N
N

N

HAL

open science

Transient acoustic wave propagation in

non-integer-dimensional rigid porous media.
Amine Berbiche, Mohamed Fellah, Zine El Abiddine Fellah, Mustapha
Sadouki, Claude Dépollier

» To cite this version:

Amine Berbiche, Mohamed Fellah, Zine El Abiddine Fellah, Mustapha Sadouki, Claude Dépollier.
Transient acoustic wave propagation in non-integer-dimensional rigid porous media.. Fifth Biot Con-

ference on Poromechanics, Jul 2013, Vienne, Austria. pp.259-266. hal-00868183

HAL Id: hal-00868183
https://hal.science/hal-00868183
Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00868183
https://hal.archives-ouvertes.fr

“Template” — 2013/10/1 — 10:30

Transient acoustic wave propagation in non-integer-dimensional rigid porous

media.
A. Berbiché, M. Fellah, Z.E.A. Fellai}, M. Sadouki and C. Depolliet

! Laboratoire de Physique Theéorique, Faculté de Physi¢y®THB, BP 32 El
Alia, Bab Ezzouar 16111, Algérie, email: amine.berbiclya@o.fr, email: mfel-
lah@usthb.dz.

2 LMA, CNRS, UPR 7051, Aix-Marseille Univ, Centrale MarseilF-13402 Marseille
Cedex 20, France, email: Fellah@Ilma.cnrs-mrs.fr.

3 Faculté des Sciences et Technique, Université de Kheriiard, Route de Thénia,
Khemis Miliana BP 44225, Algérie , email: sad.mus17@yafoo

4 LUNAM Universite du Maine. UMR CNRS 6613 LAUM UFR STS Avenue Kes-
siaen 72085 Le Mans CEDEX 09 France, email: Claude.Dep@limiv-lemans.fr.

ABSTRACT

This study concerns the ultrasonic wave propagation irtiraal dimensional
rigid porous media. A Biot equivalent fluid model with a naridger dimensional space
is developed using the Stillinger-Palmer-Staravinou falism. A generalized lossy
wave equation is derived and solved analytically in time domThe coefficients of
the propagation equation are constant and depend only drattimnal dimension and
the acoustical parameters of the porous material. As integér dimension case, the
obtained propagation equation contains fractional deéve#erms that describe viscous
and thermal interactions between the solid and the fluid.dymamic response of the
material is obtained using the Laplace transform method.

1 INTRODUCTION

Understanding sound wave propagation in porous materdilsaged by vis-
cous fluid is important in various applications as architesdtacoustics, geophysics,
rock mechanics (Allardt al 2009). In these media wave attenuation results from vis-
cous dissipation due to the flow created by the passing waep@ssing wave creates
local pressure gradients within the fluid phase, leadindhéofluid flow. Because of
the complicated structure of most porous materials, theded fluid flow can take
place on various length scales. The real structure of parmdia is characterized by a
network of interconnected pores forming an extremely utaggeometry. A possible
way of describing the complex structure of such media is ®the theory of fractal
(Adler 1997) sets with non integral dimension. A fractal iguantity which displays
self-similarity on all scales. In physics, behind this wase understand object or phe-
nomenon having no characteristic length or having stratuetails in a hierarchy of



“Template” — 2013/10/1 — 10:30

scales which cannot be described by smooth functions. Tjeetadoes not need to ex-
hibit exactly the same structure at all scales but the sapeed§/structures must appear
on all scales.

Modeling of acoustic propagation in in non-integer-dimenal porous media
was initiated by Depollieet al (2008) using the Stillinger (1977), Palmer-Stavrinou
(2004) formalism. In this work, we develop a temporal moaelthe propagation of
ultrasonic waves in non-integer-dimensional rigid pormedium. We use the notion
of fractional derivatives (Samket al 1993) to describe the visco-thermal exchange
between fluid and structure. An original fractional propgagaequation is obtained for
the ultrasonic propagation in fractal porous material wiigid structure.

2 EQUIVALENT FLUID MODEL

In the acoustics of porous materials, one distinguishesttmations according
to whether the frame is moving or not. In the first case, theadyins of the waves due
to the coupling between the solid skeleton and the fluid i$ degcribed by the Biot
theory (Biot 1956). In air-saturated porous media, theatibns of the structure can be
neglected when the excitation is not very important and theas can be considered to
propagate only in fluid. This case is described by the modebaivalent fluid which
is a particular case of the Biot model. Express the Lagranggmsity, = 7 — V. The
expression of the kinetic energy is given biy:= $p; (%)2, whereu is the fluid dis-
placementp; is the fluid density. The expression of the potential enéigy given by:
V= %K (%)2, wherekK, is the compressibility modulus of the fluid. The Lagrangian
density is then written by:

1 ou\® 1 ou\’
£=30 <a) —ak (%) ' S
The principle of action for the Lagrangian system dependthernvector fieldy(x),
and spatial and temporal derivativ@sy(x) is given by the integral

5= / 0L ((x), Byp(x)) @)

with integration between the initial and final instant. The action can be written in
terms of the Lagrange density by:

L= [ dPuL (p(a). 0u0(a)) ©)
o0
whereD is the spatial dimension, arif2 the border. Where the action

S= [ dPar (4)
o
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where0(} is the boundary for all coordinates. Taking into accountuheations and
minimizing the actionS, i.e 9S = 0, usual equations of Euler-Lagrange are obtained

oL oL
9 (8@@) =0 ©)

wherep = z,y, z,t andy = u,, u,, u,. For propagation along the-axis, We obtain
the equation of wave propagation in a lossless medium:

Ou(x,t) pr\ OPu(x,t)
O _<E) o ©)

Within the framework of the acoustic propagation in a porogisl structure, the den-
sity and compressibility of the fluid are "renormalized” thetfluid-structure interac-
tions:p; — pra(w) andK, — K,/B(w) giving the following Helmholtz equation in
lossy porous material with rigid structure:

% + w2 (%ﬁlﬁ(w)) u(z,t) = 0. (7)

A prediction of the acoustic comportment of the porous nialteequires the deter-
mination of the dynamic tortuosity(w) and dynamic compressibilitg(w). Theses
functions depends to the physical characteristic of thel filnithe pore space of the
medium and are independent of the dynamic characteridtibe structure. The func-
tionsa(w) andf(w) express the viscous and thermal exchanges between theritliid a
the structure which are responsible of the sound dampinganstic materials. These
exchanges are due on the one hand to the fluid-structuréveetabtion and on the
other hand to the fluid compressions-dilatations produgethb wave motion. The
parts of the fluid affected by these exchanges can be estrhgtihe ratio of a micro-
scopic characteristic length of the media, as for exammesibes of the pores, to the
viscous and thermal skin depth thicknéss- (2n/wp;)"* andd’ = (2n/wp,P,)">.
For the viscous effects this domain corresponds to the megfiche fluid in which the
velocity distribution is perturbed by the frictional focat the interface between the
viscous fluid and the motionless structure. For the therrfiats, it corresponds to
the fluid volume affected by the heat exchange between th@hases of the porous
medium.

3 FRACTIONAL MODEL

When the wave frequency is high, the skin depth is very naamavthe viscous
effects are concentrated in a small volume near the frame< 1; then the vis-
cous effects in the fluid can be neglected: the fluid behaveesillike a perfect fluid
(without viscosity). In the same way, the compressionfdilan cycle is a much faster
process than the heat transfer between the air and thewsewtd it is a well-founded
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approximation to consider that the compression is adiebhti The high frequency
approximations (Johnsati al 1987) of the response factaigw) and5(w) are :

1/2
a(w):am<1—%<ﬁ) ), w — 0. (8)
2= g PN
T )

From these two equations, we note that the frequency depeadd#a(w) and S (w)

is the high frequency range, is in square root of the frequéins interesting to note
that the temporal equivalent of the square root is the fraeli derivative. Write the
equations in the time domain is equivalent to taking therswd-ourier transform of
(8) and (9). The temporal equivalent af is 9/0t, while the temporal equivalent of
V/jw is a fractional derivative of orderr/2. The definition of fractional derivative of
orderv, where0 < v < 1 is given by Samket al (1993):

DY[(t)] = r(iy) /0 (t — u) "o () du, (10)

whereI'(z) is the Eulerian function of the second kind. From the debnit{10), the
expressions of response facter&s) and 5(w) are then given in the time domain by
(Fellah and Depollier 2000):

t o~ 2 Ui V2 —1/2
alw) — a(t) = ax | 0(t) + A (W—pf) 2, (11)
) B 1/2
B(w) -5 B(t) = 6(t) + 2(7/\, D <7T Pzpf) 172, (12)

whered(t) is the Dirac distribution and the operators. In this moded, time convolu-

tion of t~'/2 with a function, is interpreted as an operator of fractiateivative. Using

Egs. (11) and (12), the Helmholtz equation (7) becomes ie tlmmain a Fractional
wave equation, and is of the form:

?p(x,t) Pp(x,t) 0p(x,t) Op(z,t)
oz Ao Baer Yy

where the coefficientd, B andC' are constants respectively given by ;

20nc _ (=
g PO a\/ﬂfﬁ(l gl 1) o = 4oy =17

) _'_ - N
Ka Ka A V PrA’ KQAA/\/ Pr

The fractional propagation equation (13) is valid for theecaf a porous media with
integer-dimension in space We will discuss in the next atratite case of a medium
with non-integer dimension space. Solving this equatigrpfopagation (Fellakt al,

2003,2005) in the time domain was crucial for the charazaéion of porous materials.

— 0, (13)
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4 INTEGRATION IN SPACESWITH NON INTEGER DIMENSION

Stillinger (1977) developed a formalism for writing the lape operator in
spaces having a fractional dimension D. This dimension ismee from an integral
calculus. Let us consider the integration of a radially syatrio function f in a D
dimension space:

[ dnut ¢ oo = [ drentr) 10 (14)
0
wherer (zg, z1) is the distance between pointsandz;. Here:
D/2
n(r) = o(D)yrP~' and J(D)::T%%ZEE, (15)

D is an integerg (D) agrees with the volume of the unit sphere in Euclidean spaces
This justifies the generalization of fractional dimensiorahy value ofD. Using this
formalism, Stillinger shows that the Laplace operator in-@imensional space is

ver) = T (2 2 (16)

For a non integeD-dimensional space, the Stillinger's formalism leads toaplace
operator for which the non integer dimension is located iy omone direction. For ex-
ample, in a space where only the dimension ofitkeordinate is integer, the Laplacian
becomes
0? ? D-20
? ==+t t+—% 0). 17
VI = |+ g+ g 1 17)

5 ULTRASONIC WAVE IN FRACTIONAL DIMENSIONAL SPACE

The Stillinger’s formalism of noninteger dimensional spatas been general-
ized ton orthogonal coordinates by C. Palmer and P.N. Stavrinou4RQ0dsing the
variational principle, the authors derive the Euler Lageequations of a field theory
in such spaces which follow from the stationarity propertyh@ action integral with
the respect to variations of the fields and their derivati®es if the action is defined

by
Sz/ﬁ@ﬁ, (18)

wherel = L (px, 0,4) is the Lagrangian density corresponding to a definite pdint o
the space-time, the Euler-Lagrange equations are:

oL (%‘7 ap%‘) 9 oL (%‘7 ap%‘) v OL (S% 8#%)

= —(d — 5. (2D o
Opi "0 (0upi) (= 0} ) 9 (Ouepi) 0. {19)



“Template” — 2013/10/1 — 10:30

Here,i = 1,2, ...,n is the number of degrees freedom (i.e. scalar fields), thexipd
runs from 1 to 4z = (z*, 22, 2%, 2* = t) andd,p; = d¢;/02*. d is a diagonal matrix,
the elements of which are the time and spatial dimengiendiag(1, di1, das, ..., duy),
with D = T'r(d) — 1 and/ is the diagonal unit matrix. The third term of the left hand
side of (19) is the additional term due to the fractional disien. In an Euclidean
space wheré,,, = J,,, this term vanishes.

The Euler-Lagrange fractional dimension are constructeassequivalent to those be-
longing to the entire dimensions, except the introductibime Lagrangian derivatives
multiplied by a constant fraction.

The parametersd,, — 0,.,) (:c(‘”)”% introduce the notions of material
anisotropy. In our case, we tabg, = 0, wheny # v andé,, = 1, whenp = v. More-
over, we imposel,, = 0, wheny # v, at leastd,, = d.. = d, = 1. The fractional
dimension is therefore only fixed by the constdnt. However,d,, + d,, + d.. = D
andD < 3, therefore0 < d,, < 1 andd,, is real. To simplify writing, we will take
dyr = d.

Using the expression of the Lagrangian density(1), the tealpgexpressions of the
tortuosity and compressibility (8, 9), we obtain the follog fractional propagation
equation in fractal porous material, at high frequency eang

o) Oplet) | (d - 1) 0,1 _ | (20)

*p(x,t) O”p(x,t)
Ox? -4 ot? -B ot3/2 - ot T ox

whered is the fractal dimension of the porous material. Eq. (20his generalized
propagation equation for lossy non-integer-dimensioradtél porous material. This
equation is very important for treating the direct and iseescattering problems in
inhomogeneous porous materials in time domain. It is easydothe special case of
integer-dimensional rigid porous media, i.e. when= 0, Eq. (20) is reduced to the
propagation equation in integer-dimensional material (3.

Let us study the sensitivity of the fractal dimension of thegagation equa-
tion. Fig. 1 shows the incident signal on a plastic foam sanmglving the following
characteristics: thickness 5 cm, tortuosity, = 1.04, viscous characteristic length
A = 200um, thermal characteristic lengthi = 600um. Fig. 2 shows a comparison
between different signals propagating through the framabus medium, for different
values of the fractal dimensiah From theses figures, we can see that by increasing
the value ofd, the amplitude of the signal decreases, and thus the utiiattenua-
tion of the material increases. This result is very impdrtansolving direct and inverse
problems for ultrasonic characterization of porous friadte will try, in future work,
to solve the inverse problem for measuring the fractal dsi@nof porous materials
using experimental ultrasonic data.
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Figure 1. Incident signal.
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Figure2. Comparison of signals propagating through thefractal porous medium,

for d = 0.2 (solid line),d = 0.4 (dashdot line), d = 0.6 (dotted line) and d = 0.8
(dashed line)

6 CONCLUSION

An original fractional propagation equation is establgstier the ultrasonic
propagation in non-integer-dimensional rigid porous raedihe coefficients of this
equations depends on the acoustic properties of the poratesial and to the fractal
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dimension of the medium. By increasing the fractal dimemsibthe material, the ul-
trasonic attenuation of the material increases. The dpesttlem is solved, we hope,
in future solve the inverse problem for the ultrasonic cb@@zation of fractal porous
materials.
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