
HAL Id: hal-00868234
https://hal.science/hal-00868234

Submitted on 24 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controlling a Solver Execution: the runsolver Tool
Olivier Roussel

To cite this version:
Olivier Roussel. Controlling a Solver Execution: the runsolver Tool. Journal on Satisfiability, Boolean
Modeling and Computation, 2011, 7 (4), pp.139-144. �10.3233/SAT190083�. �hal-00868234�

https://hal.science/hal-00868234
https://hal.archives-ouvertes.fr

Journal on Satisfiability, Boolean Modeling and Computation 7 (2011) 139-144

Controlling a Solver Execution with the runsolver Tool

system description

Olivier Roussel olivier.roussel@cril.univ-artois.fr

Université Lille-Nord de France, Artois, F-62307 Lens

CRIL, F-62307 Lens, France

CNRS UMR 8188, F-62307 Lens, France

Abstract

The runsolver tool was designed for the 2005 edition of the pseudo-Boolean competition
in order to solve the problem of correctly measuring the resources used by solvers, especially
solvers with multiple processes. Since then, it has been improved in several directions
and adopted by several other competitions or frameworks. This paper presents the inner
working of this tool and the technical problems that it addresses.

Keywords: solver control, resources limitation, competitions

Submitted April 2011; revised August 2011; published November 2011

1. Introduction

The task of the runsolver program is to control the execution of a solver in order to ensure
that the solver will not take too much resources (especially time and memory) as well as
gathering some data about the running solver (CPU time, exit code,...).

The development of runsolver was driven by the organization of the following com-
petitions: pseudo-Boolean competitions (PB05, PB06, PB07, PB09, PB10, PB11), SAT
competitions (SAT07, SAT09, SAT11) and CSP/MaxCSP competitions (CPAI06, CPAI08,
CSC09). It has been adopted by other competitions or frameworks: ASP competitions,
MISC11, EDACC,... runsolver is freely available under a GPL license from [1]. This article
briefly describes the problem addressed by runsolver, its architecture as well as how to use
it and decode its data.

2. Controlling the resources

Two major resources to monitor in order to compare solvers are time and memory. There
are two distinct notions of time: wall clock time and CPU time. The wall clock time is the
real time that elapses between the start and the end of a computing task. The CPU time
is the time during which instructions of the program are executed by a processing unit. On
a host with a single processing unit, CPU time and wall clock time are equal as long as
the system does not interrupt the program. As soon as a time-sharing system is used on
a single processing unit, wall clock time will usually be greater than CPU time, because
during some time slices the processor will be allocated to another program. On a host with
n processing units, if the program is able to use efficiently each of these units and is not
interrupted by the system, the CPU time will be equal to n times the wall clock time.

c©2011 Delft University of Technology and the authors.

Olivier Roussel

Generally speaking, the CPU time is a good measure of the computing effort, while wall
clock time corresponds to the user’s perception of the program efficiency. Which notion is
the most important depends on the application and runsolver allows to monitor both.

There are two notions of memory as well: resident size and virtual size. Resident size is
the portion of the program that is stored in main memory. Virtual size is the total size of
the program including the parts which are swapped to disk. runsolver monitors virtual size
which is considered the actual resource consumed. Besides, enforcing a limit on memory is
generally used to prevent the solver from swapping, which severely degrades performances
and makes the time measures much less representative. This only makes sense if the limit
is enforced on virtual size.

3. Genesis of runsolver

The main goal of runsolver is to obtain a reliable measure of the resources used by a solver,
as well as to enforce limits on these. One key point is that runsolver should not require any
privilege. This is to simplify its adoption and avoid some security risks. Basically, this can
be done using time(1)1. and ulimit(1) but this approach frequently fails for solvers running
multiple processes, which occurs as soon as a shell script is used to start the solver.

Indeed, the time(1) command uses times(2) to display the time statistics of the solver.
However, this system call only returns the “resources used by those of its children that have

terminated and have been waited for”. This implies that if, for some reason, the parent
process doesn’t call wait(2), the resources used by the child will be ignored. This also
means that these commands cannot enforce reliable limits for multi-process solvers because
the resources used by the child are only reported when it terminates.

The second goal of runsolver is to warn the solver that the time limit has been reached
and give it a chance to terminate gracefully. This is an essential feature for the pseudo-
Boolean competition because, when a solver is not able to find the optimal solution within
the time limit, it is still able to print the best solution it obtained.

The first version of runsolver in 2005 started by enforcing some resource limits with
setrlimit(2), then launched the solver and waited for its completion. Every ten seconds,
it fetched some data about the system (average load) as well as information on the solver
process such as the current memory consumption and CPU time elapsed so far (obtained
from the /proc/*/stat* files). On completion of the solver, the solver exit code, as well as
a summary of the resources used were printed. When the time limit was reached, a SIGTERM

signal was sent to the solver. Then the solver had two seconds to output the best result it
obtained. After this delay, a SIGKILL was sent to terminate the solver.

All in all, this first version was merely an integration of ulimit(1), time(1) and ps(1)
with a few improvements. It had two main weaknesses: it was unreliable for multi-process
solvers (cf. the problem with wait(2)) and could not send a SIGTERM when the solver
exceeded the memory limit.

The second version of runsolver (2005) attempted to fix these problems by intercepting
the system calls made by the solver and was inspired by two programs: strace [2] which
prints the system calls performed by a program and s4g [3] which is a generic sandbox for

1. Throughout the paper, the section of manual is indicated in parentheses in order to easily distinguish
commands (section 1) from system or library calls (section 2).

140

Controlling a Solver Execution with the runsolver Tool

programs run on a grid. In order to intercept system calls without any privilege and for
any kind of executable, the solver was run in trace mode (see ptrace(2)). In this mode,
the solver is suspended by the kernel each time it enters or exits a system call and the
runsolver process is notified by a SIGTRAP signal. The controlling process can examine the
system call and intercept its parameters and result. The system calls of interest are the
ones related to processes (clone and exit) as well as memory management (brk, mmap,

munmap, mremap). The system calls open, execve and the ones related to sockets were also
intercepted to check if the solver conformed to the evaluation policy. With this technique,
runsolver easily maintains a list of the processes created by the solver and adds the CPU
time of all its child processes to decide if the solver must be stopped by a SIGTERM. Tracking
the memory usage of the solver was more difficult because there are a number of system
calls to allocate memory with subtle interactions. That version only maintained a upper
bound of the memory used by the solver and its children and, when this bound exceeded
the memory limit, it fetched the actual memory usage of the processes in the /proc/*/stat*

files.

Stopping a solver when it uses too much memory is actually harder than stopping it
when it exceeds the time limit. In fact, there are two limits: a soft limit which sends a
SIGTERM to the solver and a hard limit (set by setrlimit(2)) which will immediately kill the
solver. The hard limit was set as the soft limit plus 50 MB. For these reasons, a solver that
allocates too much memory in a single call can hit the hard limit immediately and get killed
or see its memory allocation fail.

Intercepting system calls has necessarily a side effect: it slows down the solver. However,
the solver is only stopped when it performs system calls and, as it should not happen that
often in a solver, only slightly different performances were expected. Unfortunately, the
impact was much more important and varied from solver to solver. This second version
increased the CPU time by at least 60% and up to 160% for some solvers (see [4] for
details). This was clearly unacceptable.

The third version of runsolver (2006) abandoned the idea of intercepting system calls,
but improved the identification of the solver sub-processes and increased the monitoring
frequency. Every second, runsolver scans the list of processes on the host and identifies a
tree of processes rooted at the solver. This is enough to identify the processes created by
the solver or one of its descendant. Every tenth of a second, runsolver updates the CPU
time of each of the solver processes by scanning the relevant files in /proc. As soon as one
of the limits is reached (CPU time, wall clock time or memory), the solver is sent a signal
in order to stop it. This current version is detailed in the next section.

4. Current version

As explained previously, the current version maintains a list of processes created by the
solver or one of its descendants. This list is indeed a tree and is updated every second. The
resource consumption of all the processes in this list is sampled every tenth of a second.
Updating the list of processes requires scanning each process in the /proc directory and
generating the tree of processes rooted at the solver by using the ppid information. This
is more expensive than just updating the resources consumption of each process in the list.
This is why the process list is updated at a frequency of 1 Hz, while the resources used

141

Olivier Roussel

are updated at a frequency of 10 Hz. The CPU time used by the solver is the sum of all
CPU times of the processes or threads that it has launched (directly or indirectly). The
memory used by the solver is the sum of all virtual sizes of the processes that the solver
has launched. The memory of threads is not counted since they share the same memory as
their parent process.

Obviously, time resources are expected to grow monotonically between each sample. In
practice, this is not the case! As an example, if a script shell is used to start the solver, we
can have a global CPU time of 100 s at sample i, which drops at only 1 s at sample i + 1.
Once again, this is explained by the fact that the resources of a child are only reported to
its parent when wait(2) is called. In our example, the child process has used 99 s CPU time
and terminates between the two samples. If the parent has not called wait(2), the CPU
time of its child is lost and we can only observe the CPU time of the parent process (1 s).
runsolver identifies these cases and keeps track of this lost time.

Another essential feature of runsolver is its ability to timestamp each line printed by
the solver. Even once the solver has exited, this allows to easily identify at what time some
events occurred. For example, it can be used to learn how much time it took to parse
the instance. This feature was developed specifically for the pseudo-Boolean competition,
in order to identify at what times a solver discovers a solution which is better than the
previous ones. This does not require a specific instrumentation of the solver: it just prints
a line indicating the quality of the new solution, and runsolver takes care of printing the
time elapsed since the start of the program. runsolver waits with select(2) for the solver
to print a line. Then the timestamp is obtained by calling gettimeofday(2) which returns
wall clock time. Since it would be too expensive to update the CPU time of the solver
processes each time a line is printed, the timestamp in CPU time is extrapolated from the
two nearest samples. Another point is that the solver must flush its buffer each time it
prints a line, otherwise the transmission of the line to runsolver may be delayed. If a solver
does not flush its output, runsolver is able to fool the solver and cause an automatic flush
of the stream by using a pseudo-terminal (option --use-pty) instead of a plain pipe2..

Some solvers are able to generate a huge amount of output (several GiB) and it is
sometimes necessary to impose a quota to avoid filling the disk with the solver garbage.
This can happen if debugging lines or progression bars are used by the solver. To enforce
a quota on the solver output, runsolver is able to retain only the first x MiB of output as
well as the last y MiB. If the solver prints more than x + y MiB, the data in excess is lost,
but the amount of dropped data is indicated by a message. This mode is activated by the
--output-limit option which requires two parameters: the first one is x (the size of the
initial part of output to preserve) and the second one is x + y (the total size of output that
will be preserved).

If it appears that a solver doesn’t have full access to the CPU, runsolver is able to
display the other processes which are competing with the solver for execution on the CPU.
This is triggered when the ratio CPU time/wall clock time drops under a given threshold
(0.8 in the current version).

The latest feature added to runsolver is the ability to indicate which cores are allocated
to a solver (and to each of its processes) as well as to allocate to a solver a given subset

2. The C library automatically flushes its buffer after the end of line when the file is a terminal.

142

Controlling a Solver Execution with the runsolver Tool

of the host cores (cf. sched setaffinity(2) and sched getaffinity(2)). It is interesting to
notice that the Linux kernel does not necessarily number the cores of a same chip with
consecutive numbers. For example, on the hosts used in the 2011 edition of the SAT and
PB competitions, the cores of the first processor are numbered 0, 2, 4, 6 and the ones of
the second processor are numbered 1, 3, 5, 7. The runsolver process itself attaches to the
last available core, which limits interferences between a sequential solver and the runsolver

program as soon as at least two cores are available.

One key feature of runsolver is that it regularly prints the list of processes and threads
that the solver runs, with the information gathered from the system. This is important to
identify if some processes terminated unexpectedly or for justifying that a solver exceeded
one of the limits. Even if runsolver collects data every tenth of a second, if would not make
sense to record each available sample3.. Besides, the most relevant events occur generally
at the start and the end of the program. Therefore, runsolver uses a buffer of samples
which allows it to print a greater number of samples at the start and the end of the solver
execution, and only one sample per minute otherwise.

In general, runsolver has a very low impact on the solver performances but this cannot
be guaranteed. Indeed, since runsolver executes concurrently with the solver, they both
compete for CPU and memory access. Therefore, there is necessarily a perturbation on
the solver, one reason being cache pollution by runsolver. Such an effect is obviously
highly dependent on the hardware and almost impossible to avoid. To check the impact of
runsolver, minisat2 was run four times on QG6-gensys-brn007.sat05-2684.reshuffled-07.cnf,
on a host with an Intel Core2 quad-core CPU Q9300 at 2.5 GHz. time(1) reported a
CPU time of 34.38 s in average, runsolver running on 4 cores reported 34.35 s, runsolver

on 2 cores reported 34.41 s and runsolver on a single core reported 34.38 s. In these
experiments, runsolver itself consumed 0.33 s of CPU time. We can observe that in this
case, the perturbation is negligible.

5. Using runsolver

Using runsolver is extremely easy since it does not require any privilege. The syntax is
essentially the same as time(1): runsolver [options] solver [args...]. runsolver accepts
many options beyond those already mentioned. -o allows to redirect the solver output to
a file while -i allows to redirect the solver input from a file. The data gathered about the
processes can be redirected to a file with the -w option. The delay between the SIGTERM
and the SIGKILL signals can be specified with -d. Limits on CPU time, wall clock time, size
of virtual memory and even stack size can be specified (options -C, -W, -M, -S respectively).

As an example, one can type runsolver --timestamp -w watcher.out -o solver.out

minisat file.cnf4.. The file solver.out will contain the following lines (by lack of space,
irrelevant parts of the output have been omitted):

0.00/0.00 This is MiniSat 2.0 beta

[...]

0.00/0.07 ======================[Search Statistics]==========================

0.00/0.07 |Conflicts| ORIGINAL | LEARNT | Progress |

0.00/0.07 | |Vars Clauses Literals |Limit Clauses Lit/Cl | |

3. For a multi-thread program and a runtime of 5000 s, the resulting file would have a size of 190 MiB!
4. The actual file used in this experiment is QG6-gensys-brn007.sat05-2684.reshuffled-07.cnf.

143

Olivier Roussel

0.00/0.07 ===

0.00/0.07 | 0 |1234 4590 36164 | 1530 0 -nan | 0.000 % |

[...]

15.39/15.44 | 443167 |1232 3780 29076 | 9357 7397 19 | 2.980 % |

24.78/24.89 | 664850 |1230 3754 28976 |10293 6320 15 | 3.115 % |

34.37/34.41 ===

[...]

34.37/34.41 UNSATISFIABLE

The first figure on each line is the estimated CPU time and the second figure is the wall
clock time. This information tells us when the solver performed its restarts. One of the
samples printed by runsolver is the following:

[startup+0.700115 s]

/proc/loadavg: 0.27 0.16 0.06 2/272 28125

/proc/meminfo: memFree=1687372/3926240 swapFree=0/0

[pid=28125] ppid=28123 vsize=16632 CPUtime=0.69 cores=0-3

/proc/28125/stat : 28125 (minisat) R 28123 28125 27882 34816 28123 4202496 954 [...]

/proc/28125/statm: 4158 797 241 20 0 752 0

Current children cumulated CPU time (s) 0.69

Current children cumulated vsize (KiB) 16632

It indicates the time of the sample, the host load average, the current memory and swap
used by the system, the list of processes of the solver and the cumulated CPU time and
virtual memory size. For each process, the resources used are displayed, including the cores
which are allocated to the process. The stat and statm file are also displayed, to allow
post-mortem investigation if needed.

6. Conclusion

runsolver is a useful tool for controlling a solver execution and gathering different relevant
information during its execution. The experience accumulated during the different compe-
titions has driven its development. A number of essential features such as timestamping
have been incorporated.

This kind of tool would be perfect if it did not use any resource itself, which is obviously
impossible. In computer science too, measurement perturbs the experiment. We believe
that the current version of runsolver is a good compromise but there is still hope that it
can be improved.

The future development of runsolver will probably be to incorporate the features of
the sandbox(8) command which allows to enforce a SElinux policy that sets up a sandbox,
preventing the solver from performing undesired actions on the system.

References

[1] The runsolver homepage. http://www.cril.univ-artois.fr/~roussel/runsolver/.

[2] W. Akkerman et al. The strace homepage. http://sourceforge.net/projects/strace/.

[3] T. Morlier. S4G: a Sandbox for Grids. http://s4g.gforge.inria.fr/.

[4] V. Manquinho and O. Roussel. The First Evaluation of Pseudo-Boolean Solvers (PB’05),
Journal on Satisfiability, Boolean Modeling and Computation 2:103-143, 2006.

144

http://www.cril.univ-artois.fr/~roussel/runsolver/
http://sourceforge.net/projects/strace/
http://s4g.gforge.inria.fr/

	Introduction
	Controlling the resources
	Genesis of runsolver
	Current version
	Using runsolver
	Conclusion

