n,a, L
0,00,app def 0, 0,00,h 0,00,3
(51) q)naL [UnaL +hn naL’wn,a,L]hg and
0,00,3
H¢n @ LHLQ(R+ ;B ~ < hy 75(“ UO ;oL wO,n,oz,L)HS#)
where vgsz solves (NS2D),. with data UO o,z and wo > L3 solves the transport-diffusion
equation (Thg ) defined page 24 with data wo 0 3 Flnally we recall that
0,00,h h 1 0,00,3
wn,oz,L =-V A a wnaL
Similarly defining
0,Joc  def 0,loc 0 0,loc,h 0,loc,3
O,n,a,L — [( 0naL+hn OnaL’wo,n,a,L)]hO ’
then for hY smaller than 61(H 1)8 i?z L’WSZEZ?L)H s, there is a unique global smooth solu-

tion <I>O ol associated with <1>8 Z)Ca ;» which belongs to Ag, and

Q)O loc def q)O loc,app + 1/10 ,loc ith

n,o, L n,o, L n,o, L w1
0,loc,app def 0,loc 0. 0loc,h 0,loc,3
(52) q)naL [naL+hn naL’ noz,L]h and

||¢21§CL||L2(R+;81) S hnﬁ(“ Ugi?fx L’wg Z)ZgL HS#)

where v* 1°CL solves (NS2D),. with data vg lf; , and w? sch solves (Tpo) with data wlloes

0,n,a,L"
0 loc h h 1 0 JJoc,3
Finally we recall that w, —VIA Osw,) 1

Now we look for the solution under the form

def
(I)NOéL = a+q)?zaL+(I)OIOCL+¢naL

In the next section we shall prove localization properties on <I>n’ al and ®1°° namely the

n,a, L’
Q)O loc,app

ol remains localized

fact that @?LZO PP escapes to infinity in the space variable, while

(approximately), and we shall also prove that ®* lchapp remains small near x3 = 0. Let us

recall that as claimed by (2.7), (2.8) and (2.9), those properties are true for their respective
initial data. Those localization properties will enable us to prove, in Paragraph 5.3, that
the function uq + <I>n oL T o 1°CL is itself an approximate solution to (NS) for the Cauchy

0,loc
data ug o + <I>O nol T CIDO’TW,L.

5.2. Localization properties of the approximate solution. One important step in the
proof of Theorem 5 consists in the following result.

Proposition 5.1. Under the assumptions of Proposition 4.1, the control of the value of v at
the point x3 = 0 is given by

(53) Vr e [1,00], H’U( )H~ " (RF; BTI(R2)) 5 ||v0("0)HBg’1(R2) + Hv(’O)Hi2(R2) .

Moreover we have for all n in |0, 1] and y in {0, 1},
(5.4) 10y = Ong)vll o < [ (v = Bnn)vo| go exp Ti(llvollso) +0Ta(llvolls,.)
with 6y, is the truncation function defined by (2.2).
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Proof. In this proof we omit for simplicity the dependence of the function spaces on the
space R?. Let us remark that the proof of Lemma 1.1 of [12] claims that for all z3 in R,

(A};(v(t, - x3) - Vio(t, -, .%'3))|A2U(t, “ mg))L2

(5.5)
S di(t,23) [ V0 (t, -, 23) | Fo | ARv(t, -, 3) | 2

where (d,(t,23))rez is a generic element of the sphere of £1(Z). A L? energy estimate in R?
gives therefore, taking 3 = 0,
1d
2dt
where (dy,(t))rez belongs to the sphere of ¢1(Z). After division by ||[Alu(t,-,0)|/z2 and time
integration, we get

HA};U(t, B O)H%Q + C22k||A}clv(t’ ) O)H%Q S dk(t)thv(t’ ) O)H%Q HA};U(t, "y O)HL2 3

~

1AV, )] oo r12) + 2 [ ARV (O 1 1)
(5.6) > h 2
< [Arvo(-0)l[2 +C | di(®)IV 0 (t, -, 0)[[ 724t -
0

By summation over k£ and in view of (4.12), we obtain Inequality (5.3) of Proposition 5.1.

In order to prove Inequality (5.4), let us define v, def (7 = On,y)v and write that

3
Opvyy — Anvyy + divy (v @ vyy) = Ep(v) = Z E;(v) with
i=1
(5.7) E}(v) & —29(V'0)y,, V0 — 172 (Anf) v
E,?(v) def nu - (VhH)hmv and
def _ m
E(0) S —(v = ) VEALT D 000 (v0™)

1<l,m<2
Let us prove that
(5.8) 1En ()l L1 m+50y S 1 T2(llvolls,) -

Using Inequality (4.27) applied with » = 1 and s = —1 (resp. r = 2 and s = —1/2) this will
follow from

(5.9) 1By ()l L 50y S 010l gt 1) + \Iv\I;(W;B%)) :

Proposition 6.6 and the scaling properties of homogeneous Besov spaces give
h h h h
IV Oy Vio@Dlso < IV O)nnllpy, 2V 0 ()50
h
< 190y, ) o)l
Following the same lines, we get

[(Anno@llzo S [(Anb)nnllpg, @2)llv (@)

1
184015y e o0 s

N

hence

(5.10) 1y (0| £ z+ 0y S 110l 1 1)
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Let us study the term E727 (v). Proposition 6.6 implies
h h V4
[o(®) - (ViOugo(t)llp < IV a)h,angl(R%SZUPHU ()™ (8)l 0
: m
h
S 9005y e IO,

Thus we get

(5.11) 125 ()| o1 0y S mllvll?, 2@+i5h)

Let us study the term E%’ (v) which is related to the pressure. For that purpose, we shall
make use of the horizontal paraproduct decomposition:

av =Tla+ T + R*a,b) with T00 3" SE aAlb and R"a,0) €Y Alaalp.

This allows us to write

3
Bw) =Y E¥(v) with
=1
EM (v )d_ef b O, with Vi = vhAl Z O (0™ |
(5.12) 1<0,m<2
Ef]72(v) d:ef_ Z [Tyh_ghm,thilaﬁam]vzvm and
1<6,m<2
E30) ST VA 00, T O
1<,m<2

Laws of (para)product, as given in (6.10), and scaling properties of Besov spaces give

1T frallsn < 1900151 1Bl 2 o)

< n osup [0 (0)pollOll gz w2
1<0,m<2 %1
S 77””(’5)\\2%“9”33’1(]1@2)-

Along the same lines we get

HVhA}:lafa Te(t)vm( 9h,nHBO S || vl (E)u™ (¢ 9h,nHBl
< I O Ollsollnnll sz, =2
<

oI 10115, e) -

This gives
3,1 3,3 2
.13 B34 (0) + B )l ey S 1ol oy -
Now let us estimate E$’2(v). By definition, we have
(T}, ,» VAL 000r] ngn with

def — m
Ern(0) E [SE_ Ny (7 — On)s ARVEAL 10,0, AR (vP0™)

where ﬁ}; def @(27%¢,) with @ is a smooth compactly supported (in R?\ {0}) function which
has value 1 near B(0,27™0) + C, where C is an adequate annulus. Then by commutator
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estimates (see for instance Lemma 2.97 in [2])
IAYEr (@)l S IVOngllzeo IARAT (@ ()0™ ()]l 2 -
As [|[VOy,||Le = n||VO| L, by characterization of anisotropic Besov spaces and laws of
product, we get
37
1B s S I,
Together with estimates (5.10)—(5.13), this gives (5.9), hence (5.8).
Applying Lemma 4.6 with s = 0, s = 1/2, a = vy, Q(v,a) = divy(v ® a), f = E,(v)
and 8 = 0 allows to conclude the proof of Proposition 5.1. U

A similar result holds for the solution w? of
(T) O +v- Viw? — Apw? — g202w® =0 and w‘t 0 =Wy,

where [ is any non negative real number. In the following statement, all the constants are
independent of .

Proposition 5.2. Let v and w3 be as in Proposition 4.5. The control of the value of w® at
the point x3 = 0 is given by the following inequality. For any r in [2 oo]

Gay GO s < Tl udls,) (i 0 e+ 5).

Lr(*;B] , (R2))

Moreover, with the notations of Theorem 4, we have for all n in |0,1[ and v in {0,1},

(5.15) 1 = Onp)w?llao < [ (7 = Onn)wi || o exp Ta(llvollso) + 0 T2(l|(vo, wi)lls;,) -

Proof. The proof is very similar to the proof of Proposition 5.1. The main difference lies in the
proof of (5.14) due to the presence of the extra term 3202w3, so let us detail that estimate:

~ 1,2
we shall first prove an estimate for w?(t,z,0) in L”(R+;B227;FT(R2)), and then we shall
~ 142

interpolate that estimate with the known a priori estimate (4.29) of w? in L"(R™; BzvarT (R?))
to find the result.

~ 1,
Let us be more precise, and first obtain a bound for w3(t, zj,,0) in L"(R™; B22
ing

2
T

(R?)). Defin-

@ (t,0n) C wd(t,0,,0), @) S wd(en,0) and Tt x) E ot @,0),
we have

(5.16) Oy 4+ - V' — Ay = 2(05u)(-,0) and @i,y = @, -
Similarly to (5. 5) we write (dropping for simplicity the dependence of the spaces on R?)
(AR@ - V)| AR®) 1 S di() 272 VP52 [ VP 5} 1A% 2

2

where (di(t))gez belongs to the sphere of ¢1(Z). Taking the L? scalar product of Al of
Equation (5. 16) with Alw? implies that

t\.’)\?r

HA @3z + 2% AR 32 S dilt )HVhﬁ(t)llm\IVh@gll 1ARE 2

2

k
+ 6722 | AR5w?) (-, 0) |2 | AR |2

l\.')lr—l

so as in (5.6) we find

k _ 5k _ ok
22 HAzw?’HLOO(]RJr;L?) +c272 ”A}l;wg“Ll(RJr;L?) < 23 || Apw | 2

+C/O de(O)IV ()| 2V 2® (1) 052/0 2% | AR (93w®) (£, -, 0) |2t

3
B,
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After summation we find that

N @l
Le=(R*;BZ)) LY(R*;B3,)

I3 418 o 9 Ta@es + 1) O

lw

1 .
L'(R*;BF))

This is exactly an inequality of the type (4.30), up to a harmless localization in time, so by
the same arguments we obtain the same conclusion as in Lemma 4.6, namely the fact that
for all r € [1, o0,

l@°]l S (@l g+ B(95w®) (-, 0)]

2
pannivh) S 10001 b)) €l Ol

Since we have

1@5w?) (-, 0)] y oo Sl

LY(R*;B3, (R?)) LI(R*;B%3)
we infer from the a priori bounds (4.34) obtained on w? in the previous section that

2,3 3
RO,y b o S Tl0uB)ls,),

so we obtain that for any r in [1, o],

(5.17) lw?C, 0l < (lwg (0l +B%) Ta(ll(vo, wi) 1 ,) -

|l\>

B, ()
Recalling that wg’ belongs to the space S, introduced in Definition 2.2, we find that

wi,00e (] B3 (RY).
56[—24'%1—!4

1,
"(RYBE T (R?)

1
Since 0 < p < 50 e get by interpolation and Sobolev embeddings that
3 ) . )
1 n (1—p
b0l 3 S RGO B I

which implies that (5.17) can be written under the form

lw? (., 0)

\w

< (I >||B; g;@ + 82) Ta(ll (w0, wd)ls, ) -

Er@+BE T (8)
Now interpolating with the a priori bound obtained in Proposition 4.5, we find

3(. < 3
108G O, g b2 gy S 10 e d42)

< T2/l (vo, w)) s,

so we obtain finally
-2
3 3 3 AT—p)
02O, e sy < Tol 0wl ) (I OV ey + ).
This ends the proof of (5.14).

We shall not detail the proof of (5.15) as it is very similar to the proof of (5.4). Proposition 5.2
is therefore proved. O

Propositions 5.1 and 5.2 imply easily the following result, using the special form of @nzo I
and @ IOCL recalled in (5.1) and (5.2), and thanks to (2.7), (2.8) and (2.9).
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Corollary 5.3. The vector fields @2’}21 and @g’f; ;, satisty the following: @2’}21 vanishes
at x3 = 0, in the sense that for all r in [2, o0],

lim lim li o™ (0
L5550 amsb lffolipu mar (- )HZT(RJQBQ%’I(RQ))

)

and there is a constant C(«, L) such that for all n in |0,1],

lim sup (H(l — ) By N0 + H@h,n@&Z‘jLHAo) < C(a, L)n.

n,a,L
n—00

5.3. Conclusion of the proof of Theorem 5. Recall that we look for the solution of (NS)
under the form

0 0,00 0,loc
q)n,a,L = Uq + (I)n L + q)n,a,L + wnvavL ’

e

(bO,IOC

with the notation introduced in Paragraph 5.1. In particular the two vector fields @,

and @2’20 5, satisfy Corollary 5.3, and furthermore thanks to the Lebesgue theorem,
(518) %LIE?([] H(l — an)ua||L2(R+;B1) =0.

Given a small number ¢ > 0, to be chosen later, we choose L, a and n = n(«, L,up) so that
thanks to Corollary 5.3 and (5.18), for all r in [2, o0], and for n large enough,

0,1
1250, (5 )

0,1
(5.19) st @y 10T o) Bl + 10— On)uall e mr)
5.19 B3

0,
1oy ol < &

In the following we denote for simplicity

f f
©h 0o @0loc 1) and @wp L

n,a, L’ “n,a, L

((I)g,oo’ q)g,loc’ ¢€) Ug + q)g,oo + q)g,loc ’

so the vector field v, satisfies the following equation, with zero initial data:

atwe - Awa + div(wa ® Pe + (b?pp & 1/15 + 1Y ® (I)?pp) =—-Vq. + E.,
with FE.=E! +E? and

(5.20) B div <<I>?’°° ® (B + ua) + (B2 + uq) @ L
+ 0% @ (1 — 0, up + (1 — 0))ua ® <I>071°C> ,
E2 % div (801° © f,u0 + Oyuq @ D) |
If we prove that
(5.21) tim | . | = 0.
then Proposition 2.5 implies that 1. belongs to L?(R™*; B!), with
Y [ || 2 51y = 0

and we conclude the proof of Theorem 5 exactly as in the proof of Theorem 4, by resorting
to Proposition 4.8.
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So let us prove (5.21). The term E! is the easiest, thanks to the separation of the spatial
supports. Let us first write B! = Egh + E€173 with

f ..
Esl,h de divy (((I)SJOC + uq) ® (1)2700,h + (1)2,00 ® ((I)g,loc,h + ug)

+ (1 _ en)ua ® (bO,IOC,h + @07100 ® (1 _ Hn)ug) and

f
By 0y ((90°° 4 a2 4 8000 )

+ (1 o Hn)uaq)o,loc,?; + (bo,loc(l . 0,,)u3> )

(6%
Next let us write, for any two functions a and b,
ab = (Oha)b + a((1 — buy)b) .
Denoting

uZ® def (1—6p)uq

and using by now as usual the action of derivatives and the fact that B! is an algebra, we
infer that

1 1 0, 0,1
HEa,hHLl(RﬁBO) + HEE’BHLl(RJr;B;:;%) < Hehmq)g °°HL2(]R+;31)H‘1>5 ¢ +ua||L2(R+;Bl)

+ [[(1 = O ) (D21 + Ua)ll r2+81) ||‘I)2’OOHL2(R+;BI)
+ ||‘I)S’IOCHL2(R+;BI)HU?HH(W;BI) :

Thanks to (5.19) and to the a priori bounds on ®>>°, ®2'°° and u,, we get directly in view
of the examples page 9 that

lim || B}z = 0.

e—0

Next let us turn to E2. We shall follow the method of [16], and in particular the following
lemma will be very useful.

Lemma 5.4. There is a constant C such that for all functions a and b, we have

labllgr < Cllallgr[|b(- 0l gy, m2) + Cllsallp: |05t 51 -

We postpone the proof of that lemma. Let us apply it to estimate E?. We write, as in the

loc def
Eoc 16 Hnuom

case of E! and defining u
1 1
IE2 70 S 1wl o s ) |92 “C 0 2@t By, (r2))
sl 2 g i1 10592 L2t 1y -
Thanks to (5.19) as well as Inequality (2.13) of Theorem 4, we obtain
. 2 .
tim [|E2 70 = 0.
This proves (5.21), hence Theorem 5. O

Proof of Lemma 5.4. This is essentially Lemma 3.3 of [16], we recall the proof for the conve-
nience of the reader. Let us decompose b in the following way:

3
(5.22) b(xy, x3) = b(xy,0) +/ 03b(zn, y3)dys .
0
Laws of product give directly on the one hand

la(bas=0) s < llallst 1bzs=oll by , (r2) -
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On the other hand, observe that

T3
a(',$3)/ 03b(-, y3)dys
0

T3
< Jatre)llp g / 1055 35)l| g1 s
B%yl(RQ) B3 1 (R?) 0 B3 1 (R%)

< C’mfﬂwa('?x3)HB%’1(R2)Ha?’bHLgO(B%J(Rﬁ))'

The result follows. g

6. SOME RESULTS IN ANISOTROPIC BESOV SPACES

6.1. Anisotropic Besov spaces. In this section we first recall some basic facts about (aniso-
tropic) Littlewood-Paley theory and then we prove some basic properties of anisotropic Besov
spaces introduced in Definition 1.4, in particular laws of product which have used all along
this text.

First let us recall the following estimates which are the generalization of the classical Bern-
stein’s inequalities in the context of anisotropic Littlewood-Paley theory (see Lemma 6.10
of [2]) describing the action of horizontal and vertical derivatives on frequency localized dis-
tributions:

Lemma 6.1. Let (p1,ps2,7) be in [1,00]% such that p; is less than or equal to ps. Let m be a
real number and oy, (resp. o) a smooth homogeneous function of degree m on R? (resp. R).
Then we have

k(m+2—2
lon(DWA Nl 2py S 2" 55| AR |y, and

(L — L
lovDs)AY fllpr e S 20| AY fll g g -

Now let us recall the action of the heat flow on frequency localized distributions in an
anisotropic context.
Lemma 6.2. For any p in [1, 0], we have
_ 2k 27
"2 ARAY flle S e TR ARAY f| o

_ 2k
[ ARAY fllre S e T |ARAY fllre  and
2 492§
e ARAY Flle < e 7 |ARAY fll Lo -

The proof of this lemma consists in a straightforward (omitted) modification of the proof of
Lemma 2.3 of [2].

The following result was mentioned in the introduction of this article (see page 9). We refer
to (4.2) and to Definition 2.4 for notations.

Lemma 6.3. The spaces ZQ(RJF;BS*LS'), ZQ(RJF;BS’SI*I) are F5 spaces, as well as the
spaces Ll(]R+;stsl) and Ll(]R+;BS+1’S/_1).
Proof. Let f be a function in L2(R*; B5~1%"), and let us show that
HLOfHAs,s’ SJ Hf”i2(R+;Bs—1,s’)-
Applying Lemma 6.2 gives

t et (92k 1925 v
JARAY Lof | 12 < /0 et B2 | ABAY £ (11)]| 2

so there is a sequence d;(t') in the sphere of ¢*(Z x Z; L*(R™)) such that

)

t
Ck(s—1)e—is ot/ (92k 4 92§
HA};A;LOJCHLQ S Hf”z2([[g+.lgsfl,s’)2 k(s 1)2 % / e (2742 J)dj k(tl) dt’ .
’ 0
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Young’s inequality in time therefore gives

27k(sfl)fjs/d )

h
HAkA}/LOf||L2(R+;L2) 5 ||f||z2(]R+;Bsfl,s’) 7,k

where d; 1 is a generic sequence in the sphere of ?Y(Z x 7Z), which proves the result in the case
when f belongs to L2(R™; BS*LS/). The argument is similar in the other cases. O

Now let us study laws of product.
Proposition 6.4. Let (0,0',5,5') be in | — 1,1]* such that

~  ~y def _
c+o =0+7 25>0.

If §' isin] —1/2,1/2], we have

(6.1) labllgo—1,+ < llallse (10l gor,s -

If &' is greater than 1/2, then we have

(6.2) llabl| g1, S llallso (bl o, + llall oo 161 57 -

Proof. Let us use Bony’s decomposition in the vertical variable introduced in (4.33), namely
ab=T]b+Tya+ R"(a,b).

The first two terms are almost the same (up to the interchanging of a and b). Thus we only
estimate 7b. This is done through the following lemma.

Lemma 6.5. Let us consider (o,0") in ] — 1,1]? such that o 4 ¢’ is positive and (s, s') in R?.
If s is less than or equal to 1/2, we have

(6.3) T30l ot 1,600y S llallsos [[bll gor,s -
If s + s’ is positive, we have
(6.4) [BY(, D)l gotor-1,0100-3 S NlallBos[|bllgor o -

Proof. Let us use Bony’s decomposition of 7T)b with respect to the horizontal variable.

Vb = T TPb+TVTfa+ T R"(a,b) with
TRy NSy Sk YAl
Jik
T"Tla def ZS}LIAEQA}’S,};_lb and
gk
T'RMa,b) 37 87 AL aAjAb.
-
fljgégl

Following the same lines as in the proof of Proposition 4.1 (see the lines following decompos-
tion (4.18)) we have for some large enough integer Ny

v A hrpvh v Ah(gqv h v Ah
A]AkT Tab: Z A_]Ak( j,_lsk/_laAj,Ak/b).
5’ —j1<No
|k'—k|<No
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By definition of the %" norms, this gives

o (st =) thet DY AYARTY T Y 27 Ut o) R ke =)

5" —3|<No
|k’ —k|<No

« 2j/(sf%)+k’(a—1) ”SY/,lSg/,1a|’L0°2j,S,+klal HA}{/A}];/I)”LQ

S bllgors S 270D koo 1)

7' —41<No
|k’ —k|<No

de/,k’le( 2)+H (=) ||S/ 1Sk/ 10| L=

where, as in all that follows, (djk)(;s)ez2 lies on the sphere of ¢Y(Z*). Using anisotropic
Bernstein inequalities given by Lemma 6.1 and the definition of the B%® norm, we get

A CDWODS b alle Y 20D

j//gj/_z
E'<k'—2

x 27" (=) O DAY, Al a|

< Z o' =" (s—3 )+ (k' —k")(o—1)
J1<i'~2
k" <k —2
X 2j//8+k//a||AY//A2//CL||L2
< lallges Z o' =3") (=3 )+ (k' — k”)(o*l)dj,,k//_
e

As s <1/2 and 0 < 1, we get
S 1 I
2 (=) =)y Sl alpe < lafse
Young’s inequality on series leads to
h
(6.5) ITYT0M 01,0003 S llallsos 1] gor,or
Following exactly the same lines, we can prove
Fh
(6.6) 1TV Ty al| oo 1,513 S llallsos 1Bl gor
The estimate of TVR"(a,b) is a little bit different. Let us write that

AYARTYRMa,b) = > AJAR(S AR ,aA}ARD) .

l k/
—1§€§1

Arguing as in the proof of Proposition 4.1 we have for some large enough integer Ny
ASARTYR (a,b) = > Y AYAR(Sy_ AR _,aAARD).

|j’*j\§Ng —1<¢<1
k'>k—No

Anisotropic Bernstein inequalities given by Lemma 6.1 imply that

| AYAR(ST_ Af_aALAND) ||, S 28|85 AR _paAL ALD

k h h
S 2 HS]V"flA uzaHLi(Lgo)HA}’/A b

|L11\(L%)

12



STABILITY BY RESCALED WEAK CONVERGENCE FOR THE NAVIER-STOKES EQUATIONS
Thus we infer that
2k(a+0 —1)+j(8+8 __)HAVAhTVRh CL b ||L2 < Z Z —(kK'—k)(c+0")

|7 —j|<No—1<4<1
k'>k—No

a1 K’ h ko' +i's! h
x 2 ()T 5% AL al| o (100 25 | AT ARD| 12
Using again anisotropic Bernstein inequalities and by definition of the B%*® norm, we get

2 (D5 AL e S 2“"”(8‘%)2]'"5*’“"HA}/AEuzaHLz
j//<j/72

_ _1
5 ||(IHBos Z 2j ] )dj”,k"

"<jl 2
As s is less than or equal to 1/2, we get
j/(sfl)Jrk’o v h
2T A gall 2 (reey < llallsos -
By definition of the B”+*" norm, this gives

k(7o =D+ (5= 3) | AYARTY R (a,b) | 2 < [l o [B] gor o

" Z Z 2—(k’—k?)(0'+Ul)_(jl_j)(5+5,_%)dj/,k;’-

5" —j|<No—1<€<1
k'>k—No

As o + o' is positive, we get that
PHoro DR (=) | AT ART R 0, ) 2 Syl [ o

Together with (6.5) and (6.6) this concludes the proof of Inequality (6.3).

49

In order to prove Inequality (6.4), let us use again the horizontal Bony decomposition. Defin-

ing

1
AT (resp. Al = Z AT, (resp. Al )
{=—1

let us write that

R = R'TM+ R'TPa+ R'R%a,b) with
RT3 AYSE jaAYAlD  and
7.k
> CAYAR jaAYARD.
i,k

R'R%a,b)

We have for Ny a large enough integer,

AYARRTIb = > AYAR(AYSE jaALARD).
J'>j—No
|k’ —k|<No
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Using anisotropic Bernstein inequalities, this gives by definition of the B%* norm,
(3 TR DI AT AR RIS 2 S P DAY AL R 1
< Z 9~ (' =5)(s+s") = (k' —k)(o+0'—1)

J'>3—No
k' —k|<No

x 2R ODIAY SBa o2y 2 S TH | AY AR 12

< |bllgore Z 9—(4"=5)(s+s")
SIS
X dj/,k’zjl8+k,(0_1)HA;’SIELIGHLEO(L?,) :
Using anisotropic Bernstein inequalities and the definition of the B?® norm, we get

i’s+k'(c—1) || Av ¢h k'—k")(o—1
SV AY S _qall ez S > W =k")(e=1)
7' =1<5"<5'+1
KSR 2

x 27" sHE (@=1) || A

v Ah
]”Ak”aHL;ﬁ(L%)

1 _ -/ "
< > 2RIl s e A, AR a2
J'=1<5"<j"'+1
k'"<k'—2
!
S llallges Y 20RO,

J'=1<5"<5'4+1
K7<k'—2

As o is less than or equal to 1, we get
.1 E (o— ~
o (=) DAY Sha)l e < llallses -

Young’s inequality on series leads to

h
(6.7) [BYTG0] gosor 1,003 S llallsos [[bllgor,sr -
By symmetry, we get

h
(6.8) BT all oy o0y S llallsos[[bllgor,s -
The estimate of RYR"(a,b) is a little bit different. Arguing as in the proof of Proposition 4.1,
we obtain

AYARR'RMa,b) = > AVAR(ALAR Al ARD).

J'>j—No
k'>k—No

Anisotropic Bernstein inequalities given by Lemma 6.1 imply that
h(Av Ah h I4k||Av Ah h
HAJV»Ak(A}’/Ak/aA]V»,A /b)HLQ < 22 HA]V»,Ak/aA]V»,A ,bHL1

< 28| AY Al 2 | AL ALD

|12
Thus we infer that
2k(0+a’—1)+j(s+s’—%) ||A}/A2RVRh(a, )2 < Z 9~ (K =k)(o+0")—=(3'—5)(s+s")

J'>j3—No
k'>k—No

X 2j's+k’o ”&}'[/Ah/_za”[Q 2]{),0'/4»_]',8, HA;’A};’I)HLQ .
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By definition of the B norm, this gives
k ’_ : r_1
oh(e o =D+ (5 =3) | AYARRY R (a,0) |2 < llalles ]l 5o,

« Z 2_(lg/—k)(a-i—o'/)—(]'/_]')(S""Sl)dj/’k/ .

J'>j—No
k'>k—Ng

As 0 + o' and s + s’ are positive, we get that
/I . /1
k(40 =D (' =3) | AYARRYR™ (@, b) | 12 S djielall s [D] or,or -
Together with (6.7) and (6.8) this concludes the proof of Inequality (6.3). O
In order to conclude the proof of Proposition 6.4, it is enough to apply Lemma 6.5 with (o, ")
to Tyb and with (¢/,5) to Ty a. O

Now let us prove laws of product in the case when one of the functions does not depend on
the vertical variable x3. We have the following proposition.

Proposition 6.6. Let a be in B‘Q’J(RQ) and b in B>¥ with (s,0) in ] —1,1]% such that s + o
is positive and s’ greater than or equal to 1/2. We have

(6.9) labl| goso-1.60 S llall g, m2) 10l s.or -
Proof. Using Bony’s decomposition in the horizontal variable gives
ab =T + Ta + R%(a,b).
As a does not depend on the vertical variable, we have
AYTY = TPAYh, AYT)a = Tg;ba and AYR"(a,b) = R"(a, A}D).
Then, the result follows from the classical proofs of mappings of paraproduct and remainder

operators (see for instance Theorem 2.47 and Theorem 2.52 of [2]). We give a short sketch
of the proof for the reader’s convenience in the case of T". Let us write

HEHTDH AYARTID| 2 S D 2PV |ISh a1 28 | AT AR 12
|k —k|<No
k'(oc— h
S llges > 2XVNISE allrpedi
|k’ —k|<No
Bernstein inequalities imply that
—k(1— h k' —k)(1— K h
2 MS jale 0 ) 2PN AL
K <k—1
(K'—k)(1—0)
S llallpg, @2y D 2 dy .
k' <k—1

This gives, with no restriction on the parameter s and with o less than or equal to 1 and s’
greater than or equal to 1/2,

h
(6.10) I bl gesosr 5 llall g, ey D5 -
For the other (horizontal) paraproduct term, let us write
AT AYAR TR all e S Y 2N T Sp L AYD] e (12)2 7| Alall 2
|k'—k|<No

(6.11) S llallgg, w2 Do 2NETUTI SR ATl e 2y
|k —k|<No
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Using Lemma 6.1, we get
—k(1— is’ || oh v k' —k)(1— —k'(1— js’ h AV
gH(1=e)tis 158 1A7bll e (22) S Z (¥ =R 1=s)g =K (1=9)475")| A 1 ATb|| e 12)
k' <k—1
k'—k)(1— k's+js’ h AV
S Y 2R gk IS A AYD| 2
K <k—1
By definition of the B%% norm and using the fact that s <1, we infer that
js'—k(1— h v
295 K= Sp_ AYD| oo (12) < dj[bll gons -
Together with (6.11), this gives
h
(6.12) 1Ty all s o1 S llall g, @2) 10l go.s -
Now let us study the (horizontal) remainder term. Using Lemma 6.1, let us write that
et DS AYAR R (a,0) || 12 S 2FCHOH | ATARR (0, 0) | 2 1)
S YD W AL g] o AT AL
k'>k—No
By definition of the B§71(R2) and B** norms, we get
k o— js’ v Ah ph —(k'—k o
gk(sto—1)+is HAjAkR (a,b)[lz2 < HaHBg’I(R%HbHBsys’dj Z 2 Nt )dk’-
k' >k—No

Together with (6.10) and (6.12), this gives the result thanks to the fact that s+ o is positive.
Proposition 6.6 is proved. O

6.2. Proof of Proposition 2.5. The proof of Proposition 2.5 is reminiscent of that of
Lemma 4.6, and we shall be using arguments of that proof here.

Let us recall that we want to prove that if U is in L?(R";B!), if ug is in B and f in F9,
such that

1 o
(6.13) ol + 170 < - exp(~Co [~ 10 @)Eude)
Co 0
then the problem
(NSy) ou+diviu@u+ue@U+U®u) —Au=—-Vp+ f
v divu=0 and wup—g=uo

has a unique global solution in L?(R*; B') which satisfies

[ull 2@ +.51) < luollgo + 11170 -
Let us first prove that the system (NSy) has a unique solution in L2([0,T]; B') for some
small enough 7. Let us introduce some bilinear operators which distinguish the horizontal
derivatives from the vertical one, namely for ¢ belonging to {1, 2,3},
(6.14) On (u, )" def divy,(w'ul) and  Q,(u, w)" def A3 (w'ud).
Then we define By, , def L;Qy and B, ; def L,;Q, where L. is defined in Definition 2.4. It is
obvious that solving (N.Syy) is equivalent to solving
w=e"®ug+ Lo f + Buo(u, 1) + Byo(u, u) + Buo(U, u) + By,o(U, u) + Bo(u,U) + By o(u,U).

Following an idea introduced by G. Gui, J. Huang and P. Zhang in [26], let us define

Lo d:ef emuo + Lof
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and look for the solution u under the form u = Ly + p. As the horizontal and the vertical
derivative are not treated exactly in the same way, let us decompose p into p = py, + p, with

def
pn = Buolp, p) + Buo(Lo+ U, p) + Buo(p, Lo+ U) + F,
(6.15) pe € Buo(p, p) + Byo(Lo+ U, p) + Boo(p, Lo+ U) + Fy  with
(

B By,o(Lo, Lo) + Bno(Lo,U) + Bpo(U,Ly) and

f
F. ' Byo(Lo, Lo) + Byo(Lo,U) + Byo(U, Lo) .
The main lemma is the following.
Lemma 6.7. For any subinterval I = [a,b] of RT, we have

[1Bh,a(u, w)l| Lo (1;0) + | Bh,a (u, w)]]
+ [ Bva(u,w

LU(I;B20BY3)

N - R [

M
S HU”L2 (I;B1) [wl[ L2 (I;BY) -
Proof. As B! is an algebra and using Lemma 6.1, we get

Q;u(u,w)(t) L 23| AYARO (u, w)(8)[| 2 + 253 | AYARQ, (4, w)(8)]| 2

S dip(@)[u®)]s[[w(®)lls

where as usual we have denoted by d; x(t) a sequence in the unit sphere of ¢1(Z?) for each t.
Lemma 6.2 implies that, for any ¢ in [a, b], we have with the notation of Definition 2.4
def z _i
Lojr(u,w)(t) = 25| LaAYALQn (u,w)(t)] 2 + 2572 | LaATALQy (u, w) (1) 2

t ) )
S [ d@)e Ol g ot st
a

Convolution inequalities imply that

Lk (s w) || oo (1.12) + 22| L g (w0, 0)| 2 ,12) S /Idj,k(t)HU(t)HBlHW(t)Hsldt-

This concludes the proof of the lemma. O

Continuation of the proof of Proposition 2.5. As we have by interpolation,
1 1

(6.16) lallgr < llallgollallze  and lallz < IICLH2 -y lla IIBl .

we infer that the bilinear maps By, and By, map L?(I;B') x L?(I;B!) into L*(I;B). A

classical fixed point theorem implies the local wellposedness in the space L?(I;B!) for initial

data in the space B® + BLYa.

Now let us extend this (unique) solution to the whole interval R*. Given ¢ > 0, to be chosen
small enough later on, let us define T} as

def
(6.17) T. = sup{T < T*, |Ipll 2oz < e} -

As in the proof of Lemma 4.6, let us consider the increasing sequence (T},)o<m<m such
that Ty = 0, Thy = oo and for some given ¢y which will be chosen later on

Tm+1 [e.e]
(6.18) Wm < M -1, / U @) 2udt = co and / U @) Bt < co.-
Tm

Thi—1
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Let us recall that from (4.31), we have

1 o0
(6.19) M < _/ 1T (1)t
¢ Jo

Let us define
def
(6.20) No = \IEOIILQ(R+ g1y T 1ol 2@+ U | L2 e+ 1) -

Let us consider any m such that T,, < T.. Lemma 6.7 implies that for any time 7T less
than min{7},4+1;7:}, we have

def
RE(T) = lpnllpoo gz 180 + lowll 1 (7 10:82)

< Cllpn(Tm)llgo + CNo
+ C(llonll L2 (1,181 + 1£0 + Ull L2z, 13381) Il 227, 781
< Clion(Tw)llso + CNo

+ C(e+ Lol L2(ry, 181 + o) lpnll L2y 181 -

Choosing Cj large enough in (6.13), ¢y small enough in (6.18), and ¢ small enough in (6.17)
implies that

1
(6.21) R (T) < Cllpn(Tin) |l o + CNo + §thHL2([Tm,T};Bl) :

Exactly along the same lines, we get

de:

v f
R ol Twl_gﬁupvu

LV([T, T);B%3)
< Cllpe(Ton)ll g1, -3 +CNo + §HPVHL2([Tm,T};Bl) -
We deduce that
lonllzz(m, 81 < C(lon(Tm)llgo +No)  and  lpy |l L2z, 1180y < C(HpV(Tm)HBl,f% +MNo) .
This gives, for any m such that T, < T; and for all T" in [T},; min{T}, 41, 7% }],
(6.22) R (T) + Ry (T) < Crllpw(Ton)ll 1.y + lon(Tin) 50 +No) -

Let us observe that p;—g = 0. Thus exactly as in the proof of Lemma 4.6, an iteration process
gives, for any m such that T,,, < T and any T in [Tp,, min{Ty, 41, T: }],

R(T) def

o= oryen) + Ionlozyes + 1ol o ety + 10802 i,
< (C)™NG.

By definition of Ny given in (6.20), we have in view of Definition 2.4

No < (luollgo + I f1l7o) (1U | 2wty + lluollgo + 1 fllzo) -

As claimed in (6.19) the total number of intervals is less than HU”i?(R*Bl)' We infer that,
for any T' < T,

R(T) < Co(Jluollgo + I fll70) 1Vl 2 g+,51) + luollzo + 1 £l 70) exp(Call U2 g 1) -

Using the interpolation inequality (6.16) we infer that, for any T < T,

T
/O lp(®) g2 dt < Co(lluollgo + [1.fll0) (N0l L2+ vy + luollso + 1 £l 70) exp(C2llU 172 g+ 1)) -
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Choosing

62

Co(lluollso + [1fll70) (1012 1y + lluollso + 1fll70) exp(CollUl 7o gt 1) < 5
T
ensures that / ||p(t)|| %1 dt remains less than €2, and thus there is no blow up for the solution

0
of (NSy). This concludes the proof of Proposition 2.5. O

6.3. Proof of Proposition 4.8. As a warm up, let us observe if u belongs to L2(R™; B!),
then u ® u belongs to L'(R™; B!). Lemma 6.1 implies that the operators Qp, and Q, defined
in (6.14) satisfy

‘|Qh(u?u)||L1(R+;BO) + HQV(U’U)HL%R-&BL*%) 5 ||uHiQ(R+;Bl) .

Using the Duhamel formula and the action of the heat flow described in Lemma 6.2, we
deduce that

ol + 1l g g S ol + 1l gy

which proves (4.48). Let us prove the second inequality of the proposition which is a prop-
agation type inequality. Once an appropriate (para)linearization of the terms Q) and Q is
done, the proof is quite similar to the proof of Proposition 2.5. Follwing the method of [13],
let us observe that

div(u @ u)t = divy(ufuy) + 93(u‘u®)
= (divy uM)uf + ul - Vyut + 03 (TJS'U/Z + TVu® + R (u?, uz)) .
Now let us define the bilinear operator 7 by
(Taw)* def (divy, wh)u® + o - Vywt + A5 ( Mt + TYw® + RY (u?, wz)) .

Let us observe that 7,u = div(u ® u). The laws of product of Proposition 6.4 imply that, for
any s in [~1+ g1 — i,

(6.23) [(divy, w™)u® +u™ - Vyw’(|gs < Jlwl|gs+1[|ulls: -
Lemmas 6.1 and 6.5 imply that, for any s in [—1 + p, 1 — p,
(6.24) (8 (T w” + T¥w® + RY (u?, wh)]

s S lwl gz llullsr -
Let us notice that for any non negative a, u is solution of the linear equation
(6.25) w = ey (a) + Ly Tyw.

The smoothing effect of the heat flow, as described in Lemma 6.2, implies that for any non
negative a, and any t greater than or equal to a,

22 TR AYAR L, Tuw(t)|
t . ,
< / dji(#)e= 2O @) g (o @)l + @) 5, 5)
a

This gives, for any b in ]a, 0o],

HLa'anLOO(I;BS) + || Lo Tuw||

(6.26)

ity S Nl [0 o

with I = [a, b]. Now let us consider the increasing sequence (T}, )o<m<nm which satisfies (6.18).
If ¢p is choosen small enough, we have that the linear map L7, T, maps the space

L2([Ty, Toia]; BY 0 BT N B53)
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into itself with a norm less than 1. Thus w is the unique solution of (6.25) and it satisfies,
for any m

[ull Lo (2, T 13:%) + [l ) < Cillu(Tm) |5 -

3
L2([Trm, T2 ;B5H1NB5 2

Arguing as in the proofs of Lemma 4.6 and Proposition 2.5, we conclude that u belongs to A4°
and that

Jullae S ol exp(Clulagge o)
Inequality (4.49) is proved.

In order to prove Inequality (4.50), let us observe that using Bony’s decomposition in the
vertical variable, we get

3
div(u @ u)t = Z O (ufu™)
m=1
3
= Z Om (T;’Zum + TYmu’ + RY(u, um)) .
m=1

Now let us define
3
(Tuw) 37 0 (Thw™ + T’ + B (uf,w™))
m=1

Proposition 6.4 implies that, if m equals 1 or 2 then for any s’ greater than or equal to 1/2

Ham(TJewm +Tmeg +Rv(ugawm))HLl(R+;BO,s/) Hu||L2(R+;Bl)||w||L2(R+;BleI) and

<
Ha3(TJ€w3 +T1113’LUZ+RV(’U,£,’LU3)HL1(R+;BO’S/) g Hu|’L2(R+;Bl)”w”LQ(RJF;BO,S’JrI) .

Thus we get, for any a in RT, any b in I = [a,00] and any 7 in [1, o0,

— . 2
HL@TUwHLT(I;Bw’+S’) S HUHL2(I;81)(”w”m(];zgl,s’) + ”w|’L2(];BO,s’+1)) with o+0 = .

Then the lines after Inequality (6.26) can be repeated word for word. The proposition is
proved. O

REFERENCES

[1] P. Auscher, S. Dubois, and P. Tchamitchian, On the stability of global solutions to Navier-Stokes equations
in the space, Journal de Mathématiques Pures et Appliquées, 83, 2004, pages 673-697.

[2] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,
Grundlehren der mathematischen Wissenschaften, Springer, 343, 2011.

[3] H. Bahouri, A. Cohen and G. Koch, A general wavelet-based profile decomposition in the critical embed-
ding of function spaces, Confluentes Mathematici, 3, 2011, pages 1-25.

[4] H. Bahouri and I. Gallagher, On the stability in weak topology of the set of global solutions to the
Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 209, 2013, pages 569-629.

[5] H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations,
American Journal of Math, 121, 1999, pages 131-175.

[6] H. Bahouri, M. Majdoub and N. Masmoudi, On the lack of compactness in the 2D critical Sobolev
embedding, Journal of Functional Analysis, 260, 2011, pages 208-252.

[7] H. Bahouri, M. Majdoub and N. Masmoudi, Lack of compactness in the 2D critical Sobolev embedding,
the general case, to appear in Journal de Mathématiques Pures et Appliquées.

[8] H. Bahouri and G. Perelman, A Fourier approach to the profile decomposition in Orlicz spaces, submitted.

[9] G. Bourdaud, La propriété de Fatou dans les espaces de Besov homogenes, Note auzr Comptes Rendus
Mathematique de I’Académie des Sciences, 349,2011, pages 837-840.

[10] J. Bourgain and N. Pavlovi¢, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, Journal

of Functional Analysis, 255, 2008, pages 2233-2247.



(11]
(12]
(13]
(14]

(15]

[16]
17)
18]
[19]
[20]
21]
[22]
[23)
[24]
[25)
[26]

27]

STABILITY BY RESCALED WEAK CONVERGENCE FOR THE NAVIER-STOKES EQUATIONS 57

H. Brézis and J.-M. Coron, Convergence of solutions of H-Systems or how to blow bubbles, Archive for
Rational Mechanics and Analysis, 89, 1985, pages 21-86.

J.-Y. Chemin, Remarques sur ’existence globale pour le systéme de Navier-Stokes incompressible, STAM
Journal on Mathematical Analysis, 23, 1992, pages 20-28.

J.-Y. Chemin, Théorémes d’unicité pour le systéme de Navier-Stokes tridimensionnel. Journal d’Analyse
Mathématique, 77, 1999, pages 27-50.

J.-Y. Chemin and I. Gallagher, Large, global solutions to the Navier-Stokes equations, slowly varying in
one direction, Transactions of the American Mathematical Society 362, 2010, pages 2859-2873.

J.-Y. Chemin, I. Gallagher and C. Mullaert, The role of spectral anisotropy in the resolution of the three-
dimensional Navier-Stokes equations, ”Studies in Phase Space Analysis with Applications to PDEs”,
Progress in Nonlinear Differential Equations and Their Applications 84, Birkhauser, pages 53-79, 2013.
J.-Y. Chemin, I. Gallagher and P. Zhang, Sums of large global solutions to the incompressible Navier-
Stokes equations, to appear in Journal fiir die reine und angewandte Mathematik.

J.-Y. Chemin and N. Lerner. Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes,
Journal of Differential Equations, 121, 1995, pages 314-328.

J.-Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-
Stokes equations, Communications in Mathematical Physics, 272, 2007, pages 529-566.

K.-H. Fieseler and K. Tintarev, Concentration compactness. Functional-analytic grounds and applications
Imperial College Press, London, 2007, pages xii+264 pp.

I. Gallagher, Profile decomposition for solutions of the Navier-Stokes equations, Bulletin de la Société
Mathématique de France, 129, 2001, pages 285-316.

I. Gallagher, D. Iftimie and F. Planchon, Asymptotics and stability for global solutions to the Navier—
Stokes equations, Annales de l’Institut Fourier, 53, 2003, pages 1387-1424.

I. Gallagher, G. Koch and F. Planchon, A profile decomposition approach to the L$°(L3) Navier-Stokes
regularity criterion, Mathematische Annalen, 355, 2013, pages 1527-1559.

P. Gérard, Microlocal defect measures, Communications in Partial Differential Equations, 16, 1991, pages
1761-1794.

P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control, Optimisation
and Calculus of Variations, 3, 1998, pages 213-233.

P. Germain, The second iterate for the Navier-Stokes equation, Journal of Functional Analysis, 255,
2008, pages 2248-2264.

G. Gui, J. Huang, P. Zhang, Large global solutions to 3D inhomogeneous Navier-Stokes equations slowly
varying in one variable, Journal of Functional Analysis, 261, 2011, pages 3181-3210.

G. Gui and P. Zhang, Stability to the global large solutions of 3-D Navier-Stokes equations, Advances in
Mathematics 225, 2010, pages 1248-1284.

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrédinger equations revisited, Inter-
national Mathematics Research Notices, 46, 2005, pages 2815-2828.

D. Iftimie, Resolution of the Navier-Stokes equations in anisotropic spaces, Revista Matematica Ibero-
americana, 15, 1999, pages 1-36.

S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, Journal of Functional
Analysis, 161, 1999, pages 384-396.

H. Jia and V. Sverdk, Minimal L>-initial data for potential Navier-Stokes singularities, STAM J. Math.
Anal. 45, 2013, pages 1448-1459.

C.E. Kenig and G. Koch, An alternative approach to the Navier-Stokes equations in critical spaces,
Annales de UInstitut Henri Poincaré (C) Non Linear Analysis, 28, 2011, Pages 159-187.

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing
non-linear wave equation, Acta Mathematica, 201, 2008, pages 147-212.

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrodinger equation, Journal
of Differential equations, 175, 2001, pages 353-392.

G. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana University
Mathematical Journal, 59, 2010, pages 1801-1830.

H. Koch and D. Tataru, Well-posedness for the Navier—-Stokes equations, Advances in Mathematics, 157,
2001, pages 22-35.

P.-G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, Chapman and Hall/CRC
Research Notes in Mathematics, 43, 2002.

J. Leray, Essai sur le mouvement d’un liquide visqueux emplissant ’espace, Acta Matematica, 63, 1933,
pages 193-248.

J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problemes que pose
I’hydrodynamique. Journal de Mathématiques Pures et Appliquées, 12, 1933, pages 1-82.



58

H. BAHOURI, J.-Y. CHEMIN, AND I. GALLAGHER

[40] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I,

Revista. Matematica Iberoamericana 1 (1), 1985, pages 145-201.

[41] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case II,

Revista Matematica Iberoamericana 1 (2), 1985, pages 45-121.

[42] Y. Meyer, Wavelets, paraproducts and Navier-Stokes equations, Current developments in mathematics,

International Press, Boston, MA, 1997.

43] F. Merle and L. Vega, Compactness at blow-up time for L? solutions of the critical nonlinear Schrédinger
g g

equation in 2D, International Mathematical Research Notices, 1998, pages 399-425.

[44] M. Paicu, Equation anisotrope de Navier-Stokes dans des espaces critiques, Revista Matematica

Iberoamericana 21 (1), 2005, pages 179-235.

[45] F. Planchon, Asymptotic behavior of global solutions to the Navier-Stokes equations in R3, Revista

Matematica Iberoamericana, 14, 1998, pages 71-93.

[46] E. Poulon, Behaviour of Navier-Stokes solutions with data in H® with 1/2 < s < %7 in progress.
[47] T. Runst and W. Sickel: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial

differential equations, Nonlinear Analysis and Applications, 3. Walter de Gruyter & Co., Berlin, 1996.

[48] W. Rusin and V. Sverdk, Minimal initial data for potential Navier-Stokes singularities Journal of Func-

tional Analysis 260 (3), 2011, pages 879-891.

[49] M. Struwe, A global compactness result for boundary value problems involving limiting nonlineari-

ties, Mathematische Zeitschrift, 187, 1984, pages 511-517.

[50] L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects

in partial differential equations, Proceedings of the Royal Society of Edinburgh, 115, 1990, pages 193-230.

[61] H. Triebel: Interpolation theory, function spaces, differential operators, Second edition. Johann Ambrosius

Barth, Heidelberg, 1995.

[62] H. Triebel: Theory of function spaces, Birkhauser, Basel, 1983.

(H. Bahouri) LABORATOIRE D’ANALYSE ET DE MATHEMATIQUES APPLIQUEES UMR 8050, UNIVERSITE

PARIS-EST CRETEIL, 61, AVENUE DU GENERAL DE GAULLE, 94010 CRETEIL CEDEX, FRANCE

E-mail address: hbahouri@math.cnrs.fr

(J.-Y. Chemin) LABORATOIRE JACQUES Louis LioNs - UMR 7598, UNIVERSITE PIERRE ET MARIE CURIE,

BOITE COURRIER 187, 4 PLACE JUSSIEU, 75252 PARIS CEDEX 05, FRANCE

E-mail address: chemin@ann. jussieu.fr

(I. Gallagher) INSTITUT DE MATHEMATIQUES DE JUSSIEU - PARIS RIVE GAUCHE UMR 7586, UNIVERSITE

PARIS-DIDEROT (PARIS 7), BATIMENT SOPHIE GERMAIN, CASE 7012, 75205 Paris CEDEX 13, FRANCE

E-mail address: gallagher@math.univ-paris-diderot.fr



