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1 Introduction

Ferromagnetic materials play a more and more important role for the storage of digital information.
In particular, one of the most promising innovating technology to ensure a cheap storage with rapid
access time to the information is the use of ferromagnetic nanowires in so called racetrack memories
(see [47]). In such devices, the bits are encoded as magnetic domains separated by domains walls
along the wire. One can obtain truly three dimensional devices by using U-shaped nanowires normal
to the plane of a silicon wafer (see [47] fig 1.A and 1.E). This is a promising way to increase the storage
capacity in cheap and fast devices. In racetrack memories, reading the information is obtained by
shifting the magnetic configuration with an electric current: the domain walls are moved along the
wire to reading or writing elements. The displacement of domains walls is also possible using non
uniform local magnetic field, even if this technic is no more used because of its cost and complexity.
From the mathematical point of view, the description of domain walls dynamics in ferromagnetic
nanowires is a recent topic. In this paper, we review several contributions concerning straight
nanowires of ferromagnetic material submitted to a magnetic field or an electric current. To start
with, we derive in the second part a one-dimensional model of ferromagnetic nanowires from the
three dimensional model by asymptotic analysis when the diameter of the wire tends to zero. In
the third part, we describe the domain walls by exact solutions for the obtained one dimensional
model. We prove stability results for one wall configurations in an infinite nanowire. For finite wires
or for periodic configurations in infinite wires, one can prove that the exact solutions are unstable.
In addition, we remark that exact solutions cannot describe realistic configurations with several
walls located at arbitrary positions. These configurations can be described by quasi-solutions which
metastability is studied in Part 4. We conclude the paper with a list of open problems.

2 Model of Ferromagnetic Nanowires

2.1 Three-Dimensional Model

Ferromagnetic materials (like magnets) are characterized by a spontaneous magnetization described
by a vector field m, called magnetic moment and defined on the ferromagnetic domain Ω (see [10],
[32] and [43] for more details). The magnetic moment links the magnetic induction B and the
magnetic field H by the constitutive relation:

B = H +m, (2.1)

where B and H are defined on the whole space R3 and where m denotes the extension of m by
zero outside Ω. At low temperature, the material is said to be saturated, that is the norm of m is
constant. After renormalization, the saturation constraint writes:

|m(t, x)| = 1 for all (t, x) ∈ R+ × Ω. (2.2)

The micromagnetism energy associated to a configuration m is given by:

Emic(m) = Eexch + Edem + EZee, (2.3)

where
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• the exchange energy is derived from the Eisenberg model of interaction between two spins:

Eexch = A

∫
Ω

|∇m|2 dX,

where the exchange coefficient A depends on the material.

• The demagnetizing energy measures the energy of the magnetic field Hd(m) induced by the
magnetization m. This field is given writing the static Maxwell equations and the law of
Faraday div B = 0, that is Hd(m) is obtained from m by the relations:

curl Hd(m) = 0 and div (Hd(m) +m) = 0 in R3. (2.4)

The demagnetizing energy is given by:

Edem =

∫
R3

|Hd(m)|2 dX = −
∫

Ω

m ·Hd(m) dX. (2.5)

• The Zeeman energy reflects the effects of an applied magnetic field Ha on the magnetization
distribution:

EZee = −2

∫
Ω

Ha ·m dX. (2.6)

The static configurations of the magnetization are the local minimizers of the energy (2.3) under the
saturation constraint (2.1), i.e. they are obtained by minimizing E(m) for m ∈ H1(Ω;S2) with:

H1(Ω;S2) =
{
m ∈ H1(Ω;R3), |m| = 1 a.e.

}
.

The partial regularity of these minimizers in studied in [7], [11] and [33].

The dynamics for the magnetization is described by the Landau-Lifschitz equation:

∂m

∂t
= −m×He −m× (m×He), (2.7)

where the effective field He is derived from the micromagnetic energy:

He = −1

2
∂mEmic = A∆m+Hd(m) +Ha. (2.8)

The Landau-Lifschitz system (2.7)-(2.8) is a parabolic type problem and the natural condition on
∂Ω is the Neumann homogeneous boundary condition:

∂m

∂ν
= 0 on ∂Ω, where ν is the unit exterior normal vector to the boundary. (2.9)

We remark that, at least formally, the Landau-Lifschitz equation preserves the saturation constraint
(2.2) since the left hand side term of the equation is orthogonal to m. It tends to align m with He

and to decrease the micromagnetism energy.

Existence and uniqueness of local in time strong solutions for (2.7) via a Galerkin approximation
and variational estimates are established in [16] and [17].

From the numerical point of view, the main difficulties are the conservation of the saturation con-
straint, the quasilinear character of the equations, and the computation of the non local demagne-
tizing field. The interested reader can consult [4, 8, 37, 38, 39, 40, 41, 44].

Concerning weak solutions, we deal with the following form of the Laudau-Lifschitz equation, called
the Landau-Lifschitz-Gilbert equation. If m is sufficiently smooth, then equation (2.7) is equivalent
to the system:

∂m

∂t
−m× ∂m

∂t
= −2m×He. (2.10)
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This form is more convenient to obtain a weak formulation for the Landau-Lifschitz system, using
that

m×∆m =

3∑
i=1

∂

∂xi

(
m× ∂m

∂xi

)
.

In addition, taking the scalar product of (2.10) with
∂m

∂t
− 2He, one can formally obtain the energy

decreasing formula:
dEmic
dt

+

∫
Ω

|∂m
∂t
|2 = 2

∫
Ω

m∂tHa.

Existence of global in time weak solutions for (2.7) is tackled in several papers : [3], [15], [30], [38]
and [55]. More precisely, we have the following result:

Proposition 2.1. Let m0 ∈ H1(Ω;S2). There exists m : R+ × Ω→ R3 satisfying:

• m ∈ L∞(R+;H1(Ω)) and
∂m

∂t
∈ L2(R+;L2(Ω)),

• |m(t, x)| = 1 a.e. (saturation constraint),

• for all Ψ ∈ C∞c (R+;H1(Ω)),∫
R+×Ω

(
∂m

∂t
−m× ∂m

∂t

)
·Ψ = 2A

∫
R+×Ω

3∑
i=1

(
m× ∂m

∂xi

)
· ∂Ψ

∂xi
− 2

∫
R+×Ω

(H(m) +Ha) ·Ψ,

(2.11)

• m(0, ·) = m0 in the trace sense,

• for all t > 0, we have the following energy inequality:

Emic(m(t)) +

∫ t

0

∣∣∣∣∂m∂t
∣∣∣∣2 ≤ Emic(m(0)) + 2

∫ t

0

∫
Ω

|∂tHa|.

Remark 2.1. The saturation constraint and the energy inequality are obtained by construction.
They can not be proved directly from the equation for weak solutions. For instance, if one does not
know a priori that m is in L∞(R+ × Ω), it is not possible to take m as a test function in the weak
formulation (2.11) to derive the saturation constraint.

Remark 2.2. For an effective field reduced to A∆m, the non uniqueness of weak solutions is proved
in [3] for particular initial data. This non uniqueness remains an open problem for the complete
model.

If the following section, we derive from this three-dimensional model an asymptotic one-dimensional
model for wires by taking the limit of the system when the diameter of the wire tends to zero.

2.2 Asymptotic Model for Nanowires

We denote by (e1, e2, e3) the canonical basis of R3, and we denote by (x, y, z) the coordinates in
R3. We consider a cylindrical magnetic domain Ωη = [0, L]×B2(0, η), where B2(0, η) is the ball of
radius η and center 0 in R2. In addition, we assume that the applied field Ha : Rt × Ωη → R3 does
not depend on the transverse variable and is polarized along e1:

Ha(t, x, y, z) = ha(t, x)e1.

Let m0 ∈ H1([0, L];S2). For (x, y, z) ∈ Ωη, we denote mη
0(x, y, z) = m0(x). We consider mη a

weak solution of the Landau-Lifschitz-Gilbert equation (2.10) on the domain Ωη with initial data
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mη
0 given by Proposition 2.1. We will deal with a rescaled version of the system by introducing Mη

and Hη given by:

Mη(t, x, y, z) = mη(t, x, ηy, ηz) and Hη(t, x, y, z) = (H(mη))(t, x, ηy, ηz) for (x, y, z) ∈ Ω1.

The rescaled energy writes:

Eη(Mη) =
1

η2
Emic(mη)

= A

∫
Ω1

∣∣∣∣∂Mη

∂x

∣∣∣∣2 +
A

η2

∫
Ω1

(∣∣∣∣∂Mη

∂y

∣∣∣∣2 +

∣∣∣∣∂Mη

∂z

∣∣∣∣2
)

+

∫
R3

|Hη|2 − 2

∫
Ω1

Mη · hae1.

Therefore Mη satisfies the following properties:

• Mη ∈ L∞(R+;H1(Ω1)) and
∂M

∂t

η

∈ L2(R+;L2(Ω1)),

• |Mη(t, x, y, z)| = 1 a.e.,

• for all Ψ ∈ C∞c (R+;H1(Ω1)),∫
R+×Ω1

(
∂M

∂t

η

−Mη × ∂M

∂t

η)
·Ψ = 2A

∫
R+×Ω1

(
Mη × ∂M

∂x

η)
· ∂Ψ

∂x

+
2

η2

∫
R+×Ω1

3∑
i=2

(
Mη × ∂M

∂xi

η)
· ∂Ψ

∂xi
− 2

∫
R+×Ω1

(Mη × (Hη + ha e1)) ·Ψ,

(2.12)

• Mη(0, ·) = m0 in the trace sense,

• for all t > 0, we have the following energy inequality:

Eη(Mη(t)) +

∫ t

0

∫
Ω1

∣∣∣∣∂Mη

∂t

∣∣∣∣2 ≤ Eη(Mη(0)) + 2

∫ t

0

∫
Ω1

|∂tha|.

Since the initial data Mη(0) does not depend on y and z, with reasonable assumptions on the
applied field ha, the right hand side of the energy inequality is uniformly bounded when η tend to
zero. Therefore there exists C such that for all T and all η in a neighborhood of 0, we have:

• ‖Mη‖L∞(0,T ;H1(Ω1)) ≤ C,

•
∥∥∥∥∂Mη

∂y

∥∥∥∥
L∞(0,T ;L2(Ω1))

+

∥∥∥∥∂Mη

∂z

∥∥∥∥
L∞(0,T ;L2(Ω1))

≤ Cη,

•
∥∥∥∥∂Mη

∂t

∥∥∥∥
L2(0,T ;L2(Ω1))

≤ C,

• ‖Hη‖L∞(0,T ;L2(R3)) ≤ C.

So we can extract subsequences till denoted by Mη and Hη such that:

• Mη ⇀M in L∞(0, T ;H1(Ω1)) weak *,

• ∂Mη

∂y
and

∂Mη

∂z
tend to zero in L∞(0, T ;L2(Ω1)), so thatM only depends on (t, x) ∈ R+×[0, L]

and does not depend on y and z,

• ∂Mη

∂t
⇀

∂M

∂t
in L2(0, T ;L2(Ω1)) weak,
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• Hη ⇀ H0 in L∞(0, T ;L2(R3)) weak *.

Using the Aubin-Simon compactness lemma, Mη →M in L∞(0, T ;Lp(Ω1)) strongly for p < 6, and,
by extracting a subsequence, we can assume that Mη → M almost everywhere in [0, T ] × Ω1, so
that M satisfies the saturation constraint

|M(t, x)| = 1 a.e. in R+ × [0, L].

Concerning the energy inequality, we define the reduced energy Ẽ by:

Ẽ(Mη) := A

∫
Ω1

∣∣∣∣∂Mη

∂x

∣∣∣∣2 +

∫
R3

|Hη|2 − 2

∫
Ω1

Mη · hae1,

and we remark that for all η > 0,
Ẽ(Mη) ≤ Eη(Mη)

so that for all t ≥ 0,

Ẽ(Mη(t)) +

∫ t

0

∣∣∣∣∂Mη

∂t

∣∣∣∣2 ≤ Ẽ(m0) + 2

∫ t

0

∫
Ω1

|∂tha|.

By convexity arguments, taking the weak limit when η tends to zero, we obtain that for all t ≥ 0,

A

∫
Ω1

∣∣∣∣∂M∂x
∣∣∣∣2 +

∫
R3

|H0|2 − 2

∫
Ω1

M · hae1 +

∫ t

0

∣∣∣∣∂M∂t
∣∣∣∣2 ≤ Ẽ(m0) + 2

∫ t

0

∫
Ω1

|∂tha|.

Let us describe now the limit for the demagnetizing field H0. For i ∈ {1, 2, 3}, we denote by Mη
i

(resp Hηi ) the coordinates of Mη (resp. Hη), and we use the same notations for the limits M and
H0. By rescaling equation (2.4) and by taking the weak limit, we obtain that:

∂y(H0
2 +M2) + ∂z(H0

3 +M3) = 0,

∂yH0
3 − ∂zH0

2 = 0

∂yH0
1 = 0, ∂xH0

1 = 0.

Therefore since H0 ∈ L2(R3), we obtain that H0
1 = 0 and that the transversal part of H0 is the

2-dimensional demagnetizing field calculated in the plane {x}×R2 associated to the transversal part
of M (that is (M2,M3)(x, ·)). Since the section of the wire is a ball of R2, since (M2,M3) is constant
in the section of the wire, the calculation of the two-dimensional demagnetizing field generated by
the constant configuration is classical (see [46] for the general result in the 3d case, or [20] for an
elementary proof in 2d), and we obtain that H0 is given by:

H0(t, x, y, z) =



−1

2

 0
M2(t, x)
M3(t, x)

 for (x, y, z) ∈ Ω1

1

2

1

(y2 + z2)2

 0
M2(t, x)(y2 − z2) + 2M3(t, x)yz
−M3(t, x)(y2 − z2)− 2M2(t, x)yz

 for x ∈ [0, L] and y2 + z2 > 1

0 for x /∈ [0, L].

Since for all η > 0, ∫
R3

|Hη|2 = −
∫

Ω1

Hη ·Mη,
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since Hη ⇀ H0 in L2 weak Mη →M in L2 strong, we obtain that∫
R3

|Hη|2 → 1

2

∫
Ω1

(
|M2|2 + |M3|2

)
=

∫
R3

|H0|2,

so that Hη → H0 strongly in L2(R3).

Remark 2.3. In the three dimensional model, the demagnetizing field is a non local operator. We
observe a localization of this operator in the asymptotic one-dimensional model. This localization is
also observed in [49] for asymptotic studies in nano wires, and in [12] and [31] for two-dimensional
models of ferromagnetic thin layers.

Finally, we take in the weak formulation (2.12) test functions only depending on (t, x): Ψ(t, x, y, z) =
ψ(t, x), and taking the limit when η tends to zero we obtain that for all ψ ∈ C∞c (R+;H1(0, L)),∫

R+×[0,L]

(
∂M

∂t
−M × ∂M

∂t

)
· ψ = 2A

∫
R+×[0,L]

(
M × ∂M

∂x

)
· ∂ψ
∂x

+2

∫
R+×[0,L]

M ×
(

1

2
(M2e2 +M3e3)− ha e1

)
· ψ.

(2.13)

In conclusion, we obtain that M : R+ × [0, L]→ R3 satisfies:

• M ∈ L∞(R+;H1(0, L)) and
∂M

∂t
∈ L2(R+ × [0, L]),

• M(0, x) = m0(x) in the trace sense (note that M ∈ W 1,2(0, T ;L2([0, L])) so that M ∈
C0([0, T ];L2([0, L]))).

• |M(t, x)| = 1 for almost every (t, x) ∈ R+ × [0, L],

• M satisfies (2.13),

• for all t,

E(M(t)) +

∫ t

0

∫
[0,L]

∣∣∣∣∂M∂t (s, x)

∣∣∣∣2 dx ds ≤ E(m0) + 2

∫ t

0

∫
[0,L]

|∂tha|, (2.14)

with

E(M(t)) = A

∫
[0,L]

∣∣∣∣∂M∂x (t, x)

∣∣∣∣2 dx+
1

2

∫
[0,L]

(
|M2|2 + |M3|2

)
(t, x)dx−2

∫
[0,L]

ha(t, x)M1(t, x)dx,

so that M is a weak solution of the one dimensional Landau-Lifschitz-Gilberg equation:

∂M

∂t
−M × ∂M

∂t
= −2M ×

(
A∂xxM −

1

2
(M2e2 +M3e3) + ha(t, x)e1

)
,

with homogeneous Neumann Boundary conditions.

For regular solutions, this equation is equivalent to the following system we will study thereafter:

∂M

∂t
= −M ×He −M × (M ×He),

He = A∂xxM −
1

2
(M2e2 +M3e3) + hae1,

∂xM(t, 0) = ∂xM(t, L) = 0,

M(0, x) = m0(x).

(2.15)
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2.3 Model for ferromagnetic nanowires with electric current

In order to fit with the applications, we aim to obtain one dimensional models for a ferromagnetic
wire submitted to an electric current. We start from the three-dimensional model of electric current
described in [52], [53] and [54]. The electric current is modelled by an additional transport term of
the form (v · ∇)m + m ×

(
(v · ∇))m

)
, where v(t, x) is a vector field directed along the direction of

electrons motion, with an amplitude proportional to the current density (see [52]):

∂m

∂t
= −m×He −m× (m×He) + (v · ∇)m+m×

(
(v · ∇))m

)
,

He = A∆m+Hd(m),

∂m

∂ν
= 0 on ∂Ω.

(2.16)

Existence of weak solutions for (2.16) is tackled in [6]. For ferromagnetic nano wires with electric
current, using the same asymptotic method as in the previous section, we obtain the following
one-dimensional model:

∂M

∂t
= −M ×He(M)−M × (M ×He(M)) + v∂xM +M × v∂xM,

He(M) = A∂xxM −
1

2
(M2e2 +M3e3),

∂xM(t, 0) = ∂xM(t, L) = 0.

(2.17)

The parameter v(t) is a scalar relied to the intensity of the applied current.

2.4 Domain Walls in Ferromagnetic Nanowires

A well known property of ferromagnetic materials is that the magnetization in a given sample tends to
be structured in domains, large regions in which the magnetization is almost constant. The domains
are separated by domain walls, thin zones with great variations of the magnetization distribution.
Since the pioneering work of Walker (see [56]), there exists a huge literature in physics concerning
the formation and the dynamics of the walls (see for example [47, 50, 52, 53, 54] and the references
therein).
From the mathematical point of view, in the static case, the formation of walls for simplified models
of two dimensional ferromagnetic devices is tackled in [1, 2, 25, 26, 48]. In the three-dimensional non
static case, the interested reader should consult [13] and [29] for very partial results: the dynamics
of domain walls in the 3d case remains essentially non-understood.
In the case of nanowires without applied field, the energy of a magnetization distribution m : [0, L]→
S2 is given by

A

∫
[0,L]

|∂xm|2 +
1

2

∫
[0,L]

(
|m2|2 + |m3|2

)
.

Taking into account the saturation constraint |m| = 1, the minimization of the second part of the
energy (coming from the demagnetizing energy) yields configurations taking the two values −e1 and
+e1, but the presence of the exchange term does not allow discontinuities. The competition of these
two terms induces the formation of large domains, in which m equals e1 or −e1, separated by domain
walls of thickness A

1
2 as we will see after. This property is used to store digital information in nano

wires, for instance by storing a bit 0 in a −e1-domain, and a bit 1 in a +e1-domain.
Our goal is to give a precise description of the walls and to explain the influence of an applied
magnetic field or an electric current on the walls distribution. In the following section, we describe
the walls with exact solutions of (2.15) and we study the stability of these exact solutions.
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3 Exact Solutions Describing Domain Walls

3.1 Walls in infinite nanowires

In this section we deal with the following model of infinite nanowire with a constant applied field.
The wire is assimilated to the real line Re1. The magnetization m : R+

t × Rx → S2 satisfies the
following system:

∂m

∂t
= −m× (He(m) + h(t)e1)−m× (M × (He(m) + h(t)e1)),

He(m) = ∂xxm− (m2e2 +m3e3),

(3.1)

obtained from (2.15) by rescaling in the space variable x̃ = x√
2A

and in the time variable t̃ = t
2 ,

and where h(t̃) is deduced from ha by h(t̃) = 2ha(t) (the tilda variables are the new variables after
rescaling, but we still denote them without tilda in the new model).

We remark that the system is invariant by translations in the space variable and by rotations around
the wire axis, i.e. if m satisfies (3.1), then for σ ∈ R and θ ∈ R, the map (t, x) 7→ Rθm(t, x− σ) is
solution for (3.1), with

Rθ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 . (3.2)

This invariance will play a crucial role for the obtention of the stability for solutions describing
domain walls.

With a vanishing applied field h = 0, a domain wall separating a left hand side domain magnetized
along −e1 and a right hand side domain magnetized along +e1 is described by the exact profile M0

and all its translations-rotations, with:

M0(x) =

 tanhx
1/ coshx

0

 . (3.3)

Indeed, a straightforward calculation gives:

∂xxM
0 − (M0

2 e2 +M0
3 e3) = − 2

cosh2 x
M0, (3.4)

so M0 ×He(M
0) = 0, that is M0 is a stationary solution for equation (3.1) with h = 0.

For a non vanishing applied field h(t)e1 (depending on time but constant along the wire for a given
t), we can obtain exact solutions of (3.1) describing the dynamics of walls by the following way: let
σex0 ∈ R and θex0 ∈ R be given. We define σex(t) and θex(t) by:

dσex

dt
(t) = −h(t),

dθex

dt
(t) = h(t),

σex(0) = σex0 , θex(0) = θex0 .

(3.5)

Then,
mex : (t, x) 7→ Rθex(t)M

0(x− σex(t)) (3.6)

satisfies (3.1).

In [19], [21] and [35], the stability of such profiles and the effects of a non vanishing applied field on
these configurations are studied. Roughly speaking, we have the following behavior.
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Theorem 3.1. Let h ∈ C1(R+
t ;R) satisfying

|h(t)| ≤ h0 < 1 for all t. (3.7)

Let (θex0 , σex0 ) ∈ R2 and (θex, σex) given by (3.5). We denote by mex the solution of (3.1) given by

mex(t, x) = Rθex(t)M
0(x− σex(t)).

Then for all ε > 0, there exists η0 > 0 such that if m0 ∈ L∞(R;S2) satisfies

‖m0 −mex(0, ·)‖H1(R) ≤ η,

then the solution m of (3.1) with initial data m0 satisfies

∀ t ≥ 0, ‖m(t)−mex(t, ·)‖H1(R) ≤ ε (stability).

In addition, there exists (θ∞, σ∞) ∈ R2 such that

‖m(t, ·)−Rθ∞mex(t, · − σ∞)‖H1(R) −→t→+∞
0 (asymptotic stability modulo rotation-translation).

Remark 3.1. This theorem contains a controlability result for the position of the wall, the control
being the applied field (see [21]).

Remark 3.2. Assumption (3.7) on the applied field h is quite natural: for a constant applied field
he1 with h ≤ −1 (resp. h ≥ 1), then the constant solution describing only one domain given by
m = e1 (resp. m = −e1) is unstable. Concerning the wall profiles, for a constant applied field he1

with |h| > 1, the wall profile M0 is linearly unstable for the Landau-Lifschitz equation (see [35]).

The first difficulty of this problem is the saturation constraint: the perturbations which take values
out of the sphere are irrelevant. So a perturbation cannot be written in the classical way by mex +
w(t, x) where w is small, since it is not easy to check the saturation constraint under this form.
The first idea is to describe the perturbation m is a convenient mobile frame, so that the saturation
constraint is automatically satisfied.

The second difficulty is due to the invariance by rotations-translations : this induces that 0 is a
double eigenvalue of the linearized equation. We use geometrical tools introduced for example in
[34] to split the solution m into a part taking into account the rotations-translations of mex, plus a
part asymptotically decreasing to zero when t→ +∞.

The third difficulty is that our problem is quasilinear, so that we must use variational methods to
estimate the non linear terms.

Proof of theorem 3.1.

First step. Mobile Frame. In order to deal with a constant exact solution, we first perform
the following change of unknown in (3.1): we denote by u(t, x) = R−θ(t)m(t, x + σ(t)) so that
m(t, x) = Rθ(t)u(t, x − σ(t)). We remark that m = mex is equivalent to u = M0. In addition, m
satisfies (3.1) if and only if u satisfies the following problem:

∂u

∂t
= −u×He(u)− u×

(
u×He(u)

)
− h
(
∂xu+ u× (u× e1)

)
. (3.8)

Furthermore, the stability of mex is equivalent to the stability of M0 for Equation (3.8).

Now we aim to consider only perturbations u of M0 satisfying the saturation constraint |u| = 1. We
describe them in the mobile frame

(
M0(x),M1(x),M2

)
which vectors are defined by:

M1(x) =

 −1/ coshx
tanhx

0

 and M2 = M0 ×M1 =

 0
0
1

 , (3.9)

9



writting:
u(t, x) = M0(x) + r1(t, x)M1(x) + r2(t, x)M2 + ν(r(t, x))M0(x), (3.10)

where r = (r1, r2) will be the new unknown taking its values in a neighborhood of 0 in R2, and
where ν : B2(0, 1/2)→ R is given by

ν(r1, r2) =
√

1− (r1)2 − (r2)2 − 1, (3.11)

so that u satisfies automatically the saturation constraint |u| = 1.

Plugging (3.10) in (3.8) and taking the scalar product with M1 and M2, we obtain that u satisfies
(3.8) if and only if r satisfies an equation of the form:

∂r

∂t
= Λr + h`r + F (x, h, r, ∂xr, ∂xxr), (3.12)

where the linear part Λr + h`r is described by

Λr =

(
−1 −1
1 −1

)(
Lr1

Lr2

)
, (3.13)

with

L = −∂xx + (1− 2

cosh2 x
), (3.14)

and
` = −∂x − tanhx. (3.15)

The non linear term F (x, h, r, ∂xr, ∂xxr) is defined for r taking its values in B2(0, 1/2). It has the
following form:

F (x, h, r, ∂xr, ∂xxr) = G(r)∂xxr +H1(x, r)(
∂r

∂x
) +H2(r)(

∂r

∂x
,
∂r

∂x
) + P (x, r, h), (3.16)

with

• G ∈ C∞(B2(0, 1/2);M2(R)), where we denote by M2(R) the set of the 2 × 2 real matrices.
We have G(r) = O(|r|).

• H1 ∈ C∞(R×B(0, 1/2);M2(R)) and H1(x, r) = O(|r|).

• H2 ∈ C∞(B2(0, 1/2);L2(R2)), where we denote by L2(R2) the set of the bilinear applications
defined on R2 × R2 with values in R2. We have H2(x, r) = O(|r|)

• P ∈ C∞(R × B2(0, 1/2) × R;R2) with P (x, r, h) = O(|r|2) uniformly in x ∈ R and for h in a
bounded set.

Therefore, (3.12) is equivalent to (3.8). In addition, M0 is stable for (3.8) if and only if 0 is stable
for (3.12).

Third step: New Coordinates.
We remark that because of the invariance by rotations-translations for the Landau-Lifschitz equation
(3.1), Equation (3.8) has the same property. For (θ, σ) in a neighborhood of zero in R2, we consider
the coordinates of RθM

0(x− σ) in the mobile frame and we define R(θ, σ) by:

R(θ, σ)(x) =

 M1(x) ·RθM0(x− σ)

M2 ·RθM0(x− σ)

 . (3.17)

For all (θ, σ) in a neighborhood of zero, R(θ, σ) is a solution for (3.12), so we have a two parameters
family of static solutions. This induces that 0 is a double eigenvalue for the linear operator Λ + h`
associated to the linearized equation for (3.12). Indeed, the properties of Λ come from the properties
of L summarized in the following proposition:
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Proposition 3.1. The linear operator L defined by (3.14) is a self-adjoint operator in L2(R) with
domain H2(R). It is positive. Its essential spectrum is [1,+∞[. It admits zero as a simple eigenvalue,
and zero is the unique eigenvalue of L.

Proof. We remark that L = `∗ ◦ `, with ` = −∂x − tanhx, so that L is positive. The Kernel of L is
obtained by solving −∂xu− tanhxu = 0, and we have:

Ker L = R
1

coshx
.

In addition, if v is an eigenvector for L, associated to the eigenvalue α, we have Lv = αv, and by
applying ` on this equality, since ` ◦ `∗ = −∂xx + 1, we obtain that α is an eigenvalue for −∂xx + 1
associated to the eigenvector `v, which ensures that `v = 0 so that α = 0.

We deduce from this proposition that 0 is a double eigenvalue for Λ+h` associated to the eigenvectors
( 1

cosh x , 0) and (0, 1
cosh x ). In addition, on the orthogonal of Ker L, we have the following property:

if < u| 1

coshx
>= 0, < Lu|u >≥ ‖u‖2L2(R), (3.18)

where we denote by < ·|· > the usual inner product in L2(R). Hence on (Ker L)⊥, we can use the
following norms equivalences:

∀u ∈ H2(R) ∩ (Ker L)⊥, c1‖u‖H2(R) ≤ ‖Lu‖L2(R) ≤ c2‖u‖H2(R),

∀u ∈ H1(R) ∩ (Ker L)⊥, c1‖u‖H1(R) ≤ ‖L
1
2u‖L2(R) ≤ c2‖u‖H1(R).

(3.19)

Furthermore, we have

∀u ∈ H2(R) ∩ (Ker L)⊥, ‖`u‖L2(R) = ‖L 1
2u‖L2(R) ≤ ‖Lu‖L2(R). (3.20)

The eigenvalue zero is always a difficulty to obtain the stability for a non linear problem. In order to
take into account this problem, in a neighborhood of zero in H2(R;R2), we use a new parametrization
writing:

r(x) = R(θ, σ)(x) + w(x),

with (θ, σ) ∈ R2 and w ∈ W =
(
Ker L⊥

)2
. Roughly speaking, for a fixed r, R(θ, σ) is the projection

parallel to W of r onto the surface of the exact solutions.

By using the local inversion theorem, the map r 7→ (θ, σ, w) is a local diffeomorphism on a neigh-
borhood of zero. So we use this parametrization to describe a perturbation r of zero, solution of
equation (3.12) writing:

r(t, x) = R(θ(t), σ(t))(x) + w(t, x), (3.21)

where the new unknowns are (θ, σ, w) ∈ C1(R+
t ;R2×W). On W, we will estimate w using the norm

equivalence described in (3.19).

By plugging (3.21) in (3.12), by taking the projection of the obtained equation onto (Ker L)2 and
onto W, we obtain an equivalent form for (3.12) written in the new unknowns:

∂w

∂t
= Λw + `w +K(σ)w + F̃ (x, θ, σ, w, ∂xw, ∂xxw),

dθ

dt
= K1(θ, σ, w),

dσ

dt
= K2(θ, σ, w),

(3.22)

where
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• the linear part Λw + `w for the first equation in the same as for (3.12) and is given by (3.13)
and (3.15),

• the linear part K(σ)w is a perturbation satisfying:

‖K(σ)w‖L2(R) ≤ C1|σ|‖w‖H2(R), (3.23)

• the non linear part for the first equation has the same form as the non linear part of (3.12) (see
(3.16)), and we obtain that while (θ(t), σ(t), w(t)) remains in a fixed neighborhood of zero,∣∣∣< F̃ (x, θ, σ, w, ∂xw, ∂xxw)|Lw >

∣∣∣ ≤ C2‖L
1
2w‖L2(R)‖Lw‖2L2(R), (3.24)

• the right hand side terms K1 and K2 are obtained by projecting F onto Ker L. By integration
by parts, they satisfy:

|Ki(θ, σ, w)| ≤ C3‖L
1
2w‖L2(R), (3.25)

while (θ, σ, w) remains in a fixed neighborhood of zero.

In these new coordinates, using (3.19), Theorem 3.1 is equivalent to the following claim:

Claim. Let ε > 0. There exists η0 > 0 such that if ‖L 1
2w0‖L2(R) + |θ0| + |σ0| ≤ η0, with w0 ∈ W,

then the solution (θ, σ, w) of system (3.22) with initial data (θ0, σ0, w0) satisfies:

(i) for all t > 0, ‖L 1
2w(t)‖L2(R) + |θ(t)|+ |σ(t)| ≤ ε (stability),

(ii) ‖L 1
2w(t)‖L2(R) tends to zero when t tends to +∞ (asymptotic decreasing for the normal part),

(iii) there exists θ∞ and σ∞ such that θ(t) → θ∞ and σ(t) → σ∞ when t → +∞ (asymptotic
stability modulo translations-rotations).

Forth step: proof of the claim.
Taking the L2(R)-inner product of the first equation in (3.22) with Lw yields:

1

2

d

dt
‖L 1

2w‖2L2 + ‖Lw‖2L2(R) ≤ h < `w|Lw > + < K(σ)w|Lw > + < F̃ (x, θ, σ, w, ∂xw, ∂xxw)|Lw > .

From (3.20), we have
|< `w|Lw >| ≤ ‖Lw‖2L2(R).

In addition, the assumption on the applied field h ensures that |h| ≤ h0 < 1. Therefore, with (3.23)
and (3.24), we get that while

(
θ(t), σ(t), w(t)

)
remains in a fixed neighborhood of zero, then

1

2

d

dt
‖L 1

2w‖2L2 + ‖Lw‖2L2(R) ≤ (h0 + C1|σ|)‖Lw‖2L2(R) + C2‖Lw‖2L2(R)‖L
1
2w‖L2(R),

therefore,
1

2

d

dt
‖L 1

2w‖2L2 + ‖Lw‖2L2(R)

(
1− h0 − C1|σ| − C2‖L

1
2w‖L2(R)

)
≤ 0. (3.26)

Hence if

|σ| ≤ 1− h0

2
and ‖L 1

2w0‖L2(R) ≤
1− h0

4C2
, (3.27)

we obtain from (3.26) that t 7→ ‖L 1
2w‖L2(R) is decreasing and thus remains smaller than

1− h0

2C1
. So

under assumption (3.27), while (θ(t), σ(t)) remains in a fixed neighborhood of zero, inequality (3.26)
remains valid and applying (3.20), we have:

1

2

d

dt
‖L 1

2w‖2L2 + ‖L 1
2w‖2L2(R)

1− h0

4
≤ 0,
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so that: while (θ(t), σ(t)) remains in a fixed neighborhood of zero, under assumption (3.27),

‖L 1
2w(t)‖2L2(R) ≤ ‖L

1
2w0‖2L2(R)e

− 1−h0
4 t. (3.28)

Plugging the previous estimate in the equations on θ and σ in (3.22) together with Estimate (3.25)
yield ∣∣∣∣dθdt (t)

∣∣∣∣ ≤ C3‖L
1
2w0‖L2(R)e

− 1−h0
4 t and

∣∣∣∣dσdt (t)

∣∣∣∣ ≤ C3‖L
1
2w0‖L2(R)e

− 1−h0
4 t.

Therefore, integrating these inequalities, we obtain that if θ0 and σ0 are small, if w0, satisfying
Assumption (3.27), is sufficiently small, then on the one hand, θ(t) and σ(t) remain in the fixed
neighborhood of zero so that the previous estimates remains valid for all time and on the other

hand,
dθ

dt
and

dσ

dt
are integrable on R so θ(t) (resp. σ(t)) admits a limit θ∞ (resp. σ∞) when t tends

to +∞.
From (3.28), under the previous assumptions, w(t) tends to 0 when t tends to +∞. This concludes
the proof of Theorem 3.1.

3.2 Electric current in ferromagnetic nanonwires

The stability for profiles describing the wall motion induced by an electric current is tackled in
[36]. This result is important from the point of view of the physics since for the most part of the
applications (for example in racetrack memories), an electric current is used for walls motion. The
main advantages of this solution compared to the applied magnetic field are the following: on the
one hand it is easier to generate a constant electric field in a wire, even if it is not straight. On the
other hand, a constant applied current induces a motion of the walls preserving their positions one
with respect to each other whereas a constant applied magnetic field in a finite wire can induce the
collapse of consecutive walls and so the annihilation of domains. We recall that this applied current
is modelled by additional transport terms in the Landau-Lifschitz equation, so that, after rescaling,
we deal with the following model:

m : R+
t × Rx → S2,

∂m

∂t
= −m×He(m)−m× (M ×He(m)) + v∂xm+m× v∂xm,

He(m) = ∂xxm− (m2e2 +m3e3).

(3.29)

For a constant applied courant v, a solution of (3.29) is given by mv(t, x) = R−vtM
0(x+ vt). Using

the same method as in the previous part, the stability of mv is proved for |v| < 2 (see [36]). After
writing an equivalent formulation is a convenient mobile frame, after splitting the new unknown in
a part taking into account the invariance by translation-rotation plus a part w taking its values in
W = (Ker L)⊥× (Ker L)⊥, the key point is to obtain the coercivity for the linear operator Λv given
by:

Λvw = J

(
Lw1

Lw2

)
+ v

(
`w2

−`w1

)
, (3.30)

with D(Λv) =W ∩H2(R). Taking the inner product of Λv(w) with Lw, we obtain:

< Λv(w)|Lw >= −‖Lw‖2L2(R) + v
(
< `w2|Lw1 > − < `w1|Lw2 >

)
.

On the one hand,
‖Lwi‖2L2(R) = < `∗`wi|`∗`wi >

= < ``∗`wi|`wi >

= < (1 + |ξ|2)F(`wi)|F(`wi) >

= ‖
√

1 + |ξ|2F(`wi)‖2L2(R),
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where F is the Fourier transform, and using that ``∗ = −∂xx + 1.
On the other hand,

|< `w2|Lw1 > − < `w1|Lw2 >| = 2

∣∣∣∣∫
R
`w2∂x(`w1)

∣∣∣∣
≤ 2 |< F(`w2)|iξF(`w1) >|

≤
∫
R

(1 + |ξ|2)|F(`w1)| |F(`w2)|

≤ ‖
√

1 + |ξ|2F(`w1)‖L2(R)‖
√

1 + |ξ|2F(`w2)‖L2(R)

≤ 1

2

(
‖Lw1‖2L2(R) + ‖Lw2‖2L2(R)

)
.

So for |v| < 2 we can compensate the perturbation term due to the applied current by the main
term ‖Lw‖2L2(R) so that we obtain the coercivity for the linearized operator Λv.

3.3 Walls in finite nanowires

In [20] we study the existence and stability of a one wall configuration for a one-dimensional model
of finite wire. After rescaling, the model is the following: the magnetic moment m is defined on
R+
t × [0, L/

√
2A] with values in S2 and satisfies the following Landau-Lifschitz equation:

∂m

∂t
= −m× (He(m) + h(t)e1)−m× (M × (He(m) + h(t)e1)),

He(m) = ∂xxm− (m2e2 +m3e3),

∂xm(t, 0) = ∂xm(t, L/
√

2A) = 0 (Neumann homogeneous boundary conditions).

(3.31)

For a vanishing applied field, we look for a static solution describing one wall of the form:

M0(x) =

 sin θ0

cos θ0

0

 .

We find that M0 is a static solution of (3.31) if and only if θ0 satisfies the pendulum equation with
homogeneous Neumann boundary conditions: −θ

′′
0 − sin θ0 cos θ0 = 0 on [0, L/

√
2A],

θ′0(0) = θ′0(L/
√

2A) = 0.

(3.32)

We look for solutions describing only one wall, so we only consider solutions satisfying −π/2 ≤

θ(0) < 0 < θ(L/
√

2A) ≤ π/2. Our first result is that this solution exists if and only if
L√
2A

>
π

2
,

i.e. the wire has to be long enough to contain a wall. We should develop the same method as for
an infinite wire to study the stability of this static profile. We write the perturbations m of M0 in
a mobile frame following the studied profile as:

m(t, x) = M0(x) + r1(t, x)

 − cos θ0

sin θ0

0

+ r2(t, x)

 0
0
1

+ ν(r(t, x))M0(x),

where ν is defined by (3.11) and we obtain for r an equivalent equation of the form:

∂r

∂t
= Λ̃r + F (x, r, ∂xr, ∂xxr), (3.33)
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where F is the non linear part, and where the linear term Λ̃r writes:

Λ̃r =

(
−1 −1
1 −1

)(
(L̃− cos2 γ0)r1

L̃r2

)
, (3.34)

with
L̃ = −∂xx + sin2 θ0 − (θ′0)2, and γ0 = θ0(0). (3.35)

As in the infinite case, we prove that L̃ is self-adjoint and positive since it can be factorized as
L̃ = ˜̀∗ ◦ ˜̀, with ˜̀= ∂x + θ′0 tan θ0. We remark that Ker L̃ = R cos θ0 and that the second eigenvalue
of L̃ is 1, since sin θ0 vanishes once in the domain and satisfies L̃(sin θ0) = sin θ0.
We have then

< Λ̃

(
cos θ0

0

)
|
(

cos θ0

0

)
>=

∫
[0,L/

√
2A]

cos2 γ0 cos2 θ0(x)dx > 0,

which implies that the solution 0 is linearly unstable for (3.33). Therefore, in the case of finite
wires, the exact solution describing one wall is linearly unstable for the Landau-Lifschitz equation

(3.31). We remark that the eigenvector

(
cos θ0

0

)
is linked with the translations of the wall profile.

Roughly speaking, the Landau-Lifschitz equation on finite wires can decrease the energy of the wall
by translating it and finally by pushing it outside the wire, so that the one wall configuration is
unstable.

Nevertheless, we prove in [20] that it is possible to stabilize the wall profile with an adapted mag-
netic field, but this is irrelevant from the point of view of the applications since we aim to obtain
ferromagnetic devices storing the digital information without injecting energy in the system.

In [42], the authors study distributions of several walls in a periodic nanowire modelling ferromag-
netic rings. They look for L/

√
2A-periodic solutions of the one dimensional model (3.1), where L is

the length of the ring. They describe all these solutions and they prove that they are unstable.

3.4 Conclusion for the exacts solutions

In order to describe walls distributions in a finite nanowire, the exact solutions are inappropriate
since they are unstable. In addition, it is impossible to describe with these solutions a configuration
with several walls located at arbitrary places, since the exact solutions can only describe periodic
positions for the walls (they are obtained by solving a pendulum equation which solutions are
periodic).
Therefore, in order to describe realistic patterns of several walls located at arbitrary positions in
finite nanowires, we have to deal with approximate solutions, and to prove that these quasi-solutions
are metastable as we will see in the following part.

4 Quasi-Solutions

In this Section, we deal with the following model of finite nanowire:

∂tm = −m×
(
hε(m) +

1

ε
he1

)
−m×

(
m×

(
hε(m) +

1

ε
he1

))
),

hε(m) = ε∂xxm−
1

ε
(m2e2 +m3e3) ,

∂xm(0) = ∂xm(L/
√

2) = 0.

(4.1)

This model is obtained from (2.15) by writing A = ε2, by rescaling in x (x̃ = x/
√

2), by writing
h = 2ha, and by rescaling in time t̃ = ε

2 t, so that we describe the long time behavior of the solutions.
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We remark that this rescaling in time induces the presence of stiff terms in the effective field. We
aim to describe with this model the evolution of N walls (where N is arbitrary fixed) separating
N + 1 domains (magnetized along −e1 or +e1), when we apply a magnetic field h(t, x)e1. Our
analysis is based on the fact that for physical applications, the exchange length is small compared
to the length of the wire, that is our exchange coefficient ε2 is small.

Our approach is inspired by the famous paper of Carr and Pego [22]. They study the metastability
for quasi-solutions of the Allen-Cahn model of phase transitions:

∂u

∂t
= ε2∂xxu− f(u),

∂xu(0, t) = ∂xu(1, t),

u : R+
t × [0, 1]x → R,

(4.2)

where f = F ′ is derived from a two wells potential F with two non degenerate minima at the points
-1 and +1 (for example, F (u) = (u2 − 1)2). For small ε, they construct a N -parameters family M
of quasi-solutions uh describing N phase transitions located at the positions h = (h1, h2, . . . , hN ),
and they prove that these quasi-solutions are persistent on a time scale of order O(e

c
ε ) (see also [28]

for related results). In a neighborhood of the manifold M, the solution u of (4.2) is described as:

u(t, x) = uh(t)(x) + v(t, x), (4.3)

where uh(t) is the orthogonal projection of u(t, ·) ontoM, so that v(t, ·) ∈ (TuhM)
⊥

. Because of the
spectral properties of the linearized equation for v, they show that v is exponentially decreasing so
that u(t) remains for all time very close to uh(t), so that the dynamics of u is essentially described
by the very slow dynamics of the phase transitions.

The same method for the Landau-Lifschitz model (4.1) entails new technical difficulties. Following
the same strategy, we construct a family of quasi-solutions describing the distributions of N walls.
We are here in a vectorial case, so that our family is 2N -dimensional (taking into account the
positions of the walls, and the ”tilts” of the profiles). Concerning the new coordinates close to the
manifold of quasi-solutions, analogous to those used by Carr and Pego in (4.3), we have now to take
into account the saturation constraint satisfied by the magnetic moment: |m| = 1. The estimates
for the non linear terms are more difficult in our case since the problem is quasilinear (because of
the non linear precession term m × ∂xxm). Furthermore, in our case, we are able to describe the
motion of walls induced by the applied magnetic field h.

Persistence of phase transitions patterns for the Allen-Cahn equation is also obtained by Bronsard
and Kohn in [9] with energetic considerations. See also [5] and [45] for the same kind of problem in
a vectorial framework.

4.1 Construction of approximate solutions

We first construct configurations of N walls with a vanishing applied field. We only deal with
configurations in which the walls are not too close one to each other and are quite far from the ends
of the wire. We fix a lower bound δ > 0, with Nδ << L. The walls are supposed to be located at
the points σ1, . . . , σN , satisfying:

0 < σ1 − δ,

σi + δ < σi+1 − δ for i ∈ {1, . . . , N − 1},

σN + δ < L,

(4.4)

that is the distance between two consecutive walls is greater than 2δ, and the distance between a
wall and the boundary is greater than δ. We denote Σδ the set of the (σ1, . . . , σN ) ∈ RN satisfying
(4.4).
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For σ ∈ Σδ and for θ = (θ1, . . . , θN ) ∈ RN , we construct the profile mε(θ, σ) in the following way.
Roughly speaking, in the domains, the magnetization equals −e1 or +e1. In a wall, we distinguish
a central zone in which the magnetization is described by rescaling the exact solution M0 given by
(3.3). This central zone in surrounded by two transitional zones connecting smoothly the profiles
in the domain on one hand and in the central zone on the other hand. In order to define precisely

these profiles, we introduce a cut off function ψ : R → [0, 1], such that ψ(s) = 0 for s ≤ 3δ

4
and

ψ(s) = 1 for s ≥ 7δ

8
.

Concerning the domains:

• on the first left hand side domain [0, σ1 − δ], mε(θ, σ)(x) = −e1,

• on the domain [σi + δ, σi+1 − δ], i ∈ {1, . . . , N − 1}, mε(θ, σ)(x) = (−1)i+1e1,

• on the last right hand side domain [σN + δ, L], mε(θ, σ)(x) = (−1)N+1e1.

Concerning the wall i, connecting a (−1)ie1 left hand side domain to a (−1)i+1e1 right hand side

domain, the key point is that z 7→ (−1)i+1M0(
z

ε
) is an exact solution describing such a wall for

(4.1) with vanishing applied field in an infinite wire.

The profile mε(θ, σ) is defined as follows in the wall zone [σi− δ, σi+ δ]: we remark that M0 defined
by (3.3) satisfies:

M0(z) =


sin arcsin tanh z

cos arcsin tanh z

0

 .

We define ϕδε : [−δ, δ]→ R by

ϕδε(z) =



arcsin tanh
z

ε
for − δ/2 ≤ z ≤ δ/2 (central zone),

−π
2
ψ(−z) + (1− ψ(−z)) arcsin tanh

z

ε
for − δ ≤ z ≤ −δ/2 (left transitional zone),

π

2
ψ(z) + (1− ψ(z)) arcsin tanh

z

ε
for δ/2 ≤ z ≤ δ (right transitional zone),

so that ϕδε equals arcsin tanh
z

ε
in a central zone [−δ/2, δ/2] and connects smoothly this profile to

−π
2

at the left hand side and to +
π

2
at the right hand side. Then we define mε(θ, σ) in the wall

[σi − δ, σi + δ] by

mε(θ, σ)(x) = (−1)i+1R θi
ε


sinϕδε(x− σi)

cosϕδε(x− σi)

0

 . (4.5)

The profile defined above satisfies (4.1) with vanishing applied field excepted in the transitional
zones, in which it is very close to −e1 or +e1 when ε is small.

When the applied field is non vanishing, the dynamics for walls is described using our quasi-solutions.
We assume that the applied field h satisfies:

h ∈ C2(R+ × [0, L];R),

∀ (t, x), |h(t, x)| ≤ h0 < 1,

∃C, ∀ (t, x), |∂xh(t, x)|+ |∂xxh(t, x)| ≤ C.

(4.6)
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For an initial set of positions σ ∈ Σδ and an initial set of angles θ ∈ RN , we consider (θref , σref ) ∈
C1(R+;RN × RN ) the solution of

dσrefi

dt
= (−1)ih(t, σrefi ),

dθrefi

dt
= h(t, σrefi ),

σref (t = 0) = σ, θref (t = 0) = θ.

(4.7)

While σref (t) remains in Σδ, the dynamics of walls is described by the profile:

(t, x) 7→mε(θ
ref (t), σref (t))(x),

i.e. the above profile is almost solution for (4.1) with a non vanishing applied field.
We aim to prove that the exact solution with initial data close to mε(θ, σ) remains close to the
above profile in a large time interval. The key point of our analysis is to rewrite equation (4.1) is
new coordinates while m remains close to the set of quasi-solutions.

We denote by Mδ the set:
Mδ =

{
mε(θ, σ), θ ∈ RN ;σ ∈ Σδ

}
.

This set is a 2N-dimensional submanifold of H1([0, L];S2), its boundary corresponds to the case
when two walls are too close to each other, or when a wall is too close to one end of the wire. We
parametrize a neighborhood of Mδ by:

m = mε(θ, σ) + w + ν(w)mε(θ, σ), (4.8)

where

• θ ∈ RN ,

• σ ∈ Σδ,

• ν is defined in (3.11),

• w ∈ Wε
θ,σ, where Wε

θ,σ is analogous to the normal space toMδ at the point mε(θ, σ): it is the

set of the w ∈ H1([0, L];R3) satisfying

(i) ∀x ∈ [0, L], w(x) ·mε(θ, σ)(x) = 0,

(ii) ∀ i ∈ {1, . . . , N}, < ∂σimε(θ, σ)|w >= 0

(iii) ∀ i ∈ {1, . . . , N}, < ∂θimε(θ, σ)|w >= 0.

(4.9)

Property (i) together with the definition of ν ensure that m given by (4.8) satisfies the constraint
|m| = 1. Orthogonality conditions (ii) and (iii) ensure that w takes its values in the normal bundle
of the manifold Mδ.

Using the local inversion theorem, we can prove that this system of coordinates remains valid in a
neighborhood ofMδ which size (for the L∞ norm) is independent of ε. We will work now with these
new coordinates. We endow Wε

θ,σ with the norm:

‖w‖ε =

(
ε‖∂xw‖2L2([0,L]) +

1

ε
‖w‖2L2([0,L])

) 1
2

.

We establish in [14] the following result.
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Theorem 4.1. Let h, θref and σref satisfying (4.6) and (4.7). We assume that for all t, σref (t) ∈
Σ2δ and that:

∀ t ≥ 0, ∀ i ∈ {1, . . . , N}, ∀x ∈ [σrefi (t)− 2δ, σrefi (t) + 2δ], ∂xh(t, x) = 0. (4.10)

For ν0 > 0, there exists α0 > 0, there exists K such that for all ε > 0 we have:
for all σ0 ∈ Σ2δ with |σ0−σ| ≤ α0, for all θ0 ∈ RN such that |θ0− θ| ≤ α0, for all w0 ∈ Wε

θ0,σ0
such

that ‖w0‖ε ≤ α0, the solution m of (4.1) with initial data m0 = mε(θ0, σ0) + w0 + ν(w0)mε(θ0, σ0)
can be written as

m(t) = mε(θ(t), σ(t)) + w(t) + ν(w(t))mε(θ(t), σ(t)),

with, for all t ∈ [0,Ke
δ
4ε ],

• σ(t) ∈ Σδ and |σ(t)− σref (t)| ≤ ν0,

• |θ(t)− θref (t)| ≤ ν0,

• ‖w(t)‖ε ≤ ν0.

This theorem establishes that the dynamics of the solutions of (4.1) is essentially described by the
approximate solution mε(θ

ref , σref ) in an exponentially large time interval. In fact, one can prove
that the solution of (4.1) remains exponentially close toMδ while it does not arrive at the boundary
of this manifold.
If we relax Assumption (4.10) then we obtain the same control of the solution, but on a shorter time
interval of size O( 1

ε ). This is due to the fact that mε(θ
ref (t), σref (t)) is not a so good approximate

solution without this assumption (the error is of order O(e−
δ
4ε ) with (4.10) and of order O(ε) for a

non constant applied field in the wall).

4.2 Sketch of the proof of Theorem 4.1

First step: Landau-Lifschitz equation in the new coordinates.

We plug (4.8) in (4.1), and by taking the L2 inner product with ∂θimε and ∂σimε, by using the
orthogonality conditions (ii) and (iii) in (4.9), we obtain the following system for (θ(t), σ(t)):

dθi
dt

= hi + a1
ε +G1

ε(θi, σi, w),

dσi
dt

= (−1)ihi + a2
ε +G2

ε(θi, σi, w),

(4.11)

where

• hi(t) is the mean value of h(t, ·) in the central zone [σi − δ/2, σi + δ/2] for the ith wall.

• The corrector terms aiε come from the fact that the profile mε(θ, σ) is only an approximate

solution for (4.1). In particular, under Assumption (4.10), aiε = O(e−
δ
4ε ) and without this

assumption, aiε = O(ε2).

• The terms Giε are estimated as follows: while σ remains in Σδ,∣∣Giε(θi, σi, w)
∣∣ ≤ C‖w‖ε. (4.12)

We remark that if w is small, then Equation (4.11) is a small perturbation of the equation (4.7)
satisfied by the reference profile mε(θ

ref , σref ).

The equation for the normal part w is of the form:

∂w

∂t
= aε + Λε + Pεw + lεw + Gε(w, θ, σ), (4.13)

where
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• aε is a corrector term of order O(e−
δ
4ε ),

• lε is a corrector term for the linear part, with ‖lεw‖L2 ≤ O(e−
δ
4ε )‖w‖ε,

• the linear term Λε is defined by:

Λεw = −mε × Lε(w)−mε × (mε × Lε(w)), with Lε(w) = −ε∂xxw −
1

ε
w1e1 + fσε w, (4.14)

where

fσε (x) =



1

ε
for x in the domains,

1

ε

(
1− 2

cosh2(x−σiε )

)
for x in the central zone of the ith wall,

1

ε
+O(e−

δ
4ε ) in the transitional zones of the walls.

• Pε is the linear part due to the applied magnetic field h.

• The non linear part Gε satisfies:

‖Gε(w, θ, σ)‖L2 ≤ K‖w‖ε
(
‖ε∂xxw‖L2 +

1

ε
‖w‖L2

)
. (4.15)

The previous estimates obtained with assumption (4.10) are valid while σ(t) remains in Σδ. They
are weakened without assumption (4.10) since in this case, the corrector terms aε and lε are of order
O(
√
ε).

Second Step: coercivity for the operator Lε.

We aim to prove that the operator Lε (which plays the same role as L in Section 3) satisfies a
coercivity condition of the form:

∀w ∈ Wε
θ,σ, < Lε(w)|w >≥ 1

ε
‖w‖2L2 .

If w has its support in a domain, the previous estimate is clear: in this case, since mε(θ, σ) = ±e1

and since w ·mε(θ, σ) = 0 (point wise orthogonality condition), then w1 = 0. So

< Lε(w)|w >=< −ε∂xxw +
1

ε
w|w >= ε‖∂xw‖2L2 +

1

ε
‖w‖2L2

by integration by parts.

If w has its support in the wall [σi − δ, σi + δ], we describe w in a mobile frame inspired from the
one used in Section 3. Writing w on the form:

w(t, w) = r1(
x− σi
ε

)R θi
ε

M1(
x− σi
ε

) + r2(
x− σi
ε

)R θi
ε

M2, (4.16)

where M1 and M2 are defined in (3.9) in Section 3, then the point wise orthogonality condition (i)
in (4.9) is automatically satisfied. In these new coordinates, we obtain that

< Lε(w)|w >=< Lr1|r1 > + < Lr2|r2 >,

where L is the linear operator appearing in Section 3 defined by (3.14). The orthogonality conditions
(ii) and (iii) in (4.9) imply a quasi-orthogonality condition for r1 and r2, that is we obtain that:

< r1|
1

coshx
>= O(e−

δ
4ε )‖w‖L2 and < r2|

1

coshx
>= O(e−

δ
4ε )‖w‖L2 ,
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so that we can use the coercivity of L on (Ker L)⊥ (see (3.18)):

< Lri|ri >≥ (1−O(e−
δ
4ε ))‖ri‖2L2 , i = 1, 2.

By rescaling this inequality in the space variable, we obtain that:

< Lε(w)|w >≥ 1−O(e−
δ
4ε )

ε
‖w‖2L2 .

On the whole domain, we stick the previous estimates with a convenient system of cut-off functions
by using the IMS formula (see [24]). We introduce the cut-off functions χ0, . . . , χN such that

• χi ∈ C∞

• supp χ0 ∈ [−L,L] \
N⋃
i=1

[σi − δ/2, σi + δ/2]

• supp χi ⊂ [σi − 3δ
4 , σi + 3δ

4 ] for i 6= 0

•
N∑
i=0

(χi)
2 = 1

(4.17)

We can assume that there exists a constant Kδ, only depending on δ but not on σ ∈ Σδ such that

‖χ′0‖L∞ + . . .+ ‖χ′N‖L∞ + ‖χ′′0‖L∞ + . . .+ ‖χ′′N‖L∞ ≤ Kδ. (4.18)

We have:

< Lε(w)|w >=

N∑
i=0

< Lε(w)|χ2
iw >

It is clear that

< −1

ε
w1e1 + fσε w|χ2

iw >=< −1

ε
(χiw)1e1 + fσε (χiw)|χiw > .

In addition, we have:

N∑
i=0

< −∂xxw|χ2
iw >=

N∑
i=0

(< −∂xx(χiw)|χiw > +2 < ∂xχi∂xw|χiw > + < w∂xxχi|χiw >) .

We remark that

2

N∑
i=0

< ∂xχi∂xw|χiw >=

N∑
i=0

< ∂xw∂x(χ2
i )|w >=< ∂xw∂x(

N∑
i=0

(χ2
i ))|w >= 0

since

N∑
i=0

χ2
i = 1.

Hence we obtain that

< Lε(w)|w >=

N∑
i=0

< Lε(χiw)|χiw > + < (

N∑
i=0

χi∂xxχi)w|w > .

We can then use the previous estimates for each term < Lε(χiw)|χiw > since χ0w has its supports
in the domains and since χiw has its support in the ith wall. In addition, by (4.18), the additional
term can be controlled: ∣∣∣∣∣< (

N∑
i=0

χi∂xxχi)w|w >

∣∣∣∣∣ ≤ C‖w‖2L2 .
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So we obtain that there exists c such that for all ε > 0, for all θ ∈ RN , for all σ ∈ Σδ, for all
w ∈ Wε

θ,σ,

< Lε(w)|w >≥ 1− cε
ε
‖w‖2L2 . (4.19)

Using the previous estimate, one can obtain the following norms equivalence on Wε
θ,σ:

c1

(
ε‖∂xxw‖L2 +

1

ε
‖w‖L2

)
≤ ‖mε × Lεw‖L2 ≤ c2

(
ε‖∂xxw‖L2 +

1

ε
‖w‖L2

)
c1‖w‖ε ≤ (< Lε(w)|w >)

1
2 ≤ c2‖w‖ε.

(4.20)

In addition we have:

‖mε × Lε(w)‖2L2 ≥
1− cε
ε

< Lε(w)|w > . (4.21)

The constants c1, c2 and c do not depend on θ ∈ RN and σ ∈ Σδ.

Third step: variational estimates.

From the equivalence of norms (4.20), we estimate w by multiplying (4.13) by Lε(w). We obtain:

< ∂tw|Lε(w) > +‖mε×Lε(w)‖2L2 =< aε+lεw|Lε(w) > + < Pεw|Lε(w) > + < Gε(w, θ, σ)|Lε(w) > .

The first right hand side term is a small perturbation that does not raise any difficulty.

The last hand side term is estimated by (4.15) and (4.20):

|< Gε(w, θ, σ)|Lε(w) >| ≤ C‖w‖ε‖mε × Lε(w)‖2L2 . (4.22)

The first left hand side term yields:

< ∂tw|Lε(w) >=
1

2

d

dt
< Lε(w)|w > −1

2
< ∂tf

σ
ε w|w >

=
1

2

d

dt
< Lε(w)|w > −1

2

N∑
i=1

∂tσi < ∂σif
σ
ε w|w >

Therefore we obtain that

1

2

d

dt
< Lε(w)|w > +‖mε × Lε(w)‖2L2 ≤ O(e−

δ
4ε ) + (O(e−

δ
4ε ) + C‖w‖ε)‖mε × Lε(w)‖2L2 + |A(w)|,

(4.23)
where

A(w) =< Pεw|Lε(w) > +
1

2

N∑
i=1

∂tσi < ∂σif
σ
ε w|w > . (4.24)

Estimate for A(w).
As for the coercivity of Lε, we estimate A(w) for w with support in the domains, for w with support
in one wall, and we generalize the obtained estimates for a general w by using the IMS formula.

In the domains, ∂σif
σ
ε = 0, Lε(w) reduces to −ε∂xxw +

1

ε
w. In addition,

< Pεw|Lε(w) >=<
h

ε
w| − ε∂xxw +

1

ε
w >

so

A(w) ≤ ‖h‖L
∞

ε
‖w‖L2‖mε × Lε(w)‖L2 ≤ ‖h‖L∞‖mε × Lε(w)‖2L2 .
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Concerning the walls we assume that supp w ⊂ [σi − δ, σi + δ]. As for the coercivity of Lε, we
describe w in the mobile frame attached to mε using (4.16), and we obtain that, in the unknown
(r1, r2), the main part of A(w) writes

<
h

ε
`r|Lr >

so by rescaling (3.20), we obtain that for w of support in the ith wall:

|A(w)| ≤ ‖h‖L∞‖mε × Lε(w)‖2L2 .

By using the relevant cut off functions χi satisfying (4.17) and the IMS formula, we obtain that

|A(w)| ≤ (h0 + C
√
ε)‖mε × Lε(w)‖2L2 . (4.25)

End of the proof.
From (4.23), since < Lε(w)|w > controls ‖w‖ε (see estimates (4.19)), with the previous estimates,
we obtain that while σ remains in Σδ:

1

2

d

dt
< Lε(w)|w > +‖mε × Lε(w)‖2L2

(
1− h0 − c

√
ε− C (< Lε(w)|w >)

1
2

)
≤ O(e−

δ
4ε ).

For ε small enough, 1− h0 − c
√
ε ≥ 1− h0

2
. Then while < Lε(w)|w > (t) ≤ 1− h0

4C
, we have:

1

2

d

dt
< Lε(w)|w > +

1− h0

4
‖mε × Lε(w)‖2L2 ≤ O(e−

δ
4ε ),

and by (4.21) there exists γ > 0 such that while < Lε(w)|w > (t) ≤ 1−h0

4C ,

d

dt
< Lε(w)|w > +

γ

ε
< Lε(w)|w >≤ O(e−

δ
4ε ).

By comparison arguments, if ε is small enough so that O(e−
δ
4ε ) is small, we obtain that while

< Lε(w)|w > (t) ≤ 1− h0

4C
,

< Lε(w)|w > (t) ≤ O(e−
δ
4ε )

γ
+ e−

γt
ε

(
< Lε(w0)|w0 > −

O(e−
δ
4ε )

γ

)
(4.26)

so that if < Lε(w0)|w0 > is small enough, then < Lε(w)|w > (t) remains less than
1− h0

4C
, and

Estimate (4.26) remains valid for all time. So the only condition for the validity of these estimates
is that σ(t) remains in Σδ.

The previous estimate shows that the trajectory of the Landau-Lifschitz system (4.1) with initial
data m0 in a small neighborhood of M2δ remains in a small neighborhood of Mδ while it does not
reach the boundary of Mδ, i.e. while the walls are not collapsing.

We control this non collapsing on time intervals in which |σ(t)− σref (t)| ≤ δ (since by assumption,
σref (t) remains in Σ2δ). Using that the system (3.5) satisfied by (θ, σ) is a small perturbation of the
system (4.7) satisfied by (θref , σref ), since the size of this perturbation is controlled by the size of w
estimated by (4.26), we obtain that (θ(t), σ(t)) remains close to (θref (t), σref (t)) on time intervals
of size O(e

c
ε ), and we conclude the proof of Theorem 4.1.

5 Conclusion, open problems

5.1 Straight round nanowire model

The dynamics for Equation (4.1) is the following. Starting from any initial data in H1([0, L];S2),
we observe a first very short phase in which the magnetization organizes itself in domains and walls.
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In a second exponentially long phase, the motion of the walls is approximatively governed by the
system (4.7). This phase is well described by our Theorem 4.1. On the other hand, the first phase is
not mathematically understood. In addition, we are not able to describe the collapse of two walls, or
the collapse of a wall with the boundary. This phenomenon can be induced by the applied magnetic
field (by relaxing the assumptions on the applied field) or can occur ”naturally” without applied
field when two walls are to close one to one another. This kind of dynamics is described by Chen
for the Allen Cahn model (see [23]).

5.2 Other geometries of nanowires

For non round nanowires, the common model is to add an anisotropy in the equivalent demagnetizing
field, that is setting:

Hd(m) = −αm2e2 − βm3e3, α > 0, β > 0.

This model can be justified as in Section 2 by considering the limit when η tends to zero of the
Landau-Lifschitz equation on the domain [0, L]× ηω where ∂ω is an ellipse:

ω =

{
(y, z),

y2

a2
+
z2

b2
< 1

}
.

Let us assume that 0 < α < β. The corresponding demagnetizing energy writes:

Edem(m) = 2

∫
R

(
α|m2|2 + β|m3|2

)
so that the energy of a wall is minimum when the wall profile takes its values in the plane 0xy,
thus we lose the invariance by rotation around the wire axis. This induces a very different behavior
compared to the walls motion in a round wire. Indeed, walls dynamics presents two different regimes
according to the value of the applied field. There exists a threshold hs such that for small constant
applied field h with |h| < hs, the motion of the wall is described by an exact solution of the form

Rθ

(
M0
(x− ct

δ

))
where θ, c and δ only depend on h, so that the wall profile does not turn around the wire and is
dilated (compare with the exact profile (3.6) given for a round wire). The stability for this kind
of motion can be proved with the same method as for the round wire. The problem is much more
complicated for great applied field. If |h| ≥ hs, then we observe a dilatation translation and rotation
of the wall of the form:

Rθ(t)

(
M0
(x−X(t)

δ(t)

))
where the velocity Ẋ(t), the dilatation rate δ(t) and the rotation speed θ̇(t) are periodic in time
(while they are constant for round wires). This behavior is observed numerically and in the experi-
mentations. It is described in the literature in physics (with the same kind of calculation as in [50]),
but the key point of the argumentation is that a term is small so it is neglected in the calculations.
This approximation is not mathematically justified and the existence of exact solutions describing
such a behavior is an open problem.

For the applications, it would be interesting to study the effects of the curvature on the walls motion
for non straight nanowires. In the experimentations, we can see that walls prefer strong curvatures.
Even in short finite curved wires, a wall located at the maximum of the wire curvature seems to be
stable while a single wall on a short straight wire is unstable (see Section 3). The understanding of
this behavior is totally open.
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a network of ferromagnetic nanowires. , submitted.

[43] L. Landau et E. Lifschitz, Electrodynamique des milieux continues, cours de physique théorique,
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