
HAL Id: hal-00868161
https://hal.science/hal-00868161v1

Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperation Mechanisms in Particle Swarm
Optimisation

Maurice Clerc

To cite this version:

Maurice Clerc. Cooperation Mechanisms in Particle Swarm Optimisation. 2013. �hal-00868161�

https://hal.science/hal-00868161v1
https://hal.archives-ouvertes.fr

Cooperation Mechanisms in Particle Swarm

Optimisation

Maurice Clerc

Abstract

We de�ne �ve cooperation mechanisms in Particle Swarm Optimisation,
loosely inspired by some models occurring in nature, and based on two quan-
tities: a help matrix, and a reputation vector. We call these �ve mechanisms,
respectively, Reciprocity, Vicinity, Kin, Reputation, and Anybody. It ap-
pears that Kin is better than the rest by a slight margin, but needs more
parameters that have to be tuned (mutation and selection). However, Reci-
procity, with less parameters, shows almost equivalent performance. The
appendix gives some details about fair comparison of success rates, and the
concepts of valued topology and chains of information, which may be worth
further investigation.

1 Introduction

When a bee �nds an interesting place, it comes back to the hive, and dances to
inform some other bees. But which ones, and how many? As far as we know,
it is quite random, and only a few bees are informed; these being just the bees
which are present at the hive at that moment. This is the idea that lies behind the
variable topology that has been de�ned in Clerc (2005, 2006), used by Standard
PSO since 2006 PSC, and generalized under the name of stochastic star in Miranda
et al. (2008). More formally, at each time step, and if there has been no global
improvement, an agent A may help (inform) an agent B with a probability p.
In SPSO, the rule is: �each agent informs, at random, K other agents�, so the
probability is

pSPSO = 1−

(

1−
1

S

)K

(1.1)

where S is the population size. Note that this set of information links is
modi�ed after an iteration only if there has been no global improvement (i.e. the
best position known by the swarm has not been improved). The Stochastic Star
of Miranda et al. (2008) uses exactly the opposite criterion, that is, the set of
information links is modi�ed after an iteration only if there has been a global
improvement, but the two methods seem to be equivalent. At least, there are no

1

signi�cant di�erences on the test functions that they use in their paper. In fact,
what seems to be important is to not modify the topology (the set of information
links) too often.

However, there are a lot of other cooperation mechanisms in real life, and it
would be interesting to apply some of them to PSO, in order to see if they are
better in the speci�c case of optimisation.

2 Five cooperation strategies

In Nowak (2006), Nowak de�nes �ve mechanisms for the evolution of cooperation
in a population. Loosely inspired by this paper, we de�ne here �ve cooperation
rules in a population based optimiser. Each rule given below is complete in itself
and is independent of the others.

1. Reciprocity Rule: An agent A may help an agent B if B has helped A in the
past

2. Vicinity Rule: An agent A may help an agent B if B is a neighbour of A

3. Kin Rule: An agent A may help an agent B if B is similar to A

4. Reputation Rule: An agent A may help an agent B if A has a good �reputa-
tion�

5. Anybody Rule: An agent A may help an agent B if B is any agent

3 Implementation in PSO

In order to implement these rules in PSO, we need algorithmic de�nitions that can
be coded. Below, we give a few such possible de�nitions. We use the word �possi-
ble� as these are non-unique; one may come up with alternative de�nitions. The
de�nitions given here are based on a help matrixH (S × S), and/or a reputation
vector R (S), where S is the swarm size.

When a particle i has to move, it tries to get some information from the
particles j (i.e. the best position known by j), according to a probability vector
P (S) de�ned as follows:

• if the help matrix is used, P is the result of a normalisation of the H (∗, i)
column, seen as vector;

• if the reputation vector is used, P is the result of a normalisation of the
reputation vector.

Each cooperation mechanism uses a speci�c normalisation method. Then the rule
is:

2

if rand (0, 1) < P (j), i indeed receives information from j

In this study, we apply the standard PSO method to use the information sent by
the informants: particle i builds the list of the particles j that send information
to it, and select only the best one, to use it in the velocity update formula. Let
us see now how H or R can be de�ned for our �ve cases. All the rules below are
quite rudimentary and can of course be replaced by more sophisticated ones.

3.1 Reciprocity

At the very beginning, all elements of the help matrix have the same initial value
hinit. After that:

• during each iteration, if j indeed helps i, then H (i, j) is incremented by
hincr;

• after each iteration, all elements of H are decremented by hdecr (but with
zero as lower bound), in order to simulate a kind of oblivion phenomenon.
Note that even for a particlej that has helped particle i in an iteration, and
was therefore incremented in H (i, j), we decrement the value;

• the rules of the normalisation are de�ned below:

{

H (j, i) > hinit ⇒ P (j) = 1
else P (j) = hmin

(3.1)

Actually, some parameters are common to several mechanisms. In the tests
below, we have used the following set:

hinit = 0.5
hincr = 2
hdecr = 1
hmin = adaptive

(3.2)

Some preliminary tests show that a constant hmin is not good for any swarm
size and any problem. That is why we use an adaptive hmin, which is computed
by the following empirical formula:

hmin = max

(

0,
1

S − si

)

(3.3)

where si is the number of times H (i, j) is greater than hinit. This means that
while counting si, we ignore the past and only compare the current values. Thus,
at every step, we simply check if H (i, j) > hinit, and if so, si is incremented by 1.

3

3.2 Vicinity

Let D be the dimension of the search space. A particle receives information from
the D nearest ones. If D is bigger than S, all particles are possible informants.
Therefore, if j is one of the D nearest neighbours of i, then P (j) = 1, otherwise
P (j) = hmin. The adaptive hmin is de�ned in a similar way as in Reciprocity:

hmin = max

(

0,
1

S −D

)

(3.4)

When hmin is not null, it means that even particles that are not the nearest
ones have a slight chance to be informants.

3.3 Kin

This is the most complicated one, for it needs mutation and selection. Though it
is commonly said that the position and velocity of a particle structurally de�ne
it, strictly speaking, it is not correct. Instead, the con�dence coe�cients that a
particle uses in the classical velocity update formula of PSO de�ne its structure
rigorously. Here, we do assume that these coe�cients can be di�erent for each
particle (thus, each particle can be structurally di�erent). So, every particle has
three �genes�:

• w, the inertia weight

• c1, the cognitive con�dence coe�cient

• c2, the social con�dence coe�cient

With the �genes�de�ned, let us start the formulation of the process. First, we
de�ne the initial values: at the very beginning, all particles have the same genes
(winit, c1,init, c2,init). Second, we de�ne a common mutation mechanism for each
gene g, which could be w, c1, or c2

g ← g + gρ (1− 2rand (0, 1)) (3.5)

where ρ is the mutation rate in]0, 1] As we can see, g can either slightly increase
or decrease.

Third, we de�ne a �genetic� distance measure between two triplets (wi, c1,i, c2,i)
and (wj , c1,j , c2,j) associated with two particles xi and xj

dg (xi, xj) =

√

(

wi − wj

winit

)2

+

(

c1,i − c1,j
c1,init

)2

+

(

c2,i − c2,j
c2,init

)2

(3.6)

Fourth, we de�ne a selection rate ς in]0, 0.5].
Then the process is the following:

4

• as said, at the very beginning, all triplets of �genes� are the same. Therefore
a particle may inform any other;

• after each iteration, the ς fraction of best particles generate �mutated� ones,
which replace the ς fraction of worst particles;

• for each particle i, and for the D genetically closest particles j, P (j) is set
to 1. It is set to 0 for all other particles j. Here �genetically closest� means
according to the dg distance measure.

3.4 Reputation

The reputation of a particle j is a memorised estimate of how many times it has
successfully helped another particle. At the very beginning, all elements of the
reputation vector R have the same initial value rinit. After that:

• during each iteration, if j indeed helps i, and if then i improves its position,
then R (j) is incremented by rincr ;

• after each iteration, all elements of R are decremented by rdecr (but with
zero as lower bound), in order to simulate a kind of oblivion phenomenon.
Note that, as in Reciprocity, we apply this decrement even to a particle j

that has helped i during an iteration and was therefore incremented during
the iteration.

• the rules of normalisation are de�ned similarly as in Reciprocity:

{

R (j) > rinit ⇒ P (j) = 1
else P (j) = rmin

For simplicity, the parameter rinit, rincr, rdecr are set to the same values as
hinit, hincr, hdecr. And rmin is de�ned as hmin in Reciprocity:

hrmin = max

(

0,
1

S − si

)

(3.7)

where si is the number of times R (j) is greater than rinit. As in Reciprocity,
while counting si we ignore the past and simply check if R (j) rj > rinit. If so, si
is incremented by 1.

3.5 Anybody

This is the easiest one. Any particle has the same (constant) probability to help
any other one, which is here simply set to 1.

5

4 Experimentation

The above methods have been coded by starting from the C version of SPSO 2011
(PSC). Only the cooperation mechanism has been modi�ed, everything else is the
same, for fair comparison. The resulting CooPSO code is freely available on my
PSO site Clerc. It has been tested on 13 functions of dimensions between 2 and 42
(see table 1). The exact de�nitions of the functions are not given here, but they
can be found in the C code. The pseudo-random number generator used is KISS
PRNG, by Marsaglia, and is included in the code.

4.1 Comparisons

What is important in this study is not the results themselves, but the comparisons
between six cooperation mechanisms (including the one originally used in SPSO
2011). As SPSO 2007 is still often used for its simplicity, I also present the re-
sults with this variant. Note that SPSO 2007 makes use of the same cooperation
mechanism as SPSO 2011, but the velocity update formula is di�erent (for more
details, see Standard PSO Descriptions on Clerc). For all variants the swarm size
is S = 40, and the values of (winit, c1,init, c2,init) are (0.721, 1.193, 1.193). For
Kin, these are just the initial values, the mutation rate is 1/S, and the selection
rate is 0.5.

Let us comment on table 2. As usual, we can classify the problems into two
groups: the ones for which the seven methods are more or less equivalent, and the
ones for which some methods are pretty good, and some others very bad. The
�rst group contains Tripod, Network, Perm, Sphere, Rastrigin, and Ackley, and
the second group has the rest. On the whole, SPSO 2007 is the worst (mainly
because of its bad performance on Step and Rosenbrock that are not compensated
by excellent ones on some other problems). The cooperation scheme Anybody is
also not very good.

Kin is the best by a very slight margin, and Reciprocity comes next; and
Reciprocity is simpler. However, the di�erences are not very signi�cant (it is even
more obvious if you consider the results after 1000 runs, see 7.1, �gure 7.3).

For the di�erent mechanisms , the weaknesses are not always on the same
problems. For example, Kin is rarely better than both Vicinity and Reciprocity.
So de�ning some hybrids may be fruitful. Let us try that.

6

Table 1: Test functions.

Name Search space Max. eval. Objective (adm. error) Comment

Tripod [−100, 100]2 10000 0 (0.0001) Two local

optima

Network {0, 1}38 × [0, 20]4 5000 0 (0) Partly binary

Step [−100, 100]10 2500 0 (0) Biased

Lennard-Jones [−2, 2]15 65000 -9.103852 (10−6) Five atoms

Gear Train {12, 13, . . . , 60}4 20000 2.7 × 10−12(10−13) Discrete

Perm {−5,−4, . . . , 5}5 10000 0(0) Discrete

Compression

Spring

{1, 2, . . . , 70}
× [0.6, 3]
×{0.207, 0.208, . . . , 0.5}

20000 2.6254214578(10−10) Partly discrete

Sphere [−100, 100]30 300 000 -450(10−6) Shifted CEC

(2005)Unimodal

Rosenbrock [−100, 100]10 100 000 390(0.01) Shifted CEC

(2005)

Rastrigin [−5.12, 5.12]30 300 000 -330(0.01) Shifted CEC

(2005)

Schwefel [−100, 100]10 100 000 -450(10−5) Shifted CEC

(2005)

Griewank [−600, 600]10 100 000 -180(0.01) Shifted CEC

(2005) Not

rotated

Ackley [−32, 32]10 100 000 -140(10−4) Shifted CEC

(2005) Not

rotated

7

Table 2: Success rate and Mean best over 100 runs. Swarm size S = 40. For Kin,
ρ = 1/S, and ς = 0.5

SPSO

2007

SPSO

2011

Reciprocity Vicinity Kin Reputation Anybody

Tripod 63% 79% 90% 90% 86% 48% 48%

0.31 0.14 0.1 0.09 0.08 0.73 0.71

Network 0% 0% 0% 0% 0% 0% 0%

106 109 151.8 163.1 160.7 159.2 150.7

Step 3% 99% 100% 100% 100% 100% 100%

4.53 0.01 0 0 0 0 0

Lennard-

Jones

68% 50% 100% 100% 100% 99% 100%

0.077 0.168 7.09E-7 7.37E-7 7.46E-7 0.007 7.27E-7

Gear Train 16% 58% 40% 31% 53% 14% 4%

2.47E-10 0.19E-10 0.49E-10 0.45E-10 0.14E-10 8.22E-10 12.1E-10

Perm 46% 36% 26% 26% 26% 10% 12%

292 309 379.3 350.2 394.4 618.7 731.9

Compression

Spring

72% 81% 73% 70% 72% 19% 14%

0.0019 0.0032 0.002 0.0027 0.0043 0.069 0.063

Sphere 100% 100% 100% 100% 100% 100% 100%

9.00E-7 0 9.01E-7 9.15E-7 9.18E-7 9.13E-7 9.18E-7

Rosenbrock 9% 50% 62% 55% 61% 69% 67%

* 1.8 57.7 178.8 102.31 68.5 40.83 44.90

Rastrigin 0% 1% 0% 0% 0% 0% 0%

38.9 5.4 118.4 121.9 113.8 124.61 118.98

Schwefel 100% 100% 100% 100% 100% 100% 100%

8.75E-5 0 0.87E-5 0.88E-5 0.87E-5 0.86E-5 0.86E-5

Griewank 18% 9% 1% 2% 9% 1% 1%

0.030 0.021 0.076 0.073 0.041 0.099 0.123

Ackley 98% 100% 80% 75% 97% 63% 70%

0.019 0 0.028 0.359 0.039 0.577 0.510

Mean

success

rate

45.6% 54.7% 59.4% 57.6% 61.8% 47.9% 47.4%

* For Rosenbrock, the Mean best is meaningless, for its estimation does not con-
verge as number of runs increases. From time to time, a bad run occurs, with a
very high �nal value.

8

Table 3: Results for some hybrids. For easier comparison, only the success rates
are given. No hybrid is signi�cantly better than all the �pure� mechanisms.

Reciprocity

↔Vicinity

Reciprocity↔

Kin

Reciprocity

↔Reputation

Vicinity

↔Kin

Vicinity

↔Reputation

Kin

↔Reputation

Tripod 94 84 61 80 61 44

Network 0 0 0 0 0 0

Step 100 100 100 100 100 100

Lennard-

Jones

100 100 100 100 100 100

Gear Train 34 45 21 49 30 18

Perm 17 31 29 28 22 16

Compression

Spring

76 73 37 68 46 36

Sphere 100 100 100 100 100 100

Rosenbrock 57 56 66 54 60 74

Rastrigin 0 0 0 0 0 0

Schwefel 100 100 100 100 100 100

Griewank 2 7 0 11 3 7

Ackley 75 86 72 85 70 83

Mean

success

rate

58.1 60.1 52.8 59.6 53.2 52.1

5 Hybrids

There is a very simple way to de�ne some hybrids: if a given variant does not
give a global improvement for one iteration, try another one for the next iteration.
Let us apply this method, by trying all unordered pairs chosen from the four best
cooperation mechanisms (as Anybody is clearly not very good). As we can see
from table 3, no such hybrid is signi�cantly better. For a more synthetic view, we
can sort our 17 mechanisms by increasing order of the mean success rate over the
benchmark, and plot the results. Figure 5.1 shows that the mechanisms that use
Vicinity, Reciprocity, Kin, or their hybrids are more or less equivalent, although
Kin alone seems to be the best by a small margin.

6 Discussion

The cooperation method used in SPSO (2006, 2007, 2011, see PSC) can be com-
pactly and roughly described as follows: �Each agent informs at random a few
other agents�. If, after a while, there is no improvement, another random selection
is performed.� It performs quite well (and, in passing, it may be interesting to

9

Figure 5.1: Comparison of the 17 mechanisms. SPSO 2007 is clearly the worst.
Kin seems to be the best by a small margin, but in fact the three mechanisms
Vicinty, Reciprocity, Kin, and their hybrids are more or less equivalent.

simulate the behaviour of a social system based on this kind of cooperation), but
this study shows that some mechanisms coming from real life can improve the op-
timisation process, particularly Kin and Reciprocity. The �rst one needs to de�ne
two additional parameters, for mutation and selection. The second one is simpler,
and on the whole almost equivalent. On the other hand, precisely because Kin has
more parameters, it may be possible to �nd �good� values of these parameters to
improve the performance even more (see 7.3).

Some concepts may need further investigation. In particular:

- the �genome� of a particle represented by the parameter values that it uses
to compute its displacement, and not, as is usually done, by its position;

- the valued topology, which is a generalisation of the classical one, and which
can be represented by a valued graph or, equivalently, by a �help matrix�. In
particular, the method presented here to build and update such a matrix is very
rudimentary, and can certainly be improved.

10

7 Appendix

7.1 About the success rate

This study suggests that some cooperation mechanisms are better than some oth-
ers, but the comparisons are not very rigorous. There is no statistical analysis
like Wilcoxon, Friedman or t-test. In particular, how much can the success rates
over 100 runs be trusted? After all, when you plot the curve �success rate� vs
�number of runs�, you always get some oscillations, before reaching a level that
can be reasonably said to be �stable�. Actually, it is easy to see that between r
and r + 1 runs, the �jump� of the estimated success rate can be as big as 100/r.
In other words, after one run, the success rate is necessarily either 0% or 100%,
after two runs, only the three values 0%, 50%, 100% are possible, etc.

As we can see from �gure 7.1, even with 100 runs such a stabilisation is not
completely certain. In passing, note that a lot of studies make use of 30 runs or
even less. In such a case, the estimation of the success rate may be quite bad. On
the example here, it would be 73% after 30 runs, while the true value is about
61%.

In the literature, a standard deviation or a con�dence interval is usually given
with the mean best value, so that the reader may have an idea of how precise
the estimate is. However, it is rarely done when the success rate is used as the
comparison criterion. Let us try to do it.

We can perform 100 runs 100 times. Then, we get 100 success rate values,
from which we can have an idea of its distribution, compute a mean value, and a
standard deviation. For the Rosenbrock function, and the Reciprocity mechanism,
the result is given in �gure 7.2. Here, the mean is 61.7%, and the standard
deviation 4.3%. A complete analysis is possible, for the estimated success rate
follows a binomial law, but it is out of the scope of this paper. However, it is worth
nothing if we want a standard deviation not greater than 1%. In such a case, we
must perform at least 1000 runs (with only 30 runs, the standard deviation would
be greater than 6%). Fortunately, as we can see from �gure 7.3, for the four best
mechanisms, the order is almost the same (the last two exchange places, but the
standard deviation is only one percent, and thus the di�erence is not signi�cant),
even if the mean success rate values are smaller.

Also note that the performance criteria, including the success rate, may largely
depend on the random number generator that is being used. That is why the RNG
must be seen as a part of the algorithm Clerc (2012).

7.2 About the Reciprocity mechanism

To initialise the mechanism, we have to assign a non null probability hinit to any
particle so that it can be an informant. After that, though, because of the decay
process, this probability may become hmin. What happens if hmin is equal to zero,
i.e. what happens if a particle tends to inform only the ones that have already

11

Figure 7.1: Evolution of the success rate over 100 runs (Rosenbrock, with Kin).
After 30 runs, the success rate is 73%, but in fact the true value is about 61%.

Figure 7.2: Rosenbrock with Reciprocity. Distribution of the success rate over
100x100 runs.

12

Figure 7.3: Mean success rate for 100 runs and 1000 runs. Comparison for the
four best mechanisms. The improved estimates, after 1000 runs, are always a bit
smaller than after 100 runs. The two best mechanisms keep their rank. For the
two others, the order changes, but the di�erence is not very signi�cant.

informed it? As we can see from table 4, the mean performance then is not as
good, and on some problems it is very poor .

More generally, if hmin is kept constant the performance depends on its value.
Is there an optimal one? Let us try di�erent values, and plot the curve �Mean
success rate� vs hmin. There is indeed a best value, near 0.024, which leads to a
global performance very near to the optimal one (at least on average for the 13
benchmark functions used here), both for a swarm size S = 20, and S = 40, as we
can see from �gure 7.4.

For all swarm sizes, a constant hmin = 0 would be the worst choice. From a
�sociological � point of view: helping only people that have helped you (except
at the very beginning) is not very e�cient, and with just a bit of altruism, the
e�ciency increases.

Anyway, using the same hmin value is just a compromise, for the true optimal
value in fact depends on the swarm size, and on the problem being solved. That
is why we use adaptive formulae here. Even if they are quite simple, the mean
performance is improved. For example, for Reciprocity, and S = 40, we have seen
it reaches 60.1%, whereas with a constant hmin its maximum value is 59.1%.

7.3 About the Kin mechanism

As we have seen, Kin is globally the best though slightly so, and the most robust.
This is probably due to the permanent adaptation of the parameters (w, c1, c2) ,
but to what extent? The diagrams in �gure7.5 for the Tripod problem show that

13

Table 4: Pure Reciprocity, i.e. with hmin = 0. The cooperation mechanism is
then almost always less e�cient.

Success rate over
100 runs

Mean best

Tripod 100 7.04E-5
Network 0 161.6
Step 100 0

Lennard-Jones 100 7.45E-7
Gear Train 9 1.05E-9

Perm 8 454.81
Compression Spring 31 0.016

Sphere 100 9.14E-7
Rosenbrock 54 70.49
Rastrigin 0 118.95
Schwefel 100 8.77E-6
Griewank 6 0.059
Ackley 69 0.498

Mean success rate 52.1

Figure 7.4: If hmin is kept constant, the average mean performance (here for Reci-
procity) depends on its value and on the swarm size S, and there is an optimum for
each swarm size. A hmin value near to 0.024 leads to nearly optimal performances,
but is of course just a compromise. Using an adaptive hmin is a better approach.

14

Table 5: Parameter tuning for Kin. A small mutation rate ρw for the inertia weight
w is enough, but by using a bigger one ρc for the cognitive and social coe�cients
c1 and c2, the performance can be slightly improved. The selection rate is kept
constant (0.5).

w c1 c2 ρw ρc Mean success rate
over the 13 test

functions

0.721 1.481 1.481 0.025 0.025 59.3%
0.721 1.193 1.193 0.025 0.025 61.8%
0.721 1.193 1.193 0.025 0.1 61.6%
0.721 1.193 1.193 0.025 0.2 63.3%

0.721 1.193 1.193 0.025 0.3 60.4%

0.4 0.4 0.4 0.5 0.5 34.8%
0.4 0.4 0.4 0.5 1 39.7%

39.70.4 0.4 0.4 1 1 37.7%

they are not largely modi�ed during a run, just oscillating for w, which suggests
that the initial values are already pretty good. For the best particle (the one
that �nds a solution �rst), the coe�cients stabilize very quickly, but the �nal
values of c1 and c2 are both smaller than the initial ones. It probably means
that for this speci�c problem, the initial values chosen are slightly high. The
initial values are (0.721348, 0.721348, 0.721348) , and the means of all �nal values
are (0.720712, 1.196748, 1.172209). Moreover, if we use these new values as initial
ones, the success rate improves only slightly, in a way that is not statistically
signi�cant.

However, it is also interesting to see what happens if we start from apparently
bad parameter values, say (0.4, 0.4, 0.4). If we keep the same small mutation
rate, i.e. 0.025, then the performance is very poor, for example, 3% for Tripod
(instead of 86%). However, if we use a high mutation rate, say 0.5, the results
are signi�cantly improved, though they are not as good as when starting from the
initial parameter values chosen before. We get 57% for Tripod (instead of 86%),
and 35.8% in average, instead of 61.8%. In this case, the �nal mean values are
(0.63, 0.38, 0.46). So w has increased to a �good� value, but neither c1 nor c2 has
improved well. It suggests that it may be better to de�ne at least two mutation
rates: a small one for w, say ρw, and a bigger one for c1 and c2, say ρc. Table 5
summarises a few experiments. It shows that the global performance can indeed
be a bit improved this way, but not enough if the initial values are too bad.

15

Figure 7.5: Evolution of (w, c1, c2). Every colour denotes a particular particle.
Tripod function, successful run.

16

7.4 Spreading the word

When a particle is aware of a good position, how long does it take to inform others?
Or, said di�erently, what is the probability that a given other particle is informed,
directly or not, after t time steps? If we consider only the information links that
exist at each time step, we can speak of a potential spreading. However, not all
information is used, only the information given by the best informant is taken into
account (in SPSO, it is di�erent; for example in FIPS Mendes et al. (2004)). So,
if we consider what really happens, we can speak of the real spreading.

7.4.1 Potential spreading

For SPSO, the potential spreading is easy to compute. Formula 1.1 gives the
probability of being informed, for a given particle, at a given time step. So the
probability of being informed at time t or before is simply

pspread,SPSO (t) = 1− (1− pSPSO)
t

(7.1)

For the Anybody strategy, it is even easier, for we obviously have

pspread,Anybody (t) = 1 (7.2)

Unfortunately, for the other cooperation strategies studied here, the potential
spreading is problem dependent, so we can just estimate some lower bounds (the
upper bound is always 1). For Reciprocity, Vicinity, and Reputation the proba-
bility that particle j does inform the particle i is at least hmin. Therefore, we
have

pspread (t) ≥ 1− (1− hmin)
t

(7.3)

For Kin, each particle is informed by the D nearest ones (according to the
�genetic� distance), but a given particle may perfectly be never informed by another
one. So, the lower bound is simply 0.

7.4.2 Real spreading

Now, we want to know the real probability. It depends on the problem to be solved,
so we can approximate it by experiments. The method that has been used here is
based on chains of information. Such a chain is a temporal sequence of particles
{i1, i2, . . . , iT } so that at time t, the particle it+1 has really used the information
sent by it. In practice, for SPSO or similar variants, it means that at time t there
is an information link from it to it+1 and that it is the best informant of it+1.

Then, for a given problem, and a given cooperation mechanism, we estimate
the real spreading as follows:

• randomly select two particles, i and j;

17

• on a complete run, save the distribution of the lengths of the chains of
information between i and j, i.e. for each length T how many times a chain
of this length is generated;

• repeat the above two steps many times, and compute the average distribu-
tion.

So, for each problem, and each kind of cooperation, we can plot the cumulative
average distribution (see �gure7.6). The details of these distributions are not
important, and, anyway, di�cult to read (particularly if you have a black and
white copy of this paper!). However, two points are obvious:

• for the worst kind of cooperation (Anybody), all chains are very short, at
most two particles;

• the best mechanism (Kin), tends to produce long chains for some problems,
and short chains for some other ones. There may be a relationship with the
�di�culty� of these problems, but nothing is very clear. So this point needs
further investigation.

Anyway, a good cooperation mechanism will certainly induce a distribution of the
chain lengths with neither too many short values nor too many high values. How
to de�ne such a good compromise is still an open question. For example, it is
probably possible to force the information chain lengths to be between a minimal
and a maximal value.

7.5 Help matrix and valued topology

In the PSO context, the topology at time t is the graph of information links. The
nodes are the particles, and there is a link from j to i if j is an informant of i.
Such a graph can be represented by a binary S × S matrix. The help matrix is a
generalisation of this. Instead of having 0 (j does not inform i) or 1 (j does inform
i), we have a probability (j may inform i, with the probability H (j, i)).

Conversely, the help matrix can be seen as a representation of a valued graph,
which can therefore be named a valued topology. So, we can see a clear evolution
of the cooperation mechanisms that are used in the context of PSO:

• fully connected graph (often called global best topology). Example: the very
�rst PSO version Kennedy and Eberhart (1995);

• static local best, connected graph. Examples: Ring, Von Neumann, Four
Clusters, etc. (see Mendes (2004) for a quite complete list);

• variable graph (informants selected from time to time). Clerc (2005)Janson
and Middendorf (2005)Miranda et al. (2008), etc.;

• variable valued graph (informants selected from time to time, and with a
probability to use them). Example: the present study.

18

Figure 7.6: Cumulative probability of the length of the chains of information. The
worst mechanism (Anybody) induces very short chains. The best one (Kin) tends
to induce long chains for some problems. However, there is no clear relationship
with the �di�culty� of the problem. Indeed, Reputation also sometimes induces
long chains, but is nevertheless not very good on average.

19

As a next step, an obvious and even more general mechanism could be the same as
the last one given above, but with all parameters being adaptive (see in particular
3.2).

Acknowledgements

I am particularly grateful for the assistance given by Abhi Dattasharma, who
has carefully read the draft of this chapter, and helped me to write it in a more
readable English.

References

CEC (2005). Congress on Evolutionary Computation Bench-
marks,http://www3.ntu.edu.sg/home/epnsugan/.

Clerc, M. Math Stu� about PSO, http://clerc.maurice.free.fr/pso/.

Clerc, M. (2005). L'optimisation par essaims particulaires. Versions paramétriques

et adaptatives. Hermés Science.

Clerc, M. (2006). Particle Swarm Optimization. ISTE (International Scienti�c
and Technical Encyclopedia).

Clerc, M. (2012). Randomness matters, http://clerc.maurice.free.fr/pso/randomness
Technical report.

Janson, S. and Middendorf, M. (2005). A hierarchical particle swarm optimizer and
its adaptive variant. IEEE Trans Syst Man Cybern B Cybern, 35(6):1272�1282.

Kennedy, J. and Eberhart, R. C. (1995). Particle Swarm Optimization. In IEEE

International Conference on Neural Networks, volume IV, pages 1942�1948,
Perth, Australia. Piscataway, NJ: IEEE Service Centeer.

Mendes, R. (2004). Population Topologies and Their In�uence in Particle Swarm

Performance. PhD thesis, Universidade do Minho.

Mendes, R., Kennedy, J., and Neves, J. (2004). Fully Informed Particle Swarm:
Simpler, Maybe Better. IEEE Transactions of Evolutionary Computation,
8:204�210.

Miranda, V., Keko, H., and Duque, A. J. (2008). Stochastic Star Communication
Topology in Evolutionary Particle Swarms (EPSO). International Journal of

Computational Intelligent Research.

Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314,
no 5805:1560�1563.

PSC. Particle Swarm Central, http://www.particleswarm.info.

20

