
HAL Id: hal-00868187
https://hal.science/hal-00868187v1

Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic Parallel DPLL
Youssef Hamadi, Said Jabbour, Cédric Piette, Lakhdar Saïs

To cite this version:
Youssef Hamadi, Said Jabbour, Cédric Piette, Lakhdar Saïs. Deterministic Parallel DPLL. Journal
on Satisfiability, Boolean Modeling and Computation, 2011, 7 (4), pp.127-132. �hal-00868187�

https://hal.science/hal-00868187v1
https://hal.archives-ouvertes.fr

Journal on Satisfiability, Boolean Modeling and Computation 7 (2011) 127-132

Deterministic Parallel DPLL

system description

Youssef Hamadi youssefh@microsoft.com

Microsoft Research

7 J J Thomson Avenue, Cambridge CB3 0FB, United Kingdom

LIX École Polytechnique, F91128 Palaiseau, France

Said Jabbour jabbour@cril.fr

Cedric Piette piette@cril.fr

Lakhdar Sais sais@cril.fr

Université Lille-Nord de France, Artois

CRIL, CNRS UMR 8188, F-62307 Lens

France

Abstract

Current parallel SAT solvers suffer from a non-deterministic behavior. This is the
consequence of their architectures which rely on weak synchronizing in an attempt to
maximize performance. This behavior is a clear downside for practitioners, who are used to
both runtime and solution reproducibility. In this paper, we propose the first Deterministic
Parallel DPLL engine. Our experimental results clearly show that our approach preserves
the performance of the parallel portfolio approach while ensuring full reproducibility of the
results.

Keywords: SAT solving, parallelism

Submitted April 2011; revised July 2011; published November 2011

1. Introduction

Parallel SAT solving has received a lot of attention in the last three years. This comes from
several factors like the wide availability of cheap multicore platforms combined with the
relative performance stall of sequential solvers. Unfortunately, the demonstrated superiority
of parallel SAT solvers comes at the price of non reproducible results in both runtime and
reported solutions. This behavior is the consequence of their architectures which rely on
weak synchronizing in an attempt to maximize performance.

In this work, we propose a deterministic parallel SAT solver. Its results are fully repro-
ducible, i.e., reproducible parallel exploration of the search space, which includes the same
reported model or unsatisfiable proof and runtime. It defines a controlled environment based
on a total ordering of solvers’ interactions through synchronization barriers. To maximize
efficiency, information exchange (conflict-clauses) and check for termination are performed
on a regular basis. The frequency of these exchanges greatly influences the performance of
our solver. The paper explores the trade off between frequent synchronizing which allows
the fast integration of foreign conflict-clauses at the cost of more synchronizing steps, and
infrequent synchronizing at the cost of delayed foreign conflict-clauses integration.

c©2011 Delft University of Technology and the authors.

Youssef Hamadi et al.

Algorithm 1: Deterministic Parallel DPLL

Data: A CNF formula F ;
Result: true if F is satisfiable; false otherwise

1 begin

2 <inParallel, 0 ≤ i < nbCores>

3 answer[i] = search(corei) ;
4 for (i = 0; i < nbCores; i++) do

5 if (answer[i]! = unknown) then

6 return answer[i];

In the last two years, portfolio-based parallel solvers became prominent, and we are not
aware of a recently developed divide-and-conquer approach. We believe that these parallel
portfolio approaches represent the current state-of-the-art in parallel SAT [1, 2, 3, 4].

2. Deterministic Parallel DPLL

In this section, we present the first deterministic portfolio based parallel SAT solver. As
sharing clauses is proven to be important for the efficiency of parallel SAT solving, our goal
is to design a deterministic approach while maintaining at the same time clause sharing. To
this end, our determinization approach is first based on the introduction of a barrier directive
(<barrier>) that represents a synchronization point at which a given thread will wait until
all the other threads reach the same point. This barrier is introduced to synchronize both
clause sharing between the different computing units and termination detection (Section
2.1). Secondly, to enter the barrier region, a synchronization period for clause sharing is
introduced and dynamically adjusted (Section 2.2).

2.1 Static Determinization

Let us now describe our determinization approach of non-deterministic portfolio based par-
allel SAT solvers. Let us recall that a portfolio based parallel SAT solver runs different
incarnations of a DPLL-engine on the same instance. Lines 2 and 3 of the Algorithm 1
illustrate this portfolio aspect by running in parallel these different search engines on the
available cores. To avoid non determinism in term of a reported solution or an unsatisfiabil-
ity proof, a global data structure called answer is used to record the satisfiability answer of
these different cores. The different threads or cores are ordered according to their threads
ID (from 0 to nbCores-1). Algorithm 1 returns the result obtained by the first core in this
ordering who answered the satisfiability of the formula (lines 4-6).

This is a necessary but not a sufficient condition for the reproducibility of the results.
To achieve a complete determinization of the parallel solver, let us take a closer look to
the DPLL search engine associated to each core (Algorithm 2). In addition to the usual
description of the main component of DPLL based SAT solvers, we can see that two suc-
cessive synchronization barriers (<barrier>, lines 13 and 18) are added to the algorithm.
To understand the role of these synchronizing points, we need to note both their placement
inside the algorithm and the content of the region circumscribed by these two barriers.
First, the barrier labeled barrier1 (line 13) is placed just before any thread can return a
final statement about the satisfiability of the tested CNF. This barrier prevents cores from

128

Deterministic Parallel DPLL

Algorithm 2: search(corei)

Data: A CNF formula F ;
Result: answer[i] = true if F is satisfiable; false if F is unsatisfiable, unknown otherwise

1 begin

2 nbConflicts=0;
3 while (true) do

4 if (!propagate()) then

5 nbConflicts++;
6 if (topLevel) then

7 answer[i]= false;
8 goto barrier1;

9 learntClause=analyze();
10 exportExtraClause(learntClause);
11 backtrack();
12 if (nbConflicts % period == 0) then

13 barrier1: <barrier>

14 if (∃j|answer[j]! = unknown) then

15 return answer[i];
16 updatePeriod();
17 importExtraClauses();
18 <barrier>

19 else

20 if (!decide()) then

21 answer[i]= true;
22 goto barrier1;

returning their solution (i.e. model or refutation proof) in an anarchic way, and forces them
to wait for each other before stating the satisfiability of the formula (line 14 and 15). This
is why the search engine of each core goes to the first barrier (labeled barrier1) when the
unsatisfiability is proved (backtrack to the top level of the search tree, lines 6-8), or when
a model is found (lines 20-22). At line 14, if the satisfiability of the formula is answered by
one of the cores (∃j|answer[j]! = unknown), the algorithm returns its own answer[i]. If
no thread can return a definitive answer, they all share information by importing conflict
clauses generated by the other cores during the last period (line 17). After each one of them
has finished to import clauses (second barrier, line 18), they continue to explore the search
space looking for a solution. This second synchronization barrier is integrated to prevent
each core from leaving the synchronization region before the others. In other words, when
a given core enter this second barrier, it waits for all other cores until all of them have
finished importing the foreign clauses. As different clauses ordering will induce different
unit propagation ordering and consequently different search trees, the clauses learnt by the
other cores are imported (line 17) while following a fixed order of the cores w.r.t. their
thread ID.

To complete this detailed description, let us just specify the usual functions of the
search engine. First, the propagate() function (line 4) applies classical unit propagation
and returns false if a conflict occurs, and true otherwise. In the first case, a clause is learnt
by the function analyze() (line 9), such a clause is added to the formula and exported to the
other cores (line 10, exportExtraClause() function). These learned clauses are periodically
imported in the synchronization region (line 17). In the second case, the decide() function

129

Youssef Hamadi et al.

choses the next decision variable, assigns it and returns true, otherwise it returns false as
all the variable are assigned i.e., a model is found.

Note that to maximize the dynamics of information exchange, each core can be syn-
chronized with the other ones after each conflict, importing each learnt clause right after it
has been generated. Unfortunately, this solution proves empirically inefficient, since a lot of
time is wasted by the thread waiting. To avoid this problem, we propose to only synchro-
nize the threads after some fixed number of conflicts period (line 10). This approach, called
(DP)2LL static(period), does not update the period during search (no call to the function
updatePeriod(), line 16). However, even if we have the ”optimal” value of the parameter
period, the problem of thread waiting at the synchronization barrier can not be completely
eliminated. Indeed, as the different cores usually present different search behaviors (differ-
ent search strategies, different size (i.e., number of clauses) of the learnt databases, etc.),
using the same value of the period for all cores, leads inevitably to wasted waiting time at
the first barrier.

2.2 Speed-based Dynamic Synchronization

In this section, we propose a speed-based dynamic synchronization of the value of the pe-
riod. Our goal is to reduce as much as possible the time wasted by the different cores at
the synchronization barrier. The time needed by each core to perform the same number
of conflicts is difficult to estimate in advance; however we propose an interesting approxi-
mation measure that exploits the current state of the search engine. As decisions and unit
propagations are two fundamental operations that dominate the SAT solver run time, esti-
mating their cost might lead us to a better approximation of the progression speed of each
solver. Consequently, our speed-based dynamic synchronization of the period is a function
of the number of unit propagation.

Let us formally describe our approach. In our dynamic synchronization strategy, for
each core or computing unit ui, we consider a synchronization-time sequence as a set of
steps tk

i
with t0

i
= 0 and tk

i
= tk−1

i
+ periodk

i
where periodk

i
represents the time window

defined in term of number of conflicts between tk−1
i

and tk
i
. Obviously, this synchronization-

time sequence is different for all the computing units ui (0 ≤ i < nbCores). Let us define
∆k

i
as the set of clauses currently in the learnt database of ui at step tk

i
. In the sequel,

when there is no ambiguity, we sometimes note tk
i

simply k.

Let us now formally describe the dynamic computation of these synchronization-time
sequences. Let m = max∀ui

(|∆k

i
|), where 0 ≤ i < nbCores, be the size of the largest learnt

clauses database and Sk

i
=

|∆k

i
|

m
the ratio between the size of the learnt clauses database of

ui and m. This ratio Sk

i
represents the speedup of ui. When this ratio tends to one, the

progression of the core ui is closer to the slowest core, while when it tends to 0, the core
ui progresses more quickly than the slowest one. For k = 0 and for each ui, we set period0

i

to α, where α is a natural number. Then, at a given time step k > 0, and for each ui,
the next value of the period is computed as follows: periodk+1

i
= α + (1 − Sk

i
) × α, where

0 ≤ i < nbCores. Intuitively, the core with the highest speedup Sk

i
(tending to 1) should

have the lowest period. On the contrary, the core with the lowest speedup Sk

i
(tending to

0) should have the highest value of the period.

130

Deterministic Parallel DPLL

3. Evaluation

All the experimentations have been conducted on Intel Xeon 3GHz under Linux CentOS
4.1. (kernel 2.6.9) with a RAM limit of 2GB. Our deterministic DPLL algorithm has been
implemented on top of the portfolio-based parallel solver ManySAT (version 1.1). The timeout
was set to 900 seconds for each instance. We used the 100 instances proposed during the
recent SAT Race 2010, and we report for each experiment the number of solved instances
(x-axis) together with the total needed time (y-axis) to solve them. Each parallelized solver
is running using 4 threads. Note that in the following experiments, we consider the real
time used by the solvers, instead of the classic CPU time. Indeed, in most architectures, the
CPU time is not increased when the threads are asleep (e.g. waiting time at the barriers),
so taking the CPU time into account would give an illegitimate substantial advantage to
(DP)2LL.

3.1 Static Period

In a first experiment, we have evaluated the performance of our Deterministic Parallel DPLL
((DP)2LL) with various static periods. Figure 1 presents the obtained results. First, a
sequential version of the solver has been used (ManySAT using 1 core). Unsurprisingly, this
version obtains the worst global results by only solving 68 instances in more than 11,000
seconds. This result enables to show the improvement obtained by the use of parallelized
engines. We also report the results obtained by the non-deterministic solver ManySAT 1.1.
Note that executing several times this version may lead to different results. This non-
deterministic solver has been able to solve 75 instances within 8,850 seconds. Next, we
ran a deterministic version of ManySAT, i.e., (DP)2LL, where each core synchronizes with
the other ones after each clause generation ((DP)2LL static(1)). We can observe that the
synchronization barrier is computationally expensive. Indeed, the deterministic version is
clearly less efficient than the non-deterministic one, by only solving 72 instances in more
than 10,000 seconds.

 0

 2000

 4000

 6000

 8000

 10000

 50 55 60 65 70 75

cu
m

ul
at

ed
 ti

m
e

(s
ec

on
ds

)

#solved instances

Sequential
ManySat 1.1

(DP)2LL_static(1)
(DP)2LL_static(100)

(DP)2LL_static(10000)

 0

 2000

 4000

 6000

 8000

 10000

 50 55 60 65 70 75

cu
m

ul
at

ed
 ti

m
e

(s
ec

on
ds

)

#solved instances

Sequential
ManySat 1.1

(DP)2LL_static(100)
(DP)2LL_dynamic

Figure 1. Performances using static and dynamic synchronizing

131

Youssef Hamadi et al.

This negative result is mainly due to the time wasted by the cores waiting for each
others on a (very) regular basis. To overcome this issue, we also tried to synchronize the
different threads only after a given number of conflicts (100, 10000). Figure 1 shows that
those versions outperform the ”period=1” one, but still, stay far from the results obtained
by the non-deterministic version.

3.2 Dynamic Period

In a second experiment, we tried to empirically evaluate our dynamic strategy. We compare
the results of this version with the ones obtained by ManySAT 1.1, and with the results of the
best static version (100), and of the sequential one too. The results are reported in Figure 1.
The dynamic version is run with parameter α = 300. This experiment empirically confirms
the intuition that each core should have a different period value, w.r.t., the size of its own
learnt clauses database, which heuristically indicates its unit propagation speed. Indeed,
we can observe in Figure 1 that the ”solving curve” of this dynamic version is really close
to the one of ManySat 1.1. This means that the 2 solvers are able to solve about the same
amount of instances within about the same time. Moreover, this adaptive version is able
to solve 2 more instances than the non-deterministic one, which makes it the most efficient
version tested during our experiments.

4. Discussion

In this paper, we have presented (DP)2LL, the first deterministic parallelized procedure for
SAT. This algorithm mainly consists in introducing two synchronization barriers to existing
parallel portfolios. It has been integrated in ManySAT and its integration in other portfolios
should be straight-forward.We have proposed and evaluated different synchronizing strate-
gies and our experiments showed that our (DP)2LL can compete against a state-of-the-art
non-deterministic parallel solver.

References

[1] A. Biere. Lingeling, plingeling, picosat and precosat at SAT race 2010. Technical Report
10/1, FMV Reports Series, 2010.

[2] Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: a parallel SAT solver. Journal on

Satisfiability, Boolean Modeling and Computation, 6:245–262, 2009.

[3] S. Kottler. SArTagnan: solver description. Technical report, SAT Race 2010, July 2010.

[4] T. Schubert, M. Lewis, and B. Becker. Antom: solver description. Technical report,
SAT Race, 2010.

132

	Introduction
	Deterministic Parallel DPLL
	Static Determinization
	Speed-based Dynamic Synchronization

	Evaluation
	Static Period
	Dynamic Period

	Discussion

