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Abstract. Symmetry-breaking constraints in the form of inequalities between

variables have been proposed for a few kind of solution symmetries in numeric

CSPs. We show that, for the variable symmetries among those, the proposed in-

equalities are but a specific case of a relaxation of the well-known LEX constraints

extensively used for discrete CSPs. We discuss the merits of this relaxation and

present experimental evidences of its practical interest.
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1 Introduction

Numeric constraint solvers are nowadays beginning to be competitive and even to out-

perform, in some cases, classical methods for solving systems of equations and in-

equalities over the reals. As a consequence, their application has raised interest in

fields as diverse as neurophysiology and economics [18], biochemistry, crystallography,

robotics [13] and, more generally, in those related to global optimization [9]. Symme-

tries naturally occur in many of these applications, and it is advisable to exploit them in

order to reduce the search space and, thus, to increase the efficiency of the solvers.

Considerable work on symmetry breaking has been performed for discrete Con-

straint Satisfaction Problems (CSPs) in the last decades [7, 19]. Two main symmetry-

breaking strategies have been pursued: 1) to devise specialized search algorithms that

avoid symmetric portions of the search space [14, 8]; and 2) to add symmetry-breaking

constraints (SBCs) that filter out redundant subspaces [5, 16]. Contrarily to this, there

exists very little work on symmetry breaking for numerical problems. For cyclic vari-

ables permutations, an approach divides the initial space into boxes and eliminates sym-

metric ones before the solving starts [17]. The addition of SBCs has also been proposed,

but only for specific problems or specific symmetry classes, as inequalities between

variables [6, 11, 3].

In Section 2, we show that such inequalities are but a relaxation of the lexicographic-

ordering based SBCs [4] widely used by the discrete CSP community. This relaxation

allows us to generalize these previous works to any variable symmetry and can be de-

rived automatically knowing the symmetries of a problem. In Section 3 we discuss its



merits with respect to lexicographic-ordering based SBCs. In Section 4 we assess its

practical interest. We provide tracks for future developments in Section 5.

2 Symmetry-Breaking Constraints for NCSPs

We are interested in solving the following general Numeric Constraint Satisfaction

Problem (NCSP) (X,D,C): Find all points X = (x1, . . . , xn) ∈ D ⊆ R
n satisfying

the constraint C(X), a relation on R
n, typically a conjunction of non-linear equations

and inequalities.

A function s : Rn → R
n is a symmetry of a NCSP if it maps bijectively solutions

to solutions3, i.e., for all X ∈ D such that C(X) holds, s(X) ∈ D and C(s(X))
also holds. In this case, we say X and s(X) are symmetric solutions, and by extension

for any point Y ∈ D, s(Y ) is a symmetric point. We consider only symmetries that

are permutations of variables. Let Sn be the set of all permutations of {1, . . . , n}. The

image of i by a permutation σ is iσ , and σ is described by [1σ, 2σ, . . . , nσ]. A symmetry

s is a variable symmetry iff there is a σ ∈ Sn such that for any X ∈ D, s(X) =
(x1σ , . . . , xnσ ). We identify such symmetries with their associated permutations and

denote both by σ in the following. Consequently, the set of variable symmetries of a

NCSP is isomorphic to a permutation subgroup of Sn, which are both identified and

denoted by Σ in the following.

Example 1. The 3-cyclic roots problem is: find all (x1, x2, x3) ∈ R
3 satisfying (x1 +

x2+x3 = 0) ∧ (x1x2+x2x3+x3x1 = 0) ∧ (x1x2x3 = 1). This problem has six vari-

able symmetries including identity, Σ = {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2],
[3, 2, 1]}. Hence, all its variables are interchangeable. 3

We say that the symmetries of a CSP are completely broken when a single repre-

sentative in each set of symmetric solutions is retained. To this end, it is possible to

add symmetry-breaking constraints (SBCs) which will exclude all but a single repre-

sentative of the symmetric solutions [7, 19]. Crawford et al. [4] proposed lexicographic

ordering constraints (LEX) that completely break any variable symmetry. Recall that

given X and Y both in R
n the lexicographic order is defined inductively as follows:

for n = 1, X �lex Y ≡ (x1 ≤ y1)

for n > 1, X �lex Y ≡ (x1 < y1) ∨
(

(x1 = y1) ∧ (X2:n �lex Y2:n)
)

where X2:n = (x2, . . . , xn), and the same for Y . For a given symmetry σ, Crawford et

al. define the corresponding SBC LEXσ(X) ≡ X �lex σ(X). Intuitively, this constraint

imposes a total order on the symmetric solutions, hence allowing to retain a single

one w.r.t. a given symmetry σ. One such constraint is thus imposed for each of the

symmetries of a problem in order to break them all. The strength of these constraints is

that they reduce the search space by a factor equal to #Σ, the order of the symmetry

group Σ of the problem. One critical issue however is that the number of SBCs can be

exponential with respect to the number of variables.

3 Nothing is required for non-solution points, i.e., we consider solution symmetries [1].



Example 2. Excluding the identity permutation, a symmetry of any problem which is

irrelevant to break, the LEX constraints for the symmetries of the 3-cyclic-roots problem

are: (x1, x2, x3) �lex (x1, x3, x2), (x1, x2, x3) �lex (x2, x1, x3), (x1, x2, x3) �lex

(x2, x3, x1), (x1, x2, x3) �lex (x3, x1, x2), and (x1, x2, x3) �lex (x3, x2, x1). 3

Since they offer a good trade-off between the solving time reduction they allow,

and the difficulty to handle them, partial SBCs (PSBCs), that retain at least one rep-

resentative of the symmetric solutions, have often been considered. Especially for NC-

SPs, several classes of variable symmetries have been broken using PSBCs having the

form of inequalities between variables. For instance, Gasca et al. [6] proposed PSBCs

xi ≤ xi+1 (i ∈ {1, . . . , n − 1}) for full permutations (Σ = Sn), and PSBCs x1 ≤ xi

(i ∈ {2, . . . , n}) for cyclic permutations (Σ = Cn)4. Similar PSBCs have been pro-

posed for numeric optimization problems with more peculiar symmetry groups, e.g.,

Σ = C2 × Sn in [3] and Σ =
∏

i Spi
in [11].

Example 3. Considering again the 3-cyclic-roots problem, Gasca et al.’s PSBCs are:

x1 ≤ x2 and x2 ≤ x3. Indeed, these inequalities filter out all but a single of the six

symmetries of any solution to this problem. 3

The corner stone of our approach is to note that all the PSBCs mentioned above can

be obtained by relaxing Crawford’s SBCs as follows: For σ ∈ Sn different from the

identity permutation, and X = (x1, . . . , xn), we define the constraint RLEXσ(X) ≡
xkσ

≤ xkσ
σ , where kσ is the smallest integer in {1, . . . , n} such that kσ 6= kσ

σ . The

following proposition establishes that this constraint is a relaxation of a LEX constraint,

i.e., a PSBC: it cannot remove any solution preserved by LEX constraint.

Proposition 1. LEXσ(X) =⇒ RLEXσ(X)

Proof. Since i < kσ implies i = iσ , we have xi = xiσ for all i < kσ . Therefore

LEXσ(X), which is X �lex σ(X), is actually equivalent to Xkσ :n �lex σ(X)kσ :n, i.e.,

(xkσ
< xkσ

σ ) ∨
(

(xkσ
= xkσ

σ ) ∧ (Xkσ+1:n �lex σ(X)kσ+1:n)
)

,

which logically implies (xkσ
< xkσ

σ ) ∨ (xkσ
= xkσ

σ ), that is RLEXσ(X). ⊓⊔

The ad-hoc inequalities proposed so far to partially break specific classes of vari-

able symmetries in NCSPs are just special cases of the RLEX constraints. For instance,

when Σ = Sn, Gasca et al.’s PSBCs are xi ≤ xi+1 (i ∈ {1, . . . , n − 1}) [6]. In

this case, kσ takes all possible values in {1, . . . , n − 1} and kσ
σ all possible values in

{kσ +1, . . . , n}. Hence the corresponding RLEX constraints are xi ≤ xj (i < j). Since

all the inequalities xi ≤ xj with i + 1 < j among them are redundant, they can be

eliminated, yielding the inequalities proposed by Gasca et al.. A similar verification is

easily carried out for the other specific variables symmetries tackled in [6, 3, 11]. Hence,

RLEX constraints generalize these PSBCs to any variable symmetries.

Example 4. Continuing Example 2, the corresponding RLEX constraints are respec-

tively: x2 ≤ x3, x1 ≤ x2, x1 ≤ x2, x1 ≤ x3 and x1 ≤ x3. This set of inequalities can

be simplified to x1 ≤ x2 and x2 ≤ x3, i.e., that presented in Example 3. 3

4 Cn = {[k, . . . , n, 1, . . . , k − 1] : k ∈ {1, . . . , n}}



3 RLEX vs LEX

Advantages. First, we draw the reader’s attention to the simplicity of the relaxed con-

straints w.r.t. the original ones: RLEX constraints are just binary inequalities while LEX

constraints involve all the variables of the symmetries in a large combination of logi-

cal operations. Hence, we expect it is much more efficient to prune RLEX constraints

(no specific algorithm is required) and to propagate the obtained reductions (successful

reductions trigger only constraints depending on two variables), than LEX constraints.

Second, and more prominently, the number of RLEX constraint is always smaller

than the number of LEX constraints, and it is bounded upward by
n(n−1)

2 (number of

different pairs (xi, xj) with i < j), or only n − 1 if one considers a non-redundant

subset of inequalities as we explained previously. In contrast, there can be exponentially

many LEX constraints, one for each permutation in Sn. As remarked by Crawford et al.,

this makes the use of LEX constraints impractical in general and has yielded research

towards simplifying and relaxing them [4]. Oppositely, adding O(n) RLEX constraints

to a CSP model should never be a problem for its practical treatment by a solver.

Similar constraints xkσ
< xkσ

σ were proposed by Puget in [15] as SBCs for (dis-

crete) problems where the variables are subject to an all different constraint. It is thus

possible to obtain the RLEX constraints without having to compute all LEX constraints

by applying the group theory results already used by Puget: From a generating set of the

symmetries Σ of a problem, it is possible to derive a stabilizer chain, i.e., a sequence

of permutation subgroups such that each is contained in the preceding and the permu-

tations in the ith subgroup map all integers in {1, . . . , i} to themselves. The orbit of

the integer i + 1 in the ith subgroup, i.e., all the integers it can be mapped to by any

permutation in this subgroup, thus define exactly the pairs for which we must impose

an inequality. These pairs can be obtained with the Shreier-Sims algorithm which runs

in O(n2 log3(#Σ) + tn log(#Σ)), where t is the cardinality of the input generating

set5. Since #Σ is at most n! (when Σ = Sn), this algorithm runs in polynomial time in

n and t.

Hence, RLEX constraints constitute a generalization of the inequalities proposed so

far for NCSPs that remains of tractable size and can be computed in polynomial time

for any variable symmetries.

Drawbacks. The RLEX constraints break only partially the symmetries that LEX con-

straints break completely. Let us describe more precisely symmetric solutions which

are discarded by LEX but not by RLEX.

Given a symmetry σ and a solution X = (x1, . . . , xn), if σ(X) is discarded by

the corresponding LEX constraint, it means that there exists i such that xi < xiσ and

∀j ∈ {1, . . . , i − 1}, xj = xjσ . If σ(X) is not discarded by the corresponding RLEX

constraint xkσ
≤ xkσ

σ , it means that kσ < i. Thus, xkσ
= xkσ

σ while kσ 6= kσ
σ by

definition, i.e., X must lie on a given hyperplane Huv = {X|xu = xv}.

Hence, all the symmetric solutions that are discarded by LEX constraints (w.r.t. all

the symmetries of the problem) but not by RLEX constraints belong to such hyperplanes.

Because the volume of these hyperplanes is null in R
n, the set of points filtered out by

5 A minimal generating set is O(n) for any subgroup of variable symmetries.



LEX constraints and preserved by RLEX constraints represents a null volume of the

search space. We conclude that RLEX constraints reduce the search space volume by a

factor #Σ identical to that achieved with LEX constraints.

Moreover, numerical constraint solvers cannot eliminate these singular symmetric

solutions even with LEX constraints since they do not distinguish strict and non-strict

inequalities. Indeed, they perform computations using intervals and thus cannot approx-

imate open sets differently from closed ones.

In conclusion, since the aim of PSBCs is essentially to enhance the solvers per-

formances by allowing quick and easy reduction of the search space, it appears RLEX

constraints are a very good trade-off between simplicity and efficiency: they are easy to

derive, simple to handle, and still filter out most of the symmetric search space.

4 Experimental results

We provide experimental evidences of the important performance gains RLEX con-

straints can bring when solving symmetric NCSPs. Indeed, the solving time of a given

NCSP is in general proportional to its search space. We expect RLEX constraints allow

to quickly eliminate large portions of the search space, isolating an asymmetric sub-

search space whose volume is divided by #Σ w.r.t. the initial search space. As a result,

we expect to observe computation time gains proportional to #Σ.

All experiments are conducted on a dual-core equipped machine (2.5GHz, 4Gb

RAM) using the Realpaver [10] constraint solver with default settings.

Preliminar analysis: We first consider homemade scalable problems whose solutions

either lie outside any hyperplane Huv (problems P1, P2), all lie on such hyperplanes

(problems P3, P4), or lie at the intersection of all these hyperplanes (problems P5,

P6). In all cases, we consider problems with only cyclic permutations (P1, P3, P5) and

others with full permutations (P2, P4, P6), i.e., problems for which the volume of the

asymmetric search space is 1
n

and 1
n! of that of the initial search-space respectively :

P1 : X ∈ [−n, n]n,
∏

σ∈Cn
||σ(X)−X∗|| = 0

P2 : X ∈ [−n, n]n,
∏

σ∈Sn
||σ(X)−X∗|| = 0

P3 : X ∈ [−2, 2]n,
∏n

j=1(
∑n

i=1(x((i+j) mod n) + (−1)i)2) = 0

P4 : X =∈ [0, 1]n, ∀i ∈ 1..n
∑

j 6=i x
2
j + xi cos(

∑n

j=1 xj) = 0

P5 : X ∈ [−2, 2]n,
∑n

i=1(x
2
i − 1)2 = 0

P6 : X ∈ [0, 1]n, ∀i ∈ 1..n
∑n−1

j=1 (
∏n−1

l=1 x(i+j+l)modn) = 1

where X∗ is the point (1, . . . , n) ∈ R
n. The solutions of P1 are all cyclic permuta-

tions of X∗ while that of P2 are all permutations of X∗. The solutions of P3 are the

cyclic permutations6 of (−1, 1, . . . ,−1, 1) ∈ R
n; that of P4 are all points of the form

{−1, 1}n. P5 and P6 both have a single (very symmetric) solution: 0n.

6 Note there are only 2 different solutions when n is even, n solutions when it is odd.
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Fig. 1. Time ratios for homemade problems

Figure 1 presents the variation of the ratio between the computation time without

RLEX and the computation time with it (called gain in the following) when the dimen-

sion n varies. In addition to the measured gains, the figure displays (in dotted gray) the

functions of n that best approximate them.

The gains for P1 and P2 follow very closely the reduction factor of their search

space volume, hence confirming our expectations. Note that although the gains are not

as impressive for P1 as for P2, they are already significant: E.g., for n = 50 the com-

putation time is 1124s (> 18min) without RLEX and 29s with RLEX. For P2 they are

really outstanding: E.g., for n = 6, the computations time is 12863s (> 3.5h) without

RLEX but only 19s with RLEX.

For the other problems, the results are more varied: P3 presents only an (almost)

constant gain; P4 shows a gain closer to the reduction factor of the size of its solution set

than to its search space volume reduction factor; P5 offers a (quite flat) linear gain, i.e.,

proportional to its search space volume reduction factor; the gain for P6 follows closely

its search space volume reduction factor7. The factors that could explain this diversity of

behaviors are numerous (e.g., relative pruning power of the original constraints w.r.t. the

added PSBCs, proportion of symmetric solutions with and without RLEX, ...). Further

experiments will be necessary to distinguish the exact effects of all these factors.

The conclusion we draw from these results is that one cannot always expect as

much gain as the search space volume reduction factor, especially when the problem

7 Computations for P6 could not be performed further because the timings were becoming too

large, e.g., 41751s (> 11.5h) for n = 6 without RLEX, as compared to 49.5s with it.



Problem n Sol #Σ Time Time gain

w/RLEX w RLEX

Brown 5 S n! 0.95 0.24 3.9

8 1218 5.32 229.0

Cyclic 4 GS∗ 2n 260 32.1 8.1

roots 5 S 46.6 4.7 9.7

6 S 2017 183 10.9

Cyclohexane 3 S n! 0.24 0.16 1.5

Extended 20 S n

2
! 0.41 0.26 1.6

Freudenstein 140 422 315 1.3

Extended 16 S nn

2
! 1.42 0.03 47.3

Powell 30 844 0.1 8442.0

Feigenbaum 11 GS n 7.30 0.81 9.0

23 10924 1027 10.6

Table 1. Results for various problems from the literature

has singular solutions; still, the gains can be outstanding, and adding RLEX constraints

did not induce any uncompensated overhead in any of the settings we have considered.

Standard benchmark: We also consider a benchmark composed of standard problems

picked from [2]. Their characteristics and the results obtained are reported in Table 1.

For scalable problems we report timings for the smallest and largest dimension n we

tested, allowing one to imagine the gain variation with the dimension. Column ”Sol”

indicates the type of solutions of the problem: G=Generic (i.e., out of any hyperplane

Huv) and S=Singular. Note that most of these standard problems are of type S. Problem

4-cyclic-roots is marked GS∗ because this problem has a continuous solution set which

intersects some Huv hyperplanes. For this problem, timings correspond to paving its

solution manifold with 10−2-wide boxes.

For problems Brown, Cyclic-roots and Extended-Powell, the gain closely follows

the search space volume reduction factor (column #Σ). Still, for problems Extended-

Freudenstein and Feigenbaum the gains remain almost constant as the dimension grows.

These experiments support the preliminary analysis we have performed: We can achieve

important gains for highly symmetric problems and the introduction of RLEX con-

straints at least does not appear counterproductive.

5 Conclusion and Future Prospects

We have presented a generalization of the PSBCs proposed so far for variable symme-

tries in NCSPs. It corresponds to a relaxation of the famous LEX constraints used for

breaking symmetries essentially for discrete CSPs so far. We have discussed the merits

of this relaxation w.r.t. LEX constraints and illustrated its practical interest for NCSPs.

All the arguments we have used are also valid for continuous optimization and

constrained optimization problems. Considering that many of them are not specific to

numeric problems or solvers, it would also be interesting to consider this relaxation



in discrete domains. Hence, we should also consider Mixed-Integer Linear/Nonlinear

Programming and Integer Linear Programming where some of the PSBCs we have gen-

eralized have been proposed [3, 12].
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